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Abstract 

People instantaneously evaluate faces with significant agreement on evaluations of social traits. 

However, the neural basis for such rapid spontaneous face evaluation remains largely unknown. 

Here, we recorded from 490 neurons in the amygdala and hippocampus in 5 neurosurgical 

patients and show that amygdala and hippocampal neurons encode a social trait space. We 

further investigated the temporal evolution and modulation on the social trait representation, and 

we employed encoding and decoding models to reveal the critical social traits for the trait space. 

We also recorded from another 259 neurons and replicated our findings using different social 

traits. Lastly, the neuronal social trait space may have a behavioral consequence likely involved 

in the abnormal processing of social information in autism. Together, our results suggest that 

there exists a neuronal population code for a comprehensive social trait space in the human 

amygdala and hippocampus that underlie spontaneous first impressions. 
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Introduction 

Faces are among the most important visual stimuli we perceive and they often convey a wealth 

of information. When we see a person’s face, we can easily recognize their unique identity and 

general features such as sex and age. The gestalt of facial processing enables us to automatically 

evaluate faces on multiple trait dimensions (e.g., trustworthiness) (Willis & Todorov 2006), and 

these evaluations predict important social outcomes, ranging from electoral success to sentencing 

decisions (Todorov et al 2015). However, a central challenge in face research is to understand 

how the brain evaluates faces in general and forms rapid spontaneous impressions of faces on 

multiple trait dimensions. 

It has been conclusively shown that neurons in the primate inferotemporal (IT) cortex encode a 

face space of low-level features, demonstrating a comprehensive neural code for physical 

variations in faces such as eye shape and skin tone (Chang & Tsao 2017, Freiwald et al 2009, 

Leopold et al 2006). On the other hand, the human amygdala and hippocampus play critical roles 

in social perception (Montagrin et al 2018, Rutishauser et al 2015) and encode various social trait 

judgments of faces (i.e., judgments of an individual’s temporally stable characteristics). For 

example, a lesion study has shown that the amygdala is necessary for judging facial 

trustworthiness (Adolphs et al 1998), which is further supported by functional neuroimaging 

studies (Todorov et al 2008). We previously utilized single-neuron recordings in the human 

amygdala to show that the amygdala parametrically encodes facial emotions (Wang et al 2017), 

which are known to shape various social trait judgments of faces such as personality traits (Said 

et al 2009). Prior studies have investigated one trait judgment at a time; however, humans use 

hundreds of different trait words to describe spontaneous trait judgments of faces (Lin et al 2019, 

Oosterhof & Todorov 2008, Sutherland et al 2013) and automatically evaluate faces on multiple 

trait dimensions simultaneously. Whether the amygdala and hippocampus encode a 

comprehensive space for social trait judgments of faces has not yet been determined.  

In this study, we hypothesize there exists a neuronal social trait space in the human amygdala 

and hippocampus that underlies spontaneous first impressions of faces. Primate research on face 

processing supports such a possibility: neurons from the macaque temporal lobe encode a multi-
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dimensional face feature space (Chang & Tsao 2017, Freiwald et al 2009, Leopold et al 2006) as 

well as a multitude of social information (for a review see (Freiwald et al 2016)), providing 

plausible neural mechanisms supporting different dimensions of complex social evaluations. 

Furthermore, our recent neuroimaging data suggests that the human amygdala encodes physical 

variations in faces (e.g., shape and skin tone) that underlie representations of various social traits 

(Cao et al 2020a). A recent psychological study using the largest number of representatively 

sampled social traits to date has characterized a comprehensive space for social trait judgments 

of faces—a four-dimensional space with dimensions interpreted as warmth, competence, 

femininity, and youth (Lin et al 2019). Based on this comprehensive social trait space, the 

present study investigated whether there exists a population code (i.e., neuronal population 

activity collectively contributes to the judgments) for evaluating multimodal social traits in the 

human amygdala and hippocampus, which will provide the neural basis for first impressions of 

faces. We also provide a direct replication of our results using an additional dataset and another 

well-established social trait space. We lastly explore the behavioral consequence of the neuronal 

social trait space for those with autism. 

Results 

Constructing a comprehensive social trait space 

Neurosurgical patients undergoing single-neuron recordings viewed 500 natural face images of 

50 celebrities (Figure 1A, B; 10 images per celebrity) while performing a simple one-back task 

(Figure 1A; accuracy = 75.7±5.28% [mean±SD across sessions]). Additionally, we acquired 

consensus social trait ratings for the same face stimuli on 8 traits from a large population of 

participants recruited via an online platform (see Methods; 415.75±11.42 [mean±SD] raters per 

trait; Figure S1A). The eight traits (warm, critical, competent, practical, feminine, strong, 

youthful, and charismatic) were selected to represent the four comprehensive psychological 

dimensions of social trait judgments of faces (warmth, competence, femininity, and youth; two 

traits per dimension; see Methods) (Lin et al 2019). The inter-rater consistency of these ratings 
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(Figure S1B, C) was comparable to the established study (Lin et al 2019) (see also Figure S1D 

for correlations between ratings from different modules [each module contained one face image 

per identity] and Figure S1E for correlations between social traits). We used the average ratings 

across participants per face on the eight traits to construct a “social trait space” (Figure 1B). We 

verified that this social trait space reproduced the four comprehensive dimensions of facial social 

trait judgments found in the prior study (Lin et al 2019) (Table S1). We found that this social 

trait space demonstrated an organized structure after projecting it onto a two-dimensional space 

for visualization using t-distributed stochastic neighbor embedding (t-SNE): different images of 

the same person were clustered, and the two t-SNE dimensions showed the change in two of the 

four comprehensive psychological dimensions (warmth and femininity) as expected. The trait 

judgment was highly consistent for different images of the same person (Figure 1B and Figure 

