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Abstract

The clinical outcome of COVID-19 has an extreme age, genetic and comorbidity bias that is
thought to be driven by an impaired immune response to SARS-CoV-2, the causative agent of
the disease. The unprecedented impact of COVID-19 on global health has resulted in multiple
studies generating extensive gene expression datasets in a relatively short period of time. In
order to better understand the immune dysregulation induced by SARS-CoV-2, we carried out a
meta-analysis of these transcriptomics data available in the published literature. Datasets
included both those available from SARS-CoV-2 infected cell lines in vitro and those from
patient samples. We focused our analysis on the identification of viral perturbed host functions
as captured by co-expressed gene module analysis. Transcriptomics data from lung biopsies
and nasopharyngeal samples, as opposed to those available from other clinical samples and
infected cell lines, provided key signatures on the role of the host's immune response on
COVID-19 pathogenesis. For example, severity of infection and patients’ age are linked to the
absence of stimulation of the RIG-I-like receptor signaling pathway, a known critical immediate
line of defense against RNA viral infections that triggers type-I interferon responses. In addition,
co-expression analysis of age-stratified transcriptional data provided evidence that signatures of
key immune response pathways are perturbed in older COVID-19 patients. In particular,
dysregulation of antigen-presenting components, down-regulation of cell cycle mechanisms and
signatures of hyper-enriched monocytes were strongly correlated with the age of older
individuals infected with SARS-CoV-2. Collectively, our meta-analysis highlights the ability of
transcriptomics and gene-module analysis of aggregated datasets to aid our improved
understanding of the host-specific disease mechanisms underpinning COVID-19.

Introduction

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 (severe acute respiratory
syndrome coronavirus 2), a new coronavirus evolutionarily related to two other pathogenic
betacoronaviruses that emerged in the last 20 years: SARS-CoV (referred to as SARS-CoV-1
here for clarity) and MERS-CoV (Middle East respiratory syndrome coronavirus). SARS-CoV-2,
like SARS-CoV-1, utilises ACE2 (angiotensin converting enzyme Il) for cellular entry using its
spike (S) protein (Zhou et al. 2020). The SARS-CoV-2 S-protein contains a polybasic cleavage
site and is estimated to bind ACE2 with 10-20 fold higher affinity than SARS-CoV-1 spike,
contributing to infection success, particularly in the upper respiratory tract, by making cells with
lower ACE2 expression levels more accessible (Wrapp et al. 2020). Globally, as of April 2021,
SARS-CoV-2 has caused over 3.1M recorded deaths. The majority of SARS-CoV-2 infected
individuals are asymptomatic or display relatively mild symptoms including fever, cough and
temporary anosmia (loss of the sense of smell). More severe cases can include symptoms
associated with acute respiratory distress syndrome (ARDS), circulatory and heart problems,
organ failure and death (Huang et al. 2020).


https://doi.org/10.1101/2020.12.29.424739
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424739; this version posted May 4, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

The severity of COVID-19 is highly correlated with age and certain comorbidities (Pinto et al.
2020) and has been associated with host genetics linked to the immune response (Pairo-
Castineira et al. 2020). Virulent SARS-CoV-2 infections are associated with a dysfunctional
immune response and “cytokine storm” is a particular marker of disease severity. For example,
transcriptomics of BALF (bronchoalveolar lavage fluid) and PBMC (peripheral blood
mononuclear cells) demonstrated extensive upregulation of cytokines in COVID-19 patients
(Xiong et al. 2020). Moreover, it has been shown that SARS-CoV-2 infection in vitro triggers
CcGAS-STING mediated NF-CB response and a pro-inflammatory cytokine response (Neufeldt et
al. 2020). Type | interferons (IFN) likely play a pivotal role in SARS-CoV-2 pathogenesis as
genetic mutations in the IFN system and autoantibodies to type | IFNs predispose individuals to
severe COVID-19 disease (Bastard et al. 2020, Zhang et al. 2020). Understanding the immune
and inflammatory responses to SARS-CoV-2 is, thus, crucial to deciphering the mechanisms of
viral pathogenesis.

Here we report a detailed meta-analysis of available SARS-CoV-2 transcriptomics (RNA-Seq)
datasets and focus on the relationships among groups of differentially expressed genes in order
to enable standardised comparison between studies. Transcriptomics applied to virus-infected
cells reveals how genes are regulated under specific biological conditions in the context of viral
infection. ‘Gene sets’ are groups of genes that are commonly co-expressed as they contribute to
a shared biological function, for example, a signaling pathway up-regulated by virus infection.
Gene sets are usually derived from multiple studies and their activity under different conditions,
in this case virus infection, provides a way to extract biological relationships from large disparate
transcriptomics datasets. Crucially, gene set tests enable us to analyze groups of genes that
represent biological functions as a group rather than individual differentially expressed genes
which are prone to detection and measurement biases. Gene sets therefore are particularly
helpful in meta-analysis of transcriptomics data from different sources. Competitive gene set
testing methods such as gene set enrichment analysis (GSEA) (Subramanian et al. 2005)
evaluate the statistical significance of enrichment by determining whether a set of genes are
correlated to the diseased state compared to genes in other gene sets, while self-contained
methods such as ROAST (Wu et al. 2010) evaluate whether any genes within a gene set are
differentially expressed, allowing testing for co-regulated genes.

