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Abstract 

Liquid chromatography-mass spectrometry based metabolomics studies are increasingly applied to 

large population cohorts, running for several weeks to months, even extending to years of data 

acquisition. This inevitably introduces unwanted intra- and inter-batch variations over time that can 

overshadow true biological signals and thus hinder potential biological discoveries. To date, 

normalization approaches have struggled to mitigate the variability introduced by technical factors 

whilst preserving biological variance, especially for protracted acquisitions. Here, we designed an 

experiment with an arrangement to embed biological sample replicates to measure the variance 

within and between batches for over 1,000 human plasma samples run over 44 days. We integrate 

these replicates in a novel workflow to remove unwanted variation in a hierarchical structure (hRUV) 

by progressively merging the adjustments in neighbouring batches. We demonstrate significant 

improvement of hRUV over existing methods in maintaining biological signals whilst removing 

unwanted variation for large scale metabolomics studies. 

Introduction 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a preferred method of 

metabolomic acquisition given its high sensitivity and dynamic range. Typically, a range of 

metabolites can be separated on a single high performance LC column and their relative abundance 

quantified in MS/MS. This enables capture of fingerprints of specific biological processes that are 

critical in precision medicine applications such as studying complex metabolic diseases, and 

discovering new therapeutic targets and biomarkers1. There are a number of large-scale cohort studies 

that have performed metabolomic analyses, such as the Consortium of Metabolomics Studies 

(COMETS)2, and the Framingham Heart Study (FHS)3.  

 

Despite a rapid increase in the number of large-scale metabolomics studies, the normalization of 

metabolomics data remains a key challenge4. Due to the data acquisition time of studies with large 

sample size, prolonged study recruitment and potentially multiple samples at various time points for 

each participant, the data acquisition process may require the samples be divided into multiple 

batches, and may span anywhere from months to years4,5. Signals often drift over extended periods 

due to multiple factors including buffer changes, pooled quality control (QC) sample solutions, 

instrument cleanliness, and machine scheduled maintenance6. Common intra-batch variations include 

changes in LC-MS/MS performance due to instrument-dependent factors such as component failure 

or inconsistency, and fouling of the column, LC or MS source. Common inter-batch variations 

include time-dependent instrument variations such as instrument cleaning, tuning, column change, 

or inconsistent sample preparation factors including change in equipment and operator. These 

technical factors have substantial impact in downstream analytics and need to be appropriately 

accounted for to maximise the opportunity to identify true biological signals.  

 

Several workflows have been designed for analysing metabolomics data (e.g. MetaboAnalyst7 and 

NormalyzerDE8). However, most of them adapt common normalization methods developed for other 

omics platforms and do not account for signal drift across extended time or inter-plate variations 

which are distinct unwanted variations commonly observed in metabolomics studies. A limited 

number of metabolomics specific normalizations methods have been developed (Table 1). These 

include: Support Vector Regression (SVR)5, Systematic Error Removal using Random Forest 
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(SERRF)9, and Removal of Unwanted Variation based approaches10,11. These approaches utilise 

pooled QC samples to control signal drift by fitting non-linear models or by estimating inter-plate 

variations. The common assumption of these approaches is that the pooled QC samples are identical 

over an extended period of time. Whilst, this is appropriate for a short period of time the assumption 

may not hold for large-scale metabolomics data over months or years and currently there are no 

existing methods to account for normalization over an extended period.  

  

In this paper, we present a novel experimental sample arrangement strategy to embed biological 

sample replicates throughout large scale experiments to facilitate the estimation of unwanted 

variation within and between batches with RUV-III12, which we will refer to as RUV in this paper. 

We propose a novel hierarchical approach to removing unwanted variation by harnessing information 

from sample replicates embedded in the sequence of experimental runs/batches and applying signal 

drift correction with robust linear or non-linear smoothers. An in-house targeted metabolomics study 

was performed on a hospital-based cohort of patients with atherosclerosis (BioHEART- CT) was 

conducted based on the proposed sample arrangement strategy, and we utilise this to assess the 

normalization on a number of criteria including retention of biological signal, low variability among 

replication, and reproducibility of results in comparison to other existing methods. The hRUV 

method is accessible as an R package and also as a shiny application at 

https://shiny.maths.usyd.edu.au/hRUV/. 