S2A). It is worth noting that we also collected social trait ratings from a subset of neurosurgical 

patients and we found that ratings from patients were generally consistent with the consensus 

ratings from the online sample (Figure S1F, G). Therefore, we used the consensus ratings for 

further analysis. 

The neuronal population in the amygdala and hippocampus encode the social trait space 

We recorded from 490 neurons in the amygdala and hippocampus of 5 neurosurgical patients (16 

sessions in total; overall firing rate greater than 0.15 Hz), which included 242 neurons from the 

amygdala, 186 neurons form the anterior hippocampus, and 62 neurons from the posterior 

hippocampus. We aligned neuronal responses at stimulus onset and used the mean normalized 

firing rate in a time window from 250 ms to 1000 ms after stimulus onset for subsequent 

analyses. 

To investigate whether the neuronal population encoded the comprehensive social trait space, we 

calculated dissimilarity matrices (DMs) between face identities for social traits (Figure 1C left; 

using ratings for 8 social traits) and neural responses (Figure 1C right; using the mean 

normalized firing rate of neurons), and we assessed the correspondence between the social trait 
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DM and the neural response DM using representational similarity analysis (RSA) (Kriegeskorte 

et al 2008). We found that the DM from face-responsive neurons (i.e., neurons that had a 

significant change in firing rate after stimulus onset compared to baseline; see Methods; n = 74) 

was significantly correlated with the social trait DM (Figure 1D; permutation P < 0.001), and 

this was the case for both amygdala neurons (Figure 1E; n = 36, permutation P = 0.011) and 

hippocampal neurons (Figure 1F; n = 38, permutation P = 0.004). Furthermore, we observed 

similar results using the entire neuronal population (n = 490, permutation P = 0.003; amygdala 

neurons: n = 242, permutation P = 0.12; hippocampal neurons: n = 248, permutation P < 0.001). 

Although identity neurons (i.e., neurons that selectively encoded certain identities) (Cao et al 

2020b) might enhance the correlation between face identities, we derived similar results when 

we excluded identity neurons (n = 57, permutation P = 0.004). Lastly, we derived similar results 

when we constructed DMs using face images instead of face identities (Figure S2; all 

permutation Ps < 0.008). 

We further investigated the impact of race on social trait perceptions. We found that the 

amygdala and hippocampal neurons encoded the social trait space constructed with Caucasian 

faces only (Figure 1G; permutation P < 0.001) or African American faces only (Figure 1H; 

permutation P = 0.003), suggesting that encoding of social traits in the amygdala and 

hippocampus was independent of racial differences. In addition, we investigated the time course 

of the correspondence between the social trait DM and the neural response DM (Figure 1I). We 

found that encoding of the social trait space peaked at between 200 ms to 400 ms after stimulus 

onset. The response from hippocampal neurons peaked earlier (at ~150 ms; in comparison to 

~400 ms for amygdala neurons) and was greater than that from amygdala neurons, but amygdala 

neurons had a more sustained response than hippocampal neurons (Figure 1I).  

Encoding and decoding models corroborate the RSA results and further reveal the critical social 

traits for the trait space 
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We next constructed encoding and decoding models to investigate the relationship between 

neural response and each individual social trait. Using an encoding model (see Methods), we 

identified subsets of neurons that significantly tracked social trait judgments (Pearson correlation 

between the mean normalized firing rate and the mean z-scored social trait ratings across 50 

identities; see Figure 2A for an example of the trait strong and Figure S3A for a summary of the 

number of significant neurons for each trait). At the population level, we found that face-

responsive neurons significantly encoded the judgments on the social traits associated with three 

comprehensive dimensions (warmth, competence, and femininity dimensions: warm, critical, 

competent, practical, feminine, and strong; Figure 2B; two-tailed one-sample t-test of correlation 

coefficient r against 0); and we observed similar results in all neurons (Figure S3B), all 

amygdala neurons (Figure S3C), and all hippocampal neurons (Figure S3D). Encoding of the 

social traits associated with the fourth comprehensive dimension (youth) was uniquely observed 

for the neural population in the amygdala (for youthful across face identities; Figure S3C). The 

encoding models using face images instead of face identities (Pearson correlation between the 

normalized firing rate and the z-scored social trait ratings across 500 face images) showed that 

the firing rate of all neurons significantly correlated with all four dimensions of social trait 

judgments (Figure S3F), three of the four dimensions in face-responsive neurons (Figure S3E) 

and all amygdala neurons (Figure S3G), and two of the four dimensions in all hippocampal 

neurons (Figure S3H). Furthermore, we found that the neural population encoded the first four 

principal components of the 8 social traits, which replicated the four comprehensive dimensions 

of social trait judgments of faces (Lin et al 2019). Lastly, we found similar results using the 

absolute value for Pearson’s r for each neuron (statistical significance was assessed using a 

permutation test).  