In order to investigate transcriptional responses to SARS-CoV-2 infection in COVID-19 patients
and to compare transcriptional signatures elicited by SARS-CoV-1 and MERS-CoV, we use a
well-refined gene set established as ‘blood transcription modules’ (BTMs), defined by Li and co-
workers using large scale network integration of public data and context specific biological
information (Li et al. 2014). While biological pathway based analysis focuses primarily on chains
of interacting molecules perturbed in complex diseases such as cancer, BTMs provide high
resolution gene modules that better represent the groups of molecules activated by host
immunological responses (Li et al. 2016). Modules in BTMs are derived by gene co-expression
patterns, supported by experimental information derived from various tissues, cell-types,
interactome studies and molecular pathway information. As with canonical pathways, BTMs can
be applied to transcriptomics datasets derived from various tissues and cell lines in order to
better understand host responses triggered by infection. Higher classification of these functional
modules into groups (Kazmin et al. 2017) based on the pathways or the cell lineages can be
used to systematically capture altering responses to examine the differences in modules that
have a common biological function or regulation. We also use the biological pathway software

2


https://doi.org/10.1101/2020.12.29.424739
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424739; this version posted May 4, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Ingenuity Pathway Analysis (IPA) to compare signaling pathways among the various data sets.
To identify the co-expressed networks of genes associated with viral load and different age
groups in a large dataset of SARS-CoV-2 infected individuals (Lieberman et al. 2020), we use
the weighted gene correlation network analysis (WGCNA), a well-developed co-expression
method. By correlating groups of genes with BTMs, we assess the functional role of these
networks in infected individuals and provide systems-level evidence of the networks that
contribute to the pathology of the disease in different age groups.

Results

SARS-CoV-2 elicits signatures of adaptive immune pathways in cell lines. In order to
assess the genes associated with the transcriptional dysregulation induced by SARS-CoV-2 in
infected cell lines, we compared differential module enrichment profiles to the available SARS-
CoV-1 and MERS-CoV time-matched cell line data. We find SARS-CoV-2 has a distinct module
enrichment profile compared to SARS-CoV-1 and MERS-CoV in the different cell lines
analysed, confirming previous analysis (Blanco-Melo et al. 2020). In Calu-3 cells, SARS-CoV-2
exhibits a profound upregulation of all essential B-cell modules (M47.4, M47.3, M54, M9, M58)
at 24 hours post infection relative to SARS-CoV-1, while MERS-CoV elicits a complementary B-
cell response in Calu-3 cell lines (figure 1), similar to B-cell module enrichment by SARS-CoV-1
and MERS-CoV in MRCS5 cell lines.
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Figure 1. Plot showing -log10(p-values) of differentially enriched B cell, Inflammatory/TLR/Chemokine
and T cell modules (y-axis) for different transcriptome datasets (x-axis), see table 2. The size of the
circles corresponds to the magnitude of the -logl0(p-value), while their colour corresponds to the
direction of enrichment as indicated by the MROAST function of ROAST R package (see key).
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Figure 2. Heatmap of -logl0(p-values) of the differentially enriched modules of PBMC, whole-blood,
BALF and lung biopsy samples, up-regulation and down-regulation of modules shown in red and blue
respectively. High level annotation of each module (row) is represented by the classification assigned by
Kazmin et al. (2017) based on pathways or cell lineage each module represents.

Interestingly, while MERS-CoV exhibits a ‘strong’ upregulation of T-cell modules in Calu-3 and
MRCS5 cell lines at 24 hours post infection, both the SARS-CoV-1 and -2 demonstrate a weak T-
cell response signature in both cell lines, indicating a failure of the SARS viruses to trigger
genes associated with adaptive immune/innate T cell responses. ACE2 transduced A549 cells
and ACE2 transduced Ruxolitinib treated A549 cells show a strong enrichment of T-cell
modules, while A549 cells show a weak enrichment and NHBE cells lack significant enrichment
of these modules. Both SARS-CoV-1 and 2 elicit a significant upregulation of the TLR (Toll-like
receptors) and inflammatory signaling module (M16) in Calu-3 cells -- important in identifying
different pathogen-associated molecular patterns (PAMPSs) for the regulation of host innate
immune response -- while MERS-CoV lacks a representation of this module consistent with
MERS-CoV silencing the TLR response upon infection (Liang et al. 2020). All three
betacoronavirus types exhibit evidence of a strong chemokine response (M27.1 and M27.0) in
Calu-3 cells suggesting the activation of various cytokines to guide immune cell migration to the
infection sites to elicit an active inflammatory response. SARS-CoV-2 is thus inducing a distinct
transcriptional profile compared to both SARS-CoV-1 and MERS-CoV infected cell lines.

Regulation of distinct functional modules exhibited by different clinical samples. A
heatmap of the enrichment scores (negative log of p-values) of all dysregulated modules (figure
2) indicates that different clinical samples (table 2 and supplementary table 1) from COVID-19
patients display distinct transcriptional responses upon SARS-CoV-2 infection. BTMs have been
categorized into functional groups by Kazmin et al. (2017) based on the common pathways or
the cell lineages the genes represent. Comparison of these groups (each defined by the
presence of enriched modules) show that, analogous to the severity of the disease, gene
transcripts corresponding to the up-regulation of antigen presenting modules and dendritic cell
activation modules, which are known to trigger strong innate immune response against
respiratory infections, are upregulated in lung biopsy samples, while there is a profound down-
regulation, or no significant regulation of these modules, in BALF samples (figure 3). Strikingly,
there is an inverse correlation in the regulation status between PBMC/whole-blood and BALF
samples in cell cycle related modules and no representation of these modules in lung biopsy
samples. This is consistent with coronaviruses perturbing cell cycle mechanisms to evade
detection by the host immune system in order to facilitate viral replication (Dove et al. 2006).
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Figure 3. Plot showing -log10(p-values) of differentially enriched antigen presentation, cell cycle and DC
activation modules (y-axis) for different transcriptome datasets (x-axis), see table 2. The size of the circles
corresponds to the magnitude of the -log10(p-value), while their colour corresponds to the direction of
enrichment as indicated by the MROAST function of ROAST R package (see key).

