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ABSTRACT

Ligand recognition by cell-surface receptors underlies development and immunity in both animals
and plants. Modulating receptor signaling is critical for appropriate cellular responses but the
mechanisms ensuring this are poorly understood. Here, we show that signaling by plant receptors
for pathogen-associated molecular patterns (PAMPs) in immunity and CLAVATA3/EMBRYO
SURROUNDING REGION-RELATED peptides (CLEp) in development employ a similar
regulatory module. In the absence of ligand, signaling is dampened through association with
specific type-2C protein phosphatases (PP2Cs). Upon activation, PAMP and CLEp receptors
phosphorylate divergent cytosolic kinases, which, in turn, phosphorylate the phosphatases,
thereby promoting their release from the receptor complexes. Our work reveals a regulatory circuit
shared between immune and developmental receptor signaling, which may have broader
important implications for plant receptor kinase-mediated signaling in general.
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INTRODUCTION

Plants deploy receptor kinases (RKs) at the cell surface to perceive their immediate
environment, and thus coordinate growth, development, reproduction, and stress responses
(Hohmann et al., 2017). Leucine-rich repeat (LRR)-RKs comprise the largest RK family in plants,
with over 220 members in the model plant Arabidopsis thaliana (hereafter Arabidopsis) (Shiu and
Bleecker, 2003). Several of the best-studied LRR-RKs to date function as cell-surface immune
receptors, which perceive pathogen-associated molecular patterns (PAMPs) or endogenous
phytocytokines to regulate immunity. In particular, the Arabidopsis LRR-RKs FLAGELLIN
SENSING 2 (FLS2) and ELONGATION FACTOR TU RECEPTOR (EFR) perceive the bacterial
PAMPs flagellin (or its peptide epitope flg22) and elongation factor-Tu (or its peptide epitope
elf18), respectively, to regulate pattern-triggered immunity (PTIl) (Gémez-Gémez and Boller,
2000; Zipfel et al., 2004; Zipfel et al., 2006).

Receptor-like cytoplasmic kinases (RLCKs) are homologous to RKs but lack an
extracellular domain, and are thought to act in downstream RK signaling (Liang and Zhou, 2018).
Members of the large RLCK-VII/PBS1-LIKE (PBL) family in particular have emerged as key
components of LRR-RK-mediated signaling, such as the close homologs BOTRYTIS-INDUCED
KINASE1 (BIK1) and PBL1, which act downstream of several immune-related RKs, including
FLS2 and EFR (Veronese et al., 2006; Lu et al., 2010; Kadota et al., 2014; Li et al., 2014), and
are thus key executors of PTI.

Modulation of receptor signaling is critical to prevent inappropriate activation, and previous
work has implicated several protein phosphatases in the context of LRR-RK-mediated immune
signaling (Park et al., 2008; Segonzac et al., 2014; Holton et al., 2015; Couto et al., 2016),
including the Arabidopsis PP2Cs POLTERGEIST-LIKE 4 and 5 (PLL4 and 5) and their rice
homolog XB15, which were identified as negative regulators of EFR- and XA21-mediated PTI,
respectively (Park et al., 2008; Holton et al., 2015).

RESULTS AND DISCUSSION
A BIK1-PLLA4/5 regulatory module controls PTI activation

In keeping with a negative role in PTI, pll4 pll5 mutants exhibited accelerated kinetics of
reactive oxygen species (ROS) production in response to the PAMPs elf18 and flg22 as well as
to the phytocytokine AtPep1 (Figure 1A,B), indicating that like BIK1 (Couto and Zipfel, 2016),
PLL4 and 5 are common components of PTI signaling downstream of multiple LRR-RKs.

When expressed as a maltose-binding protein (MBP)-fusion protein, wild-type (WT) but
not catalytically-dead PLL4 (PLL4*, D280N/D573N) directly dephosphorylated the
autophosphorylated cytosolic domain of EFR (EFR-CD) in vitro (Figure 1C). Interestingly,
truncation of the non-catalytic N-terminus rendered PLL4 inactive in this assay, in contrast to
previous work with the related phosphatase POL (Yu et al., 2003), suggesting an important role
for this N-terminal region.

It was previously shown that elf18 perception induced dissociation of PLL4 and 5 from
EFR in planta (Holton et al., 2015); however, the mechanisms mediating such dissociation remain
unknown. We observed a similar flg22-induced dissociation of PLL4 and 5 from FLS2 in planta
using transient expression in Nicotiana benthamiana (Figure S1), in keeping with our observation
that these phosphatases also regulate FLS2 signaling (Figure 1A, B). To understand how PLL4
and 5 are themselves regulated, we interrogated public databases (Heazlewood et al., 2008;
Mergner et al., 2020) for phosphosites within these proteins. Several clustered, conserved sites
were identified in the N-terminus of PLL4 and 5 that conformed to a previously identified [S/T]-X-
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X-L motif (Figure 1D, S2), which is targeted by BIK1 and PBL1 in other substrates (Kadota et al.,
2014; Thor et al., 2020). To test whether BIK1 directly phosphorylates PLL4, we expressed
various fragments of PLL4 as MBP fusions and subjected them to in vitro kinase assays. BIK1
specifically trans-phosphorylated full-length MBP-PLL4 in vitro, confirming that PLL4 is a bona
fide BIK1 substrate. This phosphorylation was constrained to the N-terminus of PLL4 (Figure 1E),
and when we mutated three S-X-X-L sites (Figure 1D) to non-phosphorylatable variants (PLL4-
N34), phosphorylation was reduced (Figure 1E). Together, these data indicate that BIK1
specifically phosphorylates tandem sites in the PLL4 N-terminus.

To understand how PLL4 phosphorylation regulates its function, we compared ligand-
induced dissociation of WT or phospho-dead mutant variants from FLS2. Treatment with flg22
induced a shift in the mobility of PLL4 indicative of phosphorylation, which was largely lost with
PLL4%A (Fig S3A) and flg22-induced dissociation of PLL43* from FLS2 was compromised (Figure
1F), suggesting that BIK1-directed phosphorylation regulates the dissociation of PLL4/5 from the
RK complex. ROS production upon elf18 treatment was dampened by PLL43* (Figure S3B), and
in keeping with a model wherein PLL4 phosphorylation triggers dissociation from receptors,
phosphomimetic mutation of these sites (PLL4%P) impaired direct interaction with EFR-CD in vitro
(Figure S3C).