Notably, we explored whether different social traits were encoded with a similar latency. To 

answer this question, we investigated the temporal dynamics of encoding models using a moving 

window. We found that the social trait associated with the femininity dimension regarding gender 

(strong) was encoded earlier after stimulus onset than the social traits associated with the warmth 

and competence dimensions (warm, critical, and practical) which describe the more abstract 

personality characteristics of an individual (Figure 2C) as opposed to physical characteristics. 
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Therefore, our results indicate that different social trait dimensions may be processed at different 

stages in the brain with physical characteristics being processed earlier than more complex 

personality traits. Furthermore, although amygdala and hippocampal neurons showed similar 

encoding for most of the social traits (Figure S3C, D, G, H; see Figure S4 for temporal 

dynamics), we found that only amygdala neurons encoded the social trait youthful.  

Using a decoding model (see Methods), we found that the neural population could predict the 

social trait judgments associated with all four dimensions (including the traits warm, critical, 

practical, feminine, strong, youthful, and charismatic) across face identities (Figure 2D) or 

across face images. Furthermore, we found similar results using partial least squares (PLS) 

regression (Figure S3I) and regression with principal component analysis (PCA) of neural 

responses (Figure S3J). Together, the encoding and decoding models corroborated our finding 

that neurons from the amygdala and hippocampus collectively encode a comprehensive social 

trait space. 

Social trait representation is universal for different face stimuli and social trait spaces 

We conducted an additional experiment to (1) rule out the possibility that participants’ 

knowledge of some of the celebrities in our stimuli may influence neural representations of 

social traits, (2) investigate whether encoding of the social trait space can be generalized to 

different face stimuli and a social trait space constructed using a different set of social traits, and 

(3) explore whether encoding of the social trait space is independent of the evaluative context. 

We recorded from a separate population of 259 neurons (12 sessions from 4 patients; firing rate > 

0.15 Hz) while patients performed a trustworthiness judgement task (6 sessions; Figure 3A) or a 

dominance judgment task (6 sessions) using the FaceGen model faces (Oosterhof & Todorov 

2008), which contained only feature information but no real identity information (Figure 3A, B). 

We used nine social traits (attractiveness, competence, trustworthiness, dominance, mean, 

frightening, extroversion, threatening, and likability) to construct a social trait space (Figure 

3B). Similarly, we calculated DMs between faces for social traits (Figure 3C; using z-scored 
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ratings for the 9 social traits) and neural responses (Figure 3D-F; using the mean normalized 

firing rate of neurons), and we assessed the correspondence between the social trait DM and the 

neural response DM using RSA. We found that the neural response DM was significantly 

correlated with the social trait DM (Figure 3D, G; permutation P < 0.001), suggesting encoding 

of the social trait space was independent of face familiarity, specific face stimuli (natural photos 

of real people vs. computer-generated model faces), and specific social traits to construct the 

space. Importantly, neurons encoded the social trait space separately in both the trustworthiness 

judgment task (Figure 3E, H; permutation P < 0.001) and the dominance judgment task (Figure 

3F, I; permutation P = 0.010), suggesting that encoding of the social trait space was independent 

of the evaluative context. Together, this additional experiment not only confirmed our finding 

that neurons in the human amygdala and hippocampus encode a social trait space but also 

suggest that the social trait representation can be universal for different face stimuli and social 

trait spaces. 

People with autism spectrum disorder (ASD) show an altered social trait representation 

People with ASD demonstrate abnormal processing of social information from faces (Adolphs et 

al 2001). A specific neural structure hypothesized to underlie deficits in face processing in ASD 

is the amygdala, a brain structure that has long been implicated in autism (Baron-Cohen et al 

2000, Schumann & Amaral 2006). Therefore, in the present study we also explored whether 

people with ASD have a different social trait representation compared to controls and whether 

the social trait representation in ASD can be explained by neural response from the amygdala 

and hippocampus.  

To address these questions, we acquired ratings of the CelebA stimuli from a sample of online 

participants with ASD (self-identified). We first confirmed that online participants with ASD 

demonstrated significantly higher scores compared to controls on standardized tests that evaluate 

ASD characteristics including the Autism Spectrum Quotient (AQ; Figure 4A; ASD: 27.76±8.09 

[mean±SD], controls: 20.28±6.82; two-tailed two-sample t-test: t(427) = 8.94, P < 10216) and 
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Social Responsiveness Scale-2 Adult Self Report (SRS-A-SR; Figure 4B; ASD: 91.73±29.66, 

controls: 65.17±25.19; t(427) = 8.61, P = 1.11×10216). In comparison, neurosurgical patients had 

scores comparable to controls for both AQ (Figure 4A; 18.25±8.46; t(339) = 0.59, P = 0.56) and 

SRS-A-SR (Figure 4B; 31.5±20.51; t(337) = 1.88, P = 0.06). We also confirmed that online 

participants had scores similar to well-characterized in-lab participants from our prior ASD study 

(Wang & Adolphs 2017a) for both AQ (ASD: t(108) = 0.73, P = 0.47; controls: t(349) = 1.42, P = 

0.16) and SRS-A-SR (ASD: t(107) = 0.94, P = 0.35; controls: t(343) = 1.57, P = 0.16). 

