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Abstract

Intrinsically disordered proteins (IDPs) are implicated in many human diseases. They have
generally not been amenable to conventional structure-based drug design, however, because their
intrinsic conformational variability has precluded an atomic-level understanding of their binding
to small molecules. Here we present long-timescale, atomic-level molecular dynamics (MD)
simulations of monomeric a-synuclein (an IDP whose aggregation is associated with Parkinson’s
disease) binding the small-molecule drug fasudil in which the observed protein-ligand
interactions were found to be in good agreement with previously reported NMR chemical shift
data. In our simulations, fasudil, when bound, favored certain charge-charge and n-stacking
interactions near the C terminus of a-synuclein, but tended not to form these interactions
simultaneously, rather breaking one of these interactions and forming another nearby (a
mechanism we term dynamic shuttling). Further simulations with small molecules chosen to
modify these interactions yielded binding affinities and key structural features of binding
consistent with subsequent NMR experiments, suggesting the potential for MD-based strategies

to facilitate the rational design of small molecules that bind with disordered proteins.
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Introduction

Intrinsically disordered proteins (IDPs), which lack a fixed three-dimensional structure under
native, functional conditions, play important roles in a large number of biological pathways. '™
IDPs and proteins with large disordered regions represent approximately 40% of the protein-
coding human genome,'’ and are also crucial components of biomolecular condensates, which
have been increasingly recognized to be important regulators of cellular processes.® IDPs are
implicated in many human diseases, such as cancer, cardiovascular disease, diabetes, and
neurodegeneration, and represent a large pool of potential drug targets.” "> Drugging IDPs,
however, has proven difficult due to their highly conformationally dynamic nature and the
challenges associated with experimentally characterizing their conformational ensembles at
atomic resolution.!®2? Because IDPs generally cannot be meaningfully represented by a single
dominant conformation, or even a small number of substantially populated conformations, they
are generally not suitable targets for conventional structure-based drug design methods, in which
small molecules are designed to optimize interactions with a particular binding pocket in a folded

protein, 01323

The aggregation of the IDP a-synuclein (a-syn) into oligomers and amyloid fibrils may play an

2124 and a potential therapeutic strategy for

important role in the etiology of Parkinson’s disease,
Parkinson’s disease is the stabilization of a-syn in its soluble monomeric form. Recently, the
small molecule fasudil has been shown to interact with monomeric a-syn and delay its
aggregation. Solution nuclear magnetic resonance (NMR) experiments demonstrated that this
interaction is primarily localized to a specific cluster of protein residues at the C terminus.?* In
contrast to a “lock-and-key” picture of protein-ligand recognition, in which a ligand binds to a

stable and well-defined binding site, this fairly specific interaction between the ligand and the

protein occurs while the protein remains highly dynamic and disordered. A detailed molecular
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picture of how fasudil binds to a-syn could shed light on how fasudil recognizes a specific region
of disordered a-syn monomer, and provide a basis for the rational design of molecules that bind

more strongly.

Atomic-level molecular dynamics (MD) simulations have been a valuable tool for
complementing experimental measurements of disordered proteins and providing detailed
descriptions of their conformational ensembles.?! Recent improvements to molecular
mechanics potential energy functions, or “force fields,” have dramatically improved the accuracy
of MD simulations of disordered proteins as assessed by their agreement with a wide variety of
experimental measurements.**! MD simulations with these improved force fields have shown
promise for describing molecular recognition mechanisms of IDPs in scenarios such as folding-
upon-binding,*? dimerization,* and the formation of higher-order molecular assemblies.*** MD
simulations may also provide a promising approach for describing the binding of small
molecules to disordered proteins in atomistic detail and for investigating the driving forces of
these interactions, !!-23:46-53

Here we report long-timescale MD simulations of fasudil binding to a-syn. The probability of
observing contacts between fasudil and a-syn correlated remarkably well in our simulations with
the magnitude of NMR chemical shift perturbations measured from a-syn—fasudil titrations.