To assess for transcriptional differences associated with age, we grouped 430 SARS-CoV-2
positive and 54 negative samples, i.e., infected versus uninfected, from the surveillance study
(referred to here as surveillance data) of Lieberman et al. (2020) into groupings reflecting the
viral load and age as follows: low (<30, 31-60 and >60), med (=30, 31-60 and >60), high (<30,
31-60 and >60). Nasopharyngeal samples of the older infected individuals compared to the age-
matched negative controls (samples from the uninfected individuals) exhibited a strong
downregulation of cell cycle related modules in samples with either medium or low viral load
(possibly relating to the later stages of infection) showing host physiology modification by the
virus. Antigen-presenting dendritic cell (DC) related modules are upregulated in younger adults

7


https://doi.org/10.1101/2020.12.29.424739
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424739; this version posted May 4, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

with high viral load (figure 4), correlating with the upregulation of dendritic cell activated T-cell
modules (figure 5). Absence of the dysregulation of DC modules in older and younger
individuals with low and medium viral load (figure 4) correlates with downregulation of some of
the T-cell modules in these individuals (figure 5). It is important to note that irrespective of age,
there is a profound downregulation of B-cell modules in all the samples with low viral load, while
the crucial B cell development/activation module (M58) is downregulated only in older patients.
Studies have shown that a subset of COVID-19 patients fail to develop long-lasting antibodies
(Tay et al. 2020, Wang et al. 2020).
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Figure 4. Plot showing -log10(p-values) of differentially enriched antigen presentation, cell cycle and DC
activation modules (y-axis) of the surveillance data (Lieberman et al. 2020) stratified by age and viral
load. The size of the circles corresponds to the magnitude of the -log10(p-value), while their colour
corresponds to the direction of enrichment as indicated by the MROAST function of ROAST R package
(see key).
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Figure 5. Plot showing -log10(p-values) of differentially enriched B cell, inflammatory/TLR/Chemokine
and T cell modules (y-axis) of the surveillance data (Lieberman et al. 2020) stratified by age and viral
load. The size of the circles corresponds to the magnitude of the -log10(p-value), while their colour
corresponds to the direction of enrichment as indicated by the MROAST function of ROAST R package
(see key).

With respect to inflammatory, TLR and chemokine modules, lung samples have a
representation of chemokine clusters (M27.0 and M27.1), demonstrating an inflammatory
response by the host system that is consistent with other studies (Huang et al. 2020, Zhao
2020, Mehta et al. 2020) while these modules are weakly enriched in BALF/whole-blood and
completely absent in PBMC samples (figure 1). Heatmaps of log transformed scaled expression
of the differentially regulated member genes of inflammatory, TLR and chemokine modules for
Lung biopsy (and cell line) samples and PBMC-BALF samples are shown in supplementary
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figure 1 and 2, respectively. These data indicate there is a strong upregulation of inflammatory
genes in severely diseased COVID-19 patients.
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Figure 6. Heatmap of negative log p-values of the differentially enriched modules of all the samples used
in this meta-analysis study. High level annotation of each module (row) is represented by the
classification assigned by Kazmin et al. (2017) based on pathways or cell lineage each module
represents.

The Calu-3 cell line resembles the in vivo host transcriptional response. It is important to
identify cell lines that resemble the host response upon infection. Visualization of log
transformed scaled expression of some of the differentially expressed genes of the lung biopsy
samples of COVID-19 patients and cell lines infected by SARS-CoV-2 (supplementary figure 1)
demonstrates that Calu-3, an epithelial human lung cancer cell line, more accurately resembles
the host immune response to SARS-CoV-2 infection than other cell lines such as A549 and
NHBE. Correlation analysis (supplementary figure 3) of log transformed expression ratios of the
up-regulated genes (data from supplementary tables S1 and S4 of Blanco-Melo et al. 2020) and
median values of the modules (supplementary figure 4) performed using corrplot R package
(Wei et al. 2017) support this observation. Comparison of the enriched modules of various cell
lines and clinical samples show that Calu-3 closely mirrors the host transcriptional response,
i.e., similar to the clinical samples (figure 6) indicating this cell line’s greater suitability for SARS-
CoV-2 experimental studies.

Delayed/altered immune response of COVID-19 patients. Differences in the transcriptional
immune response of SARS-CoV-2 patient derived samples provide insights into how the virus
evades host immune responses. Comparison of the significantly enriched modules of the
interferon and antiviral signaling group indicates a lack of type | interferon response (M127) both
in PBMC samples, as previously reported (Hadjadj et al. 2020), and in BALF samples. Lung
samples (and cell lines infected in vitro with any of three coronaviruses analysed here) and
whole-blood samples have a clear representation of this module (figure 7) and other modules
(M111.2, M111.0, M150, M13, M75) of the interferon and antiviral signaling group
demonstrating detection of a strong interferon response in patients with severe disease and
infected cell lines. Visualization of the scaled expression of the differentially expressed member
genes of type | interferon response module of SARS-CoV-2 samples (supplementary figure 5)
shows that except for TAP1 gene (transporter associated with antigen processing 1, the gene-
product of which is associated with antigen presentation by MHC class 1), all of the member
genes are strongly upregulated in lung biopsy samples. Several viruses are known to evade
immune system detection by expressing proteins that have a direct effect on the expression of
TAP1, hampering detection of infected cells (Zeidler et al. 1997). Strikingly, irrespective of viral
load, younger individuals (<=30 group) have upregulated enrichment of type | interferon
response (M127) module upon SARS-CoV-2 infection (figure 8), while the other groups (31-60
and >60 with medium and high viral load, 31-60 with low viral load) lack differential enrichment
of this module, confirming an age-associated immune response to SARS-CoV-2 infection.

