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Abstract

Biological neuronal networks (BNNs) are a

source of inspiration and analogy making for re-

searchers that focus on artificial neuronal net-

works (ANNs). Moreover, neuroscientists in-

creasingly use ANNs as a model for the brain.

Despite certain similarities between these two

types of networks, important differences can be

discerned. First, biological neural networks are

sculpted by evolution and the constraints that it

entails, whereas artificial neural networks are en-

gineered to solve particular tasks. Second, the

network topology of these systems, apart from

some analogies that can be drawn, exhibits pro-

nounced differences. Here, we examine strategies

to construct recurrent neural networks (RNNs)

that instantiate the network topology of brains

of different species. We refer to such RNNs

as bio-instantiated. We investigate the perfor-

mance of bio-instantiated RNNs in terms of: i)

the prediction performance itself, that is, the ca-

pacity of the network to minimize the desired

function at hand in test data, and ii) speed of train-

ing, that is, how fast during training the network

reaches its optimal performance. We examine

bio-instantiated RNNs in working memory tasks

where task-relevant information must be tracked

as a sequence of events unfolds in time. We high-

light the strategies that can be used to construct

RNNs with the network topology found in BNNs,

without sacrificing performance. Despite that we

observe no enhancement of performance when

compared to randomly wired RNNs, our approach

demonstrates how empirical neural network data

can be used for constructing RNNs, thus, facili-

tating further experimentation with biologically

realistic network topologies, in contexts where

such aspect is desired.
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1. Introduction

Recent breakthroughs in artificial neural network research

have generated a renewed interest in the intersection of bio-

logical and artificial neural systems (Richards et al., 2019;

Lillicrap et al., 2020; Saxe et al., 2021). This intersection

primarily focuses on the biological plausibility of learning

rules (Bartunov et al., 2018; Lillicrap et al., 2020) or the sim-

ilarity of visual stimuli representations in ANNs and BNNs

(Cadieu et al., 2014; Güçlü & van Gerven, 2015; Kietzmann

et al., 2019). Explicit comparisons of the network topology

of BNNs and ANNs are less prominent. This gap primarily

exists due to the fact that, despite certain analogies and inspi-

ration derived from neuroscientific findings, groundbreaking

advancements in ANNs are driven by engineering goals and

computing power (He et al., 2015; Srivastava et al., 2015;

Hochreiter & Schmidhuber, 1997) and not by the need for

increased neurobiological realism, that necessitates the in-

corporation of empirical data pertaining to neural network

topologies found in nature. Recent studies that examine net-

work topologies of ANNs only focus on generic similarities

with biological systems. For instance, building feedforward

networks not in a hand-crafted manner, but based on abstract

topology models that bear certain similarities with BNNs,

such as the Watts-Strogatz model (Watts & Strogatz, 1998)

or the Barabási–Albert model (Albert & Barabási, 2002),

leads to competitive performances in image classification

tasks (Xie et al., 2019). In the context of image recognition,

the enrichment of convolutional networks with recurrent

connections, mimicking a key feature of BNNs (Markov

et al., 2012), leads to competitive performance in benchmark

tasks, even outperforming state-of-the-art networks without

recurrence (Ming Liang & Xiaolin Hu, 2015). In addition,

studies focusing on RNNs, specifically, echo state networks,

and evolutionary algorithms applied to ANNs, demonstrate

that networks with a modular network architecture, reminis-

cent of the modular nature of BNNs, exhibit better memory

capacity (Rodriguez et al., 2019) and adaptation to new

tasks (Clune et al., 2013).

However, such studies have only focused on network topolo-

gies that bear generic similarities to BNNs and do not in-

stantiate artificial networks with the actual, empirical net-

work topology that experimental work has unravelled. De-

spite that, from an engineering standpoint, such level of

abstraction may be desired and optimal, it is unknown how
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empirically-discerned network topology can be incorporated

in RNNs and if and to what extent such network topology

can lead to beneficial aspects, such as faster learning (fewer

training epochs) and better performance (minimization of

loss functions in test sets). Examining the effects of em-

pirically discerned network topology om RNNs is impor-

tant, since ANNs, including RNNs, are increasingly used

as models of the brain, and, moreover, the highly structured

network topology of animal brains is suggested to serve as

a structural prior that is important for rapid learning (Zador,

2019). Notably, despite universal cross-species brain net-

work topology principles, divergence of network topology

is also discernible, for instance, when comparing human

and monkey brains (Goulas et al., 2014). Therefore, the

effects of the incorporation of brain network topology from

different species into ANNs should be examined. Here,

we explicitly address this gap. Instead of examining net-

work topologies that are biologically inspired or analogous

to BNNs, we build RNNs that are bio-instantiated, that is,

they embody the empirically discerned network topology

found in natural neural systems, that is, monkey and hu-

man brains. This is a necessary step to explicitly examine

the intersection between ANNs and BNNs at the network

topology level. We examine the impact of bio-instantiated

RNNs in a series of working memory tasks that entail the

ability to track relevant information as a sequence of events

unfolds across time. Working memory is a key cognitive

capacity of biological agents, extensively studied in cog-

nitive psychology and neuroscience (Conway et al., 2003).