We found that the social trait ratings differed in all four comprehensive dimensions (including 

the traits warm, practical, feminine, strong, and youthful) between participants with ASD and 

controls (Figure 4C). Furthermore, participants with ASD demonstrated a significantly lower 

inter-rater consistency compared to controls in most of the traits (Figure 4D, E). This suggests 

that participants with ASD were more variable in their ratings, consistent with the heterogeneity 

in their symptoms and behavior (Happe et al 2006). Notably, although the social trait DM for 

participants with ASD (Figure 4F) was similar to controls, it was less correlated with the neural 

response DM from the neurosurgical patients (derived with face-responsive neurons; Ã = 0.084 

for ASD and Ã = 0.10 for controls; similar results were derived with all neurons). We used a 

bootstrapping approach to estimate the distribution of DM correspondence for each participant 

group (see Methods) and we found that the two distributions were largely separated (Figure 4G; 

the mean of the ASD distribution was significantly outside the control distribution [P < 0.001] 

and the mean of the control distribution was also significantly outside the ASD distribution [P < 

0.001]). We also used a permutation test (see Methods) and statistically confirmed that the 

difference in DM correspondence between participant groups was above chance (Figure 4H; P < 

0.001). Together, our results suggest that the neuronal social trait space in the amygdala and 

hippocampus may have a behavioral consequence for social judgment and may account for 

abnormal social trait judgments of faces in ASD. 

Discussion 
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Our present results represent the first step towards constructing a social trait space for face 

processing at the single-neuron level in the human brain. We not only showed that single neurons 

encoded individual social traits when judging photos of famous people, but also demonstrated 

that the neuronal population in the amygdala and hippocampus encoded a comprehensive social 

trait space. In addition, we had a direct replication of our results using unfamiliar faces and 

different social traits, and our results further suggested that the neuronal social trait space in the 

amygdala and hippocampus may relate to abnormal face processing in autism based on 

behavioral data on social traits of the same stimuli. 

Past behavioral research has provided candidate dimensions for describing trait judgments of 

faces (Lin et al 2019, Oosterhof & Todorov 2008, Sutherland et al 2013); however, the biological 

bases of those psychological dimensions remain unknown. Here we showed that these 

dimensions were encoded by the neural population in the amygdala and hippocampus. We 

further showed that the neural correlates for different social trait dimensions varied in temporal 

dynamics (i.e., the femininity dimension [a physical characteristic] was encoded faster than the 

more abstract dimensions of warmth and competence [personality traits]), suggesting that 

different categories of social trait information may arrive at the amygdala and hippocampus at 

different latencies. This result is consistent with the notion that the amygdala connects with other 

parts of the brain through multiple routes (Pessoa & Adolphs 2010). In addition, we found that 

the dimensions of warmth, competence, and femininity were encoded across both face images 

and face identities, whereas the dimension of youth was only encoded across face identities 

regarding youthful and across face images regarding charismatic, likely because different face 

images from the same identity were more heterogenous along the youth dimension. Similar 

neural pattern analyses have been used to study race bias of faces using functional neuroimaging 

data (Stolier & Freeman 2016) and face representation using intracranial electroencephalogram 

data (Grossman et al 2019) in humans. 

It is worth noting that our one-back task did not require patients to make any explicit face 

judgment (they simply indicated when a face was repeated); therefore, our analyses were relating 

neural responses of implicit face impressions provided by patients to the consensus ratings of 
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explicit face impressions provided by an independent sample of over 400 participants from the 

general population. Using an additional experiment with computer-generated, unfamiliar faces, 

we further illustrated that encoding of the social trait space was independent of face familiarity, 

the knowledge of the face identity, as well as specific faces and traits being evaluated. Therefore, 

the neural coding in the amygdala and hippocampus can be a general mechanism for face 

evaluation and first impressions. Furthermore, it has been argued that the representation of social 

trait space is subject to top-down modulation (Stolier et al 2018), and our previous findings also 

suggested a flexible representation of social traits (e.g., trustworthiness and dominance) in the 

human amygdala (Cao et al 2020a). However, in our additional experiment (Figure 3), we 

showed that encoding of the social trait space was universal under different evaluative contexts. 

Also, in our main experiment (which likely involved both bottom-up and top-down processes) 

we found that the representation of social traits was similar for different races. Therefore, future 

research will be needed to investigate how the two distinct processes (bottom-up and top-down) 

may influence the neuronal representation of social traits. 