Results 
Replicate arrangement strategy in large scale metabolomics study. We developed a series of 

technical replications designed as a framework to enable effective data harmonization in large cohorts 

studies or studies over extended periods of time. Our design includes three types of replicates within 

each 8×12 = 96-well plate, here called batch. These are the (i) classical pooled QC samples, (ii) single 

sample replicates in each row of a plate from a random selection of non-replicated samples in 

previous rows which we call 8short replicates9, and (iii) five randomly selected non-short replicated 

samples from each plate are replicated to the next plate, which we call 8batch replicates9. Fig. 1a and 

b illustrates a schematic layout of the sample replicates design.  

 

The classical pooled QC consists of a mixture of 10 �L of each of the 1,002 samples, pooled together 

into a single tube. The pooled QC sample was aliquoted and frozen, and a fresh aliquot was thawed 

for each batch to minimize the impact of repeated freeze thaw cycles. The spacing of the technical 

short replicates approximately 10 samples apart capture variation within a short time (approximately 

5 hours, based on 30 minutes of run time per sample). This is a good measure of the variation of the 

metabolomics experiment. In contrast to pooled QC samples, where one sample is repeated many 

times, short technical replicates are duplicates of different samples; this increase in heterogeneity of 

samples for the estimation of unwanted variation is more robust compared to estimation with pooled 

QC. Finally, the batch replicates measure the variation that occurs across different batches. These 

replicates are typically 60-70 samples apart, capturing variation over a longer time period of 48-72 

hours. 

 

This design was used to generate data for a large metabolomics study consisting of 1,002 individuals 

from the BioHEART-CT biobank and quantification of 100 metabolites per individual. The exact 
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sample designs are given in Supplementary Table 1. In total we had 164 replicates from one pooled 

QC sample, 230 duplicates from samples across 15 batches, and 140 8batch9 duplicates from 70 

samples. As expected, variation between replicates within a batch tends to be smaller compared to 

replicates between batches, as demonstrated in Supplementary Fig 1. A shiny application was 

developed to enable easy generation of the replicate design upon input of the desired plate size and 

the desired number of inter-plate replicates. The experimental design with appropriate numbers and 

assignment of replicates inserted is then exported as a Comma Separated Values (CSV) file. The 

extra replicate tubes were prepared during the aliquoting and inserted into the appropriate positions 

during sample processing. 

 

In this current study, a 96 well plate was the natural unit to define as a batch, but in practice, one 

could select any number of runs (e.g., 100, subjects to the tray capacity of the autosampler) as the 

unit for a batch. The notions of short and long (batch) replicates can be applied to any batch size to 

assess variation over a variety of distances.  

 

A novel hierarchical method to remove unwanted variation (hRUV) in large scale omics 

experiments. To enable effective data harmonization across large cohort studies or across an 

extended period of time, we propose a novel hierarchical approach to correct for the unwanted 

variation between smaller subsets of batches individually, and to sequentially expand to the next set 

of batches. The two key components of the hRUV can be summarized as follows: (i) signal drift 

correction within batches with a robust smoother that captures the irregular patterns affecting each 

metabolite; and (ii) a scalable hierarchical approach to removal of unwanted variation between 

batches with the use of carefully assigned sample replicates. 

 

The signal drift within each batch was corrected using a robust smoother that captures the trends 

visible by run order. We explored linear (robust linear model) and non-linear (local regression) model 

fitting smoothers to capture and remove the run order effects in the data. This is because, due to their 

chemical and physical properties (Supplementary Fig 2a), each metabolite is affected differently 

across runs within each batch. These unique changes in signal for each metabolite need to be treated 

separately.  

 

The concept of sequential batch correction is introduced here to enable scalability for large scale 

cohort studies. This is a clear contrast to the conventional data integration for normalization that 

involves estimating unwanted variation across all batches as whole (Fig. 1d). Supplementary Fig 2b 

shows the inter-batch variation and the differences in the corresponding adjustment factors over time, 

highlighting the need for dynamic normalization. To this end, we propose two tree structured 

approaches to estimating the different forms of unwanted variation across a large-scale cohort study, 

and to dynamically modify the batch effect removal across time. Fig. 1d illustrates the two 

approaches: balanced tree and the concatenating tree. The balanced tree approach requires log2(n) 

RUV adjustments to deal with n batches, while the concatenating tree approach requires n-1 RUV 

adjustments. The concatenating approach requires more computation than the balanced tree approach 

but has an advantage when future integration with new batches is necessary. For once the initial 

batches are normalised, the additional RUV adjustments are needed are only as many as the number 

of new batches. While the balanced tree approach is quicker for large n, if m new batches are 
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introduced in the future, the data will require additional log2(n+m) RUV adjustments from individual 

batch level. 