Isolation of the RLCK-VII-5 isoform PBL34 as a component of CLE signaling

Aside from immunity, many LRR-RKs regulate diverse growth and developmental
processes, such as the CLAVATA 1 (CLV1) and BARELY ANY MERISTEM (BAM1-3) clade,
which perceive endogenous peptides of the CLE family (Hazak and Hardtke, 2016; Nimchuk,
2017). CLE peptides (CLEp) are broadly conserved across land plants (Goad et al., 2017) and
regulate important aspects of plant development including stem cell niche maintenance and root
development (Yamaguchi et al., 2016; Fletcher, 2020). Despite the biological importance of CLEp
signaling, the molecular components of such pathways are mostly unknown.

In an unbiased forward genetic screen to identify novel components of the CLEp pathway
(Anne et al., 2018), two independent mutants were isolated based on their dominant insensitivity
to CLE26p (Hazak et al., 2017) for which identical causative mutations were mapped to an L135F
amino acid change in the RLCK-VII isoform PBL34. This dominant negative allele (pb/34-2) not
only conferred insensitivity to CLE26p, but also to other root-active CLE peptides (Figure 2A),
indicating that PBL34 is required for response to exogenous CLE peptides. Matching these
observations, a PBL34 null allele (pbl34-3) displayed quantitative insensitivity to the same range
of root-active CLE peptides (Figure 2A). Consistent with a role downstream of CLEp perception,
PBL34 and the cytosolic domain of the CLEp receptor BAM3 (BAM3-CD) were able to directly
phosphorylate each other in vitro (Figure 2B).

L135 of PBL34 is highly conserved across the RLCK-VII/PBL family (Figure S4). To
understand the dominant negative effect of the pbl34-2 allele, we expressed recombinant PBL34
bearing the causative L135F mutation and tested its kinase activity in vitro. Both auto- and trans-
phosphorylation activities of PBL343°F were severely reduced compared to WT (Fig 2C),
indicating that kinase activity is essential for PBL34 function in CLE signaling.

The RLCK-VII-5 subfamily is required for CLE signaling downstream of multiple receptors

PBL34 belongs to the RLCK-VII-5 subfamily together with PBL35 and 36 (Rao et al.,
2018). Comparison of single and double mutants in these PBL genes revealed that each
contributes quantitatively to CLEp sensitivity in root elongation assays (Figure S5A, B).
Transcriptional reporters indicated expression of all three RLCK-VII-5 isoforms in the root (Figure
2E). A loss-of-function mutant of all three isoforms (rlck-vii-5) led to strongly increased CLEp
insensitivity (Figure 2C S5A-C), comparable or superior to the pbl34-2 mutant (Figure S5D). A
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screen of all rick-vii subfamily polymutants (Rao et al., 2018) revealed that this CLEp insensitivity
was unique to rlck-vii-5, indicating that RLCK-VII-5 subfamily PBLs are specifically required for
CLEp signaling (Figure 2D). The rick-vii-5 mutant was complemented by a PBL34-CITRINE fusion
protein expressed under control of the PBL34 promoter (Figure S5E-G), corroborating the
predominant role of PBL34 within the clade. Finally, PBL34-CITRINE displayed plasma
membrane association (Figure 2F-H), consistent with a role in CLEp signaling immediately
downstream of CLEp receptors.

We next examined the function of RLCK-VII-5 clade kinases in specific CLEp-dependent
processes controlled by the primary CLV1 and BAM1-3 LRR-RKs. Consistent with a role in
primary CLEp receptor function, CLE45p inhibited protophloem differentiation in a BAMS3
(Depuydt et al., 2013) and RLCK-VII-5 dependent manner (Figure 3A). CLE40p regulates root
quiescent center (QC) stem cell maintenance (Stahl et al., 2009), where BAM1, BAMZ2 (Crook et
al., 2020), and RLCK-VII-5 are expressed (Figure 2E, H). CLE40p promoted loss of quiescence
and induced QC cell divisions in WT, but not in rick-vii-5 or bam1 bam2 mutants (Figure 3B,C).
Interestingly, while PLL4 and 5 regulate immunity, pol and pll1 mutants were first identified as
partial suppressors of clv1 (Yu et al., 2000; Song and Clark, 2005), suggesting that they negatively
regulate CLE signaling. Ectopic QC divisions were observed in pol single mutants in the absence
of CLE40p (Figure 3 B,C), phenocopying CLEp treatment in WT plants.

In shoot and floral meristems, CLV3p and highly redundant CLE peptides signal through
CLV1 and BAM receptors to limit stem cell proliferation (Nimchuk, 2017; Rodriguez-Leal et al.,
2019). Disruption of CLV3p/CLEp signaling thereby results in increased floral organ numbers,
which is reverted in pol or pll1 single mutants (Song et al., 2006). Consistent with a general role
of RLCK-VII-5 isoforms in CLEp perception, rick-vii-5 also displayed a mildly increased carpel
number, which was never observed in WT plants; the rick-vii-5 mutant further dramatically
enhanced carpel numbers in a sensitized clvi/bam mutant background (Figure 3D-E).
Collectively, these data demonstrate that RLCK-VII-5 PBL kinases are critical for diverse CLEp-
CLV1/BAM developmental outputs.

PBL34 regulates POL via direct phosphorylation

The clustered S-X-X-L phosphosites identified in PLL4 are highly conserved across PLL
isoforms (Figure S2). Given the similar roles of POL, PLL1 and PBL34 in CLEp signaling and that
of PLL4, 5 and BIK1, PBL1 in PTI, we reasoned that the regulatory mechanisms could be
conserved. To test this, we performed in vitro kinase assays with recombinant MBP-tagged POL
fragments, and confirmed that PBL34 directly phosphorylates the N-terminus of POL (Figure
S6A), which is lost when seven tandem putative phosphosites (Figure 4A) were mutated to non-
phosphorylatable variants (POL-N"*) (Figure 4B). We tested the role of these phosphosites in the
association between POL and CLE receptors, and observed that a phosphomimetic variant of
POL (POL’P) was compromised in association with both BAM3 (Figure 4C) and CLV1 (Figure
S6B) in planta, as well as showed reduced direct interaction with BAM3-CD in vitro (Figure S6C).
In keeping with their shared role in CLEp signaling, PBL34 also specifically phosphorylated PLL1
at its N-terminus (Figure S6D).

