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Abstract 

Choosing how much effort to expend is a critical for everyday decisions. While effort-based 

decision-making is altered in common psychopathologies and many neuroimaging studies have been 

conducted to examine how effort is valued, it remains unclear where the brain processes effort-related 

costs and integrates them with rewards. Using meta-analyses of combined maps and coordinates of 

functional magnetic resonance imaging (fMRI) studies (total N = 22), we showed that raw effort 

demands consistently activated the pre-supplementary motor area (pre-SMA).  In contrast, the net value 

of effortful reward consistently activated regions, such as the ventromedial prefrontal cortex (vmPFC) 

and ventral striatum (VS), that have been previously implicated in value integration in other cost 

domains. The opposite activation patterns of the pre-SMA and vmPFC imply a double dissociation of 

these two regions, in which the pre-SMA is involved in pure effort cost representation and the vmPFC in 

net value integration. These findings advance our understanding of the neural basis of effort-related 

valuation and reveal potential brain targets to treat motivation-related disorders. 

 

Key words: Effort; subjective value; effort based decision making; value integration; fMRI; ventromedial 

prefrontal cortex; supplementary motor area, meta-analysis  
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1. Introduction 1 

Every day, we are faced with choices about whether to invest effort to attain certain goals 2 

(Bailey et al., 2016; Salamone et al., 2009). These effort demands are often regarded as costly, such that 3 

individuals tend to avoid one action if it requires too much effort (Kool et al., 2010; Kurniawan et al., 4 

2010, 2011). The ability to accurately weigh energy requirements against potential benefits (e.g., 5 

“effort-based decision-making”), is therefore crucial for optimal goal-directed action, and alterations in 6 

this function are believed to be a core component of motivational disorders, such as apathy (Chong and 7 

Husain, 2016; Hartmann et al., 2015; Husain and Roiser, 2018), and have been found across a variety of 8 

psychopathologies, including depression (Treadway et al., 2012; Yang et al., 2014), schizophrenia (Barch 9 

et al., 2014; Park et al., 2017), Parkinson’s disease (Chong, 2018; den Brok et al., 2015; Le Heron et al., 10 

2018), and substance dependence (Grodin et al., 2016). Due to its clear clinical importance, there has 11 

been a recent surge of interest in how effort devalues prospective rewards, and such studies have 12 

demonstrated that effort might be a unique cost, distinct from other more investigated cost domains, 13 

such as risk and delay. However, work on the neural mechanisms underlying effort-based valuation have 14 

yielded heterogeneous results, and the question of how humans integrate effort and reward remains a 15 

subject of contention.  16 

Most behavioral economic theories of reward-related behavior rely on the assumption that an 17 

organism weighs a reward and its associated costs to generate a net value of an option (Kahneman and 18 

Tversky, 1979; Sutton and Barto, 1998; Von Neumann and Morgenstern, 1990). A popular hypothesis 19 

proposes that, to effectively compare different options, the net value of each must be represented in a 20 

‘common currency’ (Padoa-Schioppa, 2011; Rangel et al., 2008; Westbrook and Braver, 2015). A 21 

network of regions, including the ventromedial prefrontal cortex (vmPFC; and adjacent orbitofrontal 22 

cortex) and ventral striatum (VS), have been repeatedly implicated in the encoding of the net value of 23 

rewards discounted by the costs associated with obtaining them (Bartra et al., 2013; Levy and Glimcher, 24 

2012). Based on these data, this valuation network is posited to be ‘domain-general’, as it tracks net 25 

value representations regardless of the nature of the reward (e.g., primary vs secondary) (Bartra et al., 26 

2013; Sescousse et al., 2013) or of the type of cost (e.g., risk vs delay) (Kable and Glimcher, 2007; Peters 27 

and Büchel, 2009; Prévost et al., 2010).  28 

However, much of these data have focused on outcome-related costs such as risk or delay. 29 

Notably, research on effort-based valuation suggests a limited role for the vmPFC and VS for value 30 

integration. Instead, other frontal regions beyond this core valuation network, including the anterior 31 
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cingulate cortex (ACC), supplementary motor area (SMA), and anterior insula (AI), have been shown to 32 

signal net value discounted by effort costs (Arulpragasam et al., 2018; Camille et al., 2011; Chong et al., 33 

2017; Klein-Flugge et al., 2016; Massar et al., 2015; Skvortsova et al., 2014; Walton et al., 2003). These 34 

findings are consistent with animal studies showing that lesions to the ACC, but not the nucleus 35 

accumbens, prelimbic/infralimbic cortex (homologous to the vmPFC), or orbitofrontal cortex, reduce the 36 

amount of effort rats invested for rewards (Rudebeck et al., 2006; Walton et al., 2009, 2003). 37 

Furthermore, neural activity in the ACC, as measured by single unit recordings, varies with cost-benefit 38 

weighting (Hillman and Bilkey, 2012, 2010) and effort-related choice (Cowen et al., 2012). This body of 39 

work thus raises the possibility that a distinct frontal network is specifically recruited to integrate effort-40 

related value. 41 

On the other hand, these frontal regions (i.e. ACC, pre-SMA, AI, etc.) are also commonly 42 

implicated in cognitive control processes (Wu et al., 2020), which may overlap or obscure value signals. 43 

