
DeepImmuno: Deep learning-empowered prediction and generation of immunogenic 

peptides for T cell immunity 

 

Authors: 

Guangyuan Li1,3, Balaji Iyer1,4, V. B. Surya Prasath1,2,3,4, Yizhao Ni1,2,3, Nathan Salomonis1,2,3,4 

 

Affiliations: 
1Division of Biomedical Informatics, Cincinnati Children9s Hospital Medical Center, Cincinnati, 

OH, USA 
2Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA 
3Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 

USA 
4Department of Electrical Engineering and Computer Science, University of Cincinnati, OH 

45221 USA 

 

Corresponding Author 

Guangyuan Li 

li2g2@mail.uc.edu 

 

Data Availability 

DeepImmuno Python3 code is available at https://github.com/frankligy/DeepImmuno. The 

DeepImmuno web portal is available from https://deepimmuno.herokuapp.com. The data in this 

article is available in GitHub and supplementary materials. 

 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.12.24.424262doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.24.424262
http://creativecommons.org/licenses/by/4.0/


ABSTRACT 

 

T-cells play an essential role in the adaptive immune system by seeking out, binding and 

destroying foreign antigens presented on the cell surface of diseased cells. An improved 

understanding of T-cell immunity will greatly aid in the development of new cancer 

immunotherapies and vaccines for life threatening pathogens. Central to the design of such 

targeted therapies are computational methods to predict non-native epitopes to elicit a T cell 

response, however, we currently lack accurate immunogenicity inference methods. Another 

challenge is the ability to accurately simulate immunogenic peptides for specific human 

leukocyte antigen (HLA) alleles, for both synthetic biological applications and to augment real 

training datasets. Here, we proposed a beta-binomial distribution approach to derive epitope 

immunogenic potential from sequence alone. We conducted systematic benchmarking of five 

traditional machine learning (ElasticNet, KNN, SVM, Random Forest, AdaBoost) and three deep 

learning models (CNN, ResNet, GNN) using three independent prior validated immunogenic 

peptide collections (dengue virus, cancer neoantigen and SARS-Cov-2). We chose the CNN 

model as the best prediction model based on its adaptivity for small and large datasets, and 

performance relative to existing methods. In addition to outperforming two highly used 

immunogenicity prediction algorithms, DeepHLApan and IEDB, DeepImmuno-CNN further 

correctly predicts which residues are most important for T cell antigen recognition. Our 

independent generative adversarial network (GAN) approach, DeepImmuno-GAN, was further 

able to accurately simulate immunogenic peptides with physiochemical properties and 

immunogenicity predictions similar to that of real antigens. We provide DeepImmuno-CNN as 

source code and an easy-to-use web interface. 

 

INTRODUCTION 

 

Immunotherapy has emerged as a promising strategy to combat cancer by <reprogramming= a 

patient9s own immune system. Effective targeted immunotherapies require accurately predicting 

which cancer-specific neo-epitopes are most likely to elicit an immune response. Similar 

strategies are currently being designed to target antigens commonly produced by serious 

pathogens, such as the SARS-Cov-2 (COVID-19) virus [1]. Human leukocyte antigens (HLAs) 

are a polymorphic class of proteins on the cell surface of T cells that recognize foreign antigens 

presented by another cell. The process of antigen recognition is the cornerstone of the adaptive 

immune system. HLA proteins are encoded by the Major Histocompatibility Complex (MHC) 

genes in humans. Predicting the immunogenicity of MHC-I bound epitopes is crucial for 

understanding the molecular rules governing T cell directed adaptive immunity and creating 

precision cancer or pathogen targeting vaccines. Cellular antigen recognition is governed by a 

series of carefully orchestrated molecular interactions between cell-surface-presented antigen 

and T cells of the immune system. MHC-I proteins are responsible for presentation of short 

epitopes on the cell surface and mediating interactions with CD8+ T cell receptors (TCR). An 

immunogenic peptide is capable of binding with a cognate MHC molecule, resulting in the 

exposure of its non-self portion. The exposure of <foreign= signals trigger immunoreceptor 

tyrosine-based activation motifs (ITAMs) on the T cell to be phosphorated and activate an 

immune response [2]. The process ultimately results in targeted cell death of the antigen 
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expression cell by CD8 T cell. Hence, the identification of immunogenic epitopes that can trigger 

T cell responses is central to developing new cancer immunotherapies and vaccines. Because 

thousands of potential disease-associated antigens can be presented in innate or foreign cells 

[3], it is necessary to prioritize which candidates are most likely to induce T cell response prior 

to experimental validation. 

To reduce the number of epitopes to be chosen, in silico methods have been developed 

to predict antigen immunogenicity. POPI [4] was developed as the first automated 

computational immunogenicity prediction tool. POPI used a selected subset of physicochemical 

features identified by a bi-objective algorithm for support vector machine (SVM) based 

classification. An updated version POPISK [5] further considers MHC binding properties to 

improve its prediction ability. PAAQD [6] was later developed to consider amino acid pairwise 

contact potential and quantum topological molecular similarity (QTMS) for feature selection. 

Subsequently, a machine learning-based immunogenicity predictor NeoPepsee [7] was 

developed that integrated 14 independent features to infer peptide immunogenicity. These initial 

methods paved the way for more advanced algorithms, however, the applicability of such 

methods have historically been challenging due to small training datasets and limited 

consideration of HLA alleles. A significant advance in the field came with the introduction of the 

immune epitope database (IEDB) and associated predictive immunogenicity tools [8]. This 

invaluable resource continues to systematically characterize the biochemical properties of over 

30,000 MHCI-bound immunogenic epitopes. IEDB further includes a suite of algorithms to 

predict binding affinity and immunogenicity, including a position-weighted calculated schema by 

considering kullback-leibler (KL) divergence and amino acid preference (default method). More 

recently, algorithms with improved reported accuracy have been described, including a Random 

Forest based approach called INeo-Epp [9] which uses a customized immunogenic score and 

the recurrent neural network-based deep learning approach DeepHLApan [10]. While promising, 

a potential limitation of these these approaches is that the prediction of immunogenic epitopes is 

treated as a binary classification problem using predefined hard cutoffs, in which each peptide-

MHC pair will be considered immunogenic or non-immunogenic, even though the 

immunogenicity of a certain peptide-MHC will vary substantially depending on the subject9s 

immune profile and TCR repertoire [2]. Further, while DeepHLApan [10] applies a well-

rationaled deep learning approach, its encoding of amino-acid sequence does not incorporate 

physicochemical or other amino-acid parameters (one-hot encoding). As a result, the outputs 

from these methods might not fully reflect the ability of the peptide-MHC to trigger a T cell 

response. 