The ability to look at someone’s face and make judgments about basic aspects of that person, 

such as trustworthiness, is a fundamental skill for most people. Unfortunately, people with ASD 

have difficulty in processing social information from faces (Adolphs et al 2001). Such deficits in 

ASD may be attributed to the amygdala, a hypothesis that is supported by substantial literature 

showing structural abnormalities (Amaral et al 2008) and atypical brain activation (Philip et al 

2012) in ASD. Furthermore, patients with amygdala damage also fail to fixate on the eyes when 

viewing faces similar to those with ASD (Adolphs et al 2005), and single-neuron recordings in 

the human amygdala show weaker responses in people with ASD when viewing the eyes 

(Rutishauser et al 2013). In this study, we further showed that the neuronal social trait space 

encoded by amygdala and hippocampal neurons may account for aspects of abnormal face 

processing in ASD since behavioral ratings of social traits using the same stimuli by adults with 

ASD were less correlated with the neuronal data from neurosurgical patients than was the 

behavioral ratings of social traits from controls. 
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In conclusion, we for the first time revealed a neural social trait space at the single-cell level in 

humans. Encoding a comprehensive social trait space provides the neural basis for rapid 

spontaneous impressions of faces on multiple trait dimensions. Our present results are in line 

with the notion that face representations are encoded over a broad and distributed population of 

neurons (Hinton 1984), which has been conclusively demonstrated in the non-human primate 

inferotemporal cortex (IT) (Chang & Tsao 2017). Our results further shed light on how face 

processing evolves along the visual processing stream where the brain transforms from encoding 

low-level facial features in the higher visual cortex to complex social traits in the amygdala and 

hippocampus. Our results also support the idea that the amygdala and hippocampus are highly 

involved in social perception and evaluation (Adolphs 2010, Montagrin et al 2018), which in turn 

supports their roles in coding socially relevant and salient stimuli (Wang & Adolphs 2017b). 
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Figure Legends 

Figure 1. A neuronal social trait space. (A) Task. We employed a one-back task, in which 

patients responded whenever an identical face stimulus was repeated. Each face was presented 

for 1s, followed by a jittered inter-stimulus-interval (ISI) of 0.5 to 0.75 s. (B) Distribution of face 

images in the social trait space based on their consensus social trait ratings after dimension 

reduction using t-distributed stochastic neighbor embedding (t-SNE). (C) Correlation between 

dissimilarity matrices (DMs). The social trait DM (left matrix) was correlated with the neural 

response DM (right matrix). Color coding shows dissimilarity values. (D-H) Observed vs. 

permuted correlation coefficient between DMs. The correspondence between DMs was assessed 

using permutation tests with 1000 runs. The magenta line indicates the observed correlation 

coefficient between DMs. The null distribution of correlation coefficients (shown in gray 

histogram) was calculated by permutation tests of shuffling the face identities. (D) All face-

responsive neurons (n = 74). (E) Amygdala face-responsive neurons (n = 36). (F) Hippocampal 

face-responsive neurons (n = 38). (G) Social trait space constructed by Caucasian faces only (n = 

74). (H) Social trait space constructed by African American faces only (n = 74). (I) Temporal 

dynamics of correlation between DMs. Bin size is 500 ms and step size is 50 ms. The first bin is 

from 2500 ms to 0 ms (bin center: 2250 ms) relative to stimulus onset, and the last bin is from 

1000 ms to 1500 ms (bin center: 1250 ms) after stimulus onset. Dotted horizontal lines indicate 

the chance level and dashed horizontal lines indicate the ±Standard Deviation (SD) of the null 

distribution. The top asterisks illustrate the time points with a significant correlation between 

DMs (permutation test against null distribution, P < 0.05, corrected by false discovery rate [FDR] 

Q < 0.05). See also Figure S1 and S2. 

Figure 2. Encoding and decoding models. (A) An example neuron that showed a significant 

correlation between the mean normalized firing rate and the mean z-scored rating of the social 

trait strong (Pearson correlation: r = 0.75, P = 4.0×10210). Each dot represents a face identity. (B) 

Encoding of each social trait. The bars show the average correlation coefficient across all face-

responsive neurons for each social trait. Error bars denote ±SEM across neurons. Asterisks 
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indicate a significant difference from 0 (two-tailed paired t-test). *: P < 0.05, **: P < 0.01 and 

***: P < 0.001. (C) Encoding of different social traits over time. Error bars denote ±SEM across 

neurons. Asterisks shown on the top indicate a significant difference from 0 (two-tailed paired t-

test, P < 0.05, corrected by false discovery rate [FDR] Q < 0.05). (D) Decoding of each social 

trait using a linear decoding model on face identities. Model predictability was assessed using 

the Pearson correlation between the predicted and actual trait ratings in the test dataset. The 

magenta bars show the observed response and the gray bars show the permuted response. Error 

bars denote ±SEM across permutation runs. Asterisks indicate a significant decoding 

performance (two-tailed two-sample t-test between observed vs. permuted). **: P < 0.01 and 

****: P < 0.0001. See also Figure S3 and S4. 

Figure 3. Replication of the neuronal social trait space using FaceGen stimuli and a different set 

of social traits. (A) Task. Each face was presented for 1.5 s, followed by participants’ judgment 

of trustworthiness / dominance within 2 s. The inter-trial-interval (ITI) was jittered between 1 to 

2 s. (B) Distribution of face images in the social trait space based on their consensus social trait 

ratings after dimension reduction using t-distributed stochastic neighbor embedding (t-SNE). (C) 

The social trait dissimilarity matrix (DM). (D-F) The neural response DMs. Color coding shows 

dissimilarity values. (G-I) Observed vs. permuted correlation coefficient between DMs. The 

magenta line indicates the observed correlation coefficient between DMs. The null distribution of 

correlation coefficients (shown in gray histogram) was calculated by permutation tests of 

shuffling the faces (1000 runs). (D, G) Combined trustworthiness and dominance judgment 

tasks. (E, H) Trustworthiness judgment task. (F, I) Dominance judgment task. 