 

The details of hRUV are included in the Methods section. The final output of hRUV is a single 

normalised and batch-corrected matrix with all input matrices merged and ready for downstream 

analysis. 

 

Implementation of a smoother and RUV with sample replicates enables effective adjustment of 

within plate variation. We assess the performance of signal drift correction by comparing the results 

of smoothers against themselves and against the commonly used approaches (see Methods). Here, 

we applied both linear and non-linear smoothers to two sets of sample types; pooled QC samples, or 

all biological samples within a batch. In general, all four adjustment approaches (loess, rlm, 

loessSample, rlmSample) give adjusted values that have effectively removed any signal drift 

associated with experimental run order (Supplementary Fig. 3d-f). The intra-batch correction with 

all biological samples performs comparably to adjustments performed with pooled QC samples 

(Supplementary Fig. 3). This suggests a possible reduction in pooled QC samples during 

experimental design, and thus reducing the total run cost.  

 

In addition to using robust smoothers, the use of RUV with short replicates within each batch after a 

robust smoother further reduced the sample variations as demonstrated in Supplementary Fig. 2c. 

Thus using a robust smoother and RUV with short replicates provides effective removal of various 

unwanted intra-batch variations (Fig. 2) and highlights the value of intra-batch sample replicates. 

 

hRUV is more effective in removing unwanted variation compared to other existing methods. 

Across an extended period of time, there are many different types of unwanted variation. Figure 3a 

shows that across 1,000 samples, we observe constant or irregular signal drift or abrupt jumps in 

signals. The run plots (Fig. 3a) illustrate the removal of technical variations introduced between 

batches and from run time effects for the metabolite glutamate.  

 

Next, in comparison, we note that the hierarchical RUV normalisation was better at removing 

unwanted between-batch variation than the original single-step RUV. We compared the standard 

deviation (SD) between all sets of replicates, with lower values indicating better performance as the 

replicates should theoretically be identical. Figure 3b highlights lower SD between hierarchical 

normalization methods (colored in orange and red) and single-step ones (colored in blue and green), 

suggesting that the hierarchical approach is more effective in batch-correction across extended 

periods of time. Additionally, hierarchical approaches following intra-batch RUV (colored red) 

showed even lower sample replicate variation. 
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hRUV retains biological signals and outperforms existing normalization methods. To examine 

the extent to which our method removes only unwanted variation and retains known biological 

signals, we performed supervised machine learning to illustrate our ability to identify known 

biological signals for disease prediction. Here we have chosen hypertension as a response variable 

and performed supervised machine learning classification to detect hypertension status from 

metabolomics abundance. We anticipate that a normalization method that retains biological signals 

has a higher classification accuracy. The differential expression (DE) analysis to identify 

corresponding biomarkers (DE metabolites) measures the interpretability of the signal. 

 

We observed that the average accuracy of hierarchical based normalization methods were generally 

higher compared to one-step methods (Fig 3c). The 8loessAllShort_batch_Hc9 method showed the 

best performance in prediction accuracy. This approach first adjusted for signal drift by fitting a loess 

line through all the samples and RUV corrected with short technical replicates within a batch, 

followed by applying RUV in a hierarchical fashion using batch technical replicates.  

 

Proline, valine, cyclic adenosine monophosphate and dimethyl guanidino valeric acid are metabolites 

known to be associated with individual9s hypertension13315. We observed all these metabolites to be 

significantly differentially expressed in association with the hypertension status of over 1,000 

patients only in hRUV normalized data. Other methods were only capable of identifying subsets of 

these metabolites. 

 

In general, we found that hRUV performed favorably in terms of maintaining strong biological signal 

and reducing unwanted variation such as signal drift and batch specific noise in this large study (Fig. 

4). Our evaluation metrics capture the trade-off between these two broad objectives. hRUV manages 

the trade-off between removing unwanted variation and retaining known clinical features of interest. 