A secondary, but important challenge in the field of immunogenicity prediction, is to learn 

the rules that govern which peptides are immunogenic and why. Understanding these rules, 

could be used to develop improved prediction models or produce large synthetic datasets for 

training more accurate predictive models. Deep generative models [11] are a newly-emerging 

area in artificial intelligence (AI) that can be applied to diverse research problems. In effect, 

such models allow for the creation of accurate synthetic models from limited existing training 

data. Such methods take random noise to create new datasets that reflect the original training 

data but that contain unique informative features. Generative adversarial networks (GANs) are 

widely used in computer vision [12] and synthetic biology [13] to generate new images or 
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sequences of interest (i.e. antimicrobial peptides), but have not previously used to produce 

synthetic models of immunogenic peptides.  

To overcome the aforementioned limitations, we propose a new convolutional neural 

network (CNN) [14] approach called DeepImmuno-CNN. During the training, a beta-binomial 

probabilistic model is fitted to the training dataset to derive a continuous immunogenic score. 

This score differentially weights each peptide-MHC complex in the model based on its 

associated experimental evidence (high-confidence or low-confidence), to further produce a 

more reliable variable immunogenic score for each peptide in the test dataset. Each amino acid 

sequence is additionally encoded using a reduced principal component analysis (PCA) feature 

space of 566 well-curated amino acid physicochemical features from the AAindex1 database 

[15] to overcome sparsity issues related to one-hot encoding [16]. Diverse machine learning and 

deep learning approaches exist, which have potential strengths and weaknesses for this 

problem (e.g., performance, accuracy, flexibility to dataset size). To ensure the rigor of this 

approach, we performed a systematic comparison of five traditional machine learning algorithms 

(ElasticNet, K-Nearest Neighbors (KNN), SVM, Random Forest, AdaBoost) and three deep-

learning models (CNN, Graph Neural Network (GNN), Residual Net (ResNet)). This 

benchmarking further supports the use of a CNN for this problem. In addition, an evaluation of 

different encoding schemas, confirms that our AAindex1 PCA encoding strategy provides 

excellent performance relative to alternative methods. When benchmarked against two state-of-

the-art workflows for immunogenicity prediction (DeepHLApan and IEDB), DeepImmuno-CNN 

was able to significantly increase both precision and recall for different HLA genotypes using 

diverse real-world test datasets (IEDB, TESLA and COVID-19). To further explore the 

dependent epitope features for immunogenicity prediction, we developed a GAN model [13][17] 

which mimics the salient features of validated immunogenic peptides. These data support the 

hypothesis that immunogenic peptides are learnable as a possible future source for high quality 

synthetic training data.  

Hence, this work represents multiple important advances and insights into the field of 

immunogenicity prediction, including: 1) comprehensive benchmarking of existing and new 

methods, 2) improved quantitative prediction models, 3) applicability for neoantigen and 

infectious peptides, 4) crucial determinants for T cell responses and 5) an accurate approach for 

synthetic modeling. 

 

METHODS 

 

Datasets 

Multiple training and test datasets were analyzed in this study using previously published 

experimentally tested datasets. For initial training and validation, we analyzed >9,000 

experimentally evaluated immunogenicity assay predictions from the Immune Epitope 

Database, IEDB database (August 13th, 2020). For our evaluation, we restricted the dataset to 

peptides with metadata that matched to the following keywords: (1) linear epitope, (2) T cell 

assay, (3) MHC class I, (4) human, and (5) disease. To restrict the dataset to informative 

predictions, we developed a rigorous data cleaning strategy. First, data instances without 

explicit 4-digit MHC alleles were discarded. Second, all redundant peptide-MHC allele instances 

were discarded (the same peptide with different HLA alleles were considered different 
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instances). Third, all negative epitopes, without explicit experimental information (number of 

subjects tested, number of subjects responded) or with less than four tested subjects were 

removed (likely not informative at a human population-level). Fourth, peptides of length 9 and 10 

were retained for the training process. 9-mer and 10-mer peptides cover 97.5% of all data 

instances and are also the dominant length for MHCI-bound peptides [18]. Finally, we separated 

out 408 dengue virus positive instances from Weiskopf et al [19] for the purpose of internal 

validation of different prediction methods. Specifically, 9,056 data instances were retained in the 

final dataset, among which 4,143 were positive reactive instances and the remaining 4,913 were 

negative. We used ten-fold cross validation for internal benchmark analysis to avoid over-fitting. 

That is, we split the datasets into 10 rotating subsets - nine for training and one for validation in 

each run. At the end of cross validation, the scores for each evaluation metric were averaged 

over the ten testing subsets as the model9s performance. We selected two independent test 

datasets for further evaluation: 1) 637 experimentally tested tumor specific neoantigens from the 

Tumor Neoantigen Selection Alliance (TESLA) [20], and 2) 100 SARS-Cov-2 peptides [1,20] 

tested for their immunogenicity in convalescent and unexposed subjects, respectively. 

 

Encoding Strategy 

To represent each HLA allele and encoded peptide sequences in a numerical matrix as the 

input for each evaluated machine learning and deep learning algorithms, we developed and 

tested different encoding strategies. We used HLA paratopes (HLA-antigen interacting residues) 

as a proxy of different HLA alleles as these sequences contain the most salient information to 

describe peptide-HLA spatial interactions. The AAindex encoding strategy was designed to 

account for amino acid comprehensive physicochemical properties. 