To probe the role of POL phosphorylation in CLEp-mediated development, we
transformed pol pll1”* null mutants with WT or mutant POL variants under the native POL
promoter and isolated viable pol pll1 doubles to determine ability to complement the seedling
lethal phenotype of the double mutant (Song et al., 2006). Consistent with a role for S-X-X-L sites
in the phosphorylation-mediated release of POL from primary CLEp receptors, POL and POL"
but not POL® complemented pol pli1, whereas POL® lines displayed gain-of-function CLV3-
phenotypes across plant tissues and developmental stages, and in multiple independent
transgenic lines (Figure 4D; S7).
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Together, these data reveal a conserved regulatory circuit that controls LRR-RK signaling
in both immunity and development (Figure 4E), in which specific phosphatases and cytosolic
kinases control the activation of ligand-binding receptors in distinct pathways. RLCK-VII isoforms
have also been identified downstream of other LRR-RKs in developmental processes, such as
SCHENGEN 1 (SGN1)/PBL15, which functions downstream of the receptor
GASSHO1(GSO1)/SGN3 to regulate Casparian strip formation (Fujita et al., 2020), further
indicating that LRR-RKs share conserved signaling modules downstream of receptor activation.
In addition to their roles reported here, RLCK-VII-5 isoforms were also described downstream of
LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) (Luo et al., 2020), a G-
lectin type RK that triggers immunity in response to bacterial 3-OH-FAs (Kutschera et al., 2019).
It will be of interest to see if these additional RK pathways may also be regulated by a similar
molecular circuitry.

MATERIALS AND METHODS
Plant growth and materials

All the mutants investigated in this study are in the Arabidopsis thaliana Col-0 wildtype
background. Col-0 was used as the control for the phenotypic analyses. The allele named pb/34-
2 in this manuscript carries a C to T point mutation in PBL34 (At5g15080), which leads to the
substitution of leucine 135 Dby phenylalanine. pbl34-3 (SALK_126209), pol-6
(SALK_009469.29.99.f), pli1-1 (SAIL_319_CO08), clvi-15 (WiscDsLox489-492B1), bami1-4
(SALK_107290), bam2-4 (SAIL_1053_E09) pll4 (SALK_203257C), plI5(SALK_044162C), pll4-1
pll5-1 double mutants were obtained from stock centers or described before (Holton et al., 2015).
Higher order rick-vii seed stocks were previously described (Rao et al., 2018).

Unless otherwise detailed, Arabidopsis plants were grown in a controlled environment growth
chamber at 150 umol light intensity, 60% relative humidity, and 20°C in a 10-h light cycle. N.
benthamiana plants were grown in a controlled environment chamber at 120 umol light intensity,
45-60% relative humidity, and 19-21°C in a 12-h light cycle.

CLEp-induced root growth inhibition assays

Seeds were sterilized, sown on half-strength Murashige and Skoog media supplemented
with 0.3% sucrose and 1% agar, stocked at 4°C for 48h and grown vertically under continuous
light at 22°C. Synthetic CLE peptides were obtained from a commercial supplier (Genscript) at >
80% purity, diluted in sterile water and used at the indicated concentration. Root lengths were
measured on 600 dpi scans of the plates with Fiji software (Schindelin et al., 2012) using the
Simple Neurite Tracer plug-in (Longair et al., 2011).

CLV3 Peptide Root Elongation Assay

Seeds were sterilized for 10 minutes in 70% ethanol with 0.1% Triton X-100, rinsed in 70%
ethanol three times, plated onto %2 Murashige and Skoog (MS-Research Products International),
pH 5.7 with 8 g of Phytoagar (RPI) per liter. Seeds were stratified for 48 hours at 4°C. After
stratification, seeds were germinated horizontally, under continuous light in a Percival growth
chamber set to 22°C for four days. Seedlings at 4 days after germination (DAG) were transferred
to vertical 2 MS plates with or without CLV3 peptide (>95% purity, Biomatik) for mock and peptide
treatment respectively. Seedlings on vertical plates were allowed to grow for 4 days after transfer,
then were scanned and measured using Imaged software.


https://doi.org/10.1101/2021.01.19.427293
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427293; this version posted January 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cloning

PCR products were amplified from plant DNA or plasmid templates (ABRC) using primers
listed in Table S1. Mutations were generated using Dpnl-mediated site-directed mutagenesis
using primers listed in Table S1. For Gateway cloning, PCR products were successively
transferred to pPDONR vectors by BP reaction (Invitrogen) and pDEST by LR reaction (Invitrogen)
according to the manufacturer’s protocols. pPBL34::gPBL34-CITRINE was cloned by Gibson
strategy (NEB) into a modified pCAMBIA1305,1 plasmid carrying a FASTRED seed selection
marker. POL, PLL1, PLL4, and PBL34 fragments were cloned into pOPINM using InFusion
(Takara). The PBL34 promoter was cloned by restriction enzyme cloning into a modified
pCAMBIA1305,1 carrying a 3xNLS-VENUS cassette. The PBL35 and PBL36 promoters were
introduced into a pCAMBIA1305,1 3xNLS-VENUS by Gibson cloning (NEB). The POL native
promoter (1.6 kb-5’) was integrated into the pMOA34 binary gateway destination vector via PCR
and standard restriction cloning.

Plant transformation

Binary vectors were introduced into Arabidopsis via Agrobacterium tumefaciens-mediated
(strain GV3101 pMP90) transformation by standard floral dipping. Transgenic lines were selected
on hygromycin selection media (35 mg/l) or FASTRED seed expression. Single insertion lines
were studied.

pbi34-2 mutant isolation

pbl34-2 mutants were isolated as described (Anne et al 2018). CLE26p insensitivity was
confirmed in the M3 generation and resistant plants were backcrossed to Col-0. The F1 was
uniformly insensitive to CLE26p treatment, suggesting the dominance of this allele. The causative
mutation was mapped by whole-genome sequencing of a bulk of 100 seedlings resistant to
CLE26p versus 100 sensitive ones as described (Kang and Hardtke, 2016).

Genotyping

The pbl34-2 mutation was genotyped with a CAPS strategy. A 730bp PCR product was
amplified with the Phire kit (Thermo Fisher). The subsequent PCR product was digested with Aflll
restriction enzyme, which cuts the wild-type product into 340bp + 390bp fragments but not the
pbl34-2 product. Primers for genotyping are listed in Table S2.

Root cross sections

7-day-old seedlings were embedded in plastic historesin solution (Technovit 7100). The
number of cells per cell layer was quantified at the level of differentiated protophloem, on 10um
cross sections using the Cell Counter plug-in (https:/imagej.net/Cell Counter) of Fiji software
(Schindelin et al., 2012). Around 50 roots were used for quantification.