Moreover, such capacity is also desired in engineering tasks

where sequential data are processed.

Since RNNs are hand-engineered and BNNs are a product

of evolution, apart from intuitive expectations, it is not clear

how network topology of BNNs can be incorporated into

RNNs and how such network topology impacts the perfor-

mance of RNNs. Our main goal is to investigate different

strategies to construct bio-instantiated RNNs from empiri-

cal data on BNNs and elucidate the performance of these

bio-instantiated RNNs, for instance, assess if BNN-based

network topology is a potentially advantageous structural

prior that would situate the system at hand in an advan-

tageous starting point, that is, effecting performance and

speed of training when the networks is subsequently trained.

Our contributions are as follows: we investigate three dif-

ferent strategies to construct bio-instantiated RNNs from

experimental observations of the human and monkey brain

networks and the impact of such strategies on the perfor-

mance and speed of learning of the bio-instantiated RNNs.

We examine these aspects in the context of a commonly

used learning algorithm, that is, backpropagation-through-

time, and rate models with continuous activation functions.

Our results indicate that not all strategies for creating bio-

instantiated RNNs lead to the same performance. A lack

of enhancement of the performance of the bio-instantiated

RNNs when compared to randomly wired RNNs showcases

the need for further modifications, possibly encompassing

more biologically realistic learning algorithms and activa-

tion functions, conjointly with the incorporation of addi-

tional dimensions across which the performance of the bio-

instantiated RNNs should be evaluated.

It is important to highlight the distinction between network

architecture and network topology, as currently used in this

report. State-of-the-art RNNs, such as LSTMs (Hochreiter

& Schmidhuber, 1997), exhibit a non-random engineered

architecture (different types of interconnected gates), but

a random topology (all-to-all connectivity with randomly

initialized weights). In addition, the classic Elman networks

(Elman, 1990) exhibit a non-random architecture, for in-

stance, the input layer connects to the hidden recurrent layer,

but not directly to the output layer. However, the topology

of the hidden recurrent layer is all-to-all, and, thus, in stark

contrast to the network topology of biological systems, such

as the human and monkey brain network.

1.1. Related work

In the realm of neuroscience, experimental work and net-

work analysis revealed that BNNs, such as the worm neural

network, have a characteristic network topology, that is,

neurons in BNNs do not connect in a random or all-to-all

fashion, but exhibit preferential connectivity that obeys cer-

tain wiring principles (Varshney et al., 2011; Motta et al.,

2019). Comprehensive, single neuron connectivity at a

large-scale, whole-brain level in animals, such as humans,

is currently experimentally intractable. While such informa-

tion is still lacking, detailed experimental data reveal how

neuronal populations in different brain regions of human

and non-human animals are wired to each other. These

experimental observations highlight that neuronal popula-

tions inhabiting the various regions of animal brains, do

not connect to each other in a random or all-to-all fash-

ion, but exhibit preferential connectivity and connection

weights, thus, forming a characteristic network topology

(van den Heuvel et al., 2016; Goulas et al., 2019). In sum,

the network topology pertaining to a plethora of BNNs is

in contrast to the hand-crafted engineering-driven network

topology of ANNs. A recent study examines the effect of

constructing RNNs with the empirically discerned topology

of the human brain network (Suarez et al., 2020). This study,

however, examines a different class of RNNs (echo state

networks) than the one that we examine in our approach

(Elman networks), and in addition, echo state networks are

trained with a different algorithm as the one that is used here

(backpropagation-through-time). Moreover, our approach

is comparative, that is, it uses empirical brain network data

from different species, thus, conveying additional concep-

tual and methodological advantages (see Discussion).
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Figure 1. Constructing bio-instantiated RNNs. A. RNNs have a random or all-to-all topology, with neurons connecting to each other

with a random weight sampled from e.g., a uniform distribution. On the contrary, BNNs do not exhibit a random or all-to-all topology.

Instead, neuronal populations within a brain region connect to specific neuronal populations in other brain regions. In addition, brain

regions, and the underlying neurons within this region, do not connect to each other with random weights. Instead, region-to-region,

and, presumably, the underlying neuron-to-neuron connections, have non-random connection weights. B. Extrapolating from empirical

data on biological neural networks to construct bio-instantiated RNNs. Empirical data on brain networks offer quantitative data on

region-to-region connection weights (pink solid lines). Neuron-to-neuron connection weights are computed in such a way that the sum of

all neuron-to-neuron connection weights between two regions (e.g., region A and B) is equal to the empirical region-to-region connection

weight (region A to region B=5). In total three strategies were followed to construct the bio-instantiated RNNs from empirical data:

topology-no weight mapping, topology, weight mapping-equal, topology weight mapping-diverse. See sections 2.1-2.3 for details. Note

that this schematic drawing depicts the human brain, but the same strategies and principles apply to the monkey brains.