 

AAIndex: We retrieved 566 amino acid associated physicochemical properties from the 

AAindex1 database [15]. Among the 566 properties, 13 indices were discarded due to missing 

values for certain amino acids (Supplementary Table 1). We introduced a placeholder amino 

acid <-= for padding the gaps of HLA paratope sequences and 9-mer peptides (see below). The 

corresponding AAindex values were set as the average of all other 20 canonical amino acids. 

This method adds the total amino acid number to 21. The resulting 21 x 553 numeric matrix was 

normalized using RobustScaler [21] via the following operation: 

  
Where X is the numeric matrix, m is the median per each feature column and IQR is the 

interquartile (Q3-Q1) per each feature column. The normalized feature matrix undergoes a 

principal component analysis (PCA) to remove noisy features such that it only retains relevant 

components. We chose 12 principal components which explain 95% total variance. This step 

leads to a 21 x 12 numerical matrix (hereafter AAindex matrix). For peptides, we adopted an 

encoding schema similar to that of O9Donnell et al [22] to pad shorter peptides (9-mer) to a 

longer sequence (10-mer) such that first five residues and the last four residues were joined by 

a placeholder <-=, since the two termini are often involved in binding interactions [23,24]. For 

MHC molecules, we encoded each MHC allele based on its parotopes sequence, which is the 

set of discontinuous residues sterically interacting with peptides. This paratope information was 
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evidenced and analyzed from crystal structure and was retrieved from IMGT-3D-Structure 

database [25] (http://www.imgt.org/3Dstructure-DB/). For MHC alleles which did not have a 

solved peptide-MHC structure, their paratope information was determined by their neighbors. 

Specifically, the paratopes of allele HLA-A*2403 were determined by its nearest neighbor HLA-

A*2402, which is a more frequent allele whose paratope sequence is available. We then 

performed two rounds of multiple sequence alignment using clustal-omega [26]. The first 

iteration was used for generating a consensus sequence for a single HLA allele from all its 

solved crystal structure, while the second round was for all paratope sequences with same 

length, gaps were filled with the placeholder <-= [26]. A schematic example is shown in 

Supplementary Figure 1. 

 

 
Supplementary Figure 1. Workflow to generate HLA paratope sequences. To predict the 

antigen-binding residues of each HLA allele or paratope, we constructed consensus paratope 

sequences for each known human HLA allele. Shown here are five example sequences from 

five independent solved crystal structures of the HLA allele HLA-A*0101. A consensus paratope 

sequence was determined by computing the most frequent residue in each position. Another 

round of multiple sequence alignment generates fixed-length HLA paratopes for all HLA alleles. 

The token <-= is introduced to represent nicks and gaps. 

 

Beta Binomial immunogenic model 

Three columns of information from the IEDB database were used in the creation of the beta-

binomial model, namely the immunogenic class (x), result claimed by submitter (positive, 

positive-high, positive-intermediate, positive-low, negative), number of subjects tested (s) and 

number of subjects responded (s-f). We derived a prior beta distribution based on the 

immunogenic class (x): 
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For a given epitope (data instance), assuming that we observe s successful T cell responses 

and f fails, then the posterior distribution of this epitope9s immunogenic potential follow a new 

beta distribution: 

 
We then performed 50 bootstrapped iterations from the derived posterior distribution and used 

the average as the final immunogenic potential of a certain peptide-MHC complex. 

 

Prediction models 

We first adopted and rigorously compared the performance of five machine learning algorithms 

(ElasticNet, KNN, SVM, Random Forest and AdaBoost), after optimizing parameters for each 

method as follows. ElasticNet regression was first cross-validated to determine the best 

hyperparameters (alpha=0.01, l1_ratio=0.51), where alpha controlled the regularization strength 

and l1_ratio determined the percentage of the L1-norm penalty (lasso regression) and the L2-

norm penalty (ridge regression). KNN regressor was cross-validated to determine the best 

hyperparameters (n_neighbors=23), n_neighbors control the neighbor information used for 

inferring query point9s properties. SVM linear regressor was cross-validated to determine the 

best hyperparameter (C=0.01), C is the reciprocal of regularization strength which is inversely 

proportional to how many mistakes are allowed in the model. Random Forest was cross-

validated to determine the best hyperparameter (n_estimators=200, min_sample_leaf=1), 

n_estimators control the number of decision trees in the model and min_sample_leaf control the 

minimum amount of samples to be a leaf node. The aforementioned cross-validations were all 

10-fold and rooted mean square error (RMSE) was used as default evaluation criteria if not 

specifically mentioned otherwise. The same hyperparameters were adopted for the adaptive 

boost (AdaBoost) model, similar to Random Forest, since they are both tree-based ensemble 

methods. 

 

We further implemented and optimized three deep learning architectures: 

CNN: The pictorial architecture is shown in Figure 1C. Peptide and MHC were processed by 

two consecutive convolutional layers, followed by two dense layers to consider the interactions 

between peptide and MHC. The basic convolution operation is mathematically represented as: 
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Where F is the resultant feature map, X is the input numerical matrix and W is the kernel. Lower 

case d denotes the row index and i denotes the column index of original matrix and k denotes 

the index of kernels in the convolutional layers. The ReLu function was used as an activation 

function. When training the model, we set the batch_size = 128. Two early stopping strategies 

were adopted: 1) monitor the training_loss with patience = 2; training will immediately stop if 

training loss increases and 2) monitor the valiation_loss with patience=15; training will stop 

when we did not observe validation loss decrease in 15 epochs.  

 

ResNet: An overview is shown in Supplement Figure 2A. Peptide and MHC undergo three 

consecutive residue blocks, each residual block containing three CNN layers followed by a 

maxpool layer. Two dense layers were used at the end for prediction. Each residual block [27] 

contains skip connection which feed the input back to the output to avoid gradient vanishing as 

determined by: 

 
Where Y is the output matrix of a single residual block, � determines the fraction of 

convolutional output we want to keep, X is the original input matrix. 

