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Abstract

We introduce an extension of independent component analysis (ICA), called multiscale ICA (msICA),
and design an approach to capture dynamic functional source interactions within and between multiple
spatial scales. msICA estimates functional sources at multiple spatial scales without imposing direct
constraints on the size of functional sources, overcomes the limitation of using fixed anatomical locations,
and eliminates the need for model-order selection in ICA analysis. We leveraged this approach to study

sex-specific and -common connectivity patterns in schizophrenia.
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Results show dynamic reconfiguration and interaction within and between multi-spatial scales. Sex-
specific differences occur (1) within the subcortical domain, (2) between the somatomotor and cerebellum
domains, and (3) between the temporal domain and several others, including the subcortical, visual, and
default mode domains. Most of the sex-specific differences belong to between-spatial scale functional
interactions and are associated with a dynamic state with strong functional interactions between the visual,
somatomotor, and temporal domains and their anticorrelation patterns with the rest of the brain. We
observed significant correlations between multi-spatial scale functional interactions and symptom scores,
highlighting the importance of multiscale analyses to identify potential biomarkers for schizophrenia. As

such, we recommend such analyses as an important option for future functional connectivity studies.

Keywords

multi-spatial scale dynamic functional connectivity, multi-spatial scale intrinsic connectivity networks,

multi-model-order independent component analysis (ICA), multiscale ICA (msICA), resting-state fMRI

1. INTRODUCTION

1.1. Multi-Spatial Scale Dynamic Interactions

Brain function has been modeled as coordination and interaction between functional sources, which has
been summarized via the principles of segregation and integration (Genon et al., 2018). In other words,
the brain can be segregated into distinct functional sources (e.g., intrinsic connectivity networks, ICNs),
which dynamically interact with each other (i.e., functional integration). Notably, functional sources exist
at different spatial scales, and dynamic functional interactions occur both within and between different
spatial scales. Previous work has highlighted the importance of analysis at multiple spatial scales (Li e?
al., 2018b); however, most multiple-spatial scale studies have built upon a single set of nodes (e.g.,
predefined regions or single model order ICA) and identifying multiple levels of modularity (e.g., with
different resolution parameter) or clusters (e.g., different number of clusters) (Doucet et al., 2011). In the
case of using functional sources as nodes, information at different spatial scales captures functional
integration among those sources at multiple resolutions. However, each spatial scale also contains its own
functional sources with unique functional information. For instance, larger functional sources are not a
simple union of smaller functional sources (Figure 1). In addition, functional interactions occur among

functional sources across (within and between) different spatial scales (e.g., large networks interact with
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small networks), which convey important information about the brain as shown in this study. This

relationship is effectively ignored if using a single spatial scale to analyze the data.

Here, we present an approach that combines multiscale ICA (msICA) and functional network connectivity
(FNC) to study multi-spatial scale functional interactions (both within and between spatial scales). msICA
uses multi-model-order ICA to estimate functional sources at multiple spatial scales directly. Static and
dynamic FNC (sFNC/dFNC) were applied to capture static and dynamic interactions between functional
sources, both within and between multiple spatial scales. We leveraged this approach to study sex-specific
and sex-common schizophrenia differences, which have been understudied but may play an important role
in understanding the neural mechanisms as it is clear there are sex differences in schizophrenia, for

example in disease onset (Nawka et al., 2013; Li et al., 2016).
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Figure 1. A toy example of multi-spatial scale analysis. A system with two true spatial scales, M and N. Each spatial scale has its own set of
functional source (FSs). Functional sources of spatial scale M are not just a simple split of functional sources of scale N. Each functional
source represents a segregation unit in a given scale, and functional connectivity between functional sources indicates functional

integration. Functional interaction (functional connectivity) exist both within and between different spatial scales

1.2. Intrinsic Connectivity Networks (ICNs): Assessment of Functional Sources

A functional source can be defined as a temporally synchronized pattern (Iraji et al., 2020b), and studying
brain function requires a proper estimation of functional sources to prevent incorrect functional

connectivity inferences (Iraji et al., 2020b). Due to its emphasis on capturing spatially distinct and
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temporally coherent sources, ICA has proven itself as a strong method to identify functional source
estimates. ICA is a data-driven multivariate technique, which divides the brain into overlapping
functionally distinct patterns (Calhoun and Adali, 2012; Calhoun and de Lacy, 2017; Kaboodvand et al.,
2018), called intrinsic connectivity networks (ICNs). Each ICN is a temporally synchronized pattern of
the brain, a good estimation of a functional source. The ICN time course describes its functional activity
over time, while its spatial pattern indicates the contribution of spatial locations to ICN. The spatial scale
of ICNs can be set effectively using the model orders of ICA. In other words, we can study brain
segregation and estimate ICNs at different spatial scales by using ICA with different model orders. Low-
model order ICAs result in large-scale spatially distributed ICNs (Damoiseaux et al., 2008; Iraji et al.,
2016), while higher model order results in more spatially granular ICNs (Allen et al., 2011; Iraji et al.,
2019c; Iraji et al., 2019d). Therefore, we proposed to use msICA (running ICA with multiple orders) to
estimate functional sources of multiple spatial scales. While there have been a few studies of the effect of
model-order on the spatial maps of ICNs (Abou-Elseoud et al., 2010), to our knowledge, there is no work
which studied brain function across multiple model orders. Similarly, no work has yet evaluated dynamic

functional interaction jointly at multiple model orders.

It is worth mentioning that ICA does not impose a direct constraint on the spatial extent of functional
sources estimates; thus, msICA allows data itself determined the spatial extend of estimated functional
sources without generating spurious sources for different spatial scales. In other words, msICA does not
force the functional sources of a given spatial scale to have a similar spatial extent. This gives msICA a
great advantage as we do not expect different brain areas or functional domains, e.g., “the primary cortex
vs. the frontal lobe” and “the visual domain vs. the cognitive control domain across” to be parceled at the

same level of granularity (see Section 3.1).

msICA also addresses the model-order selection problem as, in general, one remedy to parameter
selections is finding a procedure to combine results from several parameters. Various information-
theoretic criteria such as the Minimum description-length criterion (MDL) and Akaike's information
criterion (AIC) have been used to estimate an optimal model order. However, the optimal number can
vary across them; as such, the model-order selection problem still remains as selecting estimation method.
Instead of focusing on a single model order selected by these approaches, msICA includes information of

all spatial scales (within the constraints of the number of model orders we use).
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1.3. Functional Network Connectivity (FNC): Assessment of Functional Interaction

While ICA effectively segregates the brain into ICNs, FNC provides a way to study functional interaction
and integration. FNC is defined as the temporal dependency among ICNs and commonly estimated using
Pearson's correlation coefficient between ICN time courses (Jafri et al., 2008). Thus, FNC characterizes
the functionally integrated relationship across the brain by calculating the functional interaction between

ICNs.