For example, value-based decision-making may trigger cognitive control functions such as conflict 44 

detection and response inhibition (Botvinick and Braver, 2015; Botvinick et al., 2001), surprise and/or 45 

prediction error signaling (Vassena et al., 2020, 2017), and invigoration of goal-directed behavior 46 

(Kouneiher et al., 2009; Kurniawan et al., 2013; Mulert et al., 2005).Therefore, it is plausible that these 47 

regions are recruited to prepare and invigorate behaviors necessary for realizing a prospective reward 48 

instead of for computing prepotent net values per se. Another situation that requires cognitive control is 49 

difficult decision-making when two simultaneously presented options have similar net value (Chong et 50 

al., 2017; Hunt et al., 2012; Klein-Flugge et al., 2016; Massar et al., 2015; Shenhav et al., 2013). Indeed, 51 

studies that have independently manipulated net value and decision difficulty showed that these frontal 52 

regions, particularly the dorsal ACC, specifically tracked decision difficulty (Hogan et al., 2017; 53 

Westbrook et al., 2019) while, in contrast, the vmPFC uniquely tracked net value (Westbrook et al., 54 

2019). Taken together, these findings suggest that this distinct frontal network is recruited more 55 

specifically for cognitive control, such as response planning and option comparison, and that effort-56 

related value integration is still processed in the core valuation network (e.g., vmPFC and VS) that have 57 

been identified in other cost domains.  58 

The inconsistencies in previous studies may be related to several issues. For example, some may 59 

have been statistically underpowered due to small sample sizes, which may have reduced the 60 

probability of detecting significant effects, and/or reduce the reliability of their findings (Müller et al., 61 

2018; Poldrack et al., 2017). Furthermore, the specific effort requirements of each task may have 62 
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induced different patterns of brain activity, making it difficult to judge whether findings from individual 63 

studies can be generalized to the cognitive process of interest. A promising approach to address these 64 

issues is to quantitatively synthesize fMRI data across multiple studies using an image-based meta-65 

analysis (Muller et al., 2018). Relative to traditional meta-analyses based only on peak coordinates of 66 

significant activity, an image-based meta-analytic approach uses the full information of the statistical 67 

maps from each study, and has greater power to detect small effect sizes (Luijten et al., 2017; Salimi-68 

Khorshidi et al., 2009). A previous study showed that even the inclusion of 20% of statistical maps for 69 

included studies could significantly improve the precision of a meta-analysis (Radua et al., 2012). 70 

Here, we conducted a hybrid coordinate- and image-based fMRI meta-analysis to identify the 71 

neural correlates of effort-related cost processing and value integration. Considering their critical roles 72 

in response planning, we hypothesized that frontal regions like the ACC, SMA, and AI would be 73 

consistently involved in representing prospective effort, independent of the reward offer. We also 74 

aimed to test whether effort-related value integration (i.e., the integration of reward value with the 75 

effort required to obtain it) relied on the core valuation areas such as the vmPFC and VS or broader 76 

frontal regions. 77 

 78 

2. Materials and Methods 79 

2.1. Literature Screen, Data Collection, and Preparation 80 

2.1.1 Exhaustive Literature Search.  81 

We conducted a systematic literature search to identify neuroimaging studies on prospective 82 

effort and the integration of reward value and effort costs in healthy adults. Candidates for inclusion 83 

were initially identified by searching PubMed, ProQuest, and Web of Science on June 29, 2020 using the 84 

grouped terms (“fMRI” OR “functional magnetic resonance imaging”) AND (“effort discounting” OR 85 

“effort-based decision-making” OR “effort valuation” OR “effort anticipation” OR “cost-benefit 86 

valuation” OR “cognitive effort” OR “physical effort” OR “effort expenditure” OR “effort allocation” OR 87 

“effortful goal directed action” OR “reward related motivation” OR “reward related effort”). Searches 88 

were limited to human studies where databases would allow. 121, 787, and 127 studies were identified 89 

on PubMed, ProQuest, and Web of Science, respectively. We also searched existing in-house reference 90 

libraries and names of prominent authors in the field, resulting in the addition of candidate studies. 934 91 

candidate studies remained after search results were pooled and duplicates removed. Two researchers 92 
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(PL-G, Y-WY) then independently reviewed the title and abstract of candidate papers to determine 93 

relevance, resulting in a pool of 72 studies that underwent a full-text review (Figure 1). 94 

 95 

2.1.2 Inclusion/Exclusion Criteria.  96 

Studies were included if they: 1) had a healthy adult human sample in the non-elderly age range 97 

(ages 18 to 65, with one exception detailed below); 2) used functional MRI; 3) either reported or 98 

referenced a whole-brain analysis; and 4) utilized a task with an effort component with clear effort (or 99 

combined effort and reward) cues during an ‘anticipation’ phase. Please note that ‘anticipation’ in this 100 

case refers to the evaluation of prospective effortful rewards before or during decision-making, and 101 

does not include anticipatory responses to reward post-effort exertion (e.g., the ‘evaluation’ phase 102 

described in Assadi et al., (2009)). 103 

To ensure that the selected studies could be meaningfully compared, we limited the final corpus 104 

to those that used experimental paradigms with certain characteristics. First, because studies have 105 

found that loss and gain are asymmetric and partially dissociable (Chen et al., 2020; Porat et al., 2014; 106 