In the realm of ANN research, the characteristic, non-

random network topology of BNNs has started to gain atten-

tion. In the context of evolutionary optimization, networks

that are optimized for minimization of their connection cost,

that is, the physical distances spanned by connections be-

tween the neurons of the system, as observed in BNNs

(van den Heuvel et al., 2016; Goulas et al., 2019), also

exhibit modularity, a network topology feature that also

pertains to BNNs (Clune et al., 2013). Moreover, networks

that are evolved with the connection cost incorporated in

the objective function, are characterized by enhanced per-

formance and adaptation capacity to new tasks (Clune et al.,

2013). However, such approach evolves a network archi-

tecture based on biologically grounded principles and does

not examine the impact of the network topology of BNNs if

directly embedded in RNNs that are subsequently trained

with a widely used learning algorithm for RNNs, that is,

backpropagation-through-time. Moreover, incorporating a

key general feature of BNNs, that is, the fact that connec-

tions between neurons are reciprocal, led to convolutional

neural networks with recurrence that outperform purely feed-

forward convolutional networks in benchmark object recog-

nition tasks (Ming Liang & Xiaolin Hu, 2015). Such hybrid

convolutional networks with recurrence have been further

enriched and tested in a neuroscientific context, leading

to better fit with empirical data recorded from the human

brain during object recognition (Kietzmann et al., 2019).

While such studies showcase the potential benefits of craft-

ing ANNs with network topology features found in BNNs,

nevertheless, they embody a general wiring feature, in this

case recurrence, and do not embody the exact recurrent pat-

terns of connections between brain areas in the way that
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empirical data indicate. In addition, (You et al., 2020) intro-

duce a BNNs to ANNs conversion strategy that relies on the

concept of relational graphs, but such approach uses network

topology of BNNs as a generator for feedforward networks

and not for the creation of RNNs with a biologically-based

network topology. Lastly, at the interface of neuroscience

and ANNs, RNNs have been used to explore diverse tasks,

including higher-order cognitive domains (Eliasmith et al.,

2012; Yang et al., 2019; Cueva et al., 2020), but such ex-

periments do not use RNNs that have a neurobiologically

realistic network topology.

Figure 2. Working memory tasks. A. Sequence memory task. In

this task, a sequence of N numbers has to be memorized and

recalled (see section 3.1 for details). B. Nback memory task. In

this task, a number has to be matched to a number n time steps ago

(see section 3.2 for details).

2. Constructing bio-instantiated RNNs

All the steps and strategies for extrapolating from empirical

data on BNNs to RNNs are possible with the bio2art pack-

age: https://github.com/AlGoulas/bio2art

2.1. Faithful extrapolations from empirical data

Analysis of empirical data demonstrates that BNNs are char-

acterized by key network topology principles dictating how

the neuronal populations of the different brain regions con-

nect to each other. Such network topology principles include

preferential non-random connections between specific brain

regions and non-random connection weights (Bullmore &

Sporns, 2009; van den Heuvel et al., 2016; Goulas et al.,

2019) (Fig. 1 A). Here, we exploit this plethora of empirical

evidence to construct the network topology of the hidden

recurrent layer of an RNN, specifically an Elman network

(Elman, 1990). We should note that our study focuses on

the ramifications of the incorporation of network topology

found in nature into RNNs, and not solving engineering

problems per se. Thus, despite the obvious and known limi-

tations of Elman-type RNNs (Hochreiter & Schmidhuber,

1997), we chose this type of RNNs due to their suitability to

test the key question at hand, that is, the effect of biological

versus random network topology in artificial systems. Note

that the present framework of converting BNNs to RNNs is

general enough to accommodate other types of RNNs, such

as LSTMs (Hochreiter & Schmidhuber, 1997) and GRU

networks (Cho et al., 2014).

2.1.1. FROM REGIONS TO NEURONS

One first challenge in translating empirical BNNs to RNNs

is the fact that the wiring of biological system, such as the

human and monkey brain, is not experimentally tractable

at the neuron-to-neuron level, but summarized as a brain

region-to-brain region wiring diagram (Fig. 1 B). For brains

such as the monkey brain, the wiring diagram is based on a

fixed number of regions derived from a brain parcellation

that currently encompasses 30-60 brain regions (Markov

et al., 2012; Majka et al., 2020). Thus, a first challenge

is to devise a way to extrapolate from this fixed number of

network size and create RNNs that obey the empirical brain

region-to-brain region network topology, but can have an

arbitrary size. An arbitrary size, that is, a RNN with an

arbitrary number of neurons in the hidden layer, is desired,

since different tasks have different demands in terms of

the network size that is adequate for achieving competitive

performance. Currently we offer a simple solution: for

each brain region, we assume that it is populated by N

neurons. For instance, in the example illustrated in Fig. 1,

the empirically discerned network used as an example is

composed of three regions (region A, B and C) and each

region contains N=4 neurons. Note that for the current

experiments, bio-instantiated RNNs were also constructed

by assuming that each region contains 4 neurons.

2.1.2. REGION-TO-REGION AND NEURON-TO-NEURON

WIRING

A second challenge is to translate the region-to-region

wiring diagram to a neuron-to-neuron wiring diagram. The

empirical evidence dictate that at the binary topological

level, region A and B are connected, as well as region B

and C, but not region A and C (Fig. 1 B). We populate

each region with four neurons. The neurons within each

region connect to the neurons of another region based on

the empirical data, for instance, neurons within region A

connect to neurons in region B, but not region C.