Traditionally, functional integration has been studied using sFNC, where the overall functional
interactions are calculated using scan-length averaged FNC. However, the brain constantly integrates and
processes the information in real-time. Considering the brain's rich, dynamic nature, a number of methods
have moved beyond the "static" oversimplification and evaluate the temporal reconfiguration of functional
interactions using dFNC (Allen et al., 2014; Calhoun et al., 2014; Iraji et al., 2020a). The dFNC
approaches calculate time-resolved FNC allowing us to study variations in functional integrations over
time and identify different brain functional interaction patterns, also known as brain functional states (Iraji

et al., 2020a).

1.4. Schizophrenia

Schizophrenia is a psychotic disorder accompanied by various cognitive impairments and a decrease in
social and occupational functioning. Schizophrenia is a heterogeneous syndromic diagnosis of exclusion,
lacks unique symptoms and is diagnosed clinically by both positive symptoms, such as delusions,
hallucinations, disorganized speech, disorganized or catatonic behavior; and negative symptoms, such as
apathy, blunted affect, and anhedonia (Association, 2013), plus a decline in social functioning.
Schizophrenia overlaps considerably with both schizo-affective disorder and psychotic bipolar disorder,
not only symptomatically, but in terms of genetics and at the level of other biomarkers (Clementz et al.,
2016). The diverse temporal trajectory across individuals with SZ and the different types of clinical
symptoms suggest alterations in various functional domains and brain capacity reductions to integrate
information across the brain. Schizophrenia has been hypothesized as a developmental disorder of
disrupted brain function, which can be characterized by functional dysconnectivity and/or changes in
functional integration (Friston and Frith, 1995; Stephan et al., 2006; Kahn et al., 2015). Therefore,

studying static and dynamic FNC can provide vital information about brain functional integration and its
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schizophrenia changes, potentially improving our understanding of the actual brain pathology underlying

different schizophrenia subcategories.

In early work, Meda et al. show abnormal FNC, including those related to paralimbic circuits, which were
correlated significantly with PANSS negative scores (Meda et al., 2012). Focusing on the default mode,
hypoconnectivity was observed across all related networks (Meda et al., 2014). Dynamic studies also
identify hypoconnectivity as the dominant dysconnectivity pattern, while identifying few consistent
hyperconnectivity patterns. The strengths of dFC between subcortical and sensory networks are weaker
in individuals with schizophrenia (Damaraju et al., 2014). The weaker dynamic functional connectivity
(dFC) strengths have also been observed in several brain networks in spatial dynamic studies (Iraji et al.,
2019a; Iraji et al., 2019d). The decrease in the strengths of dFC (transient hypoconnectivity) seems to be
accompanied by higher fluctuations of dFC between brain regions (Yue et al., 2018) and within and
between several brain networks (Ma et al., 2014; Iraji et al., 2019a). Sun et al. reported overall higher
global efficiency across the schizophrenia brain (Sun et al., 2019). The alteration in the dFNC patterns in
schizophrenia also seems to be related to cognitive performance (Fu et al., 2018; Yue et al., 2018; Iraji et
al., 2019a). For instance, the temporal variability of FNC between the amygdala-medial prefrontal cortex
(mPFC) is positively correlated with total symptom severity and negatively correlated with information
processing efficiency (Yue et al., 2018). The correlation between the energy index (spatiotemporal
uniformity) of the subcortical domain and the attention/vigilance domain of computerized multiphasic
interactive neurocognitive dualdisplay system (CMINDS) was reported to be disrupted in schizophrenia
(Iraji et al., 2019a). Studies also show frequency-specific dFC alterations in SZ patients (Yaesoubi et al.,
2017; Zhang et al., 2018; Faghiri et al., 2020b). However, previous studies have not studied functional
interactions across multiple spatial scales and have underappreciated differences between male and female
cohorts (Damaraju et al., 2014; Miller et al., 2016; Iraji et al., 2019a; Miller et al., 2019; Faghiri et al.,
2020b).

Schizophrenia incidence is higher in men (Aleman et al., 2003; McGrath et al., 2004), but paradoxically
there is equal overall prevalence (Saha et al., 2005). There is also evidence suggesting sex-differences in
onset, symptom expression, and outcome in schizophrenia (Navarro et al., 1996; Nawka et al., 2013; Li
et al.,2016). For instance, males have more severe overall symptoms, worse outcomes, more negative and
fewer affective symptoms, and experience symptoms earlier than females (Li et al., 2016). Furthermore,

symptoms respond more quickly to treatments in females. However, sex differences in symptoms and
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outcomes also depend on the age of onset and treatment (Li et al., 2016; Seeman, 2019). Understanding
sex-specific characteristics of functional connectivity, which is currently lacking in the field, can help
provide an important insight to understand sex differences in schizophrenia and potentially the opportunity

to deliver sex-specific treatments and care for individuals with schizophrenia.

Considering the previous static and dynamic FNC findings on sex differences in typical control cohorts
(Allen et al., 2011; Yaesoubi et al., 2020) and previous report on sex differences in schizophrenia (Navarro
et al., 1996; Nawka et al., 2013; Li et al., 2016), we hypothesize that multiscale functional interactions
capture sex-specific changes in schizophrenia, which are significantly correlated with schizophrenia’s
symptoms score. We examined our hypothesis using the following pipeline: 1) we estimated ICNs at
multiple spatial scales using ICA with model-orders of 25, 50, 75, and 100; 2) we calculated the multi-
spatial scale static and dynamic functional integrations using within and between model-orders SFNC and
dFNC using a window-based approach (Allen et al., 2014; Iraji et al., 2020a); 3) we evaluated sex-specific

differences between typical controls and individuals with schizophrenia.

2. MATERIALS AND METHODS

2.1. Participant Demographics and Data Selection Inclusion Criteria

The data used in this study selected from three projects, including FBIRN (Functional Imaging Biomedical
Informatics Research Network), MPRC (Maryland Psychiatric Research Center), and COBRE (Center for
Biomedical Research Excellence). We selected a subset of data that satisfies the inclusion criteria,
including 1) data of individual with typical control or schizophrenia diagnosis; 2) data with high-quality
registration to echo-planar imaging (EPI) template; and 3) the head motion transition should be less than
3° rotations and 3 mm translations in every direction (Fu et al., 2020). Mean framewise displacement
among selected subject is average + standard deviation = 0.1778 £ 0.1228; min ~ man = 0.0355 ~ 0.9441.
Thus, we report on resting-state fMRI (rsfMRI) data from 827 individuals, including 477 typical controls
and 350 individuals with schizophrenia selected (Table 1).