Tanaka et al., 2014), we excluded studies that used paradigms with only loss conditions, or that only 107 

conducted gain vs loss comparisons. Second, we excluded studies that only used a single speeded 108 

response as its effort component (e.g. classical Monetary Incentive Delay task (Knutson et al., 2000)), as 109 

this was not deemed as a significant effort demand, and other reviews and meta-analyses focusing on 110 

reward anticipation with these paradigms can be found elsewhere (Diekhof et al., 2012; Knutson and 111 

Greer, 2008; Wilson et al., 2018). Finally, we only included those studies which measured activity during 112 

the prospective valuation of an action and its rewards, rather than only at the time of reward outcome, 113 

as estimates of previously expended effort can be biased by reward receipt (Pooresmaeili et al., 2015). 114 

We contacted the corresponding authors of 28 candidate studies to request whole-brain 115 

statistical maps for the analyses of interest, and received whole-brain statistical maps or peak 116 

coordinates from 25 studies. In cases where only between-group (e.g. clinical studies) and/or ROI results 117 

were reported, we contacted corresponding authors to inquire about the availability of whole-brain 118 

results for relevant contrasts in healthy adult subjects. If images were not available, we requested they 119 

provide us with peak activation foci in stereotactic spatial coordinates (i.e., Talairach or MNI space), 120 

together with the direction of the effect (positive or negative).  121 

 122 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425909doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425909
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

2.1.3 Data collection and preparation. 123 

We performed two analyses of interest. The first examined activity related to the raw effort 124 

involved in the option itself. We included analyses that examined high vs. low effort demands (i.e., 125 

categorical contrasts) and those that examined continuous changes in effort (i.e., parametric 126 

modulation). The second analysis examined activity related to the prospective net value of an effortful 127 

reward. Whenever possible, we used the contrast related to the net value of a single option (i.e., the 128 

subjective value of the chosen option discounted by the effort required to obtain it). When this contrast 129 

was unavailable, we used the contrast related to the differences between options instead. Studies that 130 

only investigated BOLD activity associated with interactions between reward and effort were excluded, 131 

as they did not rely on the same discounting assumptions as other measures of net value. It should be 132 

noted that one study (Nagase et al., 2018) included two experiments with six common participants, so 133 

we selected the experiment with a larger sample size for the meta-analysis. In another study (Chong et 134 

al., 2017), all participants took part in both cognitive and physical effort-based decision-making tasks. 135 

Thus, we combined the statistical maps from both tasks to avoid selection bias. Finally, one study 136 

(Seaman et al., 2018) had a sample that included participants ranging from 22 to 83 years old. However, 137 

the authors of this study provided whole-brain maps that controlled for the effect of age, and we chose 138 

to include this data in the net value meta-analysis.  139 

 140 

2.1.4 Final Corpus. 141 

As shown in Figure 1, 25 studies were ultimately included in the final corpus of studies, which 142 

were considered in one or both meta-analyses on raw effort evaluation and effort-reward integration. 143 

The raw effort valuation analysis included 15 maps (65%) and 7 coordinates for raw effort processing, 144 

resulting in 22 studies with a total sample of N = 549 (mean = 24.95; median = 22.5, range = [16-50]). A 145 

description of the final corpus of studies can be found in Table 1. The value integration analysis included 146 

11 maps (73%) and 4 coordinates, resulting in 15 studies, with a total sample of N = 428 participants 147 

(mean = 28.5; median = 23, range = [16-75]). 148 

 149 

2.2 Meta-Analytic Procedures 150 

2.2.1 Seed-based d Mapping. 151 
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The combined image- and coordinate-based meta-analyses were performed using the software 152 

Seed-based d Mapping with Permutation of Subject Images (SDM-PSI, version 6.21; 153 

https://www.sdmproject.com). SDM-PSI preserves the information about the sign of the effect and the 154 

methods have been validated in previous studies (Albajes-Eizagirre et al., 2019; Radua et al., 2012). 155 

During preprocessing, SDM-PSI recreated voxel-level maps of standardized effect sizes (i.e., Hedge’s g) 156 

and their variances and allowed the incorporation of both whole-brain t-maps and peak information 157 

(i.e., coordinates and t-values). The inclusion of statistical maps can substantially increase the sensitivity 158 

of meta-analyses compared with the pure coordinate-based approach (Radua et al., 2012). When t-159 

maps were unavailable, SDM-PSI estimated them based on coordinates and their effect sizes using 160 

anisotropic kernels (Radua et al., 2014). 161 

 162 

2.2.2 Meta-analysis. 163 

Two separate whole-brain meta-analyses were conducted to examine consistent neural 164 

correlates of prospective effort and net value processing, respectively. Random-effect models were used 165 

to assess the mean effect size of each study, where the weight of a study is the inverse of the sum of its 166 

variance and the between-study variance. SDM z-maps were generated by dividing the voxel-wise effect 167 

sizes by their standard errors. As these z-values may deviate from a normal distribution, a null-168 

distribution was estimated for each meta-analysis from 50 whole-brain permutations. 169 