We observed that the ratio, SVR, SERRF and RLSC methods have removed batch effects and 

reduced sample and pooled QC replicate variance, but as a trade-off these methods result in a loss of 

biological signals, as evident by the low AUC and prediction accuracy values. Visualizing all these 

quantities on a heatmap, we find that hRUV methods are ranked in the top 5-10 in most of the 

evaluation criteria (Fig. 4). The hRUV normalized data show the least variation across the different 

types of replicate samples and correctly removed batch driven technical noise, whilst maintaining a 

strong biological signal (Fig. 3b and Supplementary Fig 5a-b).  

 

hRUV is robust to the key decisions and the types of hierarchical structure and choice of 

negative controls. We have investigated a number of parameters under the hRUV framework, 

including the various kinds of technical replication, types of negative control metabolite and types of 

hierarchical structure. We have explored different combinations of replication including pooled QC, 

inter-batch, and intra-batch replicates. We found that corrections with only pooled QC sample 

replicates over-estimates the unwanted variation and thus removes biological signals from the data, 

see Supplementary Fig 6. This highlights the value of using sample replicates as opposed to the 

pooled QC samples in the estimation of intra- and inter-batch unwanted variation. 

 

In contrast, the two hierarchical approaches in our hRUV show only a small differences in many of 

the evaluation measures. Both the balanced trees and the concatenating approaches performed 
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adjustments between two sets of batches with 5 inter-batch replicates at each layer. As summarized 

in Fig 4, the normalization results are very similar between the two types of tree structure.  

 

We explored several approaches to obtaining negative controls for RUV, including a data driven 

iterative procedure to select stable metabolites and the selection of all metabolites, and saw little 

difference between the normalised data outputs. We saw that the use of sample replicates 

demonstrated the greatest impact on the final normalized data (Supplementary Fig. 7). 

  

Discussion 

In this manuscript, we introduce a design strategy and present hRUV, a novel hierarchical approach 

to remove unwanted variations and batch correct for large scale metabolomics data, where there is a 

substantial unmet need. We illustrated the performance of this approach using metabolomics data 

derived from over 1,000 patients in the BioHEART-CT biobank that was run over 15 plates across 

44 days.  

 

The careful arrangement of sample replicates on each plate is an important design consideration for 

large-scale mass-spectrometry studies. Here we believe that systematic arrangements perform better 

with hRUV normalization than fully random ones. In our current design, the samples to be replicated 

were selected randomly from the previous plate and the corresponding repeats (batch replicates) were 

placed at the start of the current plate.  Ideally we9d expect to select samples with this strategy whose 

positions were evenly distributed across the plate, but it is possible by chance to select samples whose 

positions are from only the first half or only the second half of the previous plate (Supplementary 

Table 1). This unintended clustering of selected samples was observed between batches 6 and 7, and 

also between batches 13 and 14, where replicates are selected only from the second half of the 

previous plate. This limits our ability to capture the unwanted variability across the whole plate, and 

as a result, we saw a slight shift in signal between these two batches for selected metabolites 

(Supplementary Fig 5c).  

 

While the proposed hRUV algorithm expects data without missing values, this is often not possible 

in large-scale metabolomics data due to the nature of the mass spectrometry technology pragmatic 

issues related to real world clinical studies. To this end, we include an option for users in which the 

missing values are first imputed prior to applying hRUV and the missing values can be replaced back 

after hRUV integration. This allows many more sparse metabolites to be incorporated for 

downstream analyses which is an important aspect in large-scale metabolomics studies and may 

improve our chance of identifying novel metabolites from the data.  

 

The negative controls are used in RUV to estimate the unwanted variation. The challenge with 

metabolomics is that the signals of the metabolites are dependent on their individual chemical 

properties4,11 and thus the selection of appropriate negative controls to correct for batch effect is a 

challenge. Whilst hRUV function accepts a user-defined set of negative controls, in our exploration 

of data driven negative control metabolites compared to all metabolites as negative control, we have 

found no significant differences between the two approaches in removal of unwanted variation and 

utility of inter-batch sample replicates were more effective for batch correction (Supplementary Fig. 

7).  
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In summary, hRUV uses sample replicates to integrate data from many batches in large-scale 

metabolomics studies. We show the value of suitably located sample replicates for estimating 

unwanted variation and guiding the design of future studies. While several other existing methods 

exist to correct large numbers of batches for intra-batch signal drift and inter-batch unwanted 

variation, hRUV performs consistently better than them in retaining biological variation whilst at the 

same time removing unwanted variation within and across batches.  