This correlation suggests that these simulations provide a highly accurate description of the
molecular interactions that give rise to the preferential binding of fasudil to the C-terminal region
of a-syn, which we found to be driven mainly by combinations of aromatic stacking and charge-
charge interactions. The simulations provide an atomically detailed picture of the protein-ligand
binding ensemble—in which a-syn remained largely disordered while fasudil transitioned
between several distinct binding modes—and illustrate how a set of weak intermolecular

interactions can lead to a small molecule interacting with a specific part of a protein that remains
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highly dynamic upon binding. We observed that although fasudil had a preference for a set of
specific protein-ligand interactions, multiple such interactions rarely formed simultaneously.
Instead, binding occurred through what we refer to as a dynamic shuttling mechanism, in which

one of these preferred interactions broke before another formed nearby.

To better understand small-molecule features that confer affinity and specificity and to
prospectively test the accuracy of our MD models, we simulated a-syn with a library of 49 small
molecules that were selected to probe the simulated binding interactions and modify protein-
ligand affinity. Subsequent NMR measurements of a subset of these small molecules showed
that their relative binding affinities were in line with our computational predictions, and also
provided support for key structural features of the simulated binding interactions, such as the
populations of intermolecular hydrogen bonds and of aromatic stacking interactions. These
observations illustrate that MD simulations can be a valuable tool for describing the binding of
small molecules to disordered proteins, and suggest potential strategies for the rational design of

molecules that bind disordered protein sequences with higher affinity and greater specificity.
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Results and Discussion

We performed a 1.5-ms MD simulation of a-syn and fasudil using the a99SB-disp force field*?
and the generalized amber force field (GAFF) for fasudil.’*> The probability of observing
contacts between fasudil and each residue of a-syn is shown in Figure 1A. We also measured
backbone '°N and "THN NMR chemical shift perturbations (CSPs) of a-syn in the presence and
absence of 2.7 mM fasudil. CSPs are sensitive to changes in the local chemical environment of
each backbone amide bond, and are thus sensitive probes of protein-ligand interactions. The
magnitude of the NMR CSPs is shown in Figure 1B. In agreement with previous
measurements,”> we observed CSPs throughout the entire sequence of a-syn, with the largest-

magnitude CSPs observed in the C-terminal residues 121-140.

The probability of observing contacts between fasudil and a-syn in the simulation and the
magnitude of NMR CSPs measured for each residue are in excellent agreement (Figure S1,
Pearson correlation coefficient, » = 0.67). Consistent with the experimental CSPs, in simulation
we observed that fasudil interacts somewhat weakly with the entire a-syn sequence, but has a
higher affinity for residues 121-140. The relatively small magnitude of the CSPs observed
suggests that the underlying conformational ensemble of a-syn is not substantially altered in the
presence of fasudil, and thus that a-syn remains disordered while interacting with fasudil. In
simulation, we also found no large-scale differences between the conformational ensembles of
the bound and unbound states of a-syn (Figures S2 and S5)—nor between the conformational
ensembles of bound and unbound states of fasudil (Figure S2)—and that the bound ensemble is
not dominated by a single conformation or a small number of substantially populated
conformations (Figure S3). These results illustrate that the recently developed a99SB-disp force
field,*® which provides improved descriptions of disordered proteins, is capable of identifying the

binding sites of a small molecule in the context of an entire disordered protein sequence, and
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suggest that our simulation provides a meaningful model of the interactions between a-syn and

fasudil.