 170 

2.2.2.1 Region-of-Interest (ROI) Analysis. 171 

To directly investigate the involvement of key brain regions in effort-related cost processing and 172 

value integration, we focused on seven a priori regions of interest (ROIs) derived from an independent 173 

meta-analysis (Bartra et al., 2013) that examined valuation network in general. Those ROIs included: the 174 

vmPFC, right and left VS, ACC, pre-SMA, and right and left AI, which generally covered the core valuation 175 

network and additional frontal regions of interest. A spherical mask of radius 6mm was created for each 176 

ROI centered on the respective peak coordinates. Mean effect sizes and variances of those ROIs were 177 

extracted from individual studies with statistical maps. 178 

 179 

2.2.2.2 Whole-Brain Analysis. 180 
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We also examined the whole-brain results beyond these a priori ROIs. To reduce the false-181 

positive results due to multiple comparisons, we applied a familywise error (FWE) correction with 1000 182 

subject-based permutations (Albajes-Eizagirre et al., 2019). In accordance with SDM-PSI’s 183 

recommendations, a threshold-free cluster enhancement (TFCE) corrected p < 0.025 was used (Albajes-184 

Eizagirre et al., 2019).  185 

In addition, we performed a conjunction analysis to identify regions that were associated with 186 

both raw effort demand and net value. For exploratory purposes, we created maps using a voxel-level 187 

uncorrected threshold of p < 0.001 and a cluster size > 20 voxels for both meta-analyses. Masks were 188 

generated from significant clusters that activated or deactivated in both processes (i.e., based on 189 

absolute values). We then used SPM12 (http://www.fil.ion.ucl.ac.uk/spm) to perform a conjunction 190 

analysis to extract overlapping areas for both processes, regardless of the direction (Culter & Campbell-191 

Meiklejohn, 2019).  192 

Finally, we conducted two supplementary analyses. First, because of the possible role of the 193 

dorsal ACC and other frontal regions in signaling choice difficulty, we were interested in assessing if our 194 

findings were influenced by studies that used net value differences as the parameter, rather than the 195 

net value of the chosen option. Thus, we repeated the meta-analysis with a subgroup of studies that 196 

used parameters only representing the net value of a single option (N=11). Second, because net value 197 

can also be more broadly defined as an interaction between reward and effort, we repeated the net 198 

value meta-analysis by including the coordinates of two additional studies (Kurniawan et al., 2010; 199 

Stoppel et al., 2011) that used interaction parameters (e.g. Reward X Effort) as opposed to traditional 200 

discounting parameters of net value (e.g. SV). These analyses were conducted using the same 201 

procedures described above. 202 

 203 

2.2.3 Heterogeneity and Publication Bias. 204 

 Areas of significant activation were assessed for heterogeneity and publication bias. For each 205 

meta-analysis, peaks with heterogeneity l2 values > 20% were flagged and inspected. In order to assess 206 

publication bias, Hedge’s g effect size estimates were extracted at the study level for peak voxels of 207 

significant clusters. Funnel plots were created and visually inspected. Egger regression tests (Egger et al., 208 

1997) were conducted to quantitatively test the asymmetry of each funnel plot. 209 

 210 
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2.3 Data Availability.  211 

 Unthresholded z-maps of our results are available at NeuroVault: 212 

https://neurovault.org/collections/9286/. The TFCE-corrected maps as well as publication bias and 213 

heterogeneity data are available from the corresponding authors upon request. 214 

 215 

3. Results 216 

 217 

3.1. ROI Analysis 218 

To directly examine the roles of key regions in raw effort prospect and effort-reward integration, 219 

we focused on seven a priori ROIs. Results are summarized in Table 2. The vmPFC showed consistent 220 

activations related to net value and deactivations related to prospective effort. The bilateral VS showed 221 

a similar activity pattern, but smaller effect sizes for both analyses. In contrast, the pre-SMA showed 222 

consistent activations related to effort demand and deactivations related to net value. The ACC and 223 

bilateral AI showed similar activity pattern, but smaller effect sizes for both analyses. Figures 2 and 3 224 

show the Hedge’s g effect sizes for raw effort prospect and net value analyses in the vmPFC and pre-225 

SMA ROIs. The forest plots for other regions were shown in Figure S1-S10. 226 

 227 

3.2. Whole-Brain Analysis 228 

3.2.1 Prospective Effort  229 

We first examined brain regions that were consistently associated with the valuation of 230 

prospective effort demands. As illustrated in Figure 4a, the analysis yielded positive effects clustered in 231 

the right pre-SMA and adjacent caudal ACC (see Table 3). At a more lenient, uncorrected p < 0.001 232 

threshold, other positive foci were detected in the left SMA, right precuneus, and left middle frontal 233 

gyrus, and negative foci were detected in the bilateral vmPFC/OFC and left middle temporal gyrus. 234 

Heterogeneity I2 statistics, funnel plots and Egger regressions did not detect excess 235 

heterogeneity or publication bias in any significant clusters in the TFCE-corrected findings. However, in 236 

the uncorrected analysis, activation in a cluster in the right precuneus was found to be associated with 237 

extreme heterogeneity (I2=59.50%).  238 
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 239 