Protein alignment and phylogenic tree

Protein alignments were performed using CLUSTALW
(https://www.ebi.ac.uk/Tools/msa/clustalo/). The output file was uploaded into MEGA X software
(https://www.megasoftware.net/) to generate the corresponding phylogenic trees.
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Statistical analyses

Statistical analyses were performed on RStudio software (www.rstudio.com/) or on Prism
software (https://www.graphpad.com/scientific-software/prism/). ANOVA analyses followed by
Tukey tests were performed with a confidence level of 95%. Specific tests used are indicated in
figure captions.

Recombinant protein expression and purification

All proteins were expressed in Escherichia coli strain BL21(DE3) Rosetta pLysS unless
otherwise noted. BIK1 or BIK1* (kinase dead, K105A/K106A), PLL4, POL, PLL1, and PBL34
variants expressed as 6xHis-MBP fusion proteins in the pOPINM vector. The EFR cytosolic
domain was expressed using pMAL-c4E (MBP-EFR-CD or MBP-EFR*-CD, D849N) in BL21(DES3)
Rosetta pLysS or pET-28a(+) (6xHis-EFR-CD) in BL21(DE3)-VR2-pACYC-LamP E. coli,
respectively. The cytosolic domain of BAM3 WT or kinase dead (BAM3*, D836N) was cloned into
a modified pET-28a(+) backbone and expressed as a 6xHis-GST fusion protein (GST-BAM3-CD).
All proteins were purified using Amylose Resin (NEB) or HisPur Cobalt Resin (Thermo) for MBP
or 6xHis, 6xHis-MBP, and 6xHis-GST fusions, respectively.

In vitro kinase assays

Approximately 1 pug of kinase was incubated with approximately 1 ug of substrate protein in kinase
buffer (25 mM Tris-Cl pH 7.4, 5 mM MnCl., 5 mM MgCl., 1 mM DTT). Reactions were initiated by
addition of 5 uM ATP plus 0.5 uCi *P-y-ATP in a final reaction volume of 30 pl. Reactions were
carried out at 25 °C for 30 min and stopped by addition of SDS-loading dye and heating at 70 °C
for 10 min. Proteins were resolved by SDS-PAGE, transferred to PVDF membrane, and stained
with Coomassie brilliant blue G-250. Autoradiographs were imaged using an Amersham Typhoon
phosphorimager (GE Healthcare).

For non-radioactive autophosphorylation of EFR, approximately 10 ug of MBP-EFR-CD
was incubated in kinase buffer (as above) with 10 uM ATP in a final volume of 100 pl for 1 hour
at 25 °C. Free ATP was removed by equilibration into storage buffer (25 mM Tris-Cl pH 7.4, 100
mM NacCl, 10% glycerol, 1 mM DTT) using a 10,000 MWCO centrifugal filtration device (Millipore).

In vitro phosphatase assays

Approximately 1 pg of autophosphorylated MBP-EFR-CD was mixed with approximately 1
ug of phosphatase in buffer (HEPES pH 6.8, 5 mM MgClz, 5 mM MnClz, 200 mM NaCl, 5%
glycerol, 1 mM DTT). Reactions were carried out for 90 min at 25 °C. Phosphorylation was
monitored by blotting with anti-pThr (anti-phosphothreonine, Cell Signaling Technology 9381,
diluted 1:1000 in TBST-5% gelatin from cold water fish skin).

ROS production assays

ROS burst assays were conducted as previously described (Kadota et al., 2014;
Monaghan et al., 2015). For assays with N. benthamiana, leaf discs were harvested 24h after
infiltration and equilibrated overnight in sterile water and used for assays at 48h after infiltration.
For kinetic analyses, RLUs were collected in 30-s intervals for 60 min. Tmax RLU was defined as
the interval with the highest total value.

Co-immunoprecipitation
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Leaves of 4-week-old Nicotiana benthamiana leaves were infiltrated with A. tumefaciens
carrying constructs as indicated in figure captions. In all cases cultures were co-infiltrated with A.
tumefaciens carrying a P19 suppressor of gene silencing construct. Leaves were detached and
bisected 2 days post-infiltration. Leaf halves were equilibrated in liquid MS 1% sucrose (1-2 hours)
and subsequently vacuum infiltrated with MS or MS+PAMP as indicated in figure captions. Tissue
was frozen and ground in liquid nitrogen. Protein extraction and immunoprecipitation were
performed as described previously (Kadota et al., 2014) using GFP-trap (Chromotek) or GFP-
clamp (Hansen et al., 2017) resin, as indicated. Proteins were separated by SDS-PAGE and
blotted onto PVDF membrane. Membranes were blocked and probed in TBST-5% non-fat milk
using anti-GFP (HRP-conjugated B-2, sc-9996 HRP, Santa Cruz, 1:5000 dilution) or anti-HA
(HRP-conjugated, 12013819001, Roche, 1:3000 dilution).

In vitro pulldown

Approximately 6 ug each of bait and prey proteins were mixed to 100 pl final volume in
buffer (25 mM Tris-Cl pH 7.4, 100 mM NaCl, 0.2% Triton-X, 1 mM DTT). 30 ul was removed
(“input”) and the remaining sample was mixed with 50 ul of Amylose Resin (NEB) in a final volume
of 500 ul. Samples were mixed at RT for 30 min. The resin was washed three times with buffer
and enriched proteins were eluted with 50 ul SDS-loading dye (“pulldown”). Samples were
separated by SDS-PAGE, transferred to PVDF, and imaged by blotting with anti-Polyhistidine
(Sigma H1029), anti-GST (Upstate 06332), or anti-MBP (NEB E8032) antibodies (all diluted
1:10,000 in TBST-5% non-fat milk powder).

Confocal Microscopy

5 to 6-day-old seedlings were imaged using an SP8 (Leica) inverted confocal microscope.
Samples were prepared in a drop of 0.04 mg/ml propidium iodide solution. CITRINE and VENUS
fluorophores were exited at 514 nm and emitted light recorded between 520 and 555 nm.
Propidium iodide was excited at 488 and 514 nm and fluorescent light recorded between 600 and
700 nm. CITRINE/VENUS and propidium iodide channels were sequentially acquired. Figures
were prepared using Fiji software.

Immunolocalization

5-day-old-seedlings of transgenic line expressing pPBL34::gPBL34-GFP in the pbl34-3
background were used for whole mount immunolocalization of the PBL34-GFP protein fusion
according to (Marhava et al., 2018) and combined with calcofluor white cell wall staining. Primary
anti-GFP rabbit (Abcam) antibody was used at 1:600 and secondary Alexa Fluor 546 anti-rabbit
antibody was used at 1:500 (Molecular Probes).