Silencing of RIG-I pathway by SARS-CoV-2 to evade detection by the host immune
system. The RIG-I-like receptor signaling (M68) module includes genes that influence antiviral
immunity by playing a key role in pathogen sensing. Interestingly, these pathways are not
enriched in any of the SARS-CoV-2 patient samples (or infected cell lines) (figure 7). In addition,
in lung biopsy samples, the interferon alpha response | module (M158.0 -- genes unique to this
module are COL8Al, FGF5, IMPG2, ITGB4, LAMC2, MMP12, SFN, ST14, TNR) is
downregulated, while the interferon alpha response Il module (M158.1 -- genes unique to this
module are FAM123A, IFNA2, IFNA21, IFNA5, IFNA8, PRL) is upregulated. Irrespective of the
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viral load (low, med, high) and the age groups (<=30, 31-60 and >60), none of the samples in
the surveillance data (see supplementary table 1) have the M68, M158.0 or M158.1 modules
enriched, demonstrating a lack of the interferon alpha response and inactivation/silencing of
RIG-I-like receptor signaling in SARS-CoV-2 infected individuals. RIG-I-like receptors (RLRS)
are expressed in various tissues and coordinate the induction of type | interferons (IFNs) (Loo et
al. 2011) upon infection and act as the first line of defense against viral pathogens. TRIM25, an
IFN inducible gene is known to mediate ubiquitylation of RIG-I (also known as DDX58), forming
a complex that promotes interferon induction (Liu et al. 2016; Ozato et al. 2008; Gack et al.
2007). Visualization of the log transformed fold changes of the member genes of M158.0,
M158.1 and M68 modules along with ZAP (also known as ZC3HAV1) (supplementary figure 6)
in all SARS-CoV-2 samples shows that as a consequence of infection there is a profound
upregulation of interferon alpha genes, with no change in the expression of TRIM25, and a
striking downregulation of SFN (also known as stratifin, 14-3-3¢) in the lung biopsy samples.
SFN belonging to M158.0 (interferon alpha response | module) is known to be a binding factor
of RIG-1 and is essential for the stable interaction between TRIM25 and RIG-I, promoting
ubiquitylation and thereby facilitating interferon induction (Liu et al. 2012). Ingenuity pathway
analysis of the differentially expressed genes confirms there is a distinct immune pathway
regulation profile for each of the SARS-CoV-2 clinical samples (supplementary figure 7) and no
enrichment of the RIG-I signaling pathway in any of the patient samples.
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Figure 7. Plot showing -log10(p-values) of differentially enriched interferon and antiviral sensing modules

(y-axis), colour of the circles corresponds to the direction of enrichment as indicated by the MROAST
function of ROAST R package.
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Figure 8. Plot showing -log10(p-values) of differentially enriched interferon and antiviral sensing modules
(y-axis) of the surveillance data (Lieberman et al. 2020) stratified by age and viral load, colour of the
circles corresponds to the direction of enrichment as indicated by the MROAST function of ROAST R
package.

Gene co-expression analysis by WGCNA. To elucidate transcriptional response of the host in
an unbiased way, weighted gene co-expression network analysis (WGCNA, see methods) was
used to construct co-expression networks focusing on the correlated gene expression of the
batch corrected surveillance data from Lieberman et al. (2020). WGCNA extracts modules of
interest by identifying correlation-based interaction between genes and associates module
‘eigengenes’ with meta-data information such as gender and viral load, where an eigengene is a
representative summary of the expression profile of each module from the first principal
component of the standardized expression profile. WGCNA was separately applied to groups of
samples belonging to the same age groups and infection status (Table 1).

Table 1. Table showing infection status, age group, number of samples in each age group, number of
identified modules with the range of numbers of genes in each group for the surveillance data from
Leiberman et al. (2020)

Sample (Infection Number of modules

status and age

Number of samples Range (Min - Max)

group)
neg <=30 16 36 59 -474
neg 31-60 24 9 116 - 514
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neg >60 14 29 59 - 533
pos <=30 52 3 432 - 653
pos 31-60 194 8 95 - 1697

pos >60 167 3 231 - 3015

Co-expression analyses identified three modules in SARS-CoV-2 positive individuals aged
<=30. Interestingly, none of these three modules are correlated with viral load or gender,
suggestive of a relatively measured host immune response in younger individuals (figure 9,
functional annotation of modules by GSEA explained later in this paragraph). Eight modules are
identified in SARS-CoV-2 positive individuals aged between 31-60: two of which are strongly
positively correlated with high viral load (MEred - r:0.42;p:2e-09 and MEblue - r:0.34;p:1e-06)
and are strongly negatively correlated with low viral load (MEred - r:-0.3;p:2e-05 and MEblue -
r:-0.26;p:3e-04), while three modules (two of which are positively correlated with high viral load
(MEbrown - r:0.27;p:5e-04 and MEturquoise - r:0.27;p:4e-04) and two are negatively correlated
with low viral load (MEblue - r:-0.27;p:4e-04 and MEturquoise - r:-0.34;p:6e-06) are identified in
infected individuals aged >60. Gene set enrichment analysis with BTMs as reference modules
performed with GeneOverlap package in R was used to identify the functional role of each
identified module in all the groups. Within each age group, multiple assignments to the same
reference module are aggregated by taking the maximum negative log of p-value from
GeneOverlap package and significant enrichments grouped by their annotations are shown in
figure 10.