Table 1. Demographic information of the data used in the study. FBIRN: Functional Imaging Biomedical Informatics Research Network,

MPRC: Maryland Psychiatric Research Center, COBRE: Center for Biomedical Research Excellence

. . . Age (years)
Project diagnostic N sex N
mean t sd median/range
Male 115 37.26 £10.71 39/(19-59
FBIRN Control group 160 / )
Female 45 36.47 +11.33 33/(19-58)
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Schizophrenia 150 Male 114 38.74 +11.78 40/(18-62)

group Female 36 39.06 +11.40 36/(21-57)

Male 94 38.72+13.63 40/(12-68

Control group 238 / )

MPRC Female 144 41.22 + 16.06 44/(10-79)
Schizophrenia 5 Male 98 35.57 £13.18 32/(13-63)

group Female 52 44.60 + 13.87 47/(13-63)

Male 55 39.07 £12.43 38/(18-65)

Control group 79

COBRE Female 24 34.92 £10.23 34/(18-58)
Schizophrenia 50 Male 42 37.43 £ 15.05 325/(19-64)

group Female 8 43.25+12.78 40/(31-65)

2.2. Data Acquisition

The FBIRN dataset was collected from seven sites. The same resting-state fMRI (rsfMRI) parameters
were used across all sites: a standard gradient echo-planar imaging (EPI) sequence, repetition time
(TR)/echo time (TE) = 2000/30 ms, voxel spacing size = 3.4375 x 3.4375 x 4 mm, slice gap = 1 mm, flip
angle (FA) =77°, field of view (FOV) =220 x 220 mm, and a total of 162 volume. Six of the seven sites
used 3-Tesla Siemens Tim Trio scanners, and one site used a 3-Tesla General Electric Discovery MR750

scanner.

The MPRC dataset was collected in three sites using a standard EPI sequence, including Siemens 3-Tesla
Siemens Allegra scanner (TR/TE = 2000/27 ms, voxel spacing size = 3.44 x 3.44 x 4 mm, FOV =220 x
220 mm, and 150 volumes), 3-Tesla Siemens Trio scanner (TR/TE = 2210/30 ms, voxel spacing size =
3.44 x 3.44 x 4 mm, FOV = 220 x 220 mm, and 140 volumes), and 3-Tesla Siemens Tim Trio scanner
(TR/TE =2000/30 ms, voxel spacing size = 1.72 x 1.72 x 4 mm, FOV =220 x 220 mm, and 444 volumes).

The COBRE dataset was collected in one site using a standard EPI sequence with TR/TE = 2000/29 ms,
voxel spacing size = 3.75 x 3.75 x 4.5 mm, slice gap = 1.05 mm, FA =75°, FOV =240 x 240 mm, and a

total of 149 volumes. Data was collected using a 3-Tesla Siemens TIM Trio scanner.

2.3. Preprocessing/MRI Data Preprocessing

The preprocessing was performed primarily using the statistical parametric mapping (SPM12,
http://www.fil.ion.ucl.ac.uk/spm/) toolbox. The rsfMRI data preprocessing using the following steps: 1)
discarding the first five volumes for magnetization equilibrium purposes, 2) rigid motion correction to

correct subject head motion during scan, and 3) slice-time correction to account for temporally
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misalignment in data acquisition. Next, the data of each subject was nonlinearly registered to a Montreal
Neurological Institute (MNI) echo-planar imaging (EPI) template, resampled to 3 mm? isotropic voxels,
and spatially smoothed using a Gaussian kernel with a 6 mm full width at half-maximum (FWHM = 6
mm). The voxel time courses were then z-scored (variance normalized). We are interested in identifying
functional sources, temporally synchronized regions. Therefore, temporal coupling and not amplitude
information are the information of interest. Variance normalization was shown to enhance sensitivity to
functional segregation and functional sources (Iraji et al., 2019d) and be highly reproducible across
different studies. Furthermore, prior to calculating static and dynamic FNC, an additional post hoc
cleaning procedure was performed on the time courses of ICNs to reduce the effect of remaining noise,
which may not be wholly removed using ICA, and to improve the detection of dynamic FNC patterns
(Allen et al., 2014). ICNs time courses were detrended by removing linear, quadratic, and cubic trends.
The six motion realignment parameters and their derivatives were regressed out. Outliers were detected
based on the median absolute deviation, similar to implemented in AFNI 3Ddespike
(http://afni.nimh.nih.gov/), and replaced with the best estimate using a third-order spline fit to the clean
portions of the time courses. Bandpass filtering was applied using a fifth-order Butterworth filter with a

cutoff frequency of 0.01 Hz-0.15 Hz.

2.4. Intrinsic Connectivity Network (ICNs) Estimation

For the initial work in this paper, we utilized spatial ICA with several model orders (25, 50, 75, and 100)
to identify intrinsic connectivity networks (ICNs) at multiple spatial scales. Similar to most ICA-based
studies of fMRI, we implemented group-level spatial ICA followed by a back-reconstruction technique to

estimate subjects-specific independent components (ICs) time courses.

We used the GIFT toolbox (https://trendscenter.org/software/gift/) (Calhoun et al., 2001; Calhoun and
Adali, 2012; Iraji et al., 2020a). First, subject-specific spatial principal components analysis (PCA) was
applied to normalize the data and to allow subjects to contribute similarly in the common subspace. The
subject-specific PCA also has denoising and computational benefits (Erhardt et al., 2011). We retain
maximum subject-level variance (greater than 99.99%). While the subject-specific PCA privileges subject
differences at the subject-level, the group-level PCA favors subject commonalities (Erhardt ez al., 2011).
All subject-level principal components were concatenated together across the time dimension, and group-

level spatial PCA was applied to concatenated subject-level principal components. N (25, 50, 75, and 100)
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group-level principal components that explained the maximum variance were selected as the input for

spatial ICA to calculate N (25, 50, 75, and 100) group independent components.

Infomax was chosen as the ICA algorithm because it has been widely used and compares favorability with
other algorithms (Correa et al., 2007a; Correa et al., 2005). For each model-order (N = 25, 50, 75, and
100), the Infomax ICA algorithm was run 100 times and clustered together within the ICASSO framework
(Himberg et al., 2004). The run with the closest independent components to the centrotypes of stable
clusters (ICASSO cluster quality index > 0.8) was selected as the best run and used for future analysis
(Ma et al., 2011b). This is an important point and facilitates replicable results. Next, the subject-specific
ICs time courses were calculated using the spatial multiple regression technique (Calhoun et al., 2004).
At each time point, the contribution of each IC to the BOLD signal was calculated using linear regression

(Calhoun et al., 2004).