Figure 4. People with ASD demonstrate atypical social trait representations. (A) Autism 

Spectrum Quotient (AQ). (B) Social Responsiveness Scale-2 Adult Self Report (SRS-A-SR). 

Violin plots present the median value as the white circle and the interquartile range as the gray 

vertical bars. Blue circles show the scores from neurosurgical patients, which are comparable to 
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those from controls. (C) Social judgment rating for each trait. (D, E) Inter-rater consistency. 

Inter-rater consistency of each trait was estimated using (D) the intraclass correlation coefficient 

(ICC) (McGraw & Wong 1996) and (E) the Spearman’s correlation coefficient (Ã). Inter-rater 

consistency was first calculated between raters and averaged within each module, and then 

averaged across modules. Error bars denote ±SEM across rating modules. Asterisks indicate a 

significant difference between participants with ASD and controls using two-tailed paired t-test. 

*: P < 0.05, **: P < 0.01, ***: P < 0.001, and ****: P < 0.0001. (F) The social trait dissimilarity 

matrix (DM) from participants with ASD. (G) Bootstrap distribution of DM correspondence for 

each participant group. Blue: controls. Red: ASD. The dots show the mean value of each 

distribution. Participants with ASD showed a weaker correspondence with the neural response 

DM compared to controls. (H) Observed vs. permuted difference in DM correspondence 

between participant groups. The magenta line indicates the observed difference in DM 

correspondence between participant groups. The null distribution of difference in DM 

correspondence (shown in gray histogram) was calculated by permutation tests of shuffling the 

participant labels (1000 runs). 
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Methods 

Patients 

A total of 16 single-neuron recording sessions were conducted with 5 patients (4 female) who 

had undergone surgery to have electrodes implanted to treat intractable epilepsy. All patients 

provided written informed consent using procedures approved by the Internal Review Board of 

West Virginia University (WVU). 

Stimuli 

We used photos of celebrities from the CelebA dataset (Liu et al 2015). We selected 50 identities 

with 10 images for each identity, totaling 500 face images. The identities were selected to include 

both genders (33 male) and multiple races (40 identities were Caucasian, 9 identities were 

African American, and 1 identity was biracial). The faces were of different angles and gaze 

directions, with diverse backgrounds and lighting. The faces showed various facial expressions, 

with some having accessories such as sunglasses and hats. The same stimuli were used for all 

patients.  

In addition, we used a validation dataset. We used the FaceGen Modeller program (http://

facegen.com; version 3.1) to randomly generate 300 faces (see (Oosterhof & Todorov 2008) for 

detailed procedures). FaceGen constructs face space models using information extracted from 3D 

laser scans of real faces. To create the face space model, the shape of a face was represented by 

the vertex positions of a polygonal model of fixed mesh topology. With the vertex positions, a 

principal component analysis (PCA) was used to extract the components that accounted for most 

of the variance in face shape. Each principal component (PC) thus represented a different holistic 

non-localized set of changes in all vertex positions. The first 50 shape PCs were used to construct 

faces that had a symmetric shape. Similarly, because skin texture is also important for face 

perception, 50 texture PCs based on PCA of the RGB values of the faces were also used to 

represent faces. The resulting 300 faces were randomly generated from the 50 shape and 50 skin 
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texture components with the constraint that all faces were set to be Caucasian. Notably, we have 

already acquired trait judgments of these faces from healthy control raters on 9 traits (Oosterhof 

& Todorov 2008): attractiveness, competence, trustworthiness, dominance, mean, frightening, 

extroversion, threatening, and likability. The trait judgements were measured on 9-point scales, 

ranging from 1 (not at all [trait]) to 9 (extremely [trait]). Therefore, these faces have benchmark 

ratings and we can readily perform correlational analysis with neural responses and psychometric 

behavioral data. 

Experimental procedure 

We used a 1-back task for CelebA stimuli. In each trial, a single face was presented at the center 

of the screen for a fixed duration of 1 second, with uniformly jittered inter-stimulus-interval (ISI) 

of 0.5-0.75 seconds (Figure 1A). Each image subtended a visual angle of approximately 10º. A 

simple 1-back task required patients to press a button if the present face image was identical to 

the immediately previous image. Nine percent of the trials were one-back repetitions. Each face 

was shown once unless repeated in one-back trials; and the faces shown in one-back trials were 

randomly selected for each patient. We excluded responses from one-back trials to have an equal 

number of responses for each face. This task kept patients attending to the faces, but avoided 

potential biases from focusing on any particular facial feature (e.g., the color of their eyes or 

whether they are smiling) or social judgment (e.g., whether they seem happy). The order of faces 

was randomized for each patient. 

For FaceGen stimuli, patients performed two face judgment tasks (Figure 3A). In each task, 

there was a judgment instruction, i.e., patients judged how trustworthy or how dominant a face 

was. We used a 1-4 scale: ‘1’: not trustworthy / dominant at all, ‘2’: somewhat trustworthy / 

dominant, ‘3’: trustworthy / dominant, and ‘4’: very trustworthy / dominant. Each image was 

presented for 1.5 s at the center of the screen.  