Among the three age groups (<=30, 31-60 and >60), relative to their age matched control
groups, older individuals (>60) have the ‘strongest’ host response upon infection, i.e., the
highest levels of perturbation/inflammation - either strong up-regulation or down-regulation of
the enriched immunity-associated modules. Cell cycle related modules in older SARS-CoV-2
(>60) infected individuals with lower viral load appear to be disrupted (figure 9), possibly due to
the cell cycle arrest mechanisms, which coronaviruses are known to activate for promoting viral
replication (Dove et al. 2006). Another striking class of modules hyper-enriched in the older
individuals (>60) are the monocyte related modules (figure 10) that contribute both to the innate
and adaptive immunity of the host. We speculate that this enrichment, again possibly associated
with the aging process, could be contributing to the dysregulated immune response in older
patients. Due to the lack of recorded disease characteristics for these surveillance samples
(Lieberman et al. 2020), we are unfortunately unable to further associate the enrichment of
these pathways with disease outcomes.
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Figure 9. Circos plot showing enrichment of modules in the surveillance data (Lieberman et al. 2020)
stratified by age groups (<=30, 31-60 and >60, denoted by outer black lines), a heatmap (blue scale)
representing the negative log of p-values of enriched modules. Concordant modules (see methods)
shared between age groups are linked by green ribbons and discordant modules by red ribbons.
Significant (p<0.05) positively (r >= 0.3) and negatively (r <= -0.3) correlated modules with viral load are

shown in purple and grey links, respectively.
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Figure 10. Heatmap of negative log of p-values less than 1075 of the WGCNA identified modules,
functionally characterized by GeneOverlap package using BTMs as reference modules. High level
annotation of each module (row) is represented by the classification assigned by Kazmin et al. 2017
based on pathways or cell lineage each module represents.

We don't detect any of B cell modules to be significantly enriched in the three age groups,
possibly corresponding to the evasion mechanisms the virus uses in order to escape host
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mechanisms. As expected, inflammatory, TLR and chemokine related modules are hyper-
enriched in older patients (>60) in comparison to the samples from the 31-60 age group.
Interestingly some of the modules are strongly enriched even in the negative older individuals
(>60), possibly correlated to aging or underlying disease responses. It would be potentially
informative to analyse how the enrichment of these modules accounts for the clinical
characteristics of the disease and association with comorbidities.
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Figure 11. Dotplot of p-values of concordant and discordantly enriched modules identified by the tmod
package in R, based on the disco score of the differential co-expressed member genes of WGCNA
modules.
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Performing enrichment analysis with tmod (see methods) confirms most of the enriched
modules are consistent in the age groups 31-60 and >60. Discordant modules between these
age groups include antigen presentation and dendritic cell related modules, leading to
differential enrichment of T cell activation and immune activation related modules. In line with
the results of WGCNA analysis, tmod analysis shows that the cell cycle and transcription related
modules are different between the age groups 31-60 and >60. Type | interferon response and
other antiviral response modules are concordant among the three groups, while some of the
samples in the 31-60 group have these modules differentially enriched in comparison to the
<=30 group and >60 groups (figure 11). These observations highlight the importance of age as
a determining factor of altering viral inducible immune activation pathway mechanisms that lead
to immune dysregulation in infected older individuals.
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Figure 12. Dotplot of -logl0(p-values) of dysregulated pathways identified by IPA, based on the
differential co-expressed member genes of WGCNA modules, colour corresponds to the direction of
enrichment as inferred by IPA z-score.

To characterize immune response differences between age groups based on the viral load, we
extracted differential expression information of the member genes of identified WGCNA
modules from the results of limma-voom workflow (see methods section) and used IPA to
identify dysregulated pathways and their activation statuses. IPA infers activation status of
pathways by calculating z-scores based on the differential regulation of genes and the direction
of the effect associated with edges of experimentally observed molecular networks. Irrespective
of the viral load, infected individuals in the age groups 31-60 and >60 have a decreased activity
of oxidative phosphorylation pathway (figure 12) and altered regulation of mitochondrial
dysfunction (supplementary figure 8) as inferred by IPA. Oxidative phosphorylation (OxPhos), a
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functional unit of mitochondria plays an important role in ATP (adenosine 5 -triphosphate)
synthesis and apoptosis. Any reduction in OxPhos activity leads to dysregulated mitochondrial
ROS (reactive oxygen species) signaling, reduced cellular ATP and trigger ROS-mediated cell
damages (Fekete et al. 2018; Yoshizumi et al. 2017). Recovery of OxPhos activity re-
establishes RIG-I-like receptor (RLR) mediated signal transduction counteracting impaired
induction of interferons in viral infected cells (Yoshizumi et al. 2017), indicating OxPhos activity
could be an important requirement for RLR-mediated signaling transduction. We hypothesize
that SARS-CoV-2 suppresses RIG-I mediated antiviral innate immunity by impairing oxidative
phosphorylation activity of the host.

Discussion

Understanding mechanistically how SARS-CoV-2 perturbs and evades the immune system will
provide much needed insights into viral escape mechanisms, immunopathology and directions
for the development of novel therapeutics. In this study, we use a meta-analysis approach to
compare enriched gene sets/functional modules in transcriptomics datasets, combined with a
network approach, to identify distinct transcriptional profile signatures exhibited by SARS-CoV-2
infected patient samples and cell lines (figure 13). For this analysis, we used a well-defined
functional blood transcription module set that integrates data obtained from more than 500
transcriptomics studies and context specific biological information (Li et al. 2014). These
modules have more discriminative power in identifying context-specific gene modules than
results arising from individual experiments, and are being increasingly used as a data-rich
context in transcriptomics studies. We also used Ingenuity pathway analysis software to identify
pathways that are dysregulated upon SARS-CoV-2 infection in patient and cell line samples.