3.2.2.Net Value.  240 

Next, we examined brain regions that were consistently associated with net value encoding. As 241 

illustrated in Figure 4b, the analysis yielded a large cluster connecting cortical and subcortical regions of 242 

the medial PFC, VS, dorsal striatum (bilateral putamen and left caudate), and temporal gyrus (see Table 243 

3). Analysis also yielded consistent net value activations in a cluster consisting of the bilateral medial and 244 

posterior cingulate cortex and precuneus and a separate cluster in the left middle frontal gyrus. 245 

Deactivations were concentrated in small clusters in the left SMA, right dorsolateral PFC (dlPFC), and 246 

right superior frontal gyrus, although these deactivations were only detectable at a lenient uncorrected 247 

p < 0.001 threshold. 248 

In addition, heterogeneity I2 statistics, funnel plots and Egger regressions showed no evidence of 249 

excess heterogeneity or publication bias in any of the significant clusters for the main net value or single 250 

SV subgroup TFCE-corrected results. No evidence of publication bias was detected in the uncorrected 251 

net value analysis, however deactivations in the left SMA and right dlPFC had I2 statistics of 64.09% and 252 

50.05% respectively, suggesting that findings in these two regions were highly heterogenous. 253 

 254 

3.2.3 Conjunction Analysis  255 

 Finally, we performed a conjunction analysis to identify areas that are sensitive to both net 256 

value and effort requirements. Due to the exploratory nature of this analysis, we used a lenient 257 

threshold of uncorrected p < 0.001 at voxel level and k > 20 at cluster level. Note that we used absolute 258 

values in the conjunction analysis because of the clearly dissociable effects found in the main 259 

prospective effort and net value meta-analyses. We found that the vmPFC and left lateral orbitofrontal 260 

cortex were significantly activated by net value but deactivated by effort requirement. The activation 261 

pattern was reversed in the pre-SMA and caudal ACC (Figure 4c). However, all of these findings were not 262 

detectable after whole-brain TFCE-correction.  263 

 264 

3.2.4 Supplementary analyses 265 
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 To ensure that the results of the net value meta-analysis were not driven by choice difficulty, we 266 

reran our analysis excluding four experiments that used the value of two options as their net value 267 

metric (e.g. difference in SV of more vs less effortful option). Importantly, the vmPFC and bilateral VS 268 

remained to be the foci with highest effect sizes, and the whole-brain activation pattern was 269 

qualitatively similar (see Table S1 and Figure S11), suggesting that our main findings were not influenced 270 

by the cognitive demands of comparing two options. Moreover, to ensure that our findings were robust 271 

when using a broader definition of net value, we also repeated our analysis including two additional 272 

studies that used reward and effort interactions as a measure of net value. Main foci and whole-brain 273 

activation patterns remained qualitatively similar to the initial net value meta-analysis (see Table S2 and 274 

Figure S12).  However, deactivations associated with net value were not detected in these 275 

supplementary analyses, suggesting that the deactivations in the SMA detected in the main meta-276 

analysis were not robust.   277 

 278 

4. Discussion 279 

We conducted a series of combined coordinate- and image-based meta-analyses to examine the 280 

neural substrates of effort-based valuation. We first investigated neural activity related to raw effort 281 

and net value in seven a priori ROIs previously implicated in value-based decision-making. We found 282 

these regions could be broadly divided into two groups that exhibited distinct activity pattern during 283 

these two processes, with the vmPFC and pre-SMA as the central node of each. Specifically, the vmPFC 284 

was consistently activated during net value integration but deactivated for raw effort representation, 285 

whereas the pre-SMA displayed the opposite pattern. The exploratory whole-brain and conjunction 286 

analyses further corroborate the ROI analyses. These findings provide strong evidence for a dissociable 287 

role of the vmPFC and pre-SMA in the valuation of effort costs, and implicate these two regions as core 288 

components of a network that drives motivated behavior. 289 

Our findings provide comprehensive evidence that effort-related net value integration is 290 

processed in a network centered around the vmPFC and VS. Accumulating evidence implicates the 291 

vmPFC as a general hub for value integration, as it has been identified to signal net value of rewards 292 

across different cost domains, such as risk and delay (Croxson et al., 2009; Hogan et al., 2019; Kable and 293 

Glimcher, 2007; Levy et al., 2010; Peters and Büchel, 2009; Schmidt et al., 2012; Westbrook et al., 2019). 294 

Additionally, the network including the vmPFC have been implicated in tracking net values across reward 295 

domains (i.e., primary, secondary, and aesthetic rewards), reward processing phases (Bartra et al., 2013; 296 
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Clithero and Rangel, 2013; Levy and Glimcher, 2012; Sescousse et al., 2013), reward rates, and  the value 297 

of current and previous offers  (Mehta et al., 2019). These findings are therefore consistent with 298 

prominent neuroeconomic accounts which propose that the vmPFC represent the net value of an option 299 

in a ‘common currency’, in order to facilitate value comparison during decision-making (Padoa-Schioppa, 300 

