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ABSTRACT

T-cells play an essential role in the adaptive immune system by seeking out, binding and
destroying foreign antigens presented on the cell surface of diseased cells. An improved
understanding of T-cell immunity will greatly aid in the development of new cancer
immunotherapies and vaccines for life threatening pathogens. Central to the design of such
targeted therapies are computational methods to predict non-native epitopes to elicita T cell
response, however, we currently lack accurate immunogenicity inference methods. Another
challenge is the ability to accurately simulate immunogenic peptides for specific human
leukocyte antigen (HLA) alleles, for both synthetic biological applications and to augment real
training datasets. Here, we proposed a beta-binomial distribution approach to derive epitope
immunogenic potential from sequence alone. We conducted systematic benchmarking of five
traditional machine learning (ElasticNet, KNN, SVM, Random Forest, AdaBoost) and three deep
learning models (CNN, ResNet, GNN) using three independent prior validated immunogenic
peptide collections (dengue virus, cancer neoantigen and SARS-Cov-2). We chose the CNN
model as the best prediction model based on its adaptivity for small and large datasets, and
performance relative to existing methods. In addition to outperforming two highly used
immunogenicity prediction algorithms, DeepHLApan and IEDB, Deeplmmuno-CNN further
correctly predicts which residues are most important for T cell antigen recognition. Our
independent generative adversarial network (GAN) approach, Deeplmmuno-GAN, was further
able to accurately simulate immunogenic peptides with physiochemical properties and
immunogenicity predictions similar to that of real antigens. We provide Deeplmmuno-CNN as
source code and an easy-to-use web interface.

INTRODUCTION

Immunotherapy has emerged as a promising strategy to combat cancer by “reprogramming” a
patient’'s own immune system. Effective targeted immunotherapies require accurately predicting
which cancer-specific neo-epitopes are most likely to elicit an immune response. Similar
strategies are currently being designed to target antigens commonly produced by serious
pathogens, such as the SARS-Cov-2 (COVID-19) virus [1]. Human leukocyte antigens (HLAS)
are a polymorphic class of proteins on the cell surface of T cells that recognize foreign antigens
presented by another cell. The process of antigen recognition is the cornerstone of the adaptive
immune system. HLA proteins are encoded by the Major Histocompatibility Complex (MHC)
genes in humans. Predicting the immunogenicity of MHC-I bound epitopes is crucial for
understanding the molecular rules governing T cell directed adaptive immunity and creating
precision cancer or pathogen targeting vaccines. Cellular antigen recognition is governed by a
series of carefully orchestrated molecular interactions between cell-surface-presented antigen
and T cells of the immune system. MHC-I proteins are responsible for presentation of short
epitopes on the cell surface and mediating interactions with CD8+ T cell receptors (TCR). An
immunogenic peptide is capable of binding with a cognate MHC molecule, resulting in the
exposure of its non-self portion. The exposure of “foreign” signals trigger immunoreceptor
tyrosine-based activation motifs (ITAMs) on the T cell to be phosphorated and activate an
immune response [2]. The process ultimately results in targeted cell death of the antigen
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expression cell by CD8 T cell. Hence, the identification of immunogenic epitopes that can trigger
T cell responses is central to developing new cancer immunotherapies and vaccines. Because
thousands of potential disease-associated antigens can be presented in innate or foreign cells
[3], it is necessary to prioritize which candidates are most likely to induce T cell response prior
to experimental validation.

To reduce the number of epitopes to be chosen, in silico methods have been developed
to predict antigen immunogenicity. POPI [4] was developed as the first automated
computational immunogenicity prediction tool. POPI used a selected subset of physicochemical
features identified by a bi-objective algorithm for support vector machine (SVM) based
classification. An updated version POPISK [5] further considers MHC binding properties to
improve its prediction ability. PAAQD [6] was later developed to consider amino acid pairwise
contact potential and quantum topological molecular similarity (QTMS) for feature selection.
Subsequently, a machine learning-based immunogenicity predictor NeoPepsee [7] was
developed that integrated 14 independent features to infer peptide immunogenicity. These initial
methods paved the way for more advanced algorithms, however, the applicability of such
methods have historically been challenging due to small training datasets and limited
consideration of HLA alleles. A significant advance in the field came with the introduction of the
immune epitope database (IEDB) and associated predictive immunogenicity tools [8]. This
invaluable resource continues to systematically characterize the biochemical properties of over
30,000 MHCI-bound immunogenic epitopes. IEDB further includes a suite of algorithms to
predict binding affinity and immunogenicity, including a position-weighted calculated schema by
considering kullback-leibler (KL) divergence and amino acid preference (default method). More
recently, algorithms with improved reported accuracy have been described, including a Random
Forest based approach called INeo-Epp [9] which uses a customized immunogenic score and
the recurrent neural network-based deep learning approach DeepHLApan [10]. While promising,
a potential limitation of these these approaches is that the prediction of immunogenic epitopes is
treated as a binary classification problem using predefined hard cutoffs, in which each peptide-
MHC pair will be considered immunogenic or non-immunogenic, even though the
immunogenicity of a certain peptide-MHC will vary substantially depending on the subject’s
immune profile and TCR repertoire [2]. Further, while DeepHLApan [10] applies a well-
rationaled deep learning approach, its encoding of amino-acid sequence does not incorporate
physicochemical or other amino-acid parameters (one-hot encoding). As a result, the outputs
from these methods might not fully reflect the ability of the peptide-MHC to trigger a T cell
response.

A secondary, but important challenge in the field of immunogenicity prediction, is to learn
the rules that govern which peptides are immunogenic and why. Understanding these rules,
could be used to develop improved prediction models or produce large synthetic datasets for
training more accurate predictive models. Deep generative models [11] are a newly-emerging
area in artificial intelligence (Al) that can be applied to diverse research problems. In effect,
such models allow for the creation of accurate synthetic models from limited existing training
data. Such methods take random noise to create new datasets that reflect the original training
data but that contain unique informative features. Generative adversarial networks (GANs) are
widely used in computer vision [12] and synthetic biology [13] to generate new images or
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sequences of interest (i.e. antimicrobial peptides), but have not previously used to produce
synthetic models of immunogenic peptides.