Methods 

Clinical samples. The samples used were from the BioHEART-CT discovery cohort, which has been 

described in detail previously16. The study was approved by the Northern Sydney Local Health 

District Human Research Ethics Committee (HREC/17/HAWKE/343) and all participants provided 

informed, written consent. Briefly, patients undergoing clinically indicated CT coronary angiogram 

for suspected coronary artery disease were recruited from multiple sites in Sydney, Australia. Blood 

samples were taken at time of recruitment, and after appropriate processing, plasma samples 

including replicates were aliquoted and stored at -80°C until analysis. 

 

Metabolites were prepared as previously described17,18. In brief, 10¿l plasma was mixed with 90¿l 

HILIC sample buffer, an acetonitrile: methanol: formic acid mix (75:25:0.2, v:v:v). The resulting 

mixture was vortexed and spun at 14,000 rpm for 20 minutes to remove plasma protein. The 

metabolite containing supernatant was then transferred to a glass HPLC sample vial and resolved on 

an Agilent 1260 Infinity HPLC System, and m/z was determined by Qtrap5500 (Sciex)17,18. Each 

sample was eluted over a 25 minute period, and each batch of samples took 40 hours to complete. A 

total of 15 batches were completed over 44 days.  

 

Technical replicate design. For each 96 (8 by 12) well plate, in order of run by rows, the first three 

wells were populated with three pooled QC samples, then a single pooled QC sample was repeated 

after every 10 runs. For each row of the plate from the second onwards, we randomly selected a single 

biological sample from the previous row to be replicated at random position in a row (short replicate). 

For each plate, after the first three pooled QC samples, a random selection of 5 biological samples 

from the previous plate was repeated (batch replicate) and short replicates are embedded at each row. 

All randomization was performed using the sample function in R. The replicate design is available 

as a function plateDesign in the hRUV package, and also in our shiny application 

http://shiny.maths.usyd.edu.au/hRUV. 
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Pre-processing of metabolomics data. Metabolite elution characteristics were pre-determined using 

pure standards. Metabolite abundance peaks were integrated using the area under the curve for 

calibrated peaks from MultiQuant (SCIEX), with manual adjustments to the curves when necessary. 

This ensures the consistency of all the peaks integrated. The m/z signals were log2 transformed and 

metabolites that were not present in at least 50% of the samples were filtered out. Missing values 

were imputed using k-nearest neighbour with default parameters implemented in DMwR219 package 

in R. We examined the three consecutive QC samples embedded at the start of each plate and 

removed any outlying measurements. 

Hierarchical approach to removal of unwanted variation (hRUV). The hRUV algorithm was 

designed for experiments with a large number of batches, and consists of two key components, 

including (i) within batch signal drift adjustment with robust smoothers and RUV; and (ii) the 

adjustment of the datasets with unwanted variation using an RUV in a hierarchical approach. The 

main inputs to hRUV consist of a list of raw signal matrix, with rows corresponding to metabolites 

and columns to samples as SummarizedExperiment20 objects in R, a specific intra- and inter-

batch normalisation method, structure of the tree and the parameters for RUV. hRUV performs 

repeated RUV procedures to sequentially adjust the data over a large collection of batches, with the 

number of unwanted variation factors (k) defaulting to 5. 

 

Part I: Signal drift adjustment within a batch  

In the present setting, batch refers to one 96-well plate. However, this can be any pre-specified 

number of samples.  

 

(i) Standard adjustment (ratio) - The signal ratio was calculated by dividing the sample signal to 

its nearest pooled QC sample run. Let us denote �! as the early run pooled QC sample at run L and 

�!"# as the next pooled QC sample in a batch at run L+M, where � denotes the number of run gaps 

between �! and �!"#. Then the signal ratio is defined as follows: 

 

If �	 < 	�	 f 	�	 +	
#

2
, 

 ���! =	
���

��
 

else if � +	
#

2
	< 	�	 f 	�	 + �, 

 �() 	, = 	
*$%

+&'(
 

where �,) denotes a signal of a sample with metabolite i at run number l. 