2011; Rangel et al., 2008; Westbrook and Braver, 2015). 301 

One would hypothesize that a region involved in representing net value would also scale with 302 

effort demands. Except for the vmPFC, our study did not find that other net-value-related regions, such 303 

as the VS, meet this requirement. These findings are at odds with previous reports that the VS signals 304 

prospective effort costs in humans, both in the presence (Westbrook et al., 2019) and absence (Suzuki et 305 

al., 2020) of reward information. Moreover, dorsal parts of the striatum have also been found to track 306 

both effort costs (Burke et al., 2013; Guitart-Masip et al., 2012; Klein-Flugge et al., 2016; Kurniawan et 307 

al., 2010, 2013; Yang et al., 2016) and net value of prospective effortful rewards (Klein-Flugge et al., 308 

2016; Seaman et al., 2018). However, our results implicate motor-related regions of the striatum, 309 

particularly the putamen, as signaling net value alone. One plausible explanation is that the striatum 310 

signals both net value and prospective effort during this time window, but that the simultaneous nature 311 

of these signals inhibits detection. Studies that have experimentally isolated prospective effort demands 312 

from net value, however, did not find that the striatum was activated by effort alone (Arulpragasam et 313 

al., 2018), leaving role of the striatum in effort anticipation as a salient question for future investigation. 314 

Finally, both main and supplementary analyses consistently identified a variety of 315 

parietotemporal regions as scaling positively and uniquely with net value representations. While these 316 

regions (i.e. intraparietal lobule, intraparietal sulcus, temporal pole, etc.) have been previously 317 

implicated in SV encoding of effortful rewards (Chong et al., 2017; Massar et al., 2015), they also play a 318 

critical role in perceptual decision-making (Keuken et al., 2014), attention (Husain, 2019), risk weighting 319 

(Mohr et al., 2010), and decision difficulty (Westbrook et al., 2019). Their notable absence in reward 320 

processing (Keuken et al., 2014; Sescousse et al., 2013) may thus suggest that these parietotemporal 321 

regions are involved in high-level perceptual and cognitive functions associated with task demands as 322 

opposed to net value computation.  323 

Previous studies have identified effort-related net value signals in other frontal regions, such as 324 

the pre-SMA and ACC, which suggests that these regions may be specifically relevant for effort-reward 325 

integration. In the current meta-analysis, however, we found that these regions – in particular, the pre-326 

SMA and adjacent caudal ACC – all scaled positively with raw effort costs and, albeit less robustly, scaled 327 

negatively with net value. Such a pattern suggests that these regions are more likely to be involved in 328 
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the processing of effort-related costs, rather than value integration per se. These findings align closely 329 

with a previous transcranial magnetic stimulation study, in which disruption of the SMA led to decreased 330 

effort perception (Zénon et al., 2015). The pre-SMA and dorsal ACC are also recruited to process other 331 

types of costs, such as risk (Mohr et al., 2010) and delay (Schüller et al., 2019). A plausible mechanism, 332 

therefore, is that these regions serve as a domain-general hub for cost encoding and transfer the cost 333 

information to the vmPFC for calculation of net value. Alternatively, neuroeconomic models of effort-334 

based decision-making have posited that the ACC, in particular, is involved in good-to-action 335 

transformation (Padoa-Schioppa, 2011). Thus, another plausible mechanism is that the vmPFC computes 336 

and compares the net value of separate options and passes choice preference to action selection 337 

regions, such as the pre-SMA and ACC, for conversion to motor output.  338 

Despite strong evidence about the involvement of the caudal ACC, which is close to the pre-339 

SMA, in effort costs processing, it should be noted that the ACC, as a whole, is highly heterogeneous 340 

(Neubert et al., 2015; Yu et al., 2011). Indeed, the whole-brain results showed distinct activation 341 

patterns across the ACC, in which net-value-related activation was mainly observed in the ventral ACC, 342 

whereas cost-related activation in the dorsal ACC. These findings suggest that subregions of the ACC 343 

could be linked to different aspects of the effort-related valuation, which may also partly explain the fact 344 

that some studies identified net value signals in the ACC (Klein-Flugge et al., 2016; Massar et al., 2015). 345 

Moreover, net-value-related activation may emerge in the dorsal ACC if it is highly correlated with other 346 

confounding variables, such as decision difficulty (Shenhav et al., 2013). It is particularly plausible for 347 

studies that have used the SV difference between two options as the net value parameter, as it often 348 

approximates decision difficulty (Chong et al., 2017; Klein-Flugge et al., 2016). Notably, studies that have 349 

experimentally isolated net value and decision difficulty showed that the cognitive control network, 350 

including the dorsal ACC and other frontoparietal regions, tracked the latter but not the former (Hogan 351 

et al., 2019; Westbrook et al., 2019).  352 

The current study has some limitations. First, the sample size of the net value analysis is 353 

relatively small. Although the inclusion of statistical images partly offsets this issue, the number of 354 

included studies still limited our ability to further explore the effects of potential moderators, such as 355 

effort type (i.e., physical vs. cognitive), parameter type (i.e., difference in SV vs. SV of one option), effort 356 

execution requirement (i.e., real vs. hypothetical), and reward probability (i.e., cumulative vs. random 357 

payout). Because effort-based decision-making is sensitive to reward probability (Barch et al., 2014; 358 

Soder et al., 2020; Treadway et al., 2012) and opportunity costs (Otto and Daw, 2019), future research 359 

should directly explore the interaction between effort demand and other cost domains and/or task 360 
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features. Second, the majority of the included studies focused on physical effort measured by handgrip 361 

devices. These findings should be treated cautiously when generalizing to other formats of effort. 362 