In order to obtain a better understanding of the bound protein-ligand ensemble and the
intermolecular interactions that confer specificity of fasudil to the C terminus of a-syn, we
performed additional simulations of fasudil and a truncated a-syn construct containing only the
region of a-syn to which fasudil preferentially binds (residues 121-140), which we will refer to
as a-syn-C-term. Using this construct enabled more efficient simulation (given the smaller sizes
of the protein and water box), which allowed us to obtain better statistics on the populations of
dominant intermolecular interactions and the distributions of the a-syn conformations in bound
states. Importantly, simulations with the reduced construct produced a similar contact
probability with fasudil when compared to full-length a-syn (Figure S4). Simulations of full-
length a-syn with fasudil also did not appear to involve long-range protein contacts that
influenced small-molecule binding (Figure S5), implying that the simulation of full-length a-syn
may not be required to model how fasudil binds to the C-terminal region and further justifying
the use of a smaller protein construct. Similarly to simulations of full length a-syn, simulations
of fasudil with a-syn-C-term did not give rise to substantially populated long-range protein
contacts (Figure S5) or display a substantial difference between the conformational ensembles of

bound and unbound states (Figure S6).

We found that, although bound protein-ligand conformations (i.e., those in which there was at
least one contact between the protein and the ligand) exhibited a heterogeneity of binding modes
(Figure 1C) instead of a single, stable protein-ligand complex (or a small number of them), we
did observe a preference for specific charge-charge and aromatic n-stacking protein-ligand
interactions near the C-terminus (Figure 2). We calculated the probability of observing

hydrophobic contacts, charge-charge interactions, aromatic n-stacking interactions, and hydrogen
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bonds between fasudil and each residue of a-syn-C-term in bound conformations (Figure 2A)
and found that the relative populations of protein-ligand interactions varied among similar amino
acids in the a-syn sequence. That is, aromatic side chains did not all have the same propensity to
form hydrophobic contacts and aromatic n-stacking interactions, and not all negatively charged

side chains had the same propensity to form charge-charge interactions with fasudil.

Excluding hydrophobic contacts, which are relatively non-specific, the most likely interactions
were a charge-charge contact between the positively charged amine of fasudil’s azepane ring and
the side chains of D135 and E137, and aromatic n-stacking interactions between fasudil’s
isoquinoline ring and the side chains of Y133 and Y136. In particular, D135 was approximately

twice as likely to form a charge-charge interaction with fasudil as was E126 (Figure 2A).

Examination of the bound-state ensemble suggests that increased affinity between fasudil and
specific residues in the a-syn-C-term sequence cannot be explained by the simultaneous
formation of multiple specific interactions within individual conformations of the bound
ensemble. If we consider only conformations where fasudil had a charge-charge interaction with
D135, for example (the most likely charge-charge interaction between the protein and the ligand
(Figure 2A)), very few of those conformations also made an additional specific protein-ligand
interaction (Figure 2B). Only three interactions—aromatic stacking interactions with Y133 and
Y136, and charge-charge interactions with E137—were formed in >5% of MD frames in which
fasudil also formed charge interactions with D135. These observations about the lack of
multiple specific protein-ligand interactions in the bound ensemble are also corroborated by a
mutual information analysis: Calculating the mutual information between different protein-
ligand interactions shows very little coupling between different interactions (Figure S7). Instead,

we observed that the formation of a single intermolecular contact often spatially localized and
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oriented fasudil such that additional intermolecular interactions, although not forming

simultaneously, became accessible later in time with relatively small ligand displacements.

To better understand the nature of the coupling among interactions, we sought to determine the
extent to which the formation of specific intermolecular interactions could geometrically orient
fasudil relative to a-syn, even as a-syn remained highly dynamic. We thus examined the
distribution of n-stacking orientations>® of the isoquinoline ring of fasudil with side chains of
Y125, Y133, and Y136 to determine how the identity of neighboring residues influenced the
distribution of orientations of these interactions. For all conformations in which the ring centers
of the fasudil isoquinoline group and a tyrosine phenol group were within 5 A, we calculated the
orientations of the normal vectors of each ring plane relative to a vector connecting the two ring
centers (Figure 2C, left panel). If fasudil were interacting with an isolated tyrosine with no
preferred geometric orientation, one would expect the four quadrants of a graph representing the
distribution of the orientations of the ring plane normal vectors to be equally populated. That is,
the isoquinoline ring would have an equal probability of stacking above or below the tyrosine
phenol ring, and would have an equal probability of facing upwards or downwards in either
position. We observed that, although the distribution of n-stacking orientations between fasudil
and Y125 was indeed relatively symmetric, there was a greater asymmetry in the n-stacking
orientations between fasudil and the C-terminal tyrosine residues, Y133 and Y136 (Figures 2C
and S8; Table S1).