 

GNN: An overview is shown in Supplementary Figure 2B. Each peptide-MHC complex was 

represented by an acyclic undirected graph. Two types of edges were specified, ones were 

intra-edges denoting the interactions between/within-peptide and within-MHC interactions, 

others were inter-edges denoting the interactions between peptide and MHC. To emphasize the 

peptide-MHC interactions, we assigned a weight = 2 on inter-edges and weight = 1 on intra-

edges. Two graph convolutional layers [28] were built upon the constructed graph objects, 

followed by a mean readout layer [29] to summarize node embedding at the graph level. The 

learned graph level features are fed into two dense layers for predictions. The core graph 

convolution operation can be mathematically described as: 

 
Where Aij is the adjacency matrix of graph objects, i-th row and j-th column represent the ith 

node and its j-th associated feature and IN is the self-loop which is a diagonal matrix. The 

degree matrix D is the sum of adjacency matrix over the columns. H is the graph representation, 

which corresponds to a N x M matrix where N is the number of nodes and M is the number of 

features associated with each node. Lower case i denotes the layer of graph representation and 

W is the trainable weight matrix that governs the learning process. 
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Figure 1. The DeepImmuno model. (A-B) In DeepImmuno, to assess the probability that a 

given antigen is immunogenic, variable peptide immunogenic potential is computed by sampling 

from a posterior beta distribution of well-defined true positive and true negative immunogenic 

antigens to produce a continuous immunogenic score. The posterior distribution is derived using 

a subset of T-cell immunogenic assay results from the Immune Epitope DataBase (binomial) 

and a prior beta distribution of either (A) negative or (B) positive assay results. (C) The 

DeepImmuno-CNN architecture is shown to predict interactions between each peptide and MHC 

allele. In this model, each peptide/MHC pair is subjected to two consecutive convolutional 

layers, followed by two fully-connected dense layers to output a predictive value for each pair. 

(D) The DeepImmuno-GAN architecture is depicted for simulating immunogenic peptide 

sequences using only random sequences as an input. The GAN model is composed of a 

generator and a discriminator. This learning generator produces pseudo-sequences in an 

attempt to artificially convince the discriminator the immunogenic sequences are real, while the 

discriminator uses real peptides sequences along with generated pseudo-sequences to 

distinguish the difference. 
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Supplementary Figure 2. Schematic overview of the ResNet and Graph Neural Network 

(GNN) models. (A) The ResNet architecture is depicted with three Residual blocks, chained 

together to extract high-level abstract features associated with immunogenic and non-

immunogenic sequences. Each residual block encompasses three convolutional neural network 

layers followed by a maxpool layer. (B) The GNN architecture is depicted with the first two 

layers of the graph kernel designed to aggregate neighbors9 attributes (physicochemical 

properties of each amino acid). A mean pooling layer is used to integrate the graph-level 

embedding, followed by two dense fully-connected layers to predict immunogenicity. 

 

 

Occlusion Sensitivity 

To assess the relative importance of each amino-acid position in the model, we sequentially 

occluded those features associated with each position by setting the values = 0  and re-

assessed performance by recording the decrease in resultant predictive score. We measured 

the performance decrease in all 4,143 positive training instances. We sampled 2,000 positive 

instances each time and measured the decrease in performance and a rank of position was 

derived and recorded in an array. Note that we did not retrain the initial model but rather zeroed-

out/masked each position. We simulated this process 100 times to validate the robustness of 

the ranking information. A one-sided Mann Whitney U test was performed to test the statistical 

significance of each occlusion. The motif heatmap of specific MHC alleles were generated 

based on the schema proposed by Hu et al. [24], where a position-weighted matrix was 

produced from all collected immunogenic peptides of the queried MHC allele as described by: 
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Where H is the resultant motif matrix, w is the position importance derived from occlusion 

analysis, j denotes 20 amino acids, i denotes the position index and m signifies the overall 

number of immunogenic peptides for the queried MHC allele and � is an indicator function. 

 

Benchmarking 

We benchmarked DeepImmuno-CNN against two existing immunogenicity prediction tools with 

a high reported auROC. For deep learning based methods, we benchmark against a Gated 

Recurrent Unit (GRU) [30] based deep learning model DeepHLApan [10]. We downloaded the 

docker file from docker hub (https://hub.docker.com/r/biopharm/deephlapan) specified in the 

github page and ran the software in a docker container. We also benchmarked against IEDB9s 

default MHC-I immunogenicity prediction algorithm [8] from the IEDB web portal. Benchmarking 

results are shown in Figure 2. Other algorithms were excluded for evaluation due to either 

challenging to use interfaces (e.g. inability to query multiple alleles simultaneously - INeo-Epp 

[9]) or because they could not be directly compared due to underlying assumptions of the 

method (e.g., Neopepsee [7]). The evaluated algorithms were not time benchmarked, as the 

running time for all algorithms were relatively fast (seconds). 

 

Generative Adversarial Network (GAN) 

To determine whether immunogenic peptides could not only be predicted but learned and 

simulated, we trained a GAN model. The GAN model is composed of a generator and a 

discriminator. We adopted the architecture proposed by Gupta et al [13], as shown in Figure 

1D. Briefly, an one-hot encoding strategy was used to facilitate the inverse transformation from 

a probability to pseudo-sequence, then five residual blocks were chained together in both the 

generator and the discriminator. A 1-dimensional convolutional layer was used to convert the 

number of channels to be the number of 21 amino acids sequences. We modified the general 

objective function using Wasserstein distance (WGAN) [17] and improved the stability of training 

by enforcing 1-Lipshitz constraint using a gradient penalty (WGAN-GP) [31]. The proposed GAN 

model uses the following loss function: 

 
Where Pg is the generated sequence, Pr is the real sequence, and D(x) indicates the predictive 

score from the discriminator.  