Finally, the meta-analytic results reflected consistent regional activations across studies. Although our 363 

study identified critical brain regions related to effort-related value integration or cost encoding, how 364 

these regions interact with each other to achieve the dynamic valuation process remains to be 365 

elucidated by studies using task-based connectivity technique (Hauser et al., 2017) or imaging methods 366 

with higher temporal resolution (e.g., magnetoencephalography).  367 

In conclusion, this study is the first to use combined image- and coordinate-based meta-analyses 368 

to examine neural activity related to effort-related costs and net value. The results showed the pre-SMA 369 

is involved in cost representation of prospective effort independent of rewards. In contrast, the vmPFC 370 

and VS, which have been implicated in value integration in other cost domains, are also involved in 371 

effort-reward integration. These findings further clarify the neural mechanisms underlying effort-related 372 

valuation and may provide candidate intervention targets for patients with decreased motivation to 373 

exert effort to obtain rewards. 374 

  375 
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Table 1. Summary of Included Studies 388 

Study N Task Type Effort Type (Description) Analysis Data Type Parameter 

Aridan 2019 40 Choice Physical (Handgrip) Net Value Map P(yes) 

    Effort Map Parametric effort demand 

Arulpragasam 

2018 
28 Choice Physical (Key press) Net Value Map SV of Chosen Option 

    Effort Map 
Effort demand of the variable 

option (at Cue 1) 

Bernacer 2019 24 Choice Physical (Running) Net Value Map SV Difference 

    Effort Map Max > no effort 

Bonnelle 2016 37 Choice Physical (Handgrip) Net Value Coordinates “Expected Reward” 

Chong 2017* 34 Choice 
Physical (Handgrip) + 

Cognitive (RSVP) 
Net Value Map SV Difference 

    Effort Map Parametric effort demand 

Croxson 2009 16 No choice Physical (Trackball) Net Value Coordinates Log (reward/effort) 

    Effort Coordinates Increasing effort level 

Hogan  2019 34 Choice Physical (Handgrip) Net Value Map SV of chosen option 

Gaillard 2019 23 No Choice Cognitive (Spatial WM) Effort Map Categorial High vs Low WM Load 

Grodin 2016 17 No Choice Physical (Key press) Effort Map Categorical High vs Low effort 

Hauser 2017 28 
Reward/effort 

learning 
Physical (Handgrip) Effort Map 

Parametric expected effort 

demand 

Klein-Flügge 2016 21 Choice Physical (Handgrip) Net Value Map SV difference 

    Effort Map Parametric Effort Difference 

Kurniawan 2010 17 Choice Physical (Handgrip) Net Value** Coordinates 
Reward X [choice to grip > choice 

to hold] 

    Effort Coordinates 
High > low effort of chosen 

option 

Kurniawan  2013 19 No Choice Physical (Handgrip) Effort Map High > low effort demand 

Massar 2015 23 Choice Cognitive (Backwards typing) Net Value Map SV of chosen option 

    Effort Map Parametric effort level 

Nagase 2018 33 
Reward/effort 

learning 
Cognitive (Arithmetic) Effort Map 

Expected effort demand of 

chosen option 

Park 2017 30 No Choice Physical (Mouse click) Effort Coordinates High vs low effort demand 

Prévost 2010 16 Choice Physical (Handgrip) Net Value Coordinates SV of variable option 

    Effort Coordinates Parametric Effort Demand 
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Sayalı & Badre 

2019 
50 Choice Cognitive (Cued task switching) Effort Map 

Expected effort demand of 

chosen option 

Scholl 2015 20 
Reward/effort 

learning 
Physical (Trackball) Net Value Map Decision value difference 

    Effort Map Effort demand difference 

Seaman 2018 75 Choice Physical (Keyboard) Net Value Map SV of chosen option 

Skvortsova 2014 20 
Reward/effort 

learning 
Physical (Handgrip) Net Value Map 

Expected value demand of 

chosen option 

    Effort Map Effort Q 

Stoppel 2011 18 No Choice Cognitive (Line tracing) Net Value** Coordinates Reward X Difficulty 

    Effort Coordinates Hard > easy effort 

Suzuki 2020 19 Choice Physical (Keypress) Net Value Coordinates SV of chosen option 

 29 No Choice Physical (Maze Navigation) Effort Coordinates High > low effort 

Vassena 2014 22 No Choice Cognitive (Arithmetic) Effort Coordinates High > low effort 

Westbrook 2019 21 Choice Cognitive (N-back) Net Value Map SV of the more effortful option 

    Effort Map Effort demand 

*Maps from separate tasks were combined for all analyses. Abbreviation: RSVP, rapid serial visual presentation. 389 

**Only included in supplementary Net Value analysis.  390 
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Table 2. Results of ROI analyses 391 