We selected a subset of independent components as ICNs if they are stable (ICASSO stability index >
0.8) and depict common ICNs properties including 1) dominant low-frequency fluctuations of their time
courses evaluated using dynamic range and the ratio of low frequency to high-frequency power, 2) exhibit
peak activations in the gray matter, 3) have low spatial overlap with vascular, ventricular, and 4) low
spatial similarity with motion and other known artifacts. Finally, ICNs were grouped into functional
domains based on prior knowledge of their anatomical and functional properties (Allen, Erhardt et al.

2011).

2.5. Static and Dynamic FNC Calculation

We calculated static and dynamic functional network connectivity (FNC) between every single pair of
ICNSs across all model-orders to effectively capture functional integration and interaction across different
spatial scales. For a subset of data (15%) with a sampling rate different than 2 seconds, ICNs time courses
were interpolated to 2 seconds. Minimum data length across all subjects was selected for further analysis.
Static FNC (sFNC) was estimated by calculating the Pearson correlation between each pair of ICNs time
courses resulting in one sFNC matrix for each individual. Each element of the sFNC matrix is the

functional connectivity between a pair of ICNSs.

In contrast to SFNC, which uses the full length of scan, in dynamic FNC (dFNC), we calculate multiple
FNC matrices for different time segments of scan (i.e., FNC matrices for durations smaller than the whole

time series) (Iraji et al., 2020a). As a result, we can study variations in FNC over time. Here, we used a

10
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windowed-based approach with the slide step size of two seconds (maximum overlap between consecutive
windows). A recommended window size is between 30 and 60 seconds (Iraji et al., 2020a); thus, we chose
the middle value (44 seconds, timepoint increment is 2 seconds). Tapered window created by convolving
arectangle window (width = 44 seconds) with a Gaussian (o = 6 seconds) and used to calculate windowed-
FNC. This results in a series of windowed-FNC matrices over time (FNC as a function of time) containing

dFNC information.

Next, we identified dFNC states from windowed-FNC matrices using the k-means clustering, in which
each cluster represents one dynamic state (Iraji et al., 2020a). We applied a two-stage k-means clustering.
First, windows with local maxima with FNC variances were selected for each subject, and k-means
clustering was applied to the set of all subject-specific local maxima (also known as exemplars). We used
the city-block distance metric because it is suggested to be a more effective dissimilarity measure than
Euclidean distance for high-dimensional data (Aggarwal et al., 2001). K-means clustering was repeated
100 times with different initializations using the k-means++ technique to increase the chance of escaping
local minima. The resulting centroids were then used to initialize a clustering to all 93,451 (827 subjects
x 113 windows) windowed-FNC matrices. The optimal number of dFNC states was selected based on the
elbow criterion by calculating the ratio of within to between cluster variance and running the clustering
procedure for 1 to 15 clusters. Subject-specific dFNC states were next estimated by averaging windowed-

FNC of time-windows assigned to a given state.

We repeated the dFNC states identification procedures using two alternative ways to ensure that the dFNC
states are not biased to the clustering algorithm. 1) We first applied k-means clustering at the subject-level
and then concatenated the subject-level centroids for group-level clustering and identifying dFNC states.
2) We directly applied k-mean clustering to all 93,451 (827 subjects x 113 windows) windowed-FNC

matrices. We also evaluated the clustering results using Euclidean and Correlation distances.

2.6. Group Comparison Analysis

We evaluated sex-specific differences in multiscale SFENC and dFNC between the control group (CT) and
the individuals with schizophrenia (SZ). For each sex cohort, male and female, we separately assessed
diagnostic group differences, i.e., male controls versus male individuals with schizophrenia (maleCT vs.
maleSZ) and female controls versus female individuals with schizophrenia (femaleCT vs. femaleSZ). We

used a general linear model (GLM) with age, data acquisition site, and mean framewise displacement as
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covariates. Framewise displacement is the sum of changes in the six rigid-body transform parameters
(framewise displacement(t) = |[Adx(t)| + [Ady(t)] + |[Adz(O)] + [Aa(t)] + [AB(t)] + [Ay(t)]). Mean framewise
displacement was added to the GLM to account for any residual motion effect that was not removed in
the previous three motion-removal steps. The statistical analysis results were corrected for multiple
comparisons using a 5% false discovery rate (FDR). It is worth mentioning that all statistical analysis
results were combined (sSFNC and dFNC; male and female; across all model orders) and corrected for

multiple comparisons, which is more conservative than correcting for each statistical analysis separately.

Next, we evaluated sex-specific differences for the sSFNC and dFNC features that showed a significant
difference between the control group and individuals with schizophrenia in either of the sex cohorts
(“maleCT vs. maleSZ” and/or “femaleCT vs. femalesSZ”). For each feature, we compared the difference
of the t-value of GLM statistic between two sex cohorts (“z-value of maleCT vs. maleSZ” - “t-value of
femaleSZ vs. femaleCT”) with a null distribution. The p-value of the 7-value of difference was corrected

for multiple comparisons using the same procedure explained in the previous paragraph.

The null distribution was created by randomly permuting sex labels within each diagnostic group. In other
words, the diagnostic label remained intact; individuals with schizophrenia remained schizophrenia, and
control subjects remained in the control group, and only the sex labels were randomly permuted.
Furthermore, the number of females and males in each diagnostic group did not change. This permutation
process was repeated 5000 times. For each permutation, the GLM was applied to two null male and null
female cohorts independently. For each feature, the difference of the t-value of diagnosis for two null

cohorts was calculated. This results in 5000 samples of the null distribution for each feature.

We also studied sex-specific differences at the domain-level across different spatial scales. For static FNC
and each dynamic state, the average FNC was calculated within and between seven functional domains
both within and between four model-orders (e.g., “CC25-DM25 and “CR50-VS100”). For example,
“CR50-VS100” is the average FNC between every pair of ICNs belong to the cerebellum domain model
order 50 and ICNs belong to the visual domain, model order 100. This results in a 28-by-28 domain-level
functional integration matrix. The static and dynamic state domain-level functional integration matrices

were then evaluated for sex-specific differences.