 

We applied a previously described training strategy for the GAN [13]. Here, gumbel-softmax 

(tau=0.75) was used in lieu of ordinary softmax to allow sampling from the discrete output. 

Beta1 and Beta2 hyperparameters of the adaptive learning Adam optimization algorithm were 

set to 0.5 and 0.9 respectively. Finally, the parameters in the discriminator are updated every 

mini-batch, while the parameters in the generator are updated every 10 mini-batches. The 

model was trained using batch_size=64 and trained on 100 epochs. 

 

Similarity between pseudo-sequence and real sequence 
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The similarity between two peptides9 sequences was defined as the longest contiguous common 

sequence length between two queried sequences. For two sequence S1 and S2, the similarity 

was computed as: 

 
Where M denotes the length of each longest common sequence (LCS). S1 and S2 belong to 20 

amino acids plus a placeholder amino acid <-=. We used the SequenceMatcher function in 

Python3 difflib package for calculation.  

 

Web application development 

We built an interactive web application (https://deepimmuno.herokuapp.com) for quick query of 

immunogenic epitopes. The front-end was implemented in HTML5 with bootstrap 4 framework. 

The back-end was implemented in the Flask python3 framework. The webpage was deployed to 

Heroku platform through the DeepImmuno github webportal. The weblogos are generated using 

(http://weblogo.threeplusone.com/create.cgi) for bound peptides of each MHC allele [32]. 

Please note, if not recently used, the web app takes 30-60 seconds to load for each session. 

 

RESULTS 

 

DeepImmuno-CNN was developed with the primary objective of improving immunogenicity 

predictions for relevant disease antigens identified from diverse upstream approaches. To this 

end, we set out to systematically evaluate existing as well as potential machine and deep 

learning strategies. This benchmarking was performed on multiple recently described high-

quality experimentally validated immunogenic peptides, after carefully excluding low-confidence 

experimental results (Methods).  

 

Evaluation criteria 

We used different evaluation metrics depending on the characteristics of each testing dataset. 

For the tumor neoantigen test dataset, we considered: a restricted dataset of the (1) top 20 or 

(2) top 50 immunogenic peptides predictions for each algorithm9s or (3) overall sensitivity. The 

top 20 or 50 immunogenic peptides were purposely selected as these are the same number of 

peptides considered in prior related discovery or clinical reports [20]. For the sensitivity analysis, 

a threshold of 0.5 was used for DeepImmuno-CNN and DeepHLApan and a threshold of 0 for 

the IEDB default classification algorithm, which has a distinct scoring range. Since an absolute 

threshold is not used for DeepImmuno-CNN, which outputs a score based on the trained 

binomial-distribution, this threshold was only used for comparative benchmarking purposes. It is 

worth noting that we do not consider specificity in the validated neoantigen dataset because 

each peptide has only been tested in a single cancer patient and hence it is highly likely that a 

certain peptide can be immunogenic in a larger population with more diverse TCR repertoires. 

For antigens from a recent COVID-19 study, we considered recall and precision as the 

primary criteria due to a much higher number of negative versus positive immunogenic antigens 

(imbalanced). For evaluation, we used 10-fold cross validation to assess the effectiveness of 

DeepImmuno-CNN. In each iteration, area under the Receiver Operating Characteristic curve 
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(auROC) and area under the precision recall curve (auPR) were computed to compare 

performance at different selected cutoffs. auPR is more informative than auROC in an 

imbalanced scenario due to the incorrect interpretation of specificity [33]. For the five evaluated 

machine learning algorithms, we tuned the major hyperparameters based on ten-fold cross 

validation with Root Mean Square Error (RMSE) as the evaluation criterion.  

 

Comparison of immunogenicity prediction models 

To account for variable immunogenic potential for each evaluated peptide, we fitted a beta-

binomial probabilistic model in the training dataset to derive a continuous immunogenic score 

(Figure 1A, B and Methods). For instance, the peptide RPIDDPFGL for the HLA allele HLA-

B*0702 was tested in 40 subjects and triggered a T cell response in all 40 subjects, whereas the 

peptide KTWGQYWQV in conjunction with HLA-A*0201 elicited a T cell response in only 1 out 

of  6 subjects, even though both are <immunogenic=. Hence, the former epitope result is of 

greater confidence. By considering the derived immunogenic potential, we can better ensure 

that the final predictive scores are more reflective of an epitope9s real immunogenicity. 

To select the best predictive model, we constructed five traditional machine learning 

regressors (ElasticNet, KNN, SVM, Random Forest and AdaBoost) and critical hyperparameters 

were tuned via cross-validation (Methods). In addition, we explored the potential of three deep 

learning models (CNN, ResNet, GNN). We systematically gauged their performance in three 

testing datasets (dengue virus[19], tumor neoantigens[20] and SARS-CoV-2 [1]) 

(Supplementary Table 2). Random Forest based regressor had a slightly better RMSE in the 

nested 10-fold validation than other models, and AdaBoost regression performed the best in 

dengue virus dataset with average accuracy = 0.91. However, the CNN model achieved 

superior performance in the neoantigen dataset, where it predicted 2.9 and 5.9 immunogenic 

epitopes on average and in its top 20 and top 50 predictions, respectively. All the models 

achieved similar results on the SARS-Cov-2 dataset with an average recall around 0.72 in 

convalescent patients and 0.81 in the unexposed groups. Given that it is able to mimic the 

interaction between peptide and MHC, we designed a Graph CNN model, however it suffered 

from <shortcut learning= [34] such that all the predictive values are around 0.5 to achieve a lower 

loss during the training stage. This can be attributed to the fact that the explicit weight 

assignment in the graph may not entirely reflect the real peptide-MHC interactions, which in turn 

can lead to ambiguous results. To explore whether increasing the complexity of the neural 

network architecture can boost performance, we constructed a ResNet model, with 12 layers 

and skip connections. As ResNet did not increase the performance and had inferior results in 8 

out of 9 evaluation criteria across three testing datasets, we surmise that a more complex model 

is not required. Considering its performance overall and in human disease datasets, adaptability 

to training datasets of variable size and the complexity of the model, we chose CNN as the 

optimal prediction model for further analysis, which we call hereafter DeepImmuno-CNN. As a 

final consideration, we attempted to validate our proposed amino acid encoding strategy which 

considers both indices derived from amino acid physicochemical properties (AAindex) and HLA 

allotype information (paratopes). While, use of these algorithms did not result in significant 

performance boosts with neural network based approaches over alternative strategies, our 

selected encoding methods did not decrease performance and did offer a performance boost for 
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specific machine learning methods (Random Forest) for specific test datasets, suggesting its 

benefits may be situation dependent (Supplementary Table 2, Supplementary Figure 3). 