Moreover, empirical data on brain networks indicate that the

strength of connections is heterogeneous. In the example in

Fig. 1 B), the weight of the connection between region A

and B is 5, whereas the weight between regions B and C is 2.

Thus, from a weighted topological level standpoint, we ex-
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trapolate connection weights between the neural populations

of the different regions. We should note that in the current

setup, the number of connections that a neuron can form is

controlled by a parameter dictating the percentage of con-

nections that a neuron will form, out of the total number of

connections that can be formed. Here, we set this parameter

to 0.8, that is, 80% of all possible connections are formed.

In the example depicted in Fig. 1 B, with this parameter

set to 0.8, each neuron in region A connects to 3 neurons

in region B (note, however, that only two connections are

depicted for simplifying the visualization).

2.1.3. WITHIN REGION NEURON-TO-NEURON WIRING

Empirical, quantitative and comprehensive data for neuron-

to-neuron connectivity within each brain region are lacking.

However, existing empirical data suggest that within-region

connectivity strength constitutes approximately 80% of

the extrinsic between-region connectivity strength (Markov

et al., 2012). Therefore, the intrinsic, within-region connec-

tivity in our BNN to RNN translation strategy followed this

rule. Thus, with this rule, in the example depicted in Fig.

1 B, the total strength of connections between neurons in

region A is 80% of 5, that is, 4. It should be noted that the

number of connections that a neuron can form with neurons

of the same region is controlled by a parameter dictating the

percentage of connections that a neuron forms, out of the

total number of connections that can be formed. Here we set

this parameter to 1, that is, all connections between neurons

within a region are formed. Thus, in the examples in Fig. 1

B, within a region, e.g., region A, all neurons connect to all

neurons within the same region.

2.1.4. ASSIGNING REGION-TO-REGION CONNECTION

WEIGHTS TO NEURON-TO-NEURON WEIGHTS

As mentioned, current empirical data at the whole brain

level offer quantitative information only for region-to-region

connection strength. We use this empirically discerned infor-

mation to assign neuron-to-neuron connection weights. This

necessarily entails extrapolations. Two ways of assigning

neuron-to-neuron connection weights from region-to-region

weights were adopted. First, given connection weight M

between two regions, and K neuron-to-neuron connections

between the two regions, all neuron-to-neuron connections

have an equal weight calculated as M/K. We refer to this

scheme as the equal scheme. In the example in Fig. 1

B (middle panel:weight-mapping equal), neuron-to-neuron

connections between region B and C have a weight equal to

1, since the region-to-region weight is 2 and we have in total

2 neuron-to-neuron connections. Second, given connection

weight M between two regions, and K neuron-to-neuron con-

nections between the two regions, the ith neuron-to-neuron

connection weight is estimated as wi, where wi is a subset

of W, and i=1,2,...K, with sum(W)=M. In other words, M

is expressed as a sum of K partitions, where K=number of

neuron-to-neuron connections between two regions. We

refer to this scheme as the diverse scheme. In the exam-

ple in Fig. 1 B (bottom panel:weight-mapping diverse),

neuron-to-neuron connections between region B and C have

e.g, weights equal to 1.5 and 0.5, since the region-to-region

weight is 2 and we have in total 2 neuron-to-neuron con-

nections. Note that extrapolating from region-to-region to

neuron-to-neuron weights involves extrapolations and, in

the diverse scheme described above, a degree of random-

ization is entailed: while the sum of connection weights

between neuronal populations between two regions is con-

strained and dictated by empirical network data, the individ-

ual neuron-to-neuron weights are random partitions of the

empirical weight as described above.

2.2. Mapping neuron-to-neuron weights and RNN

weights

Weights of RNN involve an initialization so that the RNN

can be trained properly. Here, we used a default initializa-

tion scheme where weights were initialized from a uniform

distribution [−√
α,

√
α] where α=1/NN, and NN the total

number of neurons of the hidden layer of the RNN. We

should note that other suggested initialization schemes for

RNNs, for instance, as described in (Le et al., 2015), were

not applicable in our case, since they require that the recur-

rent hidden layer is the identity matrix and the very purpose

of our study is to examine the impact of the incorporation

of the network topology dictated by the network topology

of BNNs into RNNs and this topology is clearly not an

identity matrix. Alternative weight initialization schemes

that are usually adopted, that is He (He et al., 2015) and

Xavier (Glorot & Bengio, 2010) initialization schemes, led

to qualitatively the same results. We should note that in-

stead of using a uniform distribution, possible extensions

may involve weights that can also be initialized by sampling

from families of distributions based on certain empirical ob-

servations on neuron-to-neuron connection weights (Motta

et al., 2019).