 

(ii) Loess line - A loess line was fitted to all the biological samples for each metabolite within a batch 

with the default span parameter of 0.75. The differences between the fitted line to the median of each 

metabolite across all samples per batch were calculated for adjustment of each samples as follows: 

 

�
��
! 	= 	�

��
	+	(�

�
" 	2	�

��
7# )  

 

where 	�,/ represents a ���2 transformed signal for sample j in metabolite � in a batch and	�(0
74  denote 

a loess fitted value of �,/ and �
�
"  denote the median of �,/ for all j. Here, the loess line uses the loess 

function in the stats21 package.  
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(iii) Linear line - Robust linear model (rlm) was fitted on a log2 transformed signal against the run 

index using the rlm function from the MASS22 package to all the biological samples with a maximum 

iteration set to 100. The adjustments of each sample were calculated as with to the loess approach 

where �
�
7#  would denote the predicted value of �,. 

 

(iv) Loess line fitting with pooled QC samples - Similar to (ii), we fit the loess line to the pooled 

QC samples only. The adjustment values of each sample were calculated using the predicted values 

from the model (�
���

7$ ). 

 

�
��
! 	= 	�

��
	+	(�

�
" 	2	�

���
7$) 

 

(vii) Linear line fitting with pooled QC samples - Likewise, we fit the rlm to the pooled QC 

samples. The adjustment values of each sample were calculated using the predicted values from the 

model. 

 

(viii) RUV based approaches - We incorporated sample replicates into our design matrix of RUV 

introduced by Molania et al12. These sample replicates are utilised to estimate the unwanted variation 

as the signals of these replicate samples should theoretically be identical. All metabolites were 

selected as the negative controls for RUV and the number of unwanted factors to use (k) was taken 

as 5. 

 

Part II: Hierarchical batch integration design 

(i) Balanced tree. The balanced tree approach to normalisation is to perform removal of unwanted 

variation measured between pairs of different batch groups at different levels of the tree. In this 

approach, we began by removing unwanted variation between pairs of neighbouring batches. In the 

next layer of adjustment, we paired the two neighbouring groups of integrated batches (sets of 2 

batches) and repeated the process to expand the number of batches per set until the last layer, where 

we had a single group of all the batches which was normalised, as illustrated in schematics in Figure 

1d. For a study with n batches, this will requires log2(n) RUV adjustments.  

  

(ii) Concatenation. As with the balanced tree approach, the concatenating approach performs 

removal of unwanted variation measured between pairs of batches, but in a sequential progression. 

We began with the first two batches for batch correction and sequentially introduced the next batch 

to remove unwanted variation as illustrated in schematics in Figure 1d. For a study with n batches, 

this will require an n-1 number of RUV adjustments. 

 

For both balanced tree and concatenation methods, we apply RUV at each layer as follows:  

 

Let us denote by B the pair of batches of interest, M as the number of metabolites, and S as the number 

of samples in batches B. The mean adjusted sample �234	can be calculated as: 

 

�23*	 =	�23* 2 �2.., 
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where �2..is the average expression of metabolite m across samples S and batches B calculated by: 

�2.. 	= 	
1

7
3 �23*3* ; 

The mean adjusted data �7×#can be fitted to the model underlying the RUV model, which is 

formulated as: 

 

�7×# =	�7×9�9×# 	+ 	�7×:�:×# 	+ 	�7×# 

where X is the matrix of factor of interest; p is the number of factors of interest; W is the unobserved 

design matrix corresponding to the unwanted factors; k is the linear dimension of the unwanted 

factors, which is unknown; � denotes the random error. Thus the RUV normalised data can be 

represented as: 

 

�=7×# =	�7×# 2	�>7×:�?:×# 

 

After the RUV, �2.. is returned back to the mean adjusted RUV normalised data as follows: 

 

�=723* 	= 	�=23* 	+ 	�2.. 

 

 

Data driven negative metabolite selection 

We explored adaptive data driven selection of negative control metabolites in comparison to a 

selection of all metabolites in an RUV method. The adaptive selection was performed by ranking 

non-differentially expressed metabolites by p-values per batch for the hypertension response variable. 

We utilised differential expression analysis with the limma23 package (version 3.46) in R. 

 

Performance evaluation / evaluation metric processing 

We evaluate hRUV methods including 13 publicly available metabolomics data normalization 

methods (Table 1). Details of the method abbreviations is explained in Table 2. These packages were 

installed either through the official CRAN or Bioconductor website where available, or from GitHub 

pages. For all 13 existing methods, we used the default settings and parameters as described in the 

package README or vignette for training each model.  