To overcome the aforementioned limitations, we propose a new convolutional neural
network (CNN) [14] approach called Deeplmmuno-CNN. During the training, a beta-binomial
probabilistic model is fitted to the training dataset to derive a continuous immunogenic score.
This score differentially weights each peptide-MHC complex in the model based on its
associated experimental evidence (high-confidence or low-confidence), to further produce a
more reliable variable immunogenic score for each peptide in the test dataset. Each amino acid
sequence is additionally encoded using a reduced principal component analysis (PCA) feature
space of 566 well-curated amino acid physicochemical features from the AAindex1 database
[15] to overcome sparsity issues related to one-hot encoding [16]. Diverse machine learning and
deep learning approaches exist, which have potential strengths and weaknesses for this
problem (e.g., performance, accuracy, flexibility to dataset size). To ensure the rigor of this
approach, we performed a systematic comparison of five traditional machine learning algorithms
(ElasticNet, K-Nearest Neighbors (KNN), SVM, Random Forest, AdaBoost) and three deep-
learning models (CNN, Graph Neural Network (GNN), Residual Net (ResNet)). This
benchmarking further supports the use of a CNN for this problem. In addition, an evaluation of
different encoding schemas, confirms that our AAindex1 PCA encoding strategy provides
excellent performance relative to alternative methods. When benchmarked against two state-of-
the-art workflows for immunogenicity prediction (DeepHLApan and IEDB), Deeplmmuno-CNN
was able to significantly increase both precision and recall for different HLA genotypes using
diverse real-world test datasets (IEDB, TESLA and COVID-19). To further explore the
dependent epitope features for immunogenicity prediction, we developed a GAN model [13][17]
which mimics the salient features of validated immunogenic peptides. These data support the
hypothesis that immunogenic peptides are learnable as a possible future source for high quality
synthetic training data.

Hence, this work represents multiple important advances and insights into the field of
immunogenicity prediction, including: 1) comprehensive benchmarking of existing and new
methods, 2) improved quantitative prediction models, 3) applicability for neoantigen and
infectious peptides, 4) crucial determinants for T cell responses and 5) an accurate approach for
synthetic modeling.

METHODS

Datasets

Multiple training and test datasets were analyzed in this study using previously published
experimentally tested datasets. For initial training and validation, we analyzed >9,000
experimentally evaluated immunogenicity assay predictions from the Immune Epitope
Database, IEDB database (August 13th, 2020). For our evaluation, we restricted the dataset to
peptides with metadata that matched to the following keywords: (1) linear epitope, (2) T cell
assay, (3) MHC class |, (4) human, and (5) disease. To restrict the dataset to informative
predictions, we developed a rigorous data cleaning strategy. First, data instances without
explicit 4-digit MHC alleles were discarded. Second, all redundant peptide-MHC allele instances
were discarded (the same peptide with different HLA alleles were considered different
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instances). Third, all negative epitopes, without explicit experimental information (number of
subjects tested, number of subjects responded) or with less than four tested subjects were
removed (likely not informative at a human population-level). Fourth, peptides of length 9 and 10
were retained for the training process. 9-mer and 10-mer peptides cover 97.5% of all data
instances and are also the dominant length for MHCI-bound peptides [18]. Finally, we separated
out 408 dengue virus positive instances from Weiskopf et al [19] for the purpose of internal
validation of different prediction methods. Specifically, 9,056 data instances were retained in the
final dataset, among which 4,143 were positive reactive instances and the remaining 4,913 were
negative. We used ten-fold cross validation for internal benchmark analysis to avoid over-fitting.
That is, we split the datasets into 10 rotating subsets - nine for training and one for validation in
each run. At the end of cross validation, the scores for each evaluation metric were averaged
over the ten testing subsets as the model’s performance. We selected two independent test
datasets for further evaluation: 1) 637 experimentally tested tumor specific neoantigens from the
Tumor Neoantigen Selection Alliance (TESLA) [20], and 2) 100 SARS-Cov-2 peptides [1,20]
tested for their immunogenicity in convalescent and unexposed subjects, respectively.

Encoding Strategy

To represent each HLA allele and encoded peptide sequences in a numerical matrix as the
input for each evaluated machine learning and deep learning algorithms, we developed and
tested different encoding strategies. We used HLA paratopes (HLA-antigen interacting residues)
as a proxy of different HLA alleles as these sequences contain the most salient information to
describe peptide-HLA spatial interactions. The AAindex encoding strategy was designed to
account for amino acid comprehensive physicochemical properties.

AAlndex: We retrieved 566 amino acid associated physicochemical properties from the
AAindex1 database [15]. Among the 566 properties, 13 indices were discarded due to missing
values for certain amino acids (Supplementary Table 1). We introduced a placeholder amino
acid “-” for padding the gaps of HLA paratope sequences and 9-mer peptides (see below). The
corresponding AAindex values were set as the average of all other 20 canonical amino acids.
This method adds the total amino acid number to 21. The resulting 21 x 553 numeric matrix was
normalized using RobustScaler [21] via the following operation:

old _ .
X‘[.‘ i oy

.IX.',I(IUV —
bl 1 Q R j

Where X is the numeric matrix, m is the median per each feature column and IQR is the
interquartile (Q3-Q1) per each feature column. The normalized feature matrix undergoes a
principal component analysis (PCA) to remove noisy features such that it only retains relevant
components. We chose 12 principal components which explain 95% total variance. This step
leads to a 21 x 12 numerical matrix (hereafter AAindex matrix). For peptides, we adopted an
encoding schema similar to that of O’Donnell et al [22] to pad shorter peptides (9-mer) to a
longer sequence (10-mer) such that first five residues and the last four residues were joined by
a placeholder “-*, since the two termini are often involved in binding interactions [23,24]. For
MHC molecules, we encoded each MHC allele based on its parotopes sequence, which is the

set of discontinuous residues sterically interacting with peptides. This paratope information was
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evidenced and analyzed from crystal structure and was retrieved from IMGT-3D-Structure
database [25] (http://www.imgt.org/3Dstructure-DB/). For MHC alleles which did not have a
solved peptide-MHC structure, their paratope information was determined by their neighbors.
Specifically, the paratopes of allele HLA-A*2403 were determined by its nearest neighbor HLA-
A*2402, which is a more frequent allele whose paratope sequence is available. We then
performed two rounds of multiple sequence alignment using clustal-omega [26]. The first
iteration was used for generating a consensus sequence for a single HLA allele from all its
solved crystal structure, while the second round was for all paratope sequences with same
length, gaps were filled with the placeholder “-” [26]. A schematic example is shown in
Supplementary Figure 1.