An important step is to assign the weights that were ini-

tialized from a uniform distribution [−√
α,

√
α] to the

neuron-to-neuron weights that were extrapolated from em-

pirical neural network data (Sections 2.1.1-2.1.4). Here,

we adopt a simple approach. We rank-order the neuron-

to-neuron weights that were extrapolated from empirical

neural network data and the weights that were initialized

from a uniform distribution. Subsequently, each neuron-to-

neuron weight is assigned to the corresponding rank-ordered

weights initialized from the uniform distribution. In this way,

the higher neuron-to-neuron weights extrapolated from the

empirical data are assigned to the higher weight values that

were initialized from a uniform distribution Fig. 1 B (mid-

dle panel:weight-mapping equal and bottom panel:weight-
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mapping diverse). Note that this matching of the rank of

weights that were initialized from a uniform distribution to

the neuron-to-neuron weights that were extrapolated from

empirical neural network data does not apply to the topology

no weight mapping strategy (Fig. 1 B top panel), since in

this case the topology of the bio-instantiated RNN is only

constrained from biological data at the binary level.

We should note that with this weight mapping scheme, the

weakest neuron-to-neuron weights extrapolated from em-

pirical data are assigned to the lower values of the weights

that were initialized from a uniform distribution, weights

that include negative values. This is an assumption with

no rigid empirical evidence and could be accommodated

differently in the future (see Discussion). This weight map-

ping leads to bio-instantiated RNNs that are suitable to be

trained with commonly used training algorithms, that is,

backpropagation-through-time.

2.3. Bio-instantiated RNNs

The steps described in sections 2.1 and 2.2 allow building

RNNs that exhibit a network topology dictated by the net-

work topology of BNNs, both at the binary topological level

(what neuron connects to what neuron) and weighted topo-

logical level (how strongly two neurons connect to each

other). Here, we focus on a simple RNN, that is, an Elman

network (Elman, 1990), defined as:

ht = σh(Wihxt + bih +Whhht−1 + bhh)

yt = σy(Wyht + by)

with xt, the input vector, ht the hidden layer vector, yt
the output vector, Wih, Whh and Wy the weight matrix

for the input, hidden and output layers, respectively and

σh,σy the respective activation functions and bih, bhh, by
the respective bias terms.

The bio-instantiated RNNs are, thus, Elman networks, and

their bio-instantiated nature is based on the instantiation of

the weight matrix Whh from empirical data on the topol-

ogy of BNNs as described in sections 2.1 and 2.2. Based

on these descriptions, we construct the bio-instantiated

RNNs based on different strategies (summarized in Fig.

1 B). Specifically, we adopt three strategies: topology no

weight mapping, topology weight mapping-equal, topol-

ogy weight mapping-diverse, and the weight matrix Whh

in these strategies is defined as follows. For the topology-

no weight mapping strategy: Whh = Wbio � Winit, with

Wbio the recurrent matrix extrapolated from the empirical

network data with the topology no weight mapping strategy,

Winit a recurrent matrix with randomly initialized weights,

as described in Section 2.2, and � the Hadamard prod-

uct. Thus, Whh is a recurrent matrix with randomly ini-

tialized weights that exhibits the non-random binary topol-

ogy dictated by Wbio, but no relation between weights w

∈ Winit and weights w′ ∈ Wbio. For the topology weight

mapping-equal and topology weight mapping-diverse strat-

egy, Whh = Wbio � Winit with weights w ∈ Winit and

weights w′ ∈ Wbio, and ρ(w,w′) = 1, with ρ denoting

Spearman’s rank correlation. Thus, in these strategies, both

the binary and weighted topology of the bio-instantiated

RNNs is shaped by the topology of the BNNs. Note also

that in these two strategies, the weights of Wbio and Winit

are mapped in the same way just as described above, but the

difference between these two strategies is the extrapolation

of the weights from empirical observations on weights of

BNNs (see section 2.1.4).

Note that the weights of the bio-instantiated RNNs are sub-

ject to modifications, that is, weight updates during the

training process (see section 4). During this process, only

the non-zero weights are modified, that is, exisitng connec-

tions. It is suggested that the network topology of animal

brains is highly structured and such feature may result in

faster learning (Zador, 2019). Thus, in our approach the aim

of the different strategies to create bio-instantiated RNNs

is to examine if the empirical network topology configu-

rations can convey an advantageous starting point for the

networks to be trained compared to networks that do not

embody biological network topology features. Note that

the input connections from the input to the hidden layer, as

well as the output connections from hidden to the output

layer, are all-to-all, that is, there is not preferential input

to, for instance, the neurons of ”vision areas” of the hidden

layer, or preferential output connectivity from neurons in

the ”motor-areas” of the hidden layer to the output layer.

Since each neuron belongs to a brain area that corresponds

to the actual biological system (monkey or human brain),

the aforementioned specificity of input and output connec-

tions can be incorporated in the future, due to the flexibility

of our framework. Note as well that the results reported here

are converging with results that use bio-instantiated Echo

State Networks (Damicelli et al., 2021).