Carpel Counts

Genotype confirmed seeds were sterilized, stratified, and germinated as above. Four DAG,
seedlings were transplanted to soil (7 parts top soil to 1 part sand with pesticide) and kept at high
humidity for 3-5 days under continuous 24-h light at 23 °C. Seedlings were removed from high
humidity and allowed to grow to full maturity, with gentle staking to prevent tangling at ~3 weeks
after transplant. After 5 weeks of growth, the entire number of flowers produced on the primary
inflorescence were quantified for carpel number under a dissecting microscope. Data was
analyzed in PRISM as above.
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Isolation of POL complementation lines

POL constructs were introduced into pol-6 pll1-1/+ line and transgene fixed lines were
isolated in the pol-6 pll1-1 background (or pol-6 pll1-1/+ if necessary). Fixed lines were used for
complementation analysis and expression analysis.

Initial complementation was determined by identifying the ratio of viable to seedling lethal
phenotypes for each POL variant. The WT and 7A lines displayed 100% viable phenotypes, while
the 7D variants displayed a mixed set of phenotypic ratios. Viable 7D lines were transplanted and
assayed for post-seedling stem cell defects.

POL Complementation Analysis

For seedling analyses, seeds of POL substitution lines were sterilized and plated on 2 MS
plates (described above). 8 day old seedlings were assayed for seedling lethal pol pll double
mutant or WT phenotype. Representative individual plants were genotyped to confirm correct
genotype. For adult plant analyses, 5 day-old-seedlings were transplanted to soil (as above).
Plants were grown for 4-6 weeks and phenotypes were assayed accordingly.

Expression Analysis of POL Complementation Lines

Bulk 8-day-old seedlings (12 for WT phenotype, 20 for seedling lethal phenotypes, and an
approximate weight mix for mixed phenotype) were ground in liquid nitrogen using SPEX
Genogrinder and glass beads. The resulting powder was used as the starting material for a
standard RNA extraction using a Qiagen Plant Mini Kit (Qiagen). ~1 ug of RNA from resulting
extraction was used as template in standard cDNA synthesis reaction (BioRad iScript cDNA
Synthesis Kit). 200 ng of resulting cDNA was used in gRT-PCR reactions to quantify POL
expression levels (PowerUp SYBR Green 5x Master Mix-Thermo). CDKA1 was used as an
equalization housekeeping gene. Data was analyzed using the AACT method for three biological
replicates with three technical replicates each.
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Fig 1: A BIK1-PLL regulatory circuit controls PTI activation.

(A-B) PLL4 and PLL5 are involved in PAMP immune responses. ROS burst induction by elf18
(100 nM), flg22 (100 nM) or AtPep1 (1 uM) treatments on 4.5-week-old Arabidopsis leaf discs in
Col-0 wildtype and pll4 pll5 backgrounds. (A) Values correspond to the mean of 12 samples (+
SE) and are expressed in relative light units (RLU). (B) Histograms represent the time to max
RLU (Tmax RLU) of 12 replicates (+ SD). *** p value < 0.001, ** p value <0.01 (two-tailed T-test).
(C) PLL4 can dephosphorylate EFR in vitro. In vitro phosphatase assay incubating equal amounts
of MBP-tagged full length (FL) or C-terminal (C) WT (PLL4) or inactive PLL4 (PLL4*) with
autophosphorylated cytosolic domain of MBP-tagged EFR (EFR-CD). The phosphorylation of
MBP-EFR-CD was detected by anti-phosphothreonine western blot. (D) Schematic
representation of PLL4 domains and details of the S-X-X-L domain of PLL4 and PLL5 homologs.
Bold amino acids indicate the S-X-X-L motifs targeted for S>A mutagenesis; numbers
correspond to the amino acids positions within the protein. (E) BIK1 phosphorylates the PLL4 N-
terminus in a site-specific manner. Autoradiogram of in vitro kinase assay using WT BIK1 or
inactive (BIK1*) BIK1 with full length (FL) or N-terminal domain (N) of WT or PLL4 phosphovariant
(PLL4-N3*). (F) In planta flg22-triggered PLL4 dissociation from FLS2 is phosphorylation-
dependent. ColP assay of transiently expressed FLS2-GFP and HA-tagged PLL4 or PLL4% in N.
benthamianaleaves with or without 1 uM flg22 treatment for 10 minutes. CBB: Coomassie brilliant
blue.
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Fig 2: RLCK-VII-5 isoforms are required for CLE signaling.

(A) The pbl34-2 dominant negative allele is less sensitive to exogenous CLEp than the pbl34-3
loss-of-function allele. 7-day-old seedlings grown on media with 50 nM of indicated CLE peptides.
NT: not treated. Letters indicate significant differences within the treatments (ANOVA followed by
Tukey test). n=11-50. (B) BAM3 and PBL34 transphosphorylate each other in vitro.
Autoradiogram of in vitro kinase assay using MBP-tagged WT PBL34 or inactive PBL34 (PBL34%)
and GST-tagged WT cytosolic domain (CD) of BAM3 (BAM3-CD) or inactive CD of BAM3
(BAM3*-CD). (C) The L135F mutation disrupts auto- and trans-phosphorylation activity of PBL34.
Autoradiogram of in vitro kinase assay incubating equal amounts of GST-tagged BAM3 with MBP-
tagged WT PBL34 or mutant forms of PBL34 (PBL34P27%A or PBL34-'%F). (D) CLV3p responses
specifically require the RLCK-VII-5 subfamily. 7-day-old seedlings grown on media with CLV3p
as indicated. NT: not treated. Letters indicate significant differences within the treatments
(ANOVA followed by Tukey test). n=26-46. (E) RLCK-VII-5 members are expressed in the root
with partially overlapping patterns. Confocal microscopy pictures of 6-day-old seedlings carrying
PBL34::3xNLS-VENUS, PBL35::3xNLS-VENUS and PBL36::3xNLS-VENUS constructs,
respectively in Col-0 background. yellow channel: 3xNLS-VENUS; cyan: propidium iodide cell
wall staining. (F-H) PBL34 is expressed in the root, accumulates in the protophloem and localizes
to the cytosol and the plasma membrane. Confocal microscopy images of 5-day-old seedlings
expressing (G) PBL34-CITRINE fusion protein under control of the PBL34 promoter in the rick-
vii-5 triple mutant. Live imaging; yellow channel: CITRINE; cyan: propidium iodide cell wall
staining. (H-1) Immunolocalization of PBL34-GFP protein fusion expressed under control of the
PBL34 promoter in pbl34-3 mutant using anti-GFP primary antibody combined with Alexa 546
fluorophore (yellow channel). Cyan: calcofluor white cell wall staining. CBB: Coomassie brilliant
blue.
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Fig. 3: The RLCK-VII-5 subfamily functions downstream of multiple primary CLE receptors.
(A) RLCK-VII-5 kinases control phloem differentiation through CLE45p/BAMS signaling pathway.
Confocal pictures of 5-day-old-seedlings. In pbl34 mutants differentiated phloem files could be
observed frequently, which was never observed in Col-0 wildtype. bam3 and rlck-vii-5 are totally
CLE45p-resistant. White asterisks: phloem cell files. (B-C) RLCKV-VII kinases control
CLE40p/BAM1/BAM2/POL mediated QC division. CLE40p triggers QC division dependent on
RLCK-VII-5 kinases and BAM1 BAM2; while untreated pol display ectopic QC divisions mimicking
CLE40p treatment (B) Representative pictures of confocal microscopy of 5-day-old seedlings
treated or not with 100 nM CLE40p. black: propidium iodide cell wall staining. (C) Corresponding
quantification of QC division phenotypes in control or 100 nM CLE40p treated plants. (D-E) rick-
vii-5 mutants display a mild extra carpel phenotype by itself and enhances the clv1 single mutant.
(D) Representative images of carpels per flower with white asterisk indicating a carpel and (E)
table representing the average number of carpels per flower (+/- standard deviation) for every
flower on the primary inflorescence of 30 individual 6-week-old plants per genotype and the
percent distribution of carpel number per flower.
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Figure 4: Conservation of the regulatory mechanism in PAMP and CLE receptor
complexes.