Supplementary Figure 1

Q\II HLA-A*0101 paratopes on IMGT 3D Sturcture Databas@
¢(Multiple Sequence Alignment)

MYYQENT--NTLY--IYDYTKWVAQRYRGRY
MYYQENT--NTLY--IYDYTKWAQRYRRY -~

MYFYENMHTNTLYIIYRDYTKWAQRYRY---
MYYQENHTDNTLYI-YRDYTKWRYRYTQD--
MYYQENH-TNTLYI-YRDYTKWRYRGY---~

¢(Consensus Paratopes)

MYYQENTHTNTLYIIYRDYTKWAQRYYRGRY

v

HLA-A*0101 ~  ------ M--==- YYQENTHT-~-NTLYITYRDYTKWAQRYYRGRY~
HLA-A*0201 = ~YYEKVVHHTHTVDTLYRYYYYTKWVQLYYYYY-~
HLA-A*0224 == ~YYEKH-HT----DTLYRYYYYTKWVQLYWY-~-~~-
HLA-A*0301 == -~---YQENVVAQ DTYYRDYTKWEQLYTWY-~-
HLA-A*0362 == -=--YYENA-QT---~-| DTLYYRDYTKWEQLYWY -~~~
HLA-A®*1101 -—--—--Y----- YYENAQV---TVDTLYYYRDYTKWAAQQYWY--~

i(Final HLA-A*0101 paratope - length 46)

—————— M-----YYQENTHT---NTLYIIYRDYTKWAQRYYRGRY -

Supplementary Figure 1. Workflow to generate HLA paratope sequences. To predict the
antigen-binding residues of each HLA allele or paratope, we constructed consensus paratope
sequences for each known human HLA allele. Shown here are five example sequences from
five independent solved crystal structures of the HLA allele HLA-A*0101. A consensus paratope
sequence was determined by computing the most frequent residue in each position. Another
round of multiple sequence alignment generates fixed-length HLA paratopes for all HLA alleles.
The token “-” is introduced to represent nicks and gaps.

Beta Binomial immunogenic model

Three columns of information from the IEDB database were used in the creation of the beta-
binomial model, namely the immunogenic class (x), result claimed by submitter (positive,
positive-high, positive-intermediate, positive-low, negative), number of subjects tested (s) and
number of subjects responded (s-f). We derived a prior beta distribution based on the
immunogenic class (x):
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Beta(3,3) x = Negative
; Beta(28,1) x = Positive — low
Prior = i ;
Beta(30,1) x = Positive — high
Beta(32,1) x = Positive — Intermediate OR Positive

For a given epitope (data instance), assuming that we observe s successful T cell responses
and f fails, then the posterior distribution of this epitope’s immunogenic potential follow a new
beta distribution:

Beta(3+ 9,3+ F) x = Negative

Beta(28 + S,1+ F) =z = Positive — low

Beta(30 + S,1+ F) x = Positive — high

Beta(32+ 5,1+ F) x = Positive — Intermediate OR Positive

We then performed 50 bootstrapped iterations from the derived posterior distribution and used
the average as the final immunogenic potential of a certain peptide-MHC complex.

Posterior =

Prediction models

We first adopted and rigorously compared the performance of five machine learning algorithms
(ElasticNet, KNN, SVM, Random Forest and AdaBoost), after optimizing parameters for each
method as follows. ElasticNet regression was first cross-validated to determine the best
hyperparameters (alpha=0.01, I1_ratio=0.51), where alpha controlled the regularization strength
and I1_ratio determined the percentage of the L1-norm penalty (lasso regression) and the L2-
norm penalty (ridge regression). KNN regressor was cross-validated to determine the best
hyperparameters (n_neighbors=23), n_neighbors control the neighbor information used for
inferring query point’s properties. SVM linear regressor was cross-validated to determine the
best hyperparameter (C=0.01), C is the reciprocal of regularization strength which is inversely
proportional to how many mistakes are allowed in the model. Random Forest was cross-
validated to determine the best hyperparameter (n_estimators=200, min_sample_leaf=1),
n_estimators control the number of decision trees in the model and min_sample_leaf control the
minimum amount of samples to be a leaf node. The aforementioned cross-validations were all
10-fold and rooted mean square error (RMSE) was used as default evaluation criteria if not
specifically mentioned otherwise. The same hyperparameters were adopted for the adaptive
boost (AdaBoost) model, similar to Random Forest, since they are both tree-based ensemble
methods.

We further implemented and optimized three deep learning architectures:

CNN: The pictorial architecture is shown in Figure 1C. Peptide and MHC were processed by
two consecutive convolutional layers, followed by two dense layers to consider the interactions
between peptide and MHC. The basic convolution operation is mathematically represented as:

By in= R(?LU(Z Z Xa+;,iWd,ik)
d L
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Where F is the resultant feature map, X is the input numerical matrix and W is the kernel. Lower
case d denotes the row index and i denotes the column index of original matrix and k denotes
the index of kernels in the convolutional layers. The ReLu function was used as an activation
function. When training the model, we set the batch_size = 128. Two early stopping strategies
were adopted: 1) monitor the training_loss with patience = 2; training will immediately stop if
training loss increases and 2) monitor the valiation_loss with patience=15; training will stop
when we did not observe validation loss decrease in 15 epochs.