Stimuli were presented using MATLAB with the Psychtoolbox 3 (Brainard 1997) (http://

psychtoolbox.org) (screen resolution: 1600 × 1280). 
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Online rating of social traits 

For CelebA stimuli, we acquired social trait ratings of the faces from both patients and a large 

number of participants from the general population (age [M = 26.20 years, SD = 7.11], 180/500 

females). Participants were asked to rate the faces on eight social traits using a 7-point Likert 

scale through an online rating task. The social traits included warm, critical, competent, 

practical, feminine, strong, youthful, and charismatic, representing the four core psychological 

dimensions of comprehensive trait judgments of faces (warmth, competence, femininity, and 

youth; 2 traits per dimension); and these social traits were well validated in a previous study (Lin 

et al 2019). The two traits per dimension were selected to capture the meaning of the dimension 

(e.g., warm for the warmth dimension) and they had the highest loadings for that dimension 

based on the prior data (Lin et al 2019) (e.g., critical had the highest loading on the warmth 

dimension). Furthermore, using more than one trait per dimension allowed us to perform 

principal component analysis (PCA) to validate our social trait space with one from the prior 

study (Lin et al 2019). Face stimuli used for collecting the consensus ratings were the same set of 

stimuli used for the neural recordings. Participants also indicated whether they could recognize 

the identity of the face (i.e., whether they were familiar with each face identity). 

Patients completed the social trait rating task online after they were discharged from the hospital 

following surgery to treat intractable epilepsy. Three patients completed the rating task and 

provided ratings for 2 to 5 photos per identity per social trait. Participants from the general 

population completed the rating task using the Prolific online research platform. Participants who 

were fluent in English were included. We divided the experiment into 10 modules, with each 

module containing one face image randomly selected per face identity (totaling 50 face images 

per module), and we required participants to rate each face within a module on 8 social traits 

(e.g., competence; rated in blocks). We collected data from 50 participants per module. All face 

images in the stimulus set (500 in total) were rated on all 8 social traits, totaling 200,000 ratings 

across all participants and modules (500 face images x 8 traits x 50 participants).  
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We applied the following three exclusion criteria: 

(1) Trial-wise exclusion: we excluded trials with reaction times shorter than 100 ms or longer 

than 5000 ms. 

(2) Block/trait-wise exclusion: we excluded the entire block per participant if more than 30% of 

the trials were excluded from the block per (1) above, or if there were fewer than 3 different 

rating values in the block (this suggests that the participant may not have used the rating scale 

properly). 

(3) Participant-wise exclusion: we excluded a participant if more than 3 blocks were excluded 

from the participant per (2) above. 

We subsequently applied a t-distributed stochastic neighbor embedding (t-SNE) method to 

convert the 8-dimensional social trait ratings into a 2-dimensional space for visualization (van 

der Maaten & Hinton 2008).  

We repeated the same procedure to acquire ratings from participants with autism spectrum 

disorder (ASD). In addition, both participants with ASD and controls were asked to provide 

demographic information and complete the online Autism Spectrum Quotient (AQ) and Social 

Responsiveness Scale-2 Adult Self Report (SRS-A-SR) questionnaires. 

Inter-rater consistency 

Inter-rater consistency of each trait was estimated using the intraclass correlation coefficient 

(ICC) (McGraw & Wong 1996) and the Spearman’s correlation coefficient (Ã). The ICC and 

Spearman’s Ã were computed between raters for each trait in each module and then averaged 

across modules per trait. The ICC was calculated using Matlab implementation written by Arash 

Salarian (2020) (https://www.mathworks.com/matlabcentral/fileexchange/22099-intraclass-

correlation-coefficient-icc). The Spearman’s Ã was computed between each pair of raters and 

then averaged across all pairs of raters.  
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Electrophysiology 

We recorded from implanted depth electrodes in the amygdala and hippocampus from patients 

with pharmacologically intractable epilepsy. Target locations in the amygdala and hippocampus 

were verified using post-implantation CT. At each site, we recorded from eight 40 µm 

microwires inserted into a clinical electrode as described previously (Rutishauser et al 2006a, 

Rutishauser et al 2010). Efforts were always made to avoid passing the electrode through a 

sulcus, and its attendant sulcal blood vessels, and thus the location varied but was always well 

within the body of the targeted area. Microwires projected medially out at the end of the depth 

electrode and examination of the microwires after removal suggests a spread of about 20-30 

degrees. The amygdala electrodes were likely sampling neurons in the mid-medial part of the 

amygdala and the most likely microwire location is the basomedial nucleus or possibly the 

deepest part of the basolateral nucleus. Bipolar wide-band recordings (0.1-9000 Hz), using one 

of the eight microwires as the reference, were sampled at 32 kHz and stored continuously for off-

line analysis with a Neuralynx system. The raw signal was filtered with a zero-phase lag 

300-3000 Hz bandpass filter and spikes were carefully sorted using a semi-automatic template 

matching algorithm as described previously (Rutishauser et al 2006b). 

Single-neuron response 

Only units with an average firing rate of at least 0.15 Hz during the entire task were considered. 