(A) Schematic representation of POL domains and details of the S-X-X-L domain of POL. Bold
amino acids indicate the S-X-X-L residues targeted for mutagenesis; numbers correspond to the
amino acid positions within the protein. (B) PBL34 phosphorylates the POL N-terminus in a site-
specific manner. Autoradiogram of in vitro kinase assay of MBP-tagged C-terminal (C), N-terminal
fragments of WT POL (POL-N) or phosphomute variant (POL-N*) with WT PBL34 or inactive
(PBL34*). (C) BAM3 and POL interact in planta. ColP assay of transiently expressed BAM3-GFP
and HA-tagged WT POL, POL™ or POL variants in N. benthamiana leaves. CBB: Coomassie
brilliant blue. (D) Quantification of the complementation of pol pll phenotype in the shoot by POL"
and POL variants. POL-HA and POL’A-HA fusion proteins fully complement the seedling
lethality of the pol pll1 double mutant. POL’P-HA protein fusion only partially rescues the seedling
lethality phenotype. n=117 plants per genotype. (E) Schematic representation of the conserved
signaling mechanism between PTIl and CLEp signaling pathways exemplified by FLS2 and BAM3
signaling pathways. In the absence of the ligand, PLL family phosphatases damper signaling by
inhibiting RK phosphorylation (e.g. PLL4,5 or POL,PLL1). Perception of the apoplastic peptide
ligands (e.g. PAMPs or CLEs) by their cognate RKs leads to co-receptor recruitment and
activation of specific RLCK-VIl isoforms. These RLCK-VII/PBLs phosphorylate PLLs at conserved
N-terminal sites, triggering PLL dissociation from the RK complex and appropriate activation of
signaling.

21


https://doi.org/10.1101/2021.01.19.427293
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427293; this version posted January 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A ERELGER B FLS2-GFP
< < < <
I I I I
s & < &b
- - — —
= ) =] — I
o o o o
elf18 [10 min] - + - + flg22 [10 min] - + - +
130 130—
100—{ W e. ) 100— i kA
IP: GFP-trap IP: GFP-trap
= a-GFP et
130 - 130
100"'“- a-HA 100 . .“ aHA

input input

Figure S1. PLL4 and PLL5 dynamically associate with EFR and FLS2 in ligand-dependent
manner.

(A) elf18 triggers EFR/PLL4,5 dissociation in planta. ColP assay of transiently expressed EFR-
GFP and HA-tagged PLL4 or PLL5 in N. benthamiana leaves with or without treatment with 1 uM
of elf18 for 10 minutes. (B) flg22 triggers FLS2/PLL4,5 dissociation in planta. ColP assay of
transiently expressed FLS2-GFP and HA tagged PLL4 or PLL5 in N. benthamiana leaves with or
without treatment with 1 uM of flg22 for 10 minutes. CBB: Coomassie brilliant blue.
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Figure S2. The S-X-X-L domain is conserved among the PLL family.

(A) Schematic representation of PLLs protein domains. light blue: S-X-X-L domain, green:
catalytic domains. Numbers indicates amino acid residues. (B) Protein alignment of the S-X-X-L
domain of POL family members. Pink square: S-X-X-L residues; bold: residues targeted for
mutagenesis in current study in POL (black arrow head) and PLL4 (white arrow head). (C)
Sequence logo of the S-X-X-L domain of the POL/PLL family created from the alignment in panel
B using the WebLogo3 online application (http://weblogo.threeplusone.com). (D) Table resuming
the in silico predicted phosphorylation in the S-X-X-L domain identified in PhosPhAt4
(Heazlewood et al., 2008) and/or Athena databases (Mergner et al., 2020). (E) Phylogenetic tree
of the POL family based on protein alignment. PP2C38 is used as an outgroup.
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Figure S3. PLL4 regulates PTI in a phosphorylation dependent manner.