The distribution of m-stacking orientations observed between fasudil and Y133 is shown in
Figure 2C (right panel). We observed that the most populated stacking orientation (o > 90,
B <90, quadrant 4 in Table S1) occurred 150% more frequently than did the least populated
orientation (o> 90, B > 90, quadrant 2 in Table S1). We also examined the distribution of -

stacking orientations for just the conformations in which fasudil formed a charge-charge contact
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with D135 (Table S1). In these conformations the asymmetry of n-stacking orientations was
even more pronounced: ~460% enrichment for (a > 90, § < 90) relative to (a < 90, B <90)
(Table S1). A similar effect—enrichments of 220% for (a. > 90, > 90) relative to (a > 90,

B <90) and 410% for (o <90, B > 90) relative to (a0 > 90, B < 90)—was observed for Y136 and
Y125, respectively, in the presence of D135 charge contacts. Although fasudil rarely formed
both a m-stacking interaction with Y133 and a charge-charge contact with D135 simultaneously
(<1% of frames in the bound ensemble contain both these interactions), the fact that the
distribution of m-stacking orientations observed between fasudil and Y133 was asymmetric even
in the absence of simultaneous charge-charge interactions with D135 suggests that the proximity
and spatial orientation of Y133 and D135 may still confer a preferred set of orientations of

fasudil relative to a-syn.

We illustrate this example of the dynamic shuttling of fasudil and a-syn between complementary
intermolecular interactions in Figure 2D with a time series of the formation of different
intermolecular interactions. Temporal correlations among these interactions persist for as long
as 100 ns (Figure S8B). The probability, for example, of observing a n-stacking interaction
between fasudil and Y136 after observing a charge-charge interaction between fasudil and D135
is greater than random for almost 100 ns, whereas the average lifetime of configurations with
simultaneous interactions between fasudil and D135 and Y136 is only 570 ps. Although
multiple interactions rarely formed simultaneously, fasudil transiently shuttles back and forth

among favorable interactions, remaining localized to the same region of a-syn.

Having obtained a better understanding of the binding interactions between fasudil and a-syn, we
proceeded to test our model prospectively by simulating the binding of additional small
molecules and then subsequently measuring the CSPs of a subset of the compounds by NMR.

We selected 49 commercially available compounds containing variations of the isoquinoline,

10
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sulfonyl, and azepane scaffold of fasudil (Figure S9). We expected that these variations would
influence available binding modes and affinity to a-syn. We then conducted a computational
screen, in which we performed 60-ps simulations of each molecule with the a-syn-C-term
fragment, and calculated the simulated dissociation constant, Kp, of each molecule (Table S3,
Figure S9). The small molecule with the lowest Kp value (Ligand 47), two molecules with Kp
values similar to fasudil (Ligands 2 and 5), and the ligand with the highest Kp value (Ligand 23)

are shown in Figure 4A along with fasudil.

The simulation results for the screened compounds could in some cases be explained based on
their structure and information we learned from our fasudil simulations. Charge-charge
interactions between fasudil and a-syn were important binding interactions observed in our
simulations, for example, and in our screening simulations, molecules that did not have a
positive charge (such as Ligands 23 and 30) had higher Kp values, binding to a-syn-C-term ~2-

fold more weakly compared to fasudil.