ResNet. An overview is shown in Supplement Figure 2A. Peptide and MHC undergo three
consecutive residue blocks, each residual block containing three CNN layers followed by a
maxpool layer. Two dense layers were used at the end for prediction. Each residual block [27]
contains skip connection which feed the input back to the output to avoid gradient vanishing as
determined by:

Y; ;= a* Conv(X;;) + Xiy

Where Y is the output matrix of a single residual block, a determines the fraction of
convolutional output we want to keep, X is the original input matrix.

GNN: An overview is shown in Supplementary Figure 2B. Each peptide-MHC complex was
represented by an acyclic undirected graph. Two types of edges were specified, ones were
intra-edges denoting the interactions between/within-peptide and within-MHC interactions,
others were inter-edges denoting the interactions between peptide and MHC. To emphasize the
peptide-MHC interactions, we assigned a weight = 2 on inter-edges and weight = 1 on intra-
edges. Two graph convolutional layers [28] were built upon the constructed graph objects,
followed by a mean readout layer [29] to summarize node embedding at the graph level. The
learned graph level features are fed into two dense layers for predictions. The core graph
convolution operation can be mathematically described as:

A= Ay + Iy

D=YA;
J

H'*' = ReLu(D 3 AD~* H'W')

Where Aj; is the adjacency matrix of graph objects, i-th row and j-th column represent the ith
node and its j-th associated feature and Ix is the self-loop which is a diagonal matrix. The
degree matrix D is the sum of adjacency matrix over the columns. H is the graph representation,
which corresponds to a N x M matrix where N is the number of nodes and M is the number of
features associated with each node. Lower case i denotes the layer of graph representation and
W is the trainable weight matrix that governs the learning process.


https://doi.org/10.1101/2020.12.24.424262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.24.424262; this version posted December 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 1
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Figure 1. The Deeplmmuno model. (A-B) In Deeplmmuno, to assess the probability that a
given antigen is immunogenic, variable peptide immunogenic potential is computed by sampling
from a posterior beta distribution of well-defined true positive and true negative immunogenic
antigens to produce a continuous immunogenic score. The posterior distribution is derived using
a subset of T-cell immunogenic assay results from the Immune Epitope DataBase (binomial)
and a prior beta distribution of either (A) negative or (B) positive assay results. (C) The
Deeplmmuno-CNN architecture is shown to predict interactions between each peptide and MHC
allele. In this model, each peptide/MHC pair is subjected to two consecutive convolutional
layers, followed by two fully-connected dense layers to output a predictive value for each pair.
(D) The Deeplmmuno-GAN architecture is depicted for simulating immunogenic peptide
sequences using only random sequences as an input. The GAN model is composed of a
generator and a discriminator. This learning generator produces pseudo-sequences in an
attempt to artificially convince the discriminator the immunogenic sequences are real, while the
discriminator uses real peptides sequences along with generated pseudo-sequences to
distinguish the difference.
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Supplementary Figure 2
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Supplementary Figure 2. Schematic overview of the ResNet and Graph Neural Network
(GNN) models. (A) The ResNet architecture is depicted with three Residual blocks, chained
together to extract high-level abstract features associated with immunogenic and non-
immunogenic sequences. Each residual block encompasses three convolutional neural network
layers followed by a maxpool layer. (B) The GNN architecture is depicted with the first two
layers of the graph kernel designed to aggregate neighbors’ attributes (physicochemical
properties of each amino acid). A mean pooling layer is used to integrate the graph-level
embedding, followed by two dense fully-connected layers to predict immunogenicity.

Occlusion Sensitivity

To assess the relative importance of each amino-acid position in the model, we sequentially
occluded those features associated with each position by setting the values =0 and re-
assessed performance by recording the decrease in resultant predictive score. We measured
the performance decrease in all 4,143 positive training instances. We sampled 2,000 positive
instances each time and measured the decrease in performance and a rank of position was
derived and recorded in an array. Note that we did not retrain the initial model but rather zeroed-
out/masked each position. We simulated this process 100 times to validate the robustness of
the ranking information. A one-sided Mann Whitney U test was performed to test the statistical
significance of each occlusion. The motif heatmap of specific MHC alleles were generated
based on the schema proposed by Hu et al. [24], where a position-weighted matrix was
produced from all collected immunogenic peptides of the queried MHC allele as described by:

m

Hij =wi+ ) 6(aj,j)

1
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Where H is the resultant motif matrix, w is the position importance derived from occlusion
analysis, j denotes 20 amino acids, i denotes the position index and m signifies the overall
number of immunogenic peptides for the queried MHC allele and & is an indicator function.

Benchmarking
We benchmarked Deeplmmuno-CNN against two existing immunogenicity prediction tools with

a high reported auROC. For deep learning based methods, we benchmark against a Gated
Recurrent Unit (GRU) [30] based deep learning model DeepHLApan [10]. We downloaded the
docker file from docker hub (https://hub.docker.com/r/biopharm/deephlapan) specified in the
github page and ran the software in a docker container. We also benchmarked against IEDB’s
default MHC-I immunogenicity prediction algorithm [8] from the IEDB web portal. Benchmarking
results are shown in Figure 2. Other algorithms were excluded for evaluation due to either
challenging to use interfaces (e.g. inability to query multiple alleles simultaneously - INeo-Epp
[9]) or because they could not be directly compared due to underlying assumptions of the
method (e.g., Neopepsee [7]). The evaluated algorithms were not time benchmarked, as the
running time for all algorithms were relatively fast (seconds).

Generative Adversarial Network (GAN)

To determine whether immunogenic peptides could not only be predicted but learned and
simulated, we trained a GAN model. The GAN model is composed of a generator and a
discriminator. We adopted the architecture proposed by Gupta et al [13], as shown in Figure
1D. Briefly, an one-hot encoding strategy was used to facilitate the inverse transformation from
a probability to pseudo-sequence, then five residual blocks were chained together in both the
generator and the discriminator. A 1-dimensional convolutional layer was used to convert the
number of channels to be the number of 21 amino acids sequences. We modified the general
objective function using Wasserstein distance (WGAN) [17] and improved the stability of training
by enforcing 1-Lipshitz constraint using a gradient penalty (WGAN-GP) [31]. The proposed GAN
model uses the following loss function:

Loss = Eynp,[D(x)] — Eznp,.[D(z)] + AEz~p[||VZD(z)||2 — 1]

Where P, is the generated sequence, P; is the real sequence, and D(x) indicates the predictive
score from the discriminator.