(A) Treatment with 1 uM flg22 induces a phosphosite-dependent mobility shift in PLL4-HA

in N. benthamiana leaves transiently expressing FLS2-GFP and WT or 3A PLL4-HA. Leaves were
treated with or without 1 uM flg22 for 10 min prior to protein extraction and blotting. (B) Expression
of PLL43* dampens PTI responses in N. benthamiana. ROS burst induction by elf18 (100 nM) on
leaf discs of N. benthamiana transiently expressing EFR-GFP and WT PLL4 or PLL43* variants.
(C) PLL4 phosphomimetic (PLL43P) mutation disrupts direct interaction between PLL4 and EFR-
CD in vitro. Amylose pulldown assay of 6xHis-tagged cytosolic domain (CD) of EFR with MBP-
tagged WT version (PLL4) or phosphovariant (PLL3P) of PLL4.
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Figure S4. L135F is conserved among the PBL clade.
Protein alignment of the PBL family. Magenta square: RLCK-VII-5 clade; cyan square: RLCK-VII-
8 clade; yellow square: the highly conserved L residue.
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Fig. S5. RLCK-VII-5 clade PBL kinases are required for CLE peptide perception

(A-C) RLCK-VII-5 members are semi-redundant in the CLEp signaling. (A) Root length of 8-day-
old seedlings grown on media with or without 100 nM CLV3p. NT: not treated. Kruskal Wallis Non-
Parametric ANOVA test, **** indicates p value <0.0001, * indicates p value <0.001, ns: not
significant, n=30. (B) Corresponding growth ratio inhibition calculated as following:

tl th - tl th . . . -
(TOO CRGTR NT—TOO TeRg C“’3) x100. All of the rick-vii-5 mutant combinations were less sensitive to

root length
CLV3p than the Col-0 background. (C) 7-day-old-seedlings grown on media with 100 nM of
indicated CLE peptides. NT: not treated. Letters indicate significant differences within the
treatments (ANOVA followed by Tukey test). n= 26-46. (D) rick-vii-5 is less sensitive to CLV3p
and CLE45p treatments than the dominant negative pbl34-2 mutant. 7-day-old-seedlings grown
on media complemented with 100 nM of indicated peptides. NT: not treated. n=19-45. (E-F)
Complementation of pbl34-3 mutants expressing PBL34::gPBL34-GFP construct. 7-day-old
seedlings grown on media complemented with 50 nM CLE peptides. NT: not treated. Letters
indicate significant differences within the treatments (ANOVA followed by Tukey test). (E)
Complementation assay on CLE26p media. n=17-28. (F). Complementation assay on CLE45p
media, n=37-58.
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Figure S6. Conservation of RLK-PBL-POL circuitry in CLEp signaling

(A) POL is a substrate of active PBL34. Autoradiogram of in vitro kinase assay incubating equal
amounts of MBP-tagged POL with MBP-tagged WT PBL34 or mutant forms of PBL34 (PBL34P275A
or PBL34'%5F), (B) POL phosphorylation status determines its interaction with CLV1 in planta.
ColP assay of GFP-tagged CLV1 with HA-tagged WT POL or phosphovariants (POL™ or POLP).
(C) POL phosphosites control direct interaction with BAM3 in vitro. Amylose pulldown assay using
equal amounts of GST-tagged cytosolic domain (CD) of BAM3 with MBP-tagged WT (POL) or
phosphomimetic (POL"P) variants of POL. (D) PBL34 phosphorylates PLL1 in vitro. In vitro kinase
assay incubating equal amounts of MBP-tagged WT version (PBL34) or inactive (PBL34*) of
PBL34 recombinant protein with MBP-tagged N-terminus (PLL1-N), catalytically-dead full length
(PLL1*-FL), or catalytically-dead C-terminus (PLL1*-C). CBB: Coomassie brilliant blue.
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Figure S7. PBL-phosphorylation sites are required for POL function.

(A-C) POL phosphovariants complement pol pll1 to varying degrees. (A) Representative pictures
of 4-week-old plants expressing different phosphovariants of POL-HA protein fusion (WT, POL’P
or POL") under control of native POL promoter. (B) Representative pictures of 6-week-old stems
displaying post-seedling stem cell defect-terminated silique phenotype. white asterisk: terminated
silique; cyan arrow head: one successful silique formation for entire line of POL’®-HA #1. (C)
Corresponding quantification of the shoot complementation based on terminated silique
phenotype. STAT. n=30. (D) Detailed pictures of terminated flower compared to WT non-
terminated one. cyan arrow head: presence of the pistil; white arrow head: absence of pistil. Scale
bar: 3 mm. (F) Relative fold change (AAC+) expression analysis of POL in complementation lines
seedlings. Error bars indicate -/+SD.
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Table S1. Primers used for cloning in this study.

Primer name
PBL34_L135F-f
PBL34_L135F-r
PBL34_pO-M-f
PBL34_pO-M-r
PBL34_D275A-f
PBL34_D275A-r
PLL4_T140A-f
PLL4 T140A-r
PLL4_T140D-f
PLL4 T140D-r
PLL4_S122A-f
PLL4 S122A-r
PLL4_S122D-f
PLL4 S122D-r
PLL4_S164A-f
PLL4_S164A-r
PLL4_S164D-f
PLL4_S164D-r
PLL4_D280N-f
PLL4_D280N-r
PLL4_D573N-f
PLL4_D573N-r
PLL4 pO-M-f
PLL4_pO-M-r

PLL4 249 pO-M-r
PLL4 243 pOM-f

PLL1_pOM-f
PLL1_pOM-r

PLL1_259 pOM-r
PLL1_260_pOM-f

POL_pOM-f
POL_pOM-r
POL_270_pOM-f
POL270_pOM-r

BAM3_CD_EcoRI-f

BAM3_Sall-r
BAM3_D836N-f
BAM3_D836N-r

POL gen NOT1 fwd
POL gen NOT1 Rvs

Pol pro BHI fwd
Pol pro BHI Rvs
Pol Pro S Fwd
Pol Pro S Rvs
POLGTW F

POL HA GTW Rvs

pPBL34-f1
pPBL34-r
pPBL36-f
pPBL36-r
pPBL35-f
pPBL35-r
pPBL34-f2
gPBL34-r
AttL1_pPBL34-f
AttL2_gPBL34-r

Sequence (5'-3)