The simulation results of the strongest binder, Ligand 47, would have been more difficult to
deduce from the structure of the compound alone. Ligand 47 differs from fasudil by a change in
the substitution position of the sulfonyl group relative to the ring system, and the addition of an
acetyl group to a slightly modified ring system, and it was not immediately clear how these
features may have resulted in its ~2-fold higher affinity to a-syn-C-term. To obtain improved
statistics for these interactions, the simulation of a-syn-C-term and Ligand 47 was extended to
200 us. Examination of the interaction profile of Ligand 47 with a-syn-C-term (Figure 3A)
shows that the largest differences in the bound ensembles were an increased propensity for -
stacking in Y136 (in 13.3% of bound conformations compared to 7.1% of bound conformations

for Ligand 47 and fasudil, respectively) and the formation of hydrogen bonds between Ligand 47
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and P128, Y136, and P138 (in 1%, 2.1%, and 1.9% of bound conformations, respectively) that

were not appreciably populated in the bound fasudil ensemble.

We also observed that the position of the sulfonyl group of Ligand 47 relative to the ring system,
and the corresponding change in the orientation of the charged amine of the azepane ring,
seemed to increase the probability of forming multiple intermolecular interactions with
a-syn-C-term simultaneously. The average mutual information between different protein-ligand
interactions was increased relative to fasudil (Figure S7), and we observed greater correlations
between interaction pairs involving non-neighboring residues. In particular, we observed much
stronger couplings among interaction pairs involving D135. In Figure 3B, we compare the
conditional probabilities of observing additional intermolecular interactions for all conformations
in which Ligand 47 forms a charge contact with D135 to the corresponding probabilities for
fasudil. We observed that Ligand 47 had increased conditional probabilities of forming n-
stacking interactions with Y136 (24.4% vs. 6.7%), hydrogen bond interactions with Y136 (9.2%
vs. 2.5%), hydrophobic contacts with Y136 (45.8% vs. 31.3%), n-stacking interactions with
Y133 (23.6% vs. 8.4%), and hydrophobic contacts with Y133 (45.8% vs 24.2%).

Examination of configurations in which Ligand 47 formed a charge interaction with D135
provides a possible explanation for these increases. The altered substitution position of the
sulfonyl group oriented Ligand 47 such that when it formed a charge interaction with D135,
there was a dramatic increase in the asymmetry of n-stacking orientations with Y136: With the
D135 charge interaction, orientations with f <90 were ~10-fold more populated than
orientations with 3 > 90 (Table S1, Figure S8). This stacking orientation also oriented the
sulfonyl oxygens such that they were able to form hydrogen bonds with the amide of Y136, and

positioned the additional acetyl group such that it was able to form hydrophobic contacts with
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Y136. A representative bound conformation of Ligand 47 in its preferred stacking orientation

and forming all 4 of these interactions is shown in Figure 3C.

We note that bound conformations in which Ligand 47 simultaneously formed a hydrogen bond
with Y136, aromatic stacking interactions with Y136, and charge contacts with D135 constitute
<0.9% of the bound ensemble. This suggests that conformations that can simultaneously form
all of these interactions do not, by themselves, explain the increased affinity of Ligand 47 for a-
syn relative to fasudil, as the small population of these states cannot account for the ~2-fold
increase in affinity. Instead, the increased affinity is better explained in the context of the
dynamic shuttling model, in which these interactions are part of a larger network of transient and

weak interactions that localize Ligand 47 to these residues.

We next experimentally tested our computational predictions of relative binding affinities for a
subset of screened compounds by measuring NMR CSPs of all a-syn residues in titrations of four
ligands: Ligand 47, Ligand 23, Ligand 5, and Ligand 2 (Figure 4A). Due to solubility limitations
of these molecules, it was not possible to saturate the observed CSPs and estimate Kps directly.
We instead estimated the relative affinities of the molecules by considering the slope of the CSPs
measured for Y125, Y133, and Y136 during each titration, with larger slopes indicating higher
affinities. We found that by taking the average slope observed for these tyrosine residues as a
proxy for affinity to the C-terminal region of a-syn, the relative affinities of the five ligands
estimated from the ligand titrations are in line with the affinities predicted from our MD

simulations.