12


https://doi.org/10.1101/2021.01.04.425222
http://creativecommons.org/licenses/by-nc-nd/4.0/

—

O o0 N N W B~ W

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425222; this version posted April 2, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.7. Relationship with Symptom Scores

We further evaluate if the multiscale functional network connectivity pairs showing sex-specific changes
in schizophrenia are related to the symptoms of schizophrenia. The positive and negative syndrome scale
(PANSS) scores are available for the FBIRN dataset, while the MPRC dataset includes the brief
psychiatric rating scale (BPRS) scores. We transformed BPRS total scores to PANSS total scores using
the matching obtained from 3767 individuals (Leucht et al., 2013). Next, we evaluated the relationship
between the PANSS total score and domain-level features with significant sex-specific differences.
Correlation analyses were conducted after regressing out age, site, and meanFD and corrected for multiple

comparisons.

3. RESULTS

3.1. Multi-Spatial Scale Functional Segregation: Intrinsic Connectivity Networks (ICNs)

We performed spatial ICA with 25, 50, 75, and 100 components on rsfMRI data from 827 subjects to
functionally segregate the brain at different spatial scales. Based on the criteria explained in Section 2.4,
we identified 15, 28, 36, and 48 independent components as ICNs for model orders 25, 50, 75, and 100,
respectively. Detailed information of the ICNs, including spatial maps, coordinates of peak activations,
and temporal and frequency information, can be found in Supplementary 1. ICNs were grouped into seven
functional domains (FDs), including Cognitive Control (CC), Cerebellum (CR), Default Mode (DM),
Subcortical (SB), Somatomotor (SM), Temporal (TP), Visual (VS). Figure 2 illustrates the composite
views of functional domains for each model order and aggregated. Each composite view is obtained by
thresholding and overlaying associated ICNs. For example, the first image in subplot(CR,ICA25) was
obtained by thresholding (|Z|>1.96) and overlaying two ICNs associated with the cerebellum domain in
model order 25. Table 2 shows the number of ICNs for each model order and functional domain. The
results suggest as the model order increases, the number of ICNs increases, and the brain and the functional
domains segregate into more functional sources (ICNs). For instance, the subcortical (SB) domain consists
of only one ICN in model order 25, enclosing the whole subcortical regions, while it parcels into spatially
distinct ICNs as model order increases. However, the number of ICNs does not increase proportionally
with model order. While some functional domains break into more ICNs as the model order increases,
others demonstrate a smaller amount of changes in the number of ICNs and their spatial distributions

across model-orders studied in this work. For example, we observe significant changes in the ICNs
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associated with the cognitive control domain across model orders, particularly between model order 50
and 75, while the number of ICNs are the same for model order 50 and 75 for the somatomotor and visual
domains. Interestingly, across different model orders, we observed ICNs with high spatial overlap (high
spatial similarity) but clearly distinct features. The second row of Figure 5 shows two distinct ICNs with

high spatial overlap associated with the primary motor cortex.

ICA25 ICA50 ICA75 ICA100 Aggregate

CR

were groups into seven functional domains (FD) based on their anatomical and functional properties. The functional domains are Cognitive
Control (CC), Default Mode (DM), Visual (VS), Subcortical (SB), Cerebellum (CR), Somatomotor (SM), and Temporal (TP). Columns
represent the composite maps of seven functional domains for four ICA model orders and aggregated. Each color represents the spatial map

of one ICN thresholded at |Z| > 1.96 (p = 0.05).

Table 2. The number of Intrinsic Connectivity Networks (ICNs) for each model order and functional domains, Cognitive Control (CC),

Cerebellum (CR), Default Mode (DM), Subcortical (SB), Somatomotor (SM), and Temporal (TP).

CR ccC DM SM SB TP Vs Total
1C25 2 3 4 2 1 1 2 15
1C50 3 6 5 5 2 3 4 28
IC75 4 11 6 5 3 3 4 36
IC100 5 14 8 7 4 3 7 48
Total 14 34 23 19 10 10 17
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3.2. Dynamic Functional Integration: Static/Dynamic Functional Network Connectivity
(sSFNC/dAFNC)

Figure 3(A, ) and Figure 4(A, I) display “block™ and “finger” plots of the group-level multiscale functional
integration computed using the entire scan length (i.e., static functional network connectivity (sFNC)).
sFNC shows similar patterns for control groups, individuals with schizophrenia, males, and females. In
the block plot, we sort ICNs by functional domain and then model order. The block plot of SFNC resembles
previous single model order studies, showing modular organization within functional domains across
model orders. Consistent with prior literature (Allen et al., 2011), we observed an overall negative
association (anticorrelation) between the default model and the rest of the brain, particularly the visual,
somatomotor, and temporal domains, during rest. Interestingly, this negative association with more
prominent between model orders, for example, between the default mode of model order 25 (DM25) and
the somatomotor of model order 100 (SM100). We also observed strong FNC between the somatomotor,
temporal, and visual domains, and between the subcortical and cerebellum domains. Figure 3 suggests
that the FNC within functional domains is stronger than between functional domains, and this pattern is
consistent for both within and between model orders. The similarity in FNC pattern within and between
model orders can be observed in the finger plots (Figure 4), where ICNs are sorted first by model order
and then functional domains. The finger plot (Figure 4) shows functional domain (FD) modular patterns

(stronger FNC within FDs compared to between FDs) between model orders similar to within model order.

Focusing on brain dynamics, dynamic FNC (dFNC) analysis shows variations in FNC over time, which
give rise to distinct functional integration patterns (dFNC states). The elbow criterion identified four as
the optimal number of states. Figure 3 and Figure 4 show the dFNC states. These states are fully
reproducible and identified using different clustering procedures (see section 2.32.5). State 1 accounts for
23.76% of all windows (percentage of occurrences, POC = 23.76%), and it is dominated by a strong
anticorrelation pattern between the default mode and other functional domains, which can be related to
the role of the default mode in reconciling information and subserve the baseline mental activity. State 2
(POC = 38.3%) is distinct by weaker FNC, particularly weaker between functional domains potentially
representing the brain's global segregation state. In contrast, State 3 (POC = 21.31%) demonstrates overall
positive FNC across the cerebral cortex, potentially representing global functional integration. Of
particular note, the cerebellum shows overall negative FNC with cerebral functional domains in State 3.
The negative association between the cerebellar domain and sensorimotor functional domains is

prominent in state 4 with POC =16.60%. State 4 can be distinguished with strong functional integration
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between the visual, somatomotor, and temporal domains, and their anticorrelation patterns with the rest
of the brain. This state also shows strong functional integration between the subcortical and cerebellar

domains.
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Figure 3. Block plot of multiscale functional integration. ICNs are sorted by functional domain and then model order. Row A is the result of