Contrary to expectation and confirming Blanco-Melo et al.’s (2020) results, our comparison of
SARS-CoV-2 infected cell lines and patient derived samples collected with published SARS-
CoV-1 and MERS-CoV datasets, showed that host responses to SARS-CoV-2 are less similar
to those against SARS-CoV-1 than the latter are to responses to MERS-CoV (figure 13). SARS-
CoV-1 and MERS-CoV elicit differential regulation of genes responsible for important immune
functions such as adaptive immunity, cell cycle damage, inflammation and innate immunity,
while in COVID-19 patients and SARS-CoV-2 infected cell lines, some of these crucial signaling
pathways are being repressed (Blanco-Melo et al. 2020).
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Figure 13. Circos plot showing enrichment of modules in SARS-CoV-2 clinical samples and SARS-CoV-
2, SARS-CoV-1 and MERS-CoV infected cell lines. Each circle represents the negative log of p-values of
enriched modules in each sample, coloured by virus (see ‘samples’ legend at 11 o’clock). The 3 outer
circles represent the direction of enrichment of modules of the clinical samples of SARS-CoV-2 (PBMC,
BALF and lung samples) as predicted by the MROAST function of ROAST R package; a circle indicates

down-regulation, while an arrow indicates up-regulation of the module.

The gene-module analysis indicates SARS-CoV-2 potentially evades innate immunity by not
triggering RIG-I signaling pathway, thereby delaying the type-l interferon response. The RIG-I
signaling pathway is known to be interfered with by the nucleocapsid protein in both SARS-CoV-
1 and MERS-CoV, through interaction of N protein with TRIM25 thereby inhibiting TRIM25-
mediated RIG-I ubiquitination and suppressing type | IFN production (Hu et al. 2017). In SARS-
CoV-1, increased infection dose has been shown to enhance suppression of RIG-I signaling (Hu
et al. 2017) and delayed ISG expression combined with immune dysregulation has been
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observed (Channappanavar et al. 2016) to be a contributor to disease severity in mice,
indicating the role of innate immunity in control of infection and how in older individuals can lead
to severe disease. Unlike SARS-CoV-1, avoidance/delaying of type-l interferon response in
SARS-CoV-2 infection is probably linked to CpG depletion and ZAP-TRIM25 evasion (Li et al.
2017). Zinc finger antiviral protein (ZAP, also known as ZC3HAV1) acts against RNA viruses by
detecting viral RNAs that have a higher CpG dinucleotide frequencies than the host mRNAs.
TRIM25 interacts with ZAP through its SPRY domain and enhances its ability to inhibit
translation of the viral genomes. The shorter isoform of ZAP, ZAPS associates with RIG-I and
functions as a stimulator of interferon responses during viral infections (Hayakawa et al. 2011).
Detection of the viral genes by ZAP, which in turn depends on the CpG frequencies of the viral
MRNA, is crucial for the activation of RIG-I signaling pathway and induction of interferon alpha
responses. We are unable to determine from the available data if the avoidance of RIG-I
signaling is a determinant of disease severity in COVID-19 patients. Possibly the infection dose
accounts for severity of illness: older/co-morbid patients having their interferon alpha pathway
evaded for longer due to (relatively) lower virus dose, with younger-severe cases due to a
higher dose-effect. A recent study has demonstrated that the nonstructural protein 1 (NSP1) of
SARS-CoV-2 blocks RIG-I dependent immune responses (Thoms et al. 2020), while another
showed that ZAP restricts SARS-CoV-2 and its knock down in Calu-3 cells enhanced viral
replication particularly upon treatment with IFN-U or IFN-O (Nchioua et al. 2020).

The susceptibility of SARS-CoV-2 to IFN-I has been tested by pretreating Vero E6 cells with
IFN-J (Lokugamage et al. 2020) resulting in a significant reduction in viral replication and
reduced nucleocapsid protein production of SARS-CoV-2, while SARS-CoV-1 robustly
expressed viral proteins in IFN-0J treated cells after 48 hours. This sensitivity to interferon
indicates immunotherapy that activates the RIG-I pathway may lead to restoration of early type |
interferon response in patients, counteracting SARS-CoV-2 infection. A recent PRRs (pattern
recognition receptor) stimulating study demonstrates the pathophysiological role of type llI
interferons in COVID-19 patients (Broggi et al. 2020). Collectively these results indicate
immunopathology due to SARS-CoV-2 infection predominant in older people is driven by
immune dysregulation, i.e., an inability to control disease. Regulation of interferon alpha
response despite being a moderator of SARS-CoV-2 infection in cells will probably not work in
older people due to immune dysregulation. A recent retrospective study shows administration of
IFN in later stages of the disease to be associated with increased mortality and delayed
recovery in COVID-19 patients (Wang et al. 2020), suggesting the timing of the therapy to be
crucial for favorable clinical outcomes. Another interesting study compared type | interferon
response in mild vs severe patients using single-cell transcriptomics data to determine its role in
aggravating inflammation in COVID-19 patients (Lee et al. 2020).