Interestingly, we observe that Ligand 47 causes larger CSPs in Y136 and Y 125 than does fasudil
(Figure 4B, Figure S10). This is consistent with the interaction profiles observed from our MD

simulations, in which Ligand 47 had a higher propensity to form hydrogen bonds and n-stacking
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interactions with Y136. The increased contact probability and stacking between Ligand 47 and
Y 125 are also consistent with Ligand 47’s higher affinity than fasudil for Y125 observed by
NMR. To examine whether Ligand 47, like fasudil, had an increased propensity to interact with
the C-terminal region of a-syn, we performed a 1.5-ms unbiased MD simulation of Ligand 47
with full-length a-syn. We observed in this simulation that Ligand 47, similarly to fasudil, had
increased affinity for the C-terminal region of a-syn rather than exhibiting non-specific affinity

for all residues, in agreement with observed NMR CSPs (r = 0.68, Figure S11, Table S2).

Lastly, the experimentally tested ligands showed varying levels of affinity for Y39 in the NMR
CSP titration experiments, and differed from the relative affinities observed at the C-terminus
(Figure 4). Y39 has been shown to be key residue for modulation of a-syn aggregation by small

molecules’’~®

as well as for a-syn dimerization in the oxidative environments persistent in
disease states.’® Of the experimentally tested ligands, Ligand 23 showed the weakest affinity for
the C-terminal region, something we also observed in the simulations, but had the strongest
affinity for Y39 (Figure 4C). This prompted us to simulate the small molecules in our library
with a fragment of a-syn from residues 2949, in order to determine if our simulations would
accurately capture the relative affinities between the tested compounds and Y39. We found that
the simulations correctly identified Ligand 23 as the strongest binder to the a-syn 29-49

fragment among the experimentally tested ligands, but did not capture well the overall relative

affinities of ligands at Y39 (Figure 4, Table S3).

We also examined the binding of Ligand 23 with full length a-syn. Although the affinity of
Ligand 23 to Y39 in full-length a-syn is not the strongest relative to fasudil and Ligand 47, we
did find that, in contrast to fasudil and Ligand 47, which heavily favored binding at the C-
terminus relative to Y39, Ligand 23 had a slight preference for Y39 (Table S2), in agreement

with experiment. These results suggest that our MD simulations may be capable of
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differentiating between the affinities of small molecules to tyrosine residues in different

sequence contexts.

Conclusion

We performed long-timescale MD simulations of fasudil binding to a-syn and found, in
agreement with NMR chemical shift perturbations, that fasudil prefers to bind to the C-terminal
region of a-syn—a preference driven mainly by a combination of aromatic stacking and charge-
charge interactions. The simulations provide an atomically detailed picture of the protein-ligand
binding ensemble, illustrating how a network of weak and transient intermolecular interactions
can lead to specific binding of a small molecule to a protein that remains highly dynamic. The
simulated binding mechanism observed here, in which the formation of specific intermolecular
interactions orients ligands such that additional interactions are likely to form subsequently,
provides a mechanistic explanation for how ligands can achieve sequence-specific binding with

IDPs.

We note that the dynamic shuttling mechanism described here provides a local description of
IDP-ligand binding to a given binding site. Dynamic binding mechanisms such as those
characterized in this study could potentially underlie IDP-ligand binding events in which the
presence of a small molecule either reduces the conformational space accessible to an IDP in its

31 “population-shifting,”®® or

bound state (sometimes referred to as “conformational restriction,
“entropic collapse”) or increases the conformational space accessible to an IDP in its bound state
(sometimes referred to as “entropic expansion”!!>%), and are not inherently associated with either

thermodynamic binding scenario. The dynamic shuttling of a small molecule among

heterogeneous binding modes could either stabilize a subset of conformations observed in the
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apo state of an IDP, or increase the sampling of additional conformations not substantially

populated in the apo state.