Evaluation metrics and plots  

(i) Skewness - The skewness of samples were calculated with skewness function from e107124 

package in R.  

 

Let us denote �/ for the non-missing elements of x, n for the number of samples, �for the sample 

mean, s for the sample standard deviation, and �; =	3 (�/ 	2 	�);/�/  for the sample moments of 

order r. The skewness then can be calculated as: 

Skewness = �3/�
3, 

 

(ii) Normality metric - The normality tests were performed with Shapiro-Wilk normality test 

implemented in shapiro.test function from the stats21 package in R. 
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(iii) Predictability with accuracy - To assess the predictability of a normalised dataset, we utilised 

a binary diagnosis of hypertension as the response variable. This was chosen as it had a reasonably 

balanced class distribution, as 39% of the cohort had hypertension. We used a Support Vector 

Machine (SVM) implemented in the e107124 package to predict the hypertension status of 

participants of the study. We measured the average accuracy via a 30-repeated 10 folds cross-

validation strategy. 

 

(iv) Signal strength with AUC - We use the same prediction model from (iii) and calculate the area 

under the ROC curve (AUC) values. 

 

(v) Standard deviation of replicates (SD replicates) - To demonstrate the variation between the 

replicate samples after normalisation, for each set of replicated sample, we calculated the standard 

deviation for each metabolite and visualised the results as a boxplot. A low standard deviation 

indicates a small variability between the replicates and thus illustrates that the replicates are close to 

identical. 

 

(vi) Clustering by batch (Reduction in batch effect) - To assess the removal of batch effects, we 

performed unsupervised hierarchical and k-means clustering (hclust and kmeans in stats21 

package in R respectively) where we set the number of clusters k to the number of batches. The 

cluster output is evaluated using adjusted rand index (ARI): 

 

ARI = 
2	(=>	?	34)

(=	"	3)(3">)	"	(="4)(4">)
 

 

where � is the number of pairs of samples partitioned into the same batch group by the clustering 

method, � is the number of pairs of samples partitioned into the same cluster but does not belong to 

the different batch group, � is the number of pairs of samples partitioned into different clusters but 

belongs to the same batch group and � is the number of pairs of samples correctly partitioned into 

different clusters. A low ARI value indicates lower concordance with the batch information and thus 

demonstrates removal of batch effect in the data. 

 

(vii) Differential expression (DE) analysis of hypertension - To assess the biological signal in the 

normalised data, we performed DE analysis with the R package limma23. We identified a set of 

metabolites with a 5% level of significance and verified their association with hypertension from 

the literature. 

 

Diagnostic Plots 

To graphically assess whether the normalization method or the choice of parameters of hRUV has 

effectively corrected the batch effect, we have provided three kinds of diagnostic plots: (1) PCA 

plots; (2) relative log expression (RLE) plots19; (3) metabolite run plots. 

 

1. PCA. PCA plots were generated using all metabolites. We show the first and second principal 

components.  
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2. Relative Log Expression (RLE) plot. RLE plots are a useful tool to visualize unwanted variation. 

RLA plots are boxplots of RLA for each sample, calculated as �,/ 2 �H,, where �H, = median{�,/:	� =

1,2, . ..}, and �,/ 	is the log signal value of metabolite i in sample j. The samples from different batches 

should have a similar distribution, and the medians of the boxplots should be close to zero if the 

unwanted variations are removed. 

 

3. Metabolite run plot. Metabolite plots are a useful diagnostic visualisation to visualise the signal 

drifts. The run plots are a scatter plot of signals for each metabolite against the run order of all the 

samples. The overall shape of the scatter plot should be a flat horizontal bar. All other shapes of trend 

in the scatter plot is an indication of a signal drift. 
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Code availability 

The hRUV implementation is available as an R package stored at the GitHub, 

https://github.com/SydneyBioX/hRUV and as a web shiny application at 

http://shiny.maths.usyd.edu.au/hRUV.  
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Figures and Table  

 

Table 1 List of existing normalisation methods. 