It has become clear that the pathology of SARS-CoV-2 infection depends on many factors such
as gender, age, host genetics, virus properties and comorbidities, with increasing age probably
the most important determinant of the disease outcome in COVID-19 patients, with those 80
years or older having more than 20-fold risk of death than those aged between 50 to 59
(Williamson et al. 2020). Age-related changes in the host innate immune system such as
declining activities of monocytes, macrophages and dendritic cells weaken the ability to respond
to infections or gain protective immunity from vaccination and this immunosenescence impacts
the adaptive immune response of the host (Panda et al. 2009). During inflammation associated
with infection or not, monocytes are recruited through blood circulation, differentiate into antigen
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presenting cells and are then involved in resolving inflammation (Kratofil et al. 2017). Reduced
expression of certain chemokine receptors like CX3CR1, due to aging, affects the ability of
monocytes to migrate to the inflammatory sites to clear up inflammation. Thus an increased
number of monocytes in older individuals is not necessarily positively correlated with increased
functionality (Seidler et al. 2010). Our results demonstrate that the hyper-enrichment of
monocyte related modules, not only in SARS-CoV-2 infected older individuals but also in older
negative controls may play an important role in immunopathology in the older individuals,
possibly correlating with clinical outcomes (Pence 2020). A recent study (Giamarellos-
Bourboulis et al. 2020) observed a sudden decrease in monocyte expression preceding
respiratory failure in COVID-19 patients.

SARS-CoV-2 RNA transcripts are enriched in the host mitochondria and nucleolus and this
localization is predicted to induce mitochondrial dysfunction, which is likely to increase viral
replication without being detected by the host immune system (Singh et al. 2020). SARS-CoV-1
encodes an ORF, ORF9b, known to influence innate immunity by localizing to host mitochondria
and promoting viral replication (Shi et al. 2014). Several viruses modulate mitochondria-
mediated antiviral immunity and possess strategies either to hijack host mitochondrial proteins
or to mimic them (Anand and Tikoo 2013). In this study, we show that SARS-CoV-2 infected
individuals irrespective of age have their mitochondrial mechanisms altered by the virus leading
to mitochondrial dysfunction. As oxidative phosphorylation generates energy important for viral
replication, selective regulation of this activity by the viruses results in sustained viral replication
(Cao et al. 2017) during host shutoff induced by viral infections. Early after infection, hepatitis C
virus limits oxidative phosphorylation activity to efficiently allow for viral replication (Gerresheim
et al. 2019) and several other viruses suppress immune responses by reprogramming OxPhos
activity and other mitochondrial functions (Moreno-Altamirano et al. 2019), thereby manipulating
type | interferon response of the host. RIG-1 mediated antiviral responses are known to rely on
oxidative phosphorylation activity to produce type | interferons (Yoshizumi et al. 2017; Fekete et
al. 2018); mitochondrial DNA deficiency with abnormal OxPhos activity results in impairment of
RLR-mediated antiviral signaling enhancing susceptibility of the host to viral infection
(Yoshizumi et al. 2017). SARS-CoV-2 seems to down-regulate OxPhos activity that is crucial for
early detection of the virus by the host innate immune system mechanisms, thus accelerating
viral replication inside the host.

In conclusion, meta-analysis of SARS-CoV-2 transcriptomic data sets coupled with focused
gene set and network analysis provides valuable insights into the disease characteristics of
COVID-19. Our analysis indicates SARS-CoV-2 establishes infection by delaying/avoidance of
type-I interferon response by suppressing OxPhos dependent RIG-I signaling pathway, possibly
by avoiding TRIM25-ZAP detection by the immune system of the host. Immunosenescence in
older individuals exhibited by negative controls in the surveillance data reveals that the host
factors such as age related immune dysregulation and co-morbidities play a crucial role in
determining severity and outcome of the disease. Collectively these results support the use of
gene-module methods to compare transcriptomes of virus-infected samples from different
sources.

Methods
The SARS-CoV-2 PBMC-BALF transcriptome patient dataset (Xiong et al. 2020) was
downloaded from the Genome Sequence Archive (https://bigd.big.ac.cn/) using the accession
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number CRA002390. The paired end reads were mapped onto the human hg38 genome using
STAR aligner (Dobin et al. 2013). The resulting mapped reads were quantified using the
featureCounts program (Liao et al. 2014) in the Subread R package (Liao et al. 2019). SARS-
CoV-2 whole-blood data (Thair et al. 2021), SARS-CoV-2 cell line and lung biopsy data (Blanco-
Melo et al. 2020; Wyler et al. 2020), SARS-CoV-1 (Josset et al. 2013; Sims et al. 2013; Frieman
et al. 2014) and MERS-CoV (Josset et al. 2013; Frieman et al. 2013) were downloaded from
NCBI GEO using the following accession numbers: GSE152641, GSE147507, GSE45042,
GSE33267, GSE56192, GSE148729. Where available, the mapped read count data was
downloaded for each RNA-seq dataset and analysed. If mapped data was unavailable, the
sequencing data was downloaded and processed as described above. Microarray data of
SARS-CoV-1 and the MERS-CoV were processed using the GEOquery package (Davis and
Meltzer 2007), implemented in the R statistical language. Differential expression and BTM
enrichment analysis of all the datasets were performed with limma workflow (Ritchie et al.
2015), using a design model specifying sample types, time points wherever applicable, and
infection status as covariates. As an additional preprocessing step, RNA-seq counts were
scaled and normalized by the TMM (trimmed mean of M-values) method of edgeR package
(Robinson et al. 2010) and log transformed using voom (Law et al. 2014), followed by
differential expression analysis using the limma workflow.

Genes with an absolute log transformed expression ratio of =1, and with a Benjamini and
Hochberg (BH) (Benjamini and Hochberg 1995) adjusted p-value of <0.01, were considered
differentially expressed. The differential gene lists containing gene identifiers, log transformed
fold change and their corresponding false discovery rates (FDR) were analysed with the
Ingenuity Pathway Analysis (IPA) software
(https://www.giagenbioinformatics.com/products/ingenuity-pathway-analysis) and differentially
regulated canonical pathways identified. Gene set testing using downloaded BTMs were
performed using the MROAST function of ROAST R package (Wu et al. 2010) with the same
design model described above. For both the IPA and BTM enrichment analysis, p-value
correction for multiple testing was using the BH method; those with an FDR of 5% were
considered differentially regulated. Dysregulated canonical pathways and enriched BTMs were
compared across all SARS-CoV-2 datasets, to differentiate host immune response in different
samples upon infection, as well as to elucidate differences between patient samples and cell
line responses. By comparing SARS-CoV-2 module enrichment with SARS-CoV-1 and MERS-
CoV, differences in the overall response exhibited by these viruses in cell lines and distinct
responses of the SARS-CoV-2 were identified.