3 static FNC analysis, and rows B to E represent the four dynamic states. Column / is the average FNC matrix for static FNC and dynamic
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FNC states. Column J shows the result of group comparison between male individuals with schizophrenia (SZ) and the male control group
(CT). Column K shows the result of group comparison between SZ and CT individuals in the female cohort. In columns J and K, the upper
triangular shows the 7-value of statistical comparisons, and the lower triangular shows statistically significant differences after FDR
correction for multiple comparisons (FDR-corrected threshold = 0.05). Column L shows the result of the statistical comparison between the
differences observed in the male cohort versus the female cohort. The upper triangular in shows the differences between the 7-value of
statistical comparisons in male and female cohorts (“s-value of maleSZ vs. maleCT” - “t-value of femaleSZ vs. femaleCT”), and the lower
triangular shows the SZ-associated abnormal patterns that are significantly different between male and female cohorts after FDR
correction. Cognitive Control (CC), Default Mode (DM), Visual (VS), Subcortical (SB), Cerebellum (CR), Somatomotor (SM), and
Temporal (TP).
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Figure 4. Finger plot of multiscale functional integration. ICNs are sorted by model order then functional domain. Row A is the result of

static FNC analysis, and rows B to E represent the four dynamic states. Column / is the average FNC matrix for static FNC and dynamic
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FNC states. Column J shows the result of group comparison between male individuals with schizophrenia (SZ) and the male control group
(CT). Column K shows the result of group comparison between SZ and CT individuals in the female cohort. In columns J and K, the upper
triangular shows the 7-value of statistical comparisons, and the lower triangular shows statistically significant differences after FDR
correction for multiple comparisons (FDR-corrected threshold = 0.05). Column L shows the result of the statistical comparison between the
differences observed in the male cohort versus the female cohort. The upper triangular in shows the differences between the 7-value of
statistical comparisons in male and female cohorts (“s-value of maleSZ vs. maleCT” - “t-value of femaleSZ vs. femaleCT”), and the lower
triangular shows the SZ-associated abnormal patterns that are significantly different between male and female cohorts after FDR
correction. Cognitive Control (CC), Default Mode (DM), Visual (VS), Subcortical (SB), Cerebellum (CR), Somatomotor (SM), and
Temporal (TP).

3.3. Sex-Specific Differences in Individuals with Schizophrenia

Multiscale functional integration was further studied by evaluating sex-specific differences in multiscale
sFNC and dFNC between the control group (CT) and the individuals with schizophrenia (SZ). In Figure
3 and Figure 4, columns J and K show the statistical analysis for each sex cohort using a general linear

model (GLM) with age, data acquisition site, and mean framewise displacement as covariates.

In general, sSFNC shows more differences between SZ and CT in both sex cohorts than each dFNC state
individually; however, the total number of tests that survived FDR correction is comparable between
sFNC and dFNC (Supplementary 2). In the female cohort, 576 FNC pairs show significant differences in
both sFNC and dFNC, while we identified 638 and 402 FNC pairs show significant differences only in
sFNC and dFNC, respectively. In the male cohort, the number of FNC pairs that show significant
differences in both sFNC and dFNC is 1076, and the numbers of FNC pairs that show significant
differences only in SFNC and dFNC are 720 and 640, respectively. Furthermore, dFNC analysis shows
that in the female (male) cohort, 790 (1246) and 3 (21) FNC pairs, respectively, show significant

differences in only one dynamic state and all four dynamic states.

Individuals with schizophrenia show reduced sFNC strength within and between the SM and TP domains
in male and female cohorts. Looking at dFNC results, we observed these differences emerge in different
states for male and female cohorts, i.e., mainly in State 3 for the male cohort and State 4 for females. We
observed the sex-specific differences in the SM and TP domains are more pronounced in dFNC states,
particularly in State 4. Individuals with SZ also have weaker sFNC and dFNC within the VS and between
VS domain and SM and TP domains. Furthermore, with a few exceptions, we observed an overall sSFNC
and dFNC increases between the SB and the CR, on the one hand, and the SM, the TP, and the VIS on the

other hand. We observed the strongest sex-specific differences in State 4 between the VS and the CR.

20


https://doi.org/10.1101/2021.01.04.425222
http://creativecommons.org/licenses/by-nc-nd/4.0/

[\

O o0 N N N B

10

12

13
14
15

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425222; this version posted April 2, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The results also show significant differences between male and female cohorts across other functional
domains in both sFNC and dFNC. For instance, the sFNC between the CC and DMN significant

differences in SZ-related alterations between male and female cohorts.

The sex-specific differences are more prevalent in State 4 than sFNC and other dynamic states
(Supplementary 2). The number of FNC pairs that show significant sex differences in both sFNC and
dFNC is only nine. The results also suggest the largest sex-specific changes in schizophrenia are mainly
observed in the dFNC state 4, and they belong to between model-order FNC (Figure 5). Interestingly, we
observed opposite patterns of alterations for male and female cohorts in several significant differences.
For instance, Figure 5(R1, D4) shows significant differences in the dFNC state 4 (D4) in both male (C2)
and female (C3) cohorts. However, while in the male cohort, the strength of dFNC in state 4 reduced in
SZ (t-value = -3.32), in the female cohort, the strength of FNC increased in SZ cohort (#-value = 3.65)

compared to control group.

One of the advantages of using msICA is that it allows us to see how the same region can contribute to
different ICNs at different spatial scales and how the functional connectivity between these ICNs varies

across different populations (Figure 5(R2)).
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Figure 5. Static and dynamic functional network connectivity (sSFNC/dFNC) pairs that show the largest sex-specific multiscale changes in
schizophrenia (SZ) presented in twelve rows in order. (S) represents the results of sSFNC, and (D1) to (D4) show the results of dFNC for
dynamic state 1 to 4, respectively. (A) and (B) display the sagittal, coronal, and axial views of the peak activation of intrinsic connectivity
networks (ICNs) associated with each FNC pair. (C1) is the FNC strength. (C2) indicates the t-value of statistical comparisons between
typical control and individual with schizophrenia in male cohort. Positive (negative) values indicate stronger (weaker) sSFENC/dFNC in
individuals with schizophrenia (SZ) compared to the control group. (C3) represents the t-value of statistical comparisons between typical

control and individual with schizophrenia in the female cohort, where positive and negative values indicate the same pattern as (C2). (C4)
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shows the #-value of comparing Schizophrenia-related changes between male and female cohorts (“t-value of maleSZ vs. maleCT” - “t-
value of femaleSZ vs. femaleCT”). Asterisk sign * indicates the statistical comparisons that survived multiple comparisons (5% false
discovery rate, FDR). Cognitive Control (CC), Default Mode (DM), Visual (VS), Subcortical (SB), Cerebellum (CR), Somatomotor (SM),
and Temporal (TP). The number after functional domain abbreviation is the model number; for example, DM25 means the default model

domain from ICA model order 25.