We applied a previously described training strategy for the GAN [13]. Here, gumbel-softmax
(tau=0.75) was used in lieu of ordinary softmax to allow sampling from the discrete output.
Beta1 and Beta2 hyperparameters of the adaptive learning Adam optimization algorithm were
set to 0.5 and 0.9 respectively. Finally, the parameters in the discriminator are updated every
mini-batch, while the parameters in the generator are updated every 10 mini-batches. The
model was trained using batch_size=64 and trained on 100 epochs.

Similarity between pseudo-sequence and real sequence
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The similarity between two peptides’ sequences was defined as the longest contiguous common
sequence length between two queried sequences. For two sequence $1 and S2, the similarity
was computed as:

o e 2x Y M
Similarity(S1, S2) = Z("Il( 51) +ZI<'77( 52)

Where M denotes the length of each longest common sequence (LCS). S1 and S2 belong to 20
amino acids plus a placeholder amino acid “-”. We used the SequenceMatcher function in
Python3 difflib package for calculation.

Web application development

We built an interactive web application (https://deepimmuno.herokuapp.com) for quick query of
immunogenic epitopes. The front-end was implemented in HTML5 with bootstrap 4 framework.
The back-end was implemented in the Flask python3 framework. The webpage was deployed to
Heroku platform through the Deeplmmuno github webportal. The weblogos are generated using
(http://weblogo.threeplusone.com/create.cqi) for bound peptides of each MHC allele [32].
Please note, if not recently used, the web app takes 30-60 seconds to load for each session.

RESULTS

Deeplmmuno-CNN was developed with the primary objective of improving immunogenicity
predictions for relevant disease antigens identified from diverse upstream approaches. To this
end, we set out to systematically evaluate existing as well as potential machine and deep
learning strategies. This benchmarking was performed on multiple recently described high-
quality experimentally validated immunogenic peptides, after carefully excluding low-confidence
experimental results (Methods).

Evaluation criteria
We used different evaluation metrics depending on the characteristics of each testing dataset.
For the tumor neoantigen test dataset, we considered: a restricted dataset of the (1) top 20 or
(2) top 50 immunogenic peptides predictions for each algorithm’s or (3) overall sensitivity. The
top 20 or 50 immunogenic peptides were purposely selected as these are the same number of
peptides considered in prior related discovery or clinical reports [20]. For the sensitivity analysis,
a threshold of 0.5 was used for Deeplmmuno-CNN and DeepHLApan and a threshold of O for
the IEDB default classification algorithm, which has a distinct scoring range. Since an absolute
threshold is not used for Deeplmmuno-CNN, which outputs a score based on the trained
binomial-distribution, this threshold was only used for comparative benchmarking purposes. It is
worth noting that we do not consider specificity in the validated neoantigen dataset because
each peptide has only been tested in a single cancer patient and hence it is highly likely that a
certain peptide can be immunogenic in a larger population with more diverse TCR repertoires.
For antigens from a recent COVID-19 study, we considered recall and precision as the
primary criteria due to a much higher number of negative versus positive immunogenic antigens
(imbalanced). For evaluation, we used 10-fold cross validation to assess the effectiveness of
Deeplmmuno-CNN. In each iteration, area under the Receiver Operating Characteristic curve
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(auROC) and area under the precision recall curve (auPR) were computed to compare
performance at different selected cutoffs. auPR is more informative than auROC in an
imbalanced scenario due to the incorrect interpretation of specificity [33]. For the five evaluated
machine learning algorithms, we tuned the major hyperparameters based on ten-fold cross
validation with Root Mean Square Error (RMSE) as the evaluation criterion.

Comparison of immunogenicity prediction models

To account for variable immunogenic potential for each evaluated peptide, we fitted a beta-
binomial probabilistic model in the training dataset to derive a continuous immunogenic score
(Figure 1A, B and Methods). For instance, the peptide RPIDDPFGL for the HLA allele HLA-
B*0702 was tested in 40 subjects and triggered a T cell response in all 40 subjects, whereas the
peptide KTWGQYWQYV in conjunction with HLA-A*0201 elicited a T cell response in only 1 out
of 6 subjects, even though both are “immunogenic”. Hence, the former epitope result is of
greater confidence. By considering the derived immunogenic potential, we can better ensure
that the final predictive scores are more reflective of an epitope’s real immmunogenicity.

To select the best predictive model, we constructed five traditional machine learning
regressors (ElasticNet, KNN, SVM, Random Forest and AdaBoost) and critical hyperparameters
were tuned via cross-validation (Methods). In addition, we explored the potential of three deep
learning models (CNN, ResNet, GNN). We systematically gauged their performance in three
testing datasets (dengue virus[19], tumor neoantigens[20] and SARS-CoV-2 [1])
(Supplementary Table 2). Random Forest based regressor had a slightly better RMSE in the
nested 10-fold validation than other models, and AdaBoost regression performed the best in
dengue virus dataset with average accuracy = 0.91. However, the CNN model achieved
superior performance in the neoantigen dataset, where it predicted 2.9 and 5.9 immunogenic
epitopes on average and in its top 20 and top 50 predictions, respectively. All the models
achieved similar results on the SARS-Cov-2 dataset with an average recall around 0.72 in
convalescent patients and 0.81 in the unexposed groups. Given that it is able to mimic the
interaction between peptide and MHC, we designed a Graph CNN model, however it suffered
from “shortcut learning” [34] such that all the predictive values are around 0.5 to achieve a lower
loss during the training stage. This can be attributed to the fact that the explicit weight
assignment in the graph may not entirely reflect the real peptide-MHC interactions, which in turn
can lead to ambiguous results. To explore whether increasing the complexity of the neural
network architecture can boost performance, we constructed a ResNet model, with 12 layers
and skip connections. As ResNet did not increase the performance and had inferior results in 8
out of 9 evaluation criteria across three testing datasets, we surmise that a more complex model
is not required. Considering its performance overall and in human disease datasets, adaptability
to training datasets of variable size and the complexity of the model, we chose CNN as the
optimal prediction model for further analysis, which we call hereafter Deeplmmuno-CNN. As a
final consideration, we attempted to validate our proposed amino acid encoding strategy which
considers both indices derived from amino acid physicochemical properties (AAindex) and HLA
allotype information (paratopes). While, use of these algorithms did not result in significant
performance boosts with neural network based approaches over alternative strategies, our
selected encoding methods did not decrease performance and did offer a performance boost for