Mapped read counts from a transcriptomic dataset of nasopharyngeal swabs comprising 430

SARS-CoV-2 positive and 54 negative samples (Lieberman et al. 2020), downloaded from NCBI
GEO using the accession number GSE152075, were analyzed to understand the differences
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associated with age and viral load in SARS-CoV-2 infected individuals. We used the
variancePartition package (Hoffman et al. 2016) in R to compute the fraction of variance
explained by known biological and technical covariates such as sequencing batch and gender.
Violin plots demonstrating known sources of variation in the data before and after correction are
depicted in supplementary figure 9, showing the major technical driver of variation to be
sequencing batch and biological variation to be viral load. We used the voom function in the
limma R package to correct for batch and gender and retained the effect of viral load to stratify
data.

Co-expression networks were constructed using the weighted gene correlation network analysis
(Langfelder et al. 2008) in R. Based on the hierarchical clustering of the normalized expression
of the genes, correlated networks of genes were identified among different age groups using a
dynamic cuttree algorithm. The minimum module size was set to 50 and correlation of module
eigengenes with viral load computed using Pearson correlation analysis. To determine the
functional roles of the constructed WGCNA modules, the Fisher exact test was used,
implemented in the GeneOverlap package (Shen 2020), using BTMs as reference modules and
enriched modules across age groups were compared. Concordance and discordance of module
enrichment across age groups were determined by calculating the disco.score of the differential
co-expressed member genes of WGCNA modules using the disco package (Domaszewska et
al. 2017) in R. For each gene-pair, the degree of change in gene expression (log-fold change),
statistical significance of the differential expression (p-values) and direction of differential
expression are used to calculate the disco.score. Gene set enrichment analysis on decreasing
and increasing ordered lists of genes based on the disco.score were used to identify concordant
and discordant modules, respectively, across each pairwise age groups using the tmod package
(Weiner et al. 2016) in R against the reference modules.

Table 2. Datasets used in the manuscript and images. Source and reference information is shown. More
detailed information about the datasets can be found in supplementary table 1.

Sample Virus Reference
PBMC SARS-CoV-2 Xiong et al. 2020
Whole-Blood SARS-CoV-2 Thair et al. 2021
BALF SARS-CoV-2 Xiong et al. 2020
Lung Biopsy SARS-CoV-2 Blanco-Melo et al. 2020
a. Blanco-Melo et al. 2020
a. SARS-Cov-2 b. Josset et al. 2013
Calu-3 b. SARS-CoV )
¢ MERS-CoV Sims et al. 2013
' c. Jossetetal. 2013
A549 SARS-CoV-2 Blanco-Melo et al. 2020
A549-ACE2 SARS-CoV-2 Blanco-Melo et al. 2020
AS49-ACE2- SARS-CoV-2 Blanco-Melo et al. 2020
Ruxolitnib
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NHBE SARS-CoV-2 Blanco-Melo et al. 2020
a.SARS-CoV ,
MRC5 b MERS-CoV Frieman et al. 2014
Surveillance data SARS-CoV-2 Lieberman et al. 2020
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Supplementary table 1. Datasets and abbreviations used in the manuscript and images. Data identifiers,

their source and reference information is shown.
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Supplementary figure 1. Heatmap of the scaled expression values of the member genes of the modules
belonging to the Inflammatory/TLR/Chemokine group of Lung biopsy and cell line samples, generated

using ComplexHeatmap (Gu et al. 2016).
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Supplementary figure 2. Heatmap of the scaled expression values of the member genes of the modules
belonging to the Inflammatory/TLR/Chemokine group of PBMC-BALF samples, generated using

ComplexHeatmap (Gu et al. 2016).
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Supplementary figure 3. Correlation plot of data from Blanco-Melo et al. 2020, showing significant
correlation between Lung biopsy and SARS-CoV-2 infected Calu-3 samples.
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Supplementary figure 4. Correlation plot of median values derived from log transformed expression
ratios (Blanco-Melo et al. 2020) of the member genes of the enriched modules, showing significant
correlation between Lung biopsy and SARS-CoV-2 infected Calu-3 samples.
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Supplementary figure 5. Heatmap of the scaled expression values of the member genes of the type |
interferon module (M127) of lung biopsy and cell line samples, generated using ComplexHeatmap (Gu et

al. 2016).
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Supplementary figure 6. (A) Log transformed fold changes of the member genes of type | interferon
response module (M127). (B) Log transformed fold changes of the member genes of interferon alpha
response | (M158.0), interferon alpha response Il (M158.1) and RIG-I like receptor signaling pathway
(M68) and ZAP (ZC3HAV1) of SARS-CoV-2 clinical samples and cell lines.
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Supplementary figure 7. Heatmap showing negative log of p-values of differentially regulated immune
response pathways in SARS-CoV-2 infected cell lines and clinical samples, as identified by IPA.
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Supplementary figure 8. Heatmap showing negative log of p-values of differentially regulated pathways
in the surveillance data stratified by viral load and age as identified by IPA.
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Supplementary figure 9. Violin plots
demonstrating known sources of biological and technical variations in the surveillance data before and
after batch correction inferred by variancePartition package in R.
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