 

Tags Method Resource/implementation 

log2Raw_batch RUV-III12 R package ruv version 0.9.7.1 

MetNormalizer+SVR Support vector regression 

R package MetNormalizer5 

version 1.3.02 

NormalizeMets+RLSC 

Robust locally estimated 

scatterplot smoothing25 

R package NormalyzeMets26 

version 0.24 

SERRF 

Systematic error removal using 

random forest9 

Online: 

https://slfan.shinyapps.io/ShinyS

ERRF/  

NormalyzerDE_RLR 

Global robust linear 

regression26 

R package NormalyserDE8 

version 1.7.0 

NormalyzerDE_CycLoess Cyclic loess27 

NormalyzerDE_VSN 

Variance-stabilising 

normalisation28 

NormalyzerDE+GI Global intensity  

NormalyzerDE+Quantile Quantile normalisation29 

NormalyzerDE+mean Mean30 

NormalyzerDE+median Median31 

NormalyzerDE+log2 log2 transformation 

Ratio Ratio32  

 

 

Table 2 A normalisation method abbreviation dictionary. 

 

Tags Definition 

X_Y Methods separated by '_' indicates 2 levels of adjustments applied. In this 

example, X is the intra batch adjustment applied and Y indicates the inter 

batch adjustment method applied. 

X+Y Methods separated by 8+9 denotes a method Y implemented in an R 

package X. 

loess A loess line fitting method with pooled QC samples.  

rlm A robust linear model fitted to pooled QC samples. 

loessSample A loess line fitting method only on biological samples.  
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rlmSample A robust linear model fitted only on biological samples. 

short RUV with short (intra-batch) sample replicates 

batch RUV with batch (inter-batch) sample replicates 

_H A hierarchical balanced tree approach  

_Hc A hierarchical concatenating tree approach 

 

 

  

Fig. 1 Schematic overview of the hRUV pipeline. a A schematic illustration of the plasma sample 

arrangement for the experimental plate where intra-batch sample replicates (green circles) and inter-

batch sample replicates (blue circles) are embedded. b A schematic illustration of overall sample 

replicate design and arrangements. c Continuing the color scheme from b, two illustrative run plots 

requiring intra-batch correction, with signal drift and other variations illustrated in the grey boxes. d 

A demonstration of signal variation before and after inter-batch correction in hRUV. A common 

approach to inter-batch correction is illustrated as conventional RUV and the proposed hierarchical 

approaches are illustrated. e A list of evaluation criteria to assess hRUV performances grouped into 

categories of biological signals, variability and reproducibility and distributional characteristics. f A 

screenshot of the user-friendly shiny application. 
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Fig. 2 Examples of typical technical variations and signal drifts within each batches for 

different metabolites and comparison to normalized data. (Note vertical scale change.) a-c PCA 

plots of raw data in batches 6, 7 and 10 respectively, each marker is coloured by the sample run order. 

d-f Run plots exhibiting metabolite signal drift for glucosePos2, glutamine, and 1-methyl histamine 

respectively, for their respective batches. g-i PCA plots from the same batches as a-c respectively 

with intra-batch normalised data using loessSampleShort method. j-l Run plot for the metabolites 

and batches illustrated in d-f but with intra-batch data normalized using loessSampleShort method. 

 

 
Fig. 3 Key assessments of hRUV performances. a A run plot of raw, intra-batch corrected and final 

hRUV normalised data in all 15 batches of the BioHEART-CT cohort. The x-axis indicates the run 

order, the y-axis indicates the signal of glutamate, and samples are coloured by the batch numbers. b 

Boxplots of all sample replicate standard deviations, where lower values indicate better performance. 

The boxes are colored by the approach taken to normalize the data. The y-axis of the plot is restricted 
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to a range between 0 to 1 to highlight the differences between the majority of the methods. SERRF 

and MetNormalizer+SVR9s median sample replicate SD was greater than 1 and thus is not shown. c 

Boxplots of hypertension prediction accuracies for all methods. Higher prediction accuracy indicates 

better performance. The coloring of the boxes are consistent with that in b. 
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Fig. 4 Heatmap of rankings in all evaluations criteria. The y-axis represents all the methods 

explored in this study and the x-axis represents all the qualitative evaluation metrics used for 

evaluation of the integrated data. In each category, the evaluation scores are ranked and categorised 
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into 3 groups, high, medium and low. The colored bar on the right indicates the categorized method 

approaches consistent with Fig. 3b-c.  
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