In addition to confirming that simulations of fasudil and a-syn agreed retrospectively with
previous NMR experiments, we prospectively tested the accuracy of our MD models by
simulating a-syn with a library of 49 small molecules and testing the MD predictions with NMR
measurements of a subset of these molecules. The experimentally determined relative binding
affinities of these molecules were in line with our computational predictions, and the measured
CSPs provided support for key structural features of the simulated binding interactions. These
observations suggest potential strategies for the rational design of molecules that bind disordered
protein sequences with higher affinity and greater specificity using insights from MD

simulations.
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Figure 1. The dynamic binding mechanism of fasudil with a-synuclein observed in MD
simulations is consistent with NMR chemical shift perturbation experiments. A) Contact

probabilities between each residue of a-synuclein and fasudil observed in an unbiased 1.5-ms
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MD simulation run with the a99SB-disp force field. A contact is assigned to all MD frames
when the minimum distance between any atom of fasudil and any heavy atom of a protein side-
chain residue is <6 A. B) NMR chemical shift perturbations of a-synuclein measured in the
presence of 2.7-mM fasudil. C) Snapshots of binding modes of fasudil (red carbons) with a-syn-
C-term, illustrating the conformational diversity of the bound ensemble. The residues with the
highest probability of interacting with fasudil in the bound ensemble are colored blue (Y133,

Y 136) and green (D135).
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Figure 2. When in contact with a-synuclein, fasudil dynamically shuttled between different
binding modes with different interactions; multiple specific interactions were rare in any
given binding mode. A) The probability of observing interactions between fasudil and a-syn-C-
term categorized by type of interaction in the bound ensemble. We note that a given residue can
only form certain types of interactions. B) The conditional interaction probability of observing a
specific interaction between a-synuclein and fasudil in the bound ensemble, given that a charge-
charge interaction had formed between D135 and fasudil. C) An illustration of the stacking
orientation between fasudil’s isoquinoline ring and the Y133 side chain. R is the distance vector
between the centers of mass of the six aromatic carbons of Y133 and ten aromatic atoms of the
isoquinoline ring on fasudil. The distributions are normalized and shown on a logarithmic scale.

D) A time series of a representative portion of the unbiased MD trajectory of a-synuclein with
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fasudil showing the formation of different interactions. The presence of a line indicates the

formation of a particular interaction. Trajectory frames were sampled every 180 ps.
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Figure 3. Predicted interactions of Ligand 47 with a-synuclein. A) Interaction probabilities
for each residue 121-140 of a-synuclein and Ligand 47 observed in an unbiased MD simulation.
B) The conditional interaction probability of observing interactions between a-synuclein and
Ligand 47, and between a-synuclein and fasudil, for all conformations containing a charge-
charge contact with D135. C) A representative structure of the most populated cluster of
conformations of the Ligand 47 bound ensemble. In this conformation, Ligand 47 (red carbons)
can simultaneously stack with Y136, form a hydrogen bond with the backbone amide of Y136,

and form charge contacts with D135.
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Figure 4. Predicted binding affinities of fasudil analogues with a-synuclein from

simulation are in line with subsequently measured chemical shift perturbation titrations

from NMR. A) Structures of fasudil and tested analogues, with Ligand 47 having the highest

affinity for a-synuclein, and Ligand 23 the lowest. B) NMR chemical shift titration curves of the

aromatic residues of the C-terminal region of a-synuclein with the five ligands depicted in A. C)

Slope of titration curves for each tyrosine residue in a-synuclein, and the average of all tyrosine

residues in the C-terminal region of a-synuclein (Y125, Y133, Y136). D) Titration curves of

each compound for Y39, and for the average of all tyrosine residues in the C-terminal region of

a-synuclein. Individual titration curves for Y125, Y133, and Y136, are shown in Figure S10.
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