 

 

 
Supplementary Figure 3. Immunogenicity prediction following an ablation test of different 
encoding strategies across 7 evaluated algorithms. Relative immunogenicity detection 
performance of seven evaluated algorithms (ElasticNet, KNN, SVM, Random Forest, AdaBoost, 
CNN and ResNet) and three different encoding strategies (AAindex+Paratopes, One-hot 
encoding + Parartopes and AAindex + HLA Pseudo34). AAindex encoding and HLA paratopes 
representation is shown in black, Onehot encoding and HLA paratopes representation is shown 
in red, AAindex encoding and HLA pseudo34 sequences representation is shown in orange. 
The x-axis represents nine different performance evaluation statistics across the four test 
datasets. These statistical metrics are: 1) validation (RMSE in nested 10-fold validation dataset), 
2) dengue (Accuracy in dengue virus dataset), 3) neoantigen_R (Recall in cancer neoantigen 
dataset) and 4) con-R (Recall in COVID-19 convalescent patients group), un-R (Recall in 
COVID-19 unexposed patients group), con-P (Precision in COVID-19 convalescent patients 
group) and un-P (Precision in COVID-19 unexposed patients group). top 20 = immunogenic 
neoantigen in top 20 ranked hits; top 50 = immunogenic neoantigen in top 50 ranked hits. The 
indicated dataset-specific performance metric is indicated on the y-axis (range 0-1, left) or top 
20/50 hits (counts, right).  
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To validate the effectiveness of the DeepImmuno-CNN model, we conducted a ten-fold 

cross validation in the IEDB dataset, on its own (Figure 2A, B). We foundDeepImmuno-CNN to 

be highly stable with a high average auROC (0.85) and auPR (0.81) for each fold. We next 

compared the performance of this CNN model relative to other prior described immunogenicity 

prediction methods, specifically DeepHLApan and IEDB (default algorithm), as these methods 

are well-validated and have easy-to-use interfaces. When evaluated in the tumor neoantigen 

dataset, DeepImmuno-CNN found an impressive 29 out of 35 (83%) immunogenic neoantigens, 

relative to IEDB which found 63% and DeepHLApan which only found (34%) out of a total of 

637 antigens experimentally tested (Figure 2C). For the same neoantigen dataset, 

DeepImmuno-CNN predicts 4 in the top 20 and 8 in the top 50 neoantigens, while IEDB 

performed relatively poorly (1 in the top 20 and 4 in the top 50), with DeepHLApan producing 

intermediate results (Figure 2C).  

 

 
Figure 2. DeepImmuno-CNN produces stable predictions and outperforms existing 

methods. (A-B) The (A) ROC curve and (B) Precision Recall curve of only DeepImmuno-CNN9s 

performance on 10-fold validation of the IEDB training dataset. (C) Comparison of 

immunogenicity predictions from an experimentally validated tumor neoantigen dataset (637 

tested), with the number of true positive predictions overlapping with each algorithm9s top 20 or 

top 50 predictions (left), or the sensitivity of each algorithm using a static scoring threshold 

(right). (D) In COVID-19 study, recall (left) and precision (right) of each algorithm in 

convalescent COVID-19 patients and the unexposed individuals. 
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We further evaluated DeepImmuno-CNN using a recently published COVID-19 study, 

where immunogenic peptides were validated from two groups of subjects. Convalescent 

patients have already been infected by SARS-Cov-2 and are in the process of recovering, while 

unexposed patients haven9t contracted the disease. In both convalescent and unexposed 

groups, DeepImmuno-CNN achieved the highest sensitivity (68% in convalescent, 88% in 

unexposed) compared to IEDB (52% in convalescent, 38% in unexposed) and DeepHLApan 

(40% in convalescent, 14% in unexposed) (Figure 2D). DeepImmuno-CNN also achieved the 

highest precision (0.28 in convalescent, 0.11 in unexposed), with an overall low precision due 

partially to the fact that COVID-19 patients are a highly selective group and their unique immune 

profile might not be representative of the whole population. We next looked for potential 

immunodominant regions in the SARS-Cov-2 proteome, which can be exploited for T cell 

vaccine development. While our result suggests that both 9-mers and 10-mers do not predict 

immunodominant regions in general (Supplementary Figure 4), some peptides derived from 

ORF2 spike protein display high immunogenic potential (mean>0.75). These peptides likely 

reflect the protein9s primary function, which is to interact with human ACE2 receptor [35] and 

increase the likelihood of triggering a T cell response. 

 

 
Supplementary Figure 4. Predicted immunogenicity is consistent across all ORFs in the 

SARS-Cov-2 proteome. (A) Predicted immunogenicity of all 9-mer peptides translated from 10 

different ORFs. (B) Predicted immunogenicity of all 10-mer peptides translated from 10 different 

ORFs. 