Only single units were considered. Trials were aligned to stimulus onset. We used the mean 

firing rate in a time window 250 ms to 1250 ms after stimulus onset as the response to each face. 

Firing rate was then normalized by dividing the mean activity in the baseline (2250 ms to 0 ms 

relative to stimulus onset). Such normalization was applied in previous studies that analyzed the 

similarity between single-neuron responses to visual categories (Reber et al 2019). 

 Page  of 22 31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2021. ; https://doi.org/10.1101/2021.01.30.428973doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.30.428973
http://creativecommons.org/licenses/by-nc-nd/4.0/


Face-responsive neurons were identified by comparing the response to faces (i.e., the mean firing 

rate in a time window 250 ms to 1250 ms after stimulus onset) to baseline (i.e., 2250 ms to 0 ms 

relative to stimulus onset) using a two-tailed paired t-test with P < 0.05. 

Representational similarity analysis (RSA) 

Dissimilarity matrices (DMs) (Kriegeskorte et al 2008) are symmetrical matrices of dissimilarity 

between all pairs of face images or face identities. In a DM matrix, larger values represent larger 

dissimilarity of pairs, such that the smallest value possible is the similarity of a condition unto 

itself (dissimilarity of 0). We used the Pearson correlation to calculate DMs (ratings were z-

scored and firing rates were normalized to the mean baseline of each neuron), and we used the 

Spearman correlation to calculate the correspondence between the DMs (Spearman correlation 

was used because it does not assume a linear relationship (Stolier & Freeman 2016)). We further 

used permutation tests with 1000 runs to assess the significance of the correspondence between 

the social trait DM and the neural response DM. Because the consistency between face images 

for the same face identity in both social trait ratings (Figure S2A) and neural responses (Figure 

S2B) could inflate the correspondence between the social trait DM and the neural response DM, 

we averaged the social trait ratings or neural responses across face images for each face identity 

and calculated the DM between face identities. We further used a moving window (bin size = 

500 ms, step size = 50 ms) to measure temporal dynamics. The first bin started 2500 ms relative 

to trial onset (bin center was thus 250 ms after trial onset), and we tested 31 consecutive bins (the 

last bin was thus from 1000 ms to1500 ms after trial onset). 

We used a bootstrap with 1000 runs to estimate the distribution of DM correspondence for each 

participant group. In each run, 70% of the data were randomly selected from each participant 

group and we calculated the correspondence (Spearman’s Ã) between the social trait DM and the 

neural response DM for each participant group. We then created a distribution of DM 

correspondence for each participant group, and we compared the mean of the ASD distribution to 

the control distribution and vice versa to derive statistical significance. 
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We further used a permutation test with 1000 runs to statistically compare the DM 

correspondence between participants with ASD and controls. In each run, we shuffled the 

participant labels and calculated the difference in DM correspondence between participant 

groups. We then compared the observed difference in DM correspondence between participant 

groups with the permuted null distribution to derive statistical significance. 

Encoding and decoding models 

We constructed encoding and decoding models to investigate the relationship between the neural 

response and social trait judgments. For the encoding model, we first calculated the Pearson 

correlation coefficient between each social trait (z-scored) and the response of each neuron 

(normalized by the baseline) across face images or face identities, and then we averaged the 

correlation coefficient r across neurons per social trait. We compared the mean correlation 

coefficient with 0 using a two-tailed one-sample t-test to determine if a social trait was 

significantly encoded by the neural population.  

For decoding, we employed three models to linearly decode the social trait judgments from the 

neural response (note that the decoding was performed for each trait individually). First, we 

fitted a linear model for social trait ratings (z-scored) using neural responses (normalized by the 

baseline). We calculated the vector of neural weights w as: w = R • v, where v is a column vector 

(n×1) of trait ratings across the n faces or identities (n = 500 for faces and n = 50 for identities), 

and R is the neural matrix (each row is a neuron’s response and each column is a face or identity) 

that contains the neural response values for each face or identity. We further normalized w by ||

w||: w = w / ||w||. The resulting neural vector w thus showed the optimal direction that best 

captured the variation in trait ratings. Second, because there were more independent variables 

(i.e., neurons) than observations (i.e., trait ratings of identities), we employed a partial least 

squares (PLS) regression with 3 components to decode the social traits. Third, similarly, we first 

performed a principal component analysis (PCA) on the neural matrix and then used the first 3 

principal components for a linear regression. To estimate statistical significance, for all three 
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linear decoding models, we used a permutation test with 1000 runs to determine whether 

judgments of a social trait could be significantly decoded by the neural population response. In 

each run, we randomly selected 70% of the trait ratings as the training dataset to construct a 

decoding model (i.e., deriving neural model or regression coefficients). We then predicted the 

trait ratings for faces using this model in the test dataset, and computed the Pearson correlation 

between the predicted and actual trait ratings in the test dataset. As a reference, we randomly 

shuffled the trait ratings across faces to create a null distribution of Pearson correlations. A 

decoding model was considered significant if the mean correlation coefficient of the observed 

distribution was significantly greater than that of the null distribution (two-tailed two-sample t-

test). This procedure has been demonstrated to be very effective in a recent study investigating 

neural population coding of facial features (Chang & Tsao 2017). 
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