Investigating sex-specific differences at the domain-level across different spatial scales, we observed sex-
specific differences are more prominent in the dFNC compared to sFNC. Significant differences exist
within the subcortical domain between model order 75 and 100 (SB75-SB100) in SFNC and dFNC state
1 (Figure 6). State 2 shows sex-specific differences between the subcortical and temporal domains within
and between several model-orders (Figure 6). State 3, on the other hand, shows sex-specific differences
between the cerebellar and somatomotor across different model orders (Figure 6). Like ICN-level
comparison, dynamic state 4 reveals the most sex-specific differences, including the temporal, visual, and

default mode domains.

While sex-specific differences show stronger effects of schizophrenia in males (male diff — female diff >
0) for functional domain connectivity associated with the SM and the VIS, we observe the opposite pattern
for the rest of the differences. One exception is the within temporal domain functional connectivity

between model order 25 and 50 in the dFNC state 4.
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Figure 6. Sex-specific differences at the domain-level across different spatial scales. Cognitive Control (CC), Default Mode (DM), Visual
(VS), Subcortical (SB), Cerebellum (CR), Somatomotor (SM), and Temporal (TP). The number after functional domain abbreviation is the

model number; for example, DM25 means the default model domain from ICA model order 25.
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For sex-specific changes at the domain level, we also evaluated the correlation with the PANSS total
score. We observed strong correlations with p-value < 0.05 in the male but not the female cohorts for four
domain-level features. They include (1&2) within the subcortical domain between model order 75 and
100 (SB75-SB100) in sENC with the correlation values of 0.281/-0.117 (male/female) and dFNC state 1
with the correlation values of 0.173/-0.197 (male/female); (3) within the temporal domain between model
order 25 and 50 (TP25-TP50) in dFNC state 4 with the correlation values of 0.277/-0.062 (male/female);
and (4) between the visual domain model order 25 and the temporal domain model order 75 (VS25-TP75)
in dFNC state 4 with the correlation values of -0.300/-0.024 (male/female). Among these, SB75-SB100
(sFNC) and VS25-TP75 (dFNC state 4) survived multiple comparison corrections (Supplementary 3).

4. DISCUSSION

4.1. Multiscale Dynamic Interactions: Functional Segregation and Integration

Studying brain functional connectivity has improved our understanding of brain functions and the impact
of brain disorders. However, currently, studying functional connectivity overwhelmingly disregards
functional connectivity across multiple spatial scales. Existing studies, at best, apply data-driven
approaches like ICA to study functional interactions at single model order but overlook the FNC within
and between multiple spatial scales, while the majority of them uses fixed anatomical locations of the
same size (e.g., a sphere with the same radius), which in addition to disregarding multiple spatial scales

interaction, they ignore differences in the spatial distribution of functional sources.

In this work, we present an approach to study multi-spatial scale dynamic functional interactions, i.e.,
dynamic changes that occur within and among different spatial scales, a topic that has been overlooked
by the field. We leveraged the approach to study schizophrenia’s alterations and its sex-specific
differences, which has also been understudied as most schizophrenia research only focuses on single

spatial scale FC and non-sex specific alterations of schizophrenia.

4.2. Multiscale ICA (msICA)

Our results show that multiscale ICA (msICA) using the Infomax algorithm is an effective, adaptive tool
to identify functional sources at multiple spatial scales. Higher model order ICAs segregate the brain and
functional domains into more ICNs with, in general, higher spatial granularity. For instance, the

subcortical domain splits into more ICNs as the model order increases from 25 to 100. However, ICA
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does not enforce a limitation on each ICN's spatial extent. Instead, ICA considers the multivariate
association in the BOLD signal to segment the brain. As a result, msICA enables us to visualize functional
segregation occurring at different levels of granularity across the brain. This is a desirable characteristic,
as we know functional homogeneity varies across the brain and functional domains. The differences in
parcellation granularity across functional domains provide additional information about the brain that

needs to be studied in the future.

Furthermore, msICA captures the multifunctionality of brain regions and identifies distinct ICNs with
high spatial overlap (For example, see the second row of Figure 5). Additional studies are needed to
evaluate neurophysiological basis explaining these variations. Furthermore, in this study, we focus on
only four model orders of 25, 50, 75, and 100. Future studies should reduce the incremental steps and
increase the range of model orders to effectively capture ICNs associated with a larger number of spatial
levels of functional hierarchy (Iraji et al., 2019d). Recently, we used 1K-ICA, ICA with a model order of
1000, to parcel the brain into very fine-grained functional sources (Iraji et al., 2019c). Furthermore, future
studies should explore differences across the different back-reconstruction approaches (Erhardt et al.,
2011). Developing techniques that simultaneously estimate ICNs for multiple model-orders can improve
the estimation of ICNs across multiple scales. Finally, considering the recent findings on spatial dynamics
(Iraji et al., 2019a; Iraji et al., 2019d; Iraji et al., 2020b), future works should also consider spatial dynamic

functional segregations as the spatial patterns of functional sources may vary over time.

4.3. Multi-Spatial Scale dFNC

A window-based dFNC approach (Allen et al., 2014; Iraji et al., 2020a) was adopted to characterize the
multi-spatial scale dynamic functional interactions. To our best knowledge, this is the first study that looks
at SFNC/dFNC across multiple mode orders. While we observe consistency and similarity of sSENC/dFNC
both within- and between-model orders, there are also distinct differences in FNC patterns across FNC
patterns. The differences are more distinguishable when there are larger differences in model-orders, e.g.,
between model orders 25 and 100 (see, for example, Figure 4 (A), (B), and (E)). This further highlights

the importance of including a wider range of model-orders in future studies.

Another important point is how we identify dFNC states. In this study, dFNC states were identified using
all 127 ICNs; however, the brain may experience different states and/or temporal changes across different

spatial scales. Higher functional hierarchy levels have less homogeneity and more dynamic behavior (Iraji
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et al., 2019d). Therefore, we expect more dynamism in the low-model order ICAs. Future work should
focus on variation in dFNC states and their timing across multiple model orders and differentiate between
global and scale-specific dFNC states. It would also be interesting to extend the same multi-scale idea to
the number of clusters for the dFNC analysis. Different cohorts (e.g., male, female, control, and

schizophrenia) may depict different characteristics at different scales.

Furthermore, similar to multi-spatial scales, brain functional segregation and integration can occur at
different temporal scales and frequencies; thus, future studies can benefit from multi-temporal scale
functional interactions. Developing multi-spatiotemporal scale analytic approaches and methodological

frameworks to study functional sources is a crucial future avenue of investigation.