 
 
DeepImmuno-CNN reveals salient positions interacting with the TCR 

To understand the molecular underpinnings of DeepImmuno-CNN we examined the 

dependency of this model on each residue position using occlusion sensitivity. The largest 

decrease in performance corresponds to the most important position across the peptide as 

shown in a saliency heatmap (Figure 3A). We simulated this process 100 times and an 

ascending ranking was performed each time to highlight the most salient position, as shown in 

(Figure 3B). This analysis reveals that amino acid positions P4 (residue 4), P5 and P6 are 

consistently the most dependent positions, followed by P2, P8 and P9. Occlusion of the first and 
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second most dependent positions (P4 and P5) compared to the least (P3 and P1) resulted in a 

significant performance drop of each single positive instance (One-sided Mann-Whitney U test, 

P-value = 7.9e-209), further evidencing these predictions (Figure 3C). These studies support 

prior structural prediction studies which show that P4-6 interact with the TCR with greatest 

frequency [36,37], whereas, P2 and P9 serve as anchor points for binding of the peptide-MHC 

complex [8] and mirrors other computational predictions [5][8].  

 

 
Figure 3. Identification of salinent immunogenic features of peptide-TCR interactions. (A) 

Schematic overview of the occlusion sensitivity technique to determine the relative contribution 

of each antigen residue for the DeepImmuno-CNN model predictive score. (B) Ascending 

importance-rank of each position, with the position with the largest performance drop received 

the highest ranking across 100 simulations. Dot size corresponds to the frequencies of each 

position being assigned the denoted rank, with different colors indicating different amino acid 

positions. (C) Performance drop for the occlusion of P4 + P5 with occlusion of P3 + P1.  One-

sided Mann-Whitney U test p-value (p=7.94e-209). 

 

To assess the rules governing T cell immunogenicity for different HLA alleles, we next 

evaluated MHC allele dependence on specific amino acid preferences. To perform this analysis, 

we collected all immunogenic peptides bound with each allele and derived a motif matrix based 

on the inferred position importance weight in the model (Methods). These results are 

summarized in Supplementary Figure 5. For example, when examining the allele HLA-A*0201, 

we find Leucine is the most abundant amino acid in position 2 from the model, which is 

consistent with prior structural evidence [38]. Similarly, in a previous study by Hu et al  [24], 

positions 2 and 9 were predicted to act as anchor points for interactions with this specific HLA 

allele. Here, our motif matrix additionally suggests that position 4 and 5 interact with the TCR on 

the other side. We conducted the same analysis on three other HLA alleles (HLA-A*2402, HLA-

B*0702, HLA-B*0801). These alleles were chosen because the number of associated 

immunogenic peptides bound to these three alleles are greater than 150, suggesting that the 

immunogenic motif matrix for these alleles is stable. As expected, position 4 also shows a 

stronger pattern across these three alleles, compared to other positions, supporting a similar 

model of HLA-TCR interactions.  
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Supplementary Figure 5. Immunogenicity motif analysis reveals critical HLA-peptide-TCR 

interacting sequences. The immunogenic motif heatmap for (A) 2,046 HLA-A*0201, (B) 210 

HLA-A*2402, (C) 162 HLA-B*0702 and (D) 176 HLA-B*0801 bound epitopes in the IEDB 

training dataset. Positions are weighted by their relative importance derived from the occlusion 

sensitivity analysis in Figure 3. 

 

 

DeepImmuno-GAN accurately mimics immunogenic peptide sequences 

To better understand the molecular interactions and biochemical properties of T cell 

immunogenicity, we attempted to generate de novo immunogenic peptides using a GAN-based 

approach. Successful creation of such peptides would indicate that immunogenic sequence 

motifs are learnable, potentially paving the way for direct synthesis and optimization of peptides 

for diverse applications (e.g., enhanced immunogenicity)[39]. 

As a proof-of-concept, we collected all immunogenic peptides known to bind to HLA-

A*0201 (the most abundant allele in the training database) for training the deep GAN model. We 

trained a Wasserstein GAN model for 100 epochs (Methods) and extracted the generative 

pseudo-sequences from every 20 epochs. We utilized the same encoding schema we used in 

the prediction model to perform dimension reduction using PCA and visualized the distribution 

of generative and real immunogenic sequences (Figure 4A,B and Supplementary Figure 6A). 

When viewed as a PCA projection, we find that random peptide sequences significantly deviate 

from the experimentally validated immunogenic peptide sequences, prior to GAN model training. 

However, after GAN model training, the generative pseudo-sequence maps to a common 

coordinate embedding within the PCA projection to that of real immunogenic peptide 

sequences. These data suggest that the GAN model is able to extract the high-level features 

from real instances and teach the generator to output similar immunogenic peptides built from 

random sequence as a starting input. The same distribution shifts were observed with tSNE 

dimensionality reduction (Supplementary Figure 6B).  
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Figure 4. DeepImmuno-GAN is able to learn and produce synthetic immunogenic pseudo-

sequences. (A-B) PCA analysis of the distribution of real sequences (blue dots) and random 

generative sequences (red dots) (A) prior to training and (B) after training (100 epochs). The 

degree of common embedding is considered an indicator of prediction similarity. (C) The 

number of DeepImmuno-CNN predicted immunogenic peptides, produced from noise, in 

different GAN training epochs. (D) Example generative pseudo-sequences and their most 

similar counterparts in experimentally observed HLA-A*0201 immunogenic peptides.  

 

 

To further assess the immunogenicity of these generative sequences, we submitted all 

generated sequences at different epoch points to our DeepImmuno-CNN model. At the 

beginning, the 1,024 random sequences were found to only contain 40% of the immunogenic 

sequence (predictive score > 0.5). As training progresses, the fraction of immunogenic peptides 

gradually increases to 67%, which translates to 265 more immunogenic peptides generated 

during training (Figure 4C). We compared each generative pseudo-sequence to their most 

similar real counterparts (Figure 4D). The similarity was defined as the total longest contiguous 

matching subsequence (LCS) between the real and pseudo-sequence, with 87% (891/1024) of 

all pseudo-sequences having >60% similarity to their matched real immunogenic peptides 

(Methods) (Supplementary Figure 7) [40]. Hence, immunogenic peptides can be learned and 

produced when sufficient training data exists.  
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Supplementary Figure 6. Convergence of real immunogenic and pseudo-sequences with 

progressive GAN training. GAN generative sequences from epoch 0, epoch 20, epoch 40, 

epoch 60, epoch 100 were concatenated with real HLA-A*0201 instances and their joint 

embedding spaces were visualized using either (A) PCA or (B) t-SNE. 