3. Tasks

Our approach is motivated by neurobiology, and, thus, we

focus on a cognitive domain that is commonly used in ex-

perimental neuroscience. Hence, we tested the working

memory capacity of the RNNs. The choice of this capacity

is motivated by a key property of RNNs and biological sys-

tems, that is, the capacity to remember information that is

not directly present at a given time point, but relevant for the

execution of a task. The importance of working memory is

highlighted, for instance, in humans, where working mem-

ory capacity is related to general intelligence (Conway et al.,

2003) and many tasks with an engineering nature and data

with a sequential nature. Thus, we examine the performance
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Figure 3. Sequence memory task results. A. Evolution of the loss function (MSE) across epochs for the different strategies, resulting in

different topologies, across different species. Results are depicted for one parameter combination, denoted by the tuple (lr, activation,

optim, seq len), denoting the learning rate, activation function, optimizer and sequence length for the sequence task that was used. Shaded

area denotes the standard deviation across the different runs (=5) of the experiments. B. Summary of the loss on test data across all

parameter combinations for the different topologies and species. Abbreviations: b_w_no=biological topology - no weight mapping,

r_w_no=random topology - no weight mapping, b_w_eq=biological topology - weight mapping-equal, r_w_eq=random topology -

weight mapping-equal, b_w_div=biological topology - weight mapping-diverse, r_w_div=random topology - weight mapping-diverse.

These abbreviations correspond to the conversion strategies described in Fig. 1.

of the networks in the context of two working memory tasks:

sequence memory (seq mem) and nback memory (nback

mem) Fig. 2. Naturally, the repertoire of tasks can be ex-

tended in the future to other domains and also encompass

benchmark tasks that are used for engineering-oriented ap-

proaches.

3.1. Sequence memory

For the sequence memory task, a sequence of N numbers

was generated uniformly and randomly from the [0 1) in-

terval and fed into the artificial neural network (memorize

phase). When a cue signal was provided, denoted by ”1”

fed into a separate input neuron from the one used as input

for the sequence of N numbers, the network had to generate

the exact sequence of N numbers (recall phase) Fig. 2 A.

The mean square error (MSE) between the predicted and

actual sequence of numbers served as the loss function for

this task. It should be noted, that since we were interested in

the memory capacity of the network, the loss was computed

only on the output of the network during the recall phase.

3.2. Nback memory

For the nback memory task, a sequence of M numbers was

generated uniformly and randomly from the [0 1) interval

and fed into the artificial neural network (memorize phase).

When a cue signal was provided, denoted by ”1” fed into

a separate input neuron from the one used as input for the

sequence of M numbers, the network had to respond by

judging if the last number in the sequence is the same as

the number n time steps ago (response phase) Fig. 2 B.

The responses of the network define three classes: fixate

(no response), match, or no-match Fig. 2 B. The negative
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Figure 4. Nback memory task results. A. Evolution of the loss function (NLL) and the accuracy across epochs for the different strategies,

resulting in different topologies, across different species. Results are depicted for one parameter combination, denoted by the tuple (lr,

activation, optim, seq len), denoting the learning rate, activation function, optimizer and sequence length for the sequence tasks that was

used. B. Shaded area denotes the standard deviation across the different runs(=5) of the experiments. Summary of the loss on test data

across all parameter combinations for the different topologies and species. Abbreviations as in Fig. 3.

log-likelihood between the correct class/response and the

network output served as the loss function for this task. It

should be noted, that since we were interested in the memory

capacity of the network, the loss was computed only on the

output during the response phase.

4. Experiments

The code for running the experiments with the aforemen-

tioned RNNs and tasks is available at https://github.

com/AlGoulas/bio_rnn_mem
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Figure 5. Epoch where the minimum loss on tests data is achieved for A. the sequence memory task and B. the nback memory task, across

different species. Abbreviations as in Fig. 3.

4.1. Training and experimental parameters and

performance measures

We created bio-instantiated RNNs with three strategies:

topology no weight mapping, topology weight mapping-

equal and topology weight mapping-diverse. This procedure

was applied to three different species: marmoset monkeys,

macaque monkeys and humans. The networks were trained

with backpropagation-through-time. We should note that the

goal of the experiments was not to select the optimal combi-

nation of hyperparameters, but to elucidate the impact that

the different strategies of creating bio-instantiated RNNs

have on the prediction capacity and speed of training of the

networks. Therefore, in order to observe the impact of the

biological topology across different settings, experiments

were carried out with a range of varied and fixed param-

eters. The learning rate was set to 1× 10−4. We ran the

experiments with two different commonly used optimizers,

that is, Adam and RMSprop. We ran the experiments with

two activation functions, that is, ReLU and tanh. Lastly, we

varied the parameter of the memory task to be executed, that

is, for the sequence memory task, the length N of the se-

quence of numbers to be memorized was varied (N=3,5,10)

and for the nback memory task, the number of time steps n

that were needed to compare the current target number to

was also varied (n=2,3,4). Thus, in total, 12 unique combi-

nations were generated from the aforementioned parameter

space for each species and each strategy for creating bio-

instantiated RNNs. For each of these cases, the networks

were trained in 5 separate runs. For computational reasons,

the epochs for training were set to 500 for the sequence

memory task and 3000 for the nback task. For each task,

1000 trials were generated and 80% of these trials were used

for training the network and the rest were used for estimat-

ing the test loss that was used as a performance measure

of the network. Specifically, the goal of the experiments

was to examine the impact that the network topology found

in biological systems has on the prediction capacity and

speed of training of the RNNs. Therefore, the loss on test

trials was used as a measure of prediction capacity and the

epoch where the minimum loss was observed was used as

a measure of how fast the network reached its maximum
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performance.