Finally, there is a rich repository of dynamic analytical approach and secondary analysis that can be used
to evaluate multi-spatial scale brain dynamics (Chang and Glover, 2010; Lindquist er al., 2014;
Karahanoglu and Van De Ville, 2015; Yaesoubi et al., 2015; Miller et al., 2016; Kaboodvand et al., 2020).

4.4. Schizophrenia

We further investigated the advantage of multi-spatial scale analysis in schizophrenia and identifying sex-
specific changes. Our results suggest disruptions in sSFNC/dFNC across functional domains. Compared
with controls, individuals with schizophrenia show reduced sFNC/dFNC within and between the visual,
somatomotor, and temporal domains in both male and female cohorts (Figure 3). Previous studies that
looked at differences between typical controls and individuals with schizophrenia also report
hypoconnectivity across these functional domains using various approaches (Anticevic et al., 2014;
Damaraju et al., 2014; Kim et al., 2014; Shinn et al., 2015; Iraji et al., 2019a; Iraji et al., 2019d; Faghiri
et al., 2020b). Our study both confirms and extends previous findings. We identify significant differences
between males and females in several FNC pairs, mainly showing larger schizophrenia-related changes in
males than female cohorts. This can be related to differences in clinical observations, including males
presenting more severe overall symptoms, worse outcomes, and slower responses to treatment (Li et al.,
2016). Greater SZ-related changes across these domains in males are also present at the domain level in

dFNC State 4 within the temporal domain and between the temporal and visual domains (Figure 6).

Individuals with schizophrenia show hyperconnectivity of the subcortical domain with the visual,
somatomotor, and temporal domains with notable exceptions in dFNC State 4. Unlike sSFNC and dFNC in

other states, dFNC State 4 has an overall negative association between the subcortical and the visual,
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somatomotor, and temporal domains (Figure 3). Certainly, temporal lobe anatomical and functional
differences have been linked repeatedly to the expression of positive symptoms in schizophrenia (Barta et
al., 1990; Shenton et al., 1992; Woodruff et al., 1997). We also observe different patterns of
schizophrenia-related changes in male and female cohorts. dFNC State 4 also shows distinct sex-specific
differences in the cerebellum domain connectivity patterns, where we observe the opposite pattern of
alterations, particularly between the cerebellum and visual domain in the male and female cohorts (Figure
3). Cerebellar dysconnectivity patterns have been linked to negative symptom expression in schizophrenia

(Brady et al., 2019).

The domain-level analysis suggests that major sex-dependent schizophrenia alterations at a large scale are
mainly associated with the subcortical, cerebellar, temporal, and motor domains. Interestingly, most of
the sex-specific differences were observed between model-order and associated with dFNC states,

highlighting the importance of multiscale dynamic analysis (Figure 4 and Figure 6).

In short, our findings are aligned with and extend previous schizophrenia studies, and we observed explicit
sex-specific differences, particularly distinct dFENC patterns in State 4. These demand further
investigations into the multi-spatial scale dFNC and sex differences in SZ. However, these findings should

be interpreted with caution and considering the limitations of the study.

First and foremost, considering the sex differences in the age of onset, future longitudinal studies should
be used to study the role of the age of onset on the sex-specific differences in schizophrenia and evaluate
the relationship between time and sex-specific differences over time. Long-term effects of medication and
treatment, which cannot be accounted for (Moncrieff and Leo, 2010), might impact observed differences.
Including unaffected close relatives sharing genetic risk, i.e., at-high-risk unmedicated subjects, can help
us better understand changes in brain function (Pearlson and Stevens, 2020). The unbalanced number of
samples between groups is another limitation of the studies. While we control for sex-difference and the
null distribution was created with the same female to male ratio, future studies should focus on datasets

with larger numbers of females.

4.5. Biomarker and Importance of Sex-Specific Characteristics

According to NIH Biomarkers Definitions Working Group, a biomarker is defined as ‘““a characteristic that
is objectively measured and evaluated as an indicator of normal biological processes, pathogenic

processes, or pharmacologic responses to a therapeutic intervention (Biomarkers Definitions Working
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Group, 2001)”. As such, a diagnostic biomarker is defined as a characteristic or feature capable of
detecting or confirming the presence of a (subtype of) disease or condition of interest (Califf, 2018). At
the same time, numerous studies have observed sex differences in schizophrenia, including in the age of
onset, in experiencing negative and positive symptoms, and in response to treatments (Nawka et al., 2013;
Li et al., 2016; Seeman, 2019). Therefore, the biomarkers for schizophrenia might be somewhat different

for males and females.

This study's premise is that sex influences differences in schizophrenia characteristics, and we introduce
a dynamic multi-spatial scale framework to obtain candidates for sex-specific biomarkers from rsfMRI
data. We observed significant sex-specific differences across several functional domains, including in
subcortical and temporal connectivity patterns, which also significantly correlate with symptom scores in
males but not females. Interestingly, the affected functional domains have been frequently reported to be
altered in SZ and touted as having potential to serve as identifying biomarkers. Our results suggest that
sex-specific functional connectivity changes might be related to schizophrenia symptoms and underlying
causes and emphasize the importance of carefully incorporating sex in the development of
diagnostic/predictive/monitoring biomarkers. While sex and schizophrenia can be identified
straightforwardly, there has been very little work looking at sex and schizophrenia differences across
different spatial scales in resting fMRI data. The incorporation of sex as a biological variable within the
context of schizophrenia may help shed new light on the neurobiological mechanisms of schizophrenia
and in particular. Future studies should leverage these findings and incorporate sex into feature selection
and classification algorithms to identify a set of sensitive schizophrenia-related features for use in updating

nosological categories and building diagnostic and predictive models.

5. CONCLUSION

Brain dynamic functional interaction can occur at different spatial scales, which has been
underappreciated. In this work, we propose an approach that uses multiscale ICA and dFNC to study brain
function at different spatial scales. This results in a more comprehensive map of functional interactions
across the brain. The not only solves the limitation of using fixed anatomical locations but also eliminates
the need for model-order selection in ICA analysis. Therefore, we propose multiscale ICA (msICA), and
future multi-spatial scale methods should be broadly applied in future studies. Going forward, we can
further improve the proposed approach by incorporating explicit spatial dynamics and multi-temporal

scale features of functional sources. We leverage the proposed approach to study male/female common
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and unique aspects of sSFNC/dFNC in schizophrenia, which has not been investigated despite previous
reports on sex differences on the prevalence, symptoms, and responses to treatment. The majority of sex-
specific differences occur in between-model-order and associated with dFNC states, further highlighting
our proposed approach's benefit. Future studies are needed to validate our findings and evaluate the further

benefits of multiscale analysis.
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