https://doi.org/10.1101/2020.12.24.424262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.24.424262; this version posted December 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

specific machine learning methods (Random Forest) for specific test datasets, suggesting its
benefits may be situation dependent (Supplementary Table 2, Supplementary Figure 3).

Supplementary Figure 3
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Supplementary Figure 3. Immunogenicity prediction following an ablation test of different
encoding strategies across 7 evaluated algorithms. Relative immunogenicity detection
performance of seven evaluated algorithms (ElasticNet, KNN, SVM, Random Forest, AdaBoost,
CNN and ResNet) and three different encoding strategies (AAindex+Paratopes, One-hot
encoding + Parartopes and AAindex + HLA Pseudo34). AAindex encoding and HLA paratopes
representation is shown in black, Onehot encoding and HLA paratopes representation is shown
in red, AAindex encoding and HLA pseudo34 sequences representation is shown in orange.
The x-axis represents nine different performance evaluation statistics across the four test
datasets. These statistical metrics are: 1) validation (RMSE in nested 10-fold validation dataset),
2) dengue (Accuracy in dengue virus dataset), 3) neoantigen_R (Recall in cancer neoantigen
dataset) and 4) con-R (Recall in COVID-19 convalescent patients group), un-R (Recall in
COVID-19 unexposed patients group), con-P (Precision in COVID-19 convalescent patients
group) and un-P (Precision in COVID-19 unexposed patients group). top 20 = immunogenic
neoantigen in top 20 ranked hits; top 50 = immunogenic neoantigen in top 50 ranked hits. The
indicated dataset-specific performance metric is indicated on the y-axis (range 0-1, left) or top
20/50 hits (counts, right).
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To validate the effectiveness of the Deeplmmuno-CNN model, we conducted a ten-fold
cross validation in the IEDB dataset, on its own (Figure 2A, B). We foundDeeplmmuno-CNN to
be highly stable with a high average auROC (0.85) and auPR (0.81) for each fold. We next
compared the performance of this CNN model relative to other prior described immunogenicity
prediction methods, specifically DeepHLApan and IEDB (default algorithm), as these methods
are well-validated and have easy-to-use interfaces. When evaluated in the tumor neoantigen
dataset, Deeplmmuno-CNN found an impressive 29 out of 35 (83%) immunogenic neoantigens,
relative to IEDB which found 63% and DeepHLApan which only found (34%) out of a total of
637 antigens experimentally tested (Figure 2C). For the same neoantigen dataset,
Deeplmmuno-CNN predicts 4 in the top 20 and 8 in the top 50 neoantigens, while IEDB
performed relatively poorly (1 in the top 20 and 4 in the top 50), with DeepHLApan producing
intermediate results (Figure 2C).
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Figure 2. Deeplmmuno-CNN produces stable predictions and outperforms existing
methods. (A-B) The (A) ROC curve and (B) Precision Recall curve of only Deeplmmuno-CNN'’s
performance on 10-fold validation of the IEDB training dataset. (C) Comparison of
immunogenicity predictions from an experimentally validated tumor neoantigen dataset (637
tested), with the number of true positive predictions overlapping with each algorithm’s top 20 or
top 50 predictions (left), or the sensitivity of each algorithm using a static scoring threshold
(right). (D) In COVID-19 study, recall (left) and precision (right) of each algorithm in
convalescent COVID-19 patients and the unexposed individuals.
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We further evaluated Deeplmmuno-CNN using a recently published COVID-19 study,
where immunogenic peptides were validated from two groups of subjects. Convalescent
patients have already been infected by SARS-Cov-2 and are in the process of recovering, while
unexposed patients haven’t contracted the disease. In both convalescent and unexposed
groups, Deeplmmuno-CNN achieved the highest sensitivity (68% in convalescent, 88% in
unexposed) compared to IEDB (52% in convalescent, 38% in unexposed) and DeepHLApan
(40% in convalescent, 14% in unexposed) (Figure 2D). Deeplmmuno-CNN also achieved the
highest precision (0.28 in convalescent, 0.11 in unexposed), with an overall low precision due
partially to the fact that COVID-19 patients are a highly selective group and their unique immune
profile might not be representative of the whole population. We next looked for potential
immunodominant regions in the SARS-Cov-2 proteome, which can be exploited for T cell
vaccine development. While our result suggests that both 9-mers and 10-mers do not predict
immunodominant regions in general (Supplementary Figure 4), some peptides derived from
ORF2 spike protein display high immunogenic potential (mean>0.75). These peptides likely
reflect the protein’s primary function, which is to interact with human ACE2 receptor [35] and
increase the likelihood of triggering a T cell response.

Supplementary Figure 4
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Supplementary Figure 4. Predicted immunogenicity is consistent across all ORFs in the
SARS-Cov-2 proteome. (A) Predicted immunogenicity of all 9-mer peptides translated from 10
different ORFs. (B) Predicted immunogenicity of all 10-mer peptides translated from 10 different
OREFs.