ROI MNI coordinate Analysis Hedge’s g Z p I2 (in %) Egger’s p 

vmPFC (2, 46, -8) Net value 0.332 5.861 < 0.001 0.007 0.393 

  Raw effort -0.167 -2.482 0.013 39.381 0.678 

rVS (12, 10, -6) Net value 0.167 2.334 0.020 35.404 0.420 

  Raw effort -0.061 -1.170 0.242 < 0.001 0.286 

lVS (-12, 12, -6) Net value 0.132 1.779 0.075 40.289 0.559 

  Raw effort -0.082 -1.565 0.118 < 0.001 0.879 

Pre-SMA (-2, 16, 46) Net value -0.290 -2.255 0.024 78.669 0.130 

  Raw effort 0.187 2.142 0.032 63.161 0.726 

ACC (-2, 28, 28) Net value -0.088 -0.792 0.429 72.962 0.735 

  Raw effort 0.083 1.163 0.245 47.311 0.764 

rAI (32, 20, -6) Net value -0.151 -1.474 0.141 68.130 0.131 

  Raw effort 0.109 1.751 0.080 31.031 0.195 

lAI (-30, 22, -6) Net value -0.090 -0.787 0.431 74.025 0.107 

  Raw effort 0.055 0.894 0.371 29.295 0.388 

Abbreviations: vm, ventromedial; r, right; l, left; PFC, prefrontal cortex; VS, ventral striatum; ACC, anterior cingulate cortex; AI, anterior insula.  392 
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Table 3. Results of whole-brain analyses 393 

Analysis Cluster Voxels  Peak MNI 

coordinates 

BA Regions SDM-Z I2 (in %) Egger’s p 

Net value 1* 23918 -4, 52, -8 10 Left vmPFC 7.052 0.208 0.702 

   2, 52, -8 11 Right vmPFC 6.473   

   8, 10, -8  Right NAc 6.417   

   30, -6, -4  Right putamen 5.782   

   -32, -16, 4  Left putamen 5.546   

   -22, -6, -14 34 Left amygdala 5.398   

   24, 0, -16 34 Right amygdala 5.372   

   -50, -62, 14 37 Left temporal gyrus 5.335   

   -6, 14, -8  Left NAc 5.255   

   -6, 38,0 11 Left ACC 5.170   

   -52, -50, 2 21 Left middle temporal gyrus 5.145   

   24, 14, -16 48 Right insula 5.131   

 2* 3821 -14, -38, 40 23 Left PCC 5.592 6.332 0.444 

   -12, -40, 44  Left precuneus 5.446   

   0, -8, 42 23 Dorsal ACC 5.003   

   -16, -34, 40  Left superior parietal gyrus 4.879   

 3* 337 -26, 28, 38 9 Left dlPFC 4.245 3.266 0.594 

 4 156 -8, 16, 52 6 Left SMA -3.718 64.089 0.085 

 5 139 44, 38, 24 8 Right dlPFC -4.263 50.050 0.186 

 6 26 16, 20, 58 8 Right superior frontal gyrus -3.797 24.707 0.249 

Prospective effort 1* 112 8, 16, 64 6 Right SMA 3.966 1.069 0.494 

 2 46 -8, 8, 52 6 Left SMA 3.922 0.161 0.684 

 3 36 14, -66, 38 7 Right precuneus 3.615 59.40 0.111 

 4 23 -28, -6, 50 6 Left middle frontal gyrus 3.505 0.162 0.933 

 5 72 -8, 56, -8 11 Left vmPFC -4.264 5.901 0.634 

 6 67 -42, 30, -14 47 Left OFC -4.037 0.002 0.947 

 7 59 6, 54, -14 11 Right vmPFC -3.798 15.71 0.936 

 8 56 -56, -6, -18 21 Left middle temporal gyrus -4.385 7.473 0.724 

All results survived a statistical threshold of voxel-level uncorrected p < 0.001 and cluster size > 20.  394 

* Regions survived a statistical threshold of TFCE-corrected p < 0.025. 395 

Abbreviations: BA, Brodmann areas; vm, ventromedial; dl ,dorsolateral; d, dorsal; r, rostral; PFC, prefrontal cortex; NAc, nucleus accumbens; ACC, anterior 396 

cingulate cortex; PCC, posterior cingulate cortex; SMA, supplementary motor area; OFC, orbitofrontal cortex. 397 
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Figure legend 398 

 399 

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram. 400 

  401 
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 402 

Figure 2. Forest plot illustrating activation related to effort demand in the vmPFC and pre-SMA ROIs in 403 

studies with statistical maps. Contrary to our findings for net value signaling, the pre-SMA is activated 404 

(Hedge’s g= 0.20, 95% CI [0.02, 0.37]) and the vmPFC is deactivated (Hedge’s g= -0.17, 95% CI [-0.30, -405 

0.03]) when tracking pure prospective effort. 406 

  407 
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 408 

Figure 3. Forest plot illustrating activation related to net value in the vmPFC and pre-SMA ROIs in studies 409 

with statistical maps. The vmPFC is activated (Hedge’s g= 0.22, 95% CI [0.22, 0.44]) and the pre-SMA is 410 

deactivated (Hedge’s g= -0.28, 95% CI [-0.52, -0.03]) during effort-reward integration.  411 

  412 
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 413 

Figure 4. Whole-brain meta-analytic results. A: neural activity related to pure effort cost representation; 414 

B: neural activity related to net value; and C: their conjunction based on absolute values. Display 415 

threshold: uncorrected p < 0.005 at voxel level.  416 
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