 

 
Supplementary Figure 7. Distribution of max similarity between GAN generated pseudo-

sequences and their matched real immunogenic peptides in HLA-A*0201.  

The maximum similarity for each GAN-generated pseudo-sequence and its most similar 

counterpart in real immunogenic peptide repertoires are shown, with similarity defined as the 
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longest contiguous common sequence length in total between two queried sequences 

(Methods).   

 

 

Online web interface 

In order to simplify the process of building DeepImmuno from source code, we developed an 

easy-to-use web interface allowing users to quickly query peptide sequences to predict 

immunogenicity potential for a given HLA allele. Additionally, this service allows a user to query 

for which HLA allele would yield the highest immunogenicity and hence which patients might 

benefit most from an immunogenic therapy. A third supported query type is for an HLA allele, 

what epitopes it will prefer or disfavor. To address the latter question, the user can simply enter 

the queried epitope sequence and HLA allele to obtain the immunogenicity score, top five 

combinations with different HLA alleles and a weblogo view of all immunogenic and non-

immunogenic epitopes associated with a certain HLA allele (Figure 5). Moreover, the 

DeepImmuno web portal allows users to perform multiple queries by specifying an input file with 

epitope sequence information and an output text file with the predicted immunogenicity scores 

will automatically be returned. 

 

 
Figure 5. The DeepImmuno web interface. An easy-to-use web interface for querying peptide 

and HLA sequence pairs. The three primary outputs of the interface are: (1) Immunogenicity 

score for queried peptide-HLA combination, (2) the top 5 HLA combinations that will yield the 

highest immunogenicity score for each queried peptide and the (3) preferential motif of the 

queried HLA allele. Please note, if not recently used, the web app takes 30-60 seconds to load 

for each session. 

 

 

DISCUSSION 
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The accurate identification of potential immunogenic epitopes remains a significant challenge for 

understanding the molecular mechanisms underlying host immune response and designing 

effective targeted therapies. Given the fact that millions of possible epitopes can be generated 

from human protein coding genes [3], experimentally validating all possibilities is simply not yet 

feasible. Effective computational models can largely accelerate this process by providing a pre-

screening platform to find high-confidence immunogenic epitopes or to eliminate low confidence 

predictions. Machine learning and deep learning algorithms have been shown to provide 

increased performance in a wide spectrum of bioinformatics applications [41,42]. However, 

comprehensive benchmarking and the selection of an optimal encoding strategy are required to 

develop improved models that can be applied to diverse testing datasets.  

In this manuscript, we developed a beta-binomial model to generate more accurate 

immunogenicity potential by considering the overall quality of each experimentally tested 

antigen in the training dataset. Using these optimized training datasets, we systematically 

bencharked well-established machine learning and deep learning, and encoding strategies on 

independent immunogenic disease datasets, to understand the different situations in which 

these methods boost, decrease or do not impact overall classification performance. From this 

extensive comparison analysis we found that a CNN model in combination with a physiometric-

aware encoding strategy balanced performance across diverse test datasets, while staying 

robust for different training dataset sizes. Indeed, we found that increasingly complex deep 

learning models, such as ResNet, could result in overfitting in this specific application. Our 

DeepImmuno-CNN model was able to significantly outperform two existing highly used 

immunogenicity prediction workflows, in terms of overall sensitivity and the top ranked hits, 

when applied to diverse real-world immunogenic antigen datasets, including cancer and COVID-

19 infection. From a neoantigen pre-screening perspective, DeepImmuno-CNN, is mostly likely 

to increase the sensitivity for detection of valid neoantigens, such as tumor-specific mutations or 

splicing neojunctions, from large-scale genomics assays to be tested in downstream assays. 

Using this optimized model, we were able to effectively identify the most salient residues for 

interactions between peptide-MHC and TCR, which were recapitulated and added to prior 

knowledge. Moreover, we developed a GAN modelling approach to accurately generate 

immunogenic peptides from random noise and demonstrated the biochemical interactions were 

learnable given sufficient training data.  

Despite these advances described herein, several challenges remain in the field of 

immunogenicity prediction. While our model significantly improves upon existing approaches in 

terms of sensitivity, precision and recall, it is noteworthy that all existing approaches remain 

challenged by lower than preferred specificity to select immunogenic antigens with high 

confidence. This limitation could be due to the fact that few disease antigens have been 

thoroughly tested for their ability to mount a T cell response in large patient cohorts to ensure 

reproducibility and HLA allele coverage. However, it is noteworthy that an indispensable 

component of epitope recognition is the sequence of the TCR, which has not been taken into 

consideration due to the fact that there exists few matched TCR sequencing data for forming a 

sufficiently powered training set [43,44]. In addition, a model incorporating TCR information is 

only applicable following sufficient deep TCR repertoire patient sequencing. Although new high 

throughput methods for single-cell TCR sequencing have been developed, such techniques are 

still infrequently performed in research and clinical settings. The increased use of such 
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techniques are likely to aid in the development of more accurate predictive models. In addition, 

neoantigen T-cell responses can significantly vary from patient-to-patient, due to a variety of 

factors including immune cell repertoire differences that impact diversity of activated T cell 

clones [45,46,47]. Hence, validated immunogenic epitopes may be ineffective in a subset of 

patients. The ambiguity of the definition of immunogenicity can account for part of the false 

positive predictions which might in fact be immunogenic for a set of patients. Integrating 

patients9 immune profiles information and identifying how active the host immune system is can 

be a valuable extension to current immunogenicity models. Beyond providing a rubric for the 

design of peptide-related models, we believe our approach can be significantly extended to 

encode additional variables, such as TCR sequence heterogeneity and can be generalized to 

address diverse sequence-predictive analyses, beyond immunogenicity.  
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