Deeplmmuno-CNN reveals salient positions interacting with the TCR

To understand the molecular underpinnings of Deeplmmuno-CNN we examined the
dependency of this model on each residue position using occlusion sensitivity. The largest
decrease in performance corresponds to the most important position across the peptide as
shown in a saliency heatmap (Figure 3A). We simulated this process 100 times and an
ascending ranking was performed each time to highlight the most salient position, as shown in
(Figure 3B). This analysis reveals that amino acid positions P4 (residue 4), P5 and P6 are
consistently the most dependent positions, followed by P2, P8 and P9. Occlusion of the first and
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second most dependent positions (P4 and P5) compared to the least (P3 and P1) resulted in a
significant performance drop of each single positive instance (One-sided Mann-Whitney U test,
P-value = 7.9e-209), further evidencing these predictions (Figure 3C). These studies support
prior structural prediction studies which show that P4-6 interact with the TCR with greatest
frequency [36,37], whereas, P2 and P9 serve as anchor points for binding of the peptide-MHC
complex [8] and mirrors other computational predictions [5][8].
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Figure 3. Identification of salinent immunogenic features of peptide-TCR interactions. (A)
Schematic overview of the occlusion sensitivity technique to determine the relative contribution
of each antigen residue for the Deeplmmuno-CNN model predictive score. (B) Ascending
importance-rank of each position, with the position with the largest performance drop received
the highest ranking across 100 simulations. Dot size corresponds to the frequencies of each
position being assigned the denoted rank, with different colors indicating different amino acid
positions. (C) Performance drop for the occlusion of P4 + P5 with occlusion of P3 + P1. One-
sided Mann-Whitney U test p-value (p=7.94e-209).

To assess the rules governing T cell immunogenicity for different HLA alleles, we next
evaluated MHC allele dependence on specific amino acid preferences. To perform this analysis,
we collected all immunogenic peptides bound with each allele and derived a motif matrix based
on the inferred position importance weight in the model (Methods). These results are
summarized in Supplementary Figure 5. For example, when examining the allele HLA-A*0201,
we find Leucine is the most abundant amino acid in position 2 from the model, which is
consistent with prior structural evidence [38]. Similarly, in a previous study by Hu et al [24],
positions 2 and 9 were predicted to act as anchor points for interactions with this specific HLA
allele. Here, our motif matrix additionally suggests that position 4 and 5 interact with the TCR on
the other side. We conducted the same analysis on three other HLA alleles (HLA-A*2402, HLA-
B*0702, HLA-B*0801). These alleles were chosen because the number of associated
immunogenic peptides bound to these three alleles are greater than 150, suggesting that the
immunogenic motif matrix for these alleles is stable. As expected, position 4 also shows a
stronger pattern across these three alleles, compared to other positions, supporting a similar
model of HLA-TCR interactions.
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Supplementary Figure 5
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Supplementary Figure 5. Immunogenicity motif analysis reveals critical HLA-peptide-TCR
interacting sequences. The immunogenic motif heatmap for (A) 2,046 HLA-A*0201, (B) 210
HLA-A*2402, (C) 162 HLA-B*0702 and (D) 176 HLA-B*0801 bound epitopes in the IEDB
training dataset. Positions are weighted by their relative importance derived from the occlusion
sensitivity analysis in Figure 3.

Deeplmmuno-GAN accurately mimics immunogenic peptide sequences

To better understand the molecular interactions and biochemical properties of T cell
immunogenicity, we attempted to generate de novo immunogenic peptides using a GAN-based
approach. Successful creation of such peptides would indicate that immunogenic sequence
motifs are learnable, potentially paving the way for direct synthesis and optimization of peptides
for diverse applications (e.g., enhanced immunogenicity)[39].

As a proof-of-concept, we collected all immunogenic peptides known to bind to HLA-
A*0201 (the most abundant allele in the training database) for training the deep GAN model. We
trained a Wasserstein GAN model for 100 epochs (Methods) and extracted the generative
pseudo-sequences from every 20 epochs. We utilized the same encoding schema we used in
the prediction model to perform dimension reduction using PCA and visualized the distribution
of generative and real immunogenic sequences (Figure 4A,B and Supplementary Figure 6A).
When viewed as a PCA projection, we find that random peptide sequences significantly deviate
from the experimentally validated immunogenic peptide sequences, prior to GAN model training.
However, after GAN model training, the generative pseudo-sequence maps to a common
coordinate embedding within the PCA projection to that of real immunogenic peptide
sequences. These data suggest that the GAN model is able to extract the high-level features
from real instances and teach the generator to output similar immunogenic peptides built from
random sequence as a starting input. The same distribution shifts were observed with tSNE
dimensionality reduction (Supplementary Figure 6B).
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Figure 4. Deeplmmuno-GAN is able to learn and produce synthetic immunogenic pseudo-
sequences. (A-B) PCA analysis of the distribution of real sequences (blue dots) and random
generative sequences (red dots) (A) prior to training and (B) after training (100 epochs). The
degree of common embedding is considered an indicator of prediction similarity. (C) The
number of Deeplmmuno-CNN predicted immunogenic peptides, produced from noise, in
different GAN training epochs. (D) Example generative pseudo-sequences and their most
similar counterparts in experimentally observed HLA-A*0201 immunogenic peptides.

To further assess the immunogenicity of these generative sequences, we submitted all
generated sequences at different epoch points to our Deeplmmuno-CNN model. At the
beginning, the 1,024 random sequences were found to only contain 40% of the immunogenic
sequence (predictive score > 0.5). As training progresses, the fraction of immunogenic peptides
gradually increases to 67%, which translates to 265 more immunogenic peptides generated
during training (Figure 4C). We compared each generative pseudo-sequence to their most
similar real counterparts (Figure 4D). The similarity was defined as the total longest contiguous
matching subsequence (LCS) between the real and pseudo-sequence, with 87% (891/1024) of
all pseudo-sequences having >60% similarity to their matched real immunogenic peptides
(Methods) (Supplementary Figure 7) [40]. Hence, immunogenic peptides can be learned and
produced when sufficient training data exists.
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Supplementary Figure 6
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Supplementary Figure 6. Convergence of real immunogenic and pseudo-sequences with
progressive GAN training. GAN generative sequences from epoch 0, epoch 20, epoch 40,
epoch 60, epoch 100 were concatenated with real HLA-A*0201 instances and their joint
embedding spaces were visualized using either (A) PCA or (B) t-SNE.
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Supplementary Figure 7. Distribution of max similarity between GAN generated pseudo-
sequences and their matched real immunogenic peptides in HLA-A*0201.