GAAGTTTACTTTCAATGATTTTAAGCTATCTACTAG
CTAGTAGATAGCTTAAAATCATTGAAAGTAAACTTC
AAGTTCTGTTTCAGGGCCCGATGGGTTTGGATGCTG
ATGGTCTAGAAAGCTTTATGTAGTTGCTCCTTTAG
TATCGAGCTTTCAAAACATCAAACATT
TTTGAAAGCTCGATATATAACAGGCTT
GATTGAAAGAGGTTTCATGGCCGGTCCACTTGATGGTTC
GAACCATCAAGTGGACCGGCCATGAAACCTCTTTCAATC
GATTGAAAGAGGTTTCATGGACGGTCCACTTGATGGTTCTTC
GAAGAACCATCAAGTGGACCGTCCATGAAACCTCTTTCAATC
GTCCGATTGTACCCGGTGCGGGTCCTTTAGAAAGAG
CTCTTTCTAAAGGACCCGCACCGGGTACAATCGGAC
CCGGTCCGATTGTACCCGGTGATGGTCCTTTAGAAAGAGGG
CCCTCTTTCTAAAGGACCATCACCGGGTACAATCGGACCGG
CAATTTCAGAGAAGTTTCGCTCATGGTTTAGCTAATC
GATTAGCTAAACCATGAGCGAAACTTCTCTGAAATTG
CAATTTCAGAGAAGTTTCGATCATGGTTTAGCTAATCTC
GAGATTAGCTAAACCATGATCGAAACTTCTCTGAAATTG
CTTTTCGTTGGAATCTACAATGGATTCAACGGTCCAG
CTGGACCGTTGAATCCATTGTAGATTCCAACGAAAAG
GTTTCTGATACTATCATCGAATGGTCTTTACCAATATTTC
GAAATATTGGTAAAGACCATTCGATGATAGTATCAGAAAC
AAGTTCTGTTTCAGGGCCCGATGGGTAACGGAATCGG
ATGGTCTAGAAAGCTTTATACACAAGATTTCCAC
ATGGTCTAGAAAGCTTTACTGGCTCTCTAACGAAAC
AAGTTCTGTTTCAGGGCCCGGACGTTTCGTTAGAGAG
AAGTTCTGTTTCAGGGCCCGATGGGAAGTGGATTCTC
ATGGTCTAGAAAGCTTTAAAGATACTTTCCTGATG
ATGGTCTAGAAAGCTTTATGCTGCCATAGCTTCAAC
AAGTTCTGTTTCAGGGCCCGTCTTCCGGAGAGAACG
AAGTTCTGTTTCAGGGCCCGATGGGAAACGGGACTTC
ATGGTCTAGAAAGCTTTAAGCATAATCAGGAACATC
AAGTTCTGTTTCAGGGCCCGAGTTGTCTAGAGAGCAAC
ATGGTCTAGAAAGCTTTAGTCTTCACCATGTAGC
TAGAATTCGTCAAGAATAGGAGAATG
TAGTCGACTTAGAAAGTATTAGGCTG
CGCCACTTATAATCCACCGTAATGTGAAGTCAAACAACATC
GATGTTGTTTGACTTCACATTACGGTGGATTATAAGTGGCG
GGGCGGCCGCCACACTGCATTAATGAAGTGATAATATTCAAG
CCGCGGCCGCGAATCACCACCCAGTCTTTACCTCCTCTAGGGAC
GGTGTTTGTAGTATTGCCTGAGTGGGATCCATTAACCAAACACAAAAAAAAAAAAATTAGGTTTTG
CAAAACCTAATTTTTTTTTTTTTGTGTTTGGTTAATGGATCCCACTCAGGCAATACTACAAACACC
GCGTCGAATCTTTGTAGGCTTTATAAGAATTTCG
GGATTGGGAAGAAGGAAAAACAGAATTAGG
CACCAAAAAATGGGAAACGGGACTTCCCGTGTTGTTGGTTGTTTCG
TCAAGCATAATCAGGAACATCATAAGGGTATCTATTGAATTTTTGTTTTCTCTCTGG
CTTTGGTGAGATGGGTTTGGATGCTGTTAAAG
TGCTCACCATTGTAGTTGCTCCTTTAGGC
TATACCTACATACACTAGAGCGGTTTCAATGGCTTTTTCAGCC
TGCATGCCTGCAGGTCGAGAACCCTAATTCCAAATCAAATCACC
ACGCGTCGACCTCCCCCAAAAAGCAGCTCAAAC
CAAGCTTGATAAACAAATACCGAATCTAAAACAATCTAATAATCGGTGG
CTTTGGTGAGATGGGTTTGGATGCTGTTAAAG
TGCTCACCATTGTAGTTGCTCCTTTAGGC
GGGGACAAGTTTGTACAAAAAAGCAGGCTGGCAAGCTTCTACTTGTCGTTTGC
GGGGACCACTTTGTACAAGAAAGCTGGGTATGTAGTTGCTCCTTTAGGCTTTG
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Table S2. Primers used for genotyping and qPCR in this study.

Type of
Mutant line mutant Accession LP RP
pbl34-2 EMS GTGATGCTTGTGATCTAACC AAGGTGATTCTCCAGACTTC
pbl34-3 t-DNA SALK_126209 ATTGCCGAGATCAAATCCAG CCCGAATATGTAATGACCGG
pol-6 t-DNA SALK_009469.29.99.f AGTGCTCTTGATGGGATTCCG CAGATCTAATCCGCCAAATTTC
pll1-1 t-DNA SAIL_319_C08 GTGTTTACTCGAAGAAGAGACGGA GCTGTGATCTGTTGTTAGCTGC
pbl34-1 t-DNA SALK_067743 TCCGGATGAAGATTGCATTAG ACCTCTGTTTCCGGGATACTG
pbl35 t-DNA SALK_039402 GAGGTGTGGGAGAGGCTTAAG TTTCTTTGTTTTCGATTTGGG
pbl36 t-DNA SAIL_885_B03 GTTCTGCTCTTTTTGTGCAGG TTTAGGCTTTGGTGATTGACG
pli4 t-DNA SALK_203257C TTTGCCCAAGAACAGCTCTAC CGCTTCCGTTAGTGCTAACAC
pli5 t-DNA SALK_044162C GTCATGTCGTTTGACACCATG AGATTGTACGGAACGTTGTCG

WiscDsLox489-

clvi-15 t-DNA 492B1 TTCTCCAAATTCACCAACAGG CAACGGAGAAATCCCTAAAGG
bam1-4 t-DNA SALK_107290 CCGGTACTCTTTCCCCAGATGTTTCTCATTTACGTC CTTATTGGAAGAGAGATCGACGAGATTTAGTTTACC
bam2-4 t-DNA SAIL_1053_E09 TATGGTTCGCTTTGGTATTG GTTAGCTCGTTACCGGAAACC
T-DNA primers Sequence
LBb1.3 ATTTTGCCGATTTCGGAAC
LB1_SAIL GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC
LBa1_Salk TGGTTCACGTAGTGGGCCATCG
RB1_SAIL CAAACTAGGATAAATTATCGCGCGCGGTGTC

WisDsLOX_LB AACGTCCGCAATGTGTTATTAAGTTGTC

gRT-PCR

Primers Sequence

CDKA1 Fwd ATTGCGTATTGCCACTCTCATAGG
CDKA1_Rvs TCCTGACAGGGATACCGAATGC
POL-RT_Fwd TCTCGAGAATCACTTGTGCG
POL-RT_Rvs TCCGCCAAATTTCCTCTTCC

W
[\
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