4.2. Random network topology as control cases

Since the topology of RNNs is the focus, as control cases,

the experiments, as described above, took place, but now

with bio-instantiated RNNs with a topology that was sub-

sequently randomized. This randomization of the topol-

ogy entailed shuffling the connection weights of the bio-

instantiated network, generated from each strategy described

in Fig. 1, thus, destroying any structured topology imposed

by BNNs. Note that results obtained from these randomized

RNNs are prefixed with ”r_”.

5. Results

5.1. Effects of topology on loss minimization

For the sequence memory task, all strategies for constructing

bio-instantiated RNNs led to a comparable performance,

except one strategy, that is, topology weight mapping-equal

(b_w_eq in Fig. 3), that led to higher median loss or more

excessive variance of minimum loss, thus, less consistent

convergence to the minimum loss across parameters and

experimental runs. What is of note is that all the other

strategies of constructing bio-instantiated artificial networks

led to a comparable performance to artificial networks with

random topology (as is commonly the case with RNNs)

(Fig. 3). This held true for topologies constructed from

brain network data of monkeys and humans.

For the nback memory task, the topology weight mapping-

equal (b_w_eq) strategy led to the worse observed per-

formance across different parameters and across networks

constructed from different brain networks (Fig. 4). For

all the other strategies that were followed to construct bio-

instantiated RNNs, a comparable performance, that is mini-

mum test loss, was observed when compared to RNNs with

random topology (Fig. 4). Therefore, these results show-

case which strategies can be followed to construct RNNs

with neurobiological network topology, without sacrificing

performance. This held true for all the brain networks, that

is, monkey and human brain networks, used for creating the

artificial counterparts.

It should be noted that for both tasks no difference was

observed between the strategy that takes into account only

the binary topology of BNNs (what neuron connects to

what neuron, b_w_no) and the strategy that also takes into

account the weights (what neuron connects to what neuron

and with what weight, b_w_div). This indicates that, in

the current context, constructing RNNs based on the binary

or weighted network topology of BNNs does not impact

performance.

5.2. Effects of topology on speed of training

Apart from examining the effect of topology and the dif-

ferent strategies for constructing bio-instantiated RNNs on

prediction capacity, we also examined the effect on speed

of training, that is, how fast the network can reach its opti-

mal performance (minimum loss). Once again, the topol-

ogy weight mapping-equal (b_w_eq) strategy led to cer-

tain cases where slower learning across epochs was ob-

served, that is, the best performance (minimum test loss)

was achieved in late epochs compared to what is the case for

their randomized controls (r_w_eq) and the rest of the bio-

logical to artificial conversion strategies (Fig. 5). Such cases,

where sub-optimal speed of training was observed for the

topology weight mapping-equal strategy, involved all BNNs,

that is, the monkey and human brain networks. Hence, these

results dictate what biological to artificial conversion strate-

gies can lead to RNNs with a biological topology without

any loss in speed of training.

As it was the case with prediction capacity, for both tasks,

no difference in the speed of training was observed between

the strategy that takes into account only the binary topology

of BNNs (b_w_no) and the strategy that also takes into

account the weights (b_w_div). This indicates that, in the

current context, constructing RNNs based on the binary or

weighted network topology of BNNs does not impact speed

of training.

6. Discussion

6.1. Examining the network topology of ANNs and

BNNs beyond the lens of abstract analogies

We complement existing approaches emphasizing network

topology (Ming Liang & Xiaolin Hu, 2015; Kietzmann et al.,

2019; You et al., 2020) by offering a novel perspective, that

is, creating bio-instantiated RNNs that are based on em-

pirical data on the topology of multiple biological neural

systems, that is, the marmoset and macaque monkey brain

network, as well as the human brain network. Such an ap-

proach is necessary to explicitly elucidate postulations on

commonalities of ANNs and BNNs at the network topol-

ogy level and offer concrete evidence related to suggestions

that innate cognition and fast learning pertaining to ani-

mals is based on the particular network topology of brain

networks (Zador, 2019). Our results show that a network

topology based on BNNs does not serve, in the current

model setup and mode of evaluation, as an advantageous

structural prior positively effecting performance during the

subsequent training of the network. However, our results

show how we can construct RNNs with a biology-based net-

work topology, without sacrificing performance, a fruitful

avenue for approaches that need enhanced neurobiologi-

cal realism (e.g., RNNs as models for the brain). Specif-

10

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.01.22.427744doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427744
http://creativecommons.org/licenses/by-nc/4.0/


Bio-instantiated recurrent neural networks

ically, our experiments demonstrate that not all strategies

for creating bio-instantiated RNNs from empirical network

data lead to the same performance. Specifically, the strat-

egy that performs worse is based on the assumption that

connection weights between neuronal populations inhabit-

ing two different brain regions are equal. On the contrary,

strategies that assume that such weights are diverse, that

is, they have heterogeneous values, are achieving the best

observed performance in the currently examined experimen-

tal setup. Notably, the sparse empirical evidence on brain

connectivity of mammals at a single neuron-to-neuron level

indicate that connection weights between neurons are di-

verse (Motta et al., 2019). While many different functional

advantages can be conveyed by such heterogeneous weights

of connections, in the current context, these heterogeneous

connections may be beneficial to maximize the diversity of

non-linear transformations to the input of each neuron and,

thus, achieve a more diverse set of outputs per neuron, and,

thus, potential inputs to each neuron, since the output of

each neuron is multiplied by diverse, and not equal, weights

pertaining to its outgoing connections. Such diverse output

and input would facilitate the statistical independence be-

tween the activity of the neurons in the RNN, a feature that,

for instance, in the context of Echo State Networks appears

to be crucial for the enhanced performance of the system

(Morales et al., 2021). Notably, statistical independence is

also considered a key feature of BNNs, that is, the cerebral

cortex (Barlow & Földiak, 1989).