The maximum similarity for each GAN-generated pseudo-sequence and its most similar
counterpart in real immunogenic peptide repertoires are shown, with similarity defined as the
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longest contiguous common sequence length in total between two queried sequences
(Methods).

Online web interface

In order to simplify the process of building Deeplmmuno from source code, we developed an
easy-to-use web interface allowing users to quickly query peptide sequences to predict
immunogenicity potential for a given HLA allele. Additionally, this service allows a user to query
for which HLA allele would yield the highest immunogenicity and hence which patients might
benefit most from an immunogenic therapy. A third supported query type is for an HLA allele,
what epitopes it will prefer or disfavor. To address the latter question, the user can simply enter
the queried epitope sequence and HLA allele to obtain the immunogenicity score, top five
combinations with different HLA alleles and a weblogo view of all immunogenic and non-
immunogenic epitopes associated with a certain HLA allele (Figure 5). Moreover, the
Deeplmmuno web portal allows users to perform multiple queries by specifying an input file with
epitope sequence information and an output text file with the predicted immunogenicity scores
will automatically be returned.

Deeplmmuno
/\-/ Peptlde Single Query ?
N\~ HLA Multiple Queries? :
=3
(e 2
@ Immunogenicity Result of Queries
peptide MHC immunogenicity
PLRTIFGNM HLA-A®0101 0.15151700377464294
PLRTIIFGNM achive highest i ity with these 5 MHC HLA-A0101 perference for peptides(weblogo view)
wonn e f— Omer Positive 9Imer Negative
¥ Y
10mer Positive 10mer Negative
h B

Figure 5. The Deeplmmuno web interface. An easy-to-use web interface for querying peptide
and HLA sequence pairs. The three primary outputs of the interface are: (1) Immunogenicity
score for queried peptide-HLA combination, (2) the top 5 HLA combinations that will yield the
highest immunogenicity score for each queried peptide and the (3) preferential motif of the
queried HLA allele. Please note, if not recently used, the web app takes 30-60 seconds to load
for each session.

DISCUSSION
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The accurate identification of potential immunogenic epitopes remains a significant challenge for
understanding the molecular mechanisms underlying host immune response and designing
effective targeted therapies. Given the fact that millions of possible epitopes can be generated
from human protein coding genes [3], experimentally validating all possibilities is simply not yet
feasible. Effective computational models can largely accelerate this process by providing a pre-
screening platform to find high-confidence immunogenic epitopes or to eliminate low confidence
predictions. Machine learning and deep learning algorithms have been shown to provide
increased performance in a wide spectrum of bioinformatics applications [41,42]. However,
comprehensive benchmarking and the selection of an optimal encoding strategy are required to
develop improved models that can be applied to diverse testing datasets.

In this manuscript, we developed a beta-binomial model to generate more accurate
immunogenicity potential by considering the overall quality of each experimentally tested
antigen in the training dataset. Using these optimized training datasets, we systematically
bencharked well-established machine learning and deep learning, and encoding strategies on
independent immunogenic disease datasets, to understand the different situations in which
these methods boost, decrease or do not impact overall classification performance. From this
extensive comparison analysis we found that a CNN model in combination with a physiometric-
aware encoding strategy balanced performance across diverse test datasets, while staying
robust for different training dataset sizes. Indeed, we found that increasingly complex deep
learning models, such as ResNet, could result in overfitting in this specific application. Our
Deeplmmuno-CNN model was able to significantly outperform two existing highly used
immunogenicity prediction workflows, in terms of overall sensitivity and the top ranked hits,
when applied to diverse real-world immunogenic antigen datasets, including cancer and COVID-
19 infection. From a neoantigen pre-screening perspective, Deeplmmuno-CNN, is mostly likely
to increase the sensitivity for detection of valid neoantigens, such as tumor-specific mutations or
splicing neojunctions, from large-scale genomics assays to be tested in downstream assays.
Using this optimized model, we were able to effectively identify the most salient residues for
interactions between peptide-MHC and TCR, which were recapitulated and added to prior
knowledge. Moreover, we developed a GAN modelling approach to accurately generate
immunogenic peptides from random noise and demonstrated the biochemical interactions were
learnable given sufficient training data.

Despite these advances described herein, several challenges remain in the field of
immunogenicity prediction. While our model significantly improves upon existing approaches in
terms of sensitivity, precision and recall, it is noteworthy that all existing approaches remain
challenged by lower than preferred specificity to select immunogenic antigens with high
confidence. This limitation could be due to the fact that few disease antigens have been
thoroughly tested for their ability to mount a T cell response in large patient cohorts to ensure
reproducibility and HLA allele coverage. However, it is noteworthy that an indispensable
component of epitope recognition is the sequence of the TCR, which has not been taken into
consideration due to the fact that there exists few matched TCR sequencing data for forming a
sufficiently powered training set [43,44]. In addition, a model incorporating TCR information is
only applicable following sufficient deep TCR repertoire patient sequencing. Although new high
throughput methods for single-cell TCR sequencing have been developed, such techniques are
still infrequently performed in research and clinical settings. The increased use of such
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techniques are likely to aid in the development of more accurate predictive models. In addition,
neoantigen T-cell responses can significantly vary from patient-to-patient, due to a variety of
factors including immune cell repertoire differences that impact diversity of activated T cell
clones [45,46,47]. Hence, validated immunogenic epitopes may be ineffective in a subset of
patients. The ambiguity of the definition of immunogenicity can account for part of the false
positive predictions which might in fact be immunogenic for a set of patients. Integrating
patients’ immune profiles information and identifying how active the host immune system is can
be a valuable extension to current immunogenicity models. Beyond providing a rubric for the
design of peptide-related models, we believe our approach can be significantly extended to
encode additional variables, such as TCR sequence heterogeneity and can be generalized to
address diverse sequence-predictive analyses, beyond immunogenicity.
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