From a broader standpoint, our approach, explores the ef-

fects of different strategies of converting data of diverse

BNNs to RNNs, via a tool that is freely available (Goulas,

2020), thus, facilitating further experimentation. For in-

stance, a novel comparison of the human ventral visual

system and deep convolutional neural networks (Güçlü &

van Gerven, 2015) is now feasible by situating this compari-

son on a biologically realistic plane that takes into account

the empirical data that describe the exact network topology

of the biological system of interest. Importantly, our ap-

proach uses data at a whole brain level, and does not only

focus on a particular system, thus, enabling an arbitrary set

of investigations that encompass any system and cognitive

and behavioral domains of interest.

6.2. Binary and weighted topology

Innate cognition and fast learning pertaining to animals may

be based on the non-random network topology of the brain

(Zador, 2019). Brain networks exhibit a non-random topol-

ogy both at the binary and weighted level (Markov et al.,

2012; Goulas et al., 2019). Evolutionary algorithms applied

to ANNs that do not allow optimization of weights, but only

optimization of topology at the binary level, lead to compet-

itive performance on a classification benchmark (Gaier &

Ha, 2019). Thus, topology of ANNs at the binary level also

encodes ”know-how” for classification tasks. In our case,

we investigated the significance of brain network topology

of diverse animals as a potentially advantageous structural

prior that would render the system at hand more efficient

in terms of performance and speed of training when sub-

sequently trained with backpropagation-through-time. We

instantiated RNNs by taking into account only the binary

or weighted topology of BNNs. The results indicate that

no differences are observed when using binary or weighted

topologies. Evidently, the BNN to RNN extrapolation strate-

gies and RNN architectures examined here are by no means

comprehensive and, consequently, approaches that incorpo-

rate further biologically realistic features are needed, for

instance, by incorporating different classes of excitatory and

inhibitory neurons into RNNs.

6.3. Bio-instantiated RNNs from human and

non-human animal brain networks

We used empirical data describing the network of the brain

of diverse animals, that is, humans and monkeys. This

comparative in silico examination is important for three rea-

sons. First, it allows us to assess the importance of network

topology of neural systems found in nature, without a bias

that would be entailed by an exclusive use of data from

one species, e.g., humans. Thus, we were able to examine

the impact of biological network topology in RNNs from

a universal, cross-species standpoint. Second, experimen-

tal methods for mapping neural systems have a different

degree of reliability. Thus, converging evidence from data

from human and non-human animals, collected with differ-

ent methods (Markov et al., 2012; Betzel & Bassett, 2018;

Majka et al., 2020), highlight the robustness of our results.

Third, the comparative approach situates the human brain,

and the brain of other animals on the same plane. Thus, our

method constitutes the basis of future in silico examinations

of species-specific features that may bestow each animal

with unique functional and behavioral capacities.

6.4. Limitations and future directions

Our results demonstrate what strategies for creating bio-

instantiated RNNs lead to RNNs with biological network

topology without sacrificing performance. However, such

network topology, in the current setup and mode of eval-

uation, does not convey any functional benefits, that is,

achieving lower loss or converging faster to the minimum

loss. Clearly, the RNNs as currently trained, possess several

non-biologically plausible aspects, for instance, with respect

to the training algorithm (backpropagation-through-time)

and activity functions (ReLU, tanh). While in the current

experiments we focused on ways to bestow RNNs with bio-

logically realistic network topology, future studies should

go beyond rate models and examine such network topol-

ogy in a model with spiking neurons and appropriate, more
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biologically realistic training algorithms (Tavanaei et al.,

2019). We should note that the effect of network topology,

as shown in the context of Echo State Networks with thresh-

old neurons (Rodriguez et al., 2019), may be enhanced in

such context. In addition, biologically motivated princi-

ples, such as Dale’s principle, could be incorporated into

the RNNs to enhance their realism, an endeavor rendered

possible by recent methodological contributions (Song et al.,

2016; Cornford et al., 2021). Lastly, the current mode of

evaluation of bio-instantiated RNNs tests performance on

isolated tasks. Extending the way that performance of bio-

instantiated RNNs is evaluated could entail the incorpora-

tion of the wiring cost of the system (Suarez et al., 2020), or

the benefit of bio-instantiated RNNs in e.g., transfer learn-

ing. Overall, the illustrated approach opens new ways to

examine the intersection of ANNs and BNNs at the network

topology level, with the capacity to enrich artificial systems

with empirically discerned neurobiological properties. Such

endeavor may create magnificent hybrid beasts, as well as

some Chimeras.
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