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Abstract

Liquid chromatography-mass spectrometry based metabolomics studies are increasingly applied to
large population cohorts, running for several weeks to months, even extending to years of data
acquisition. This inevitably introduces unwanted intra- and inter-batch variations over time that can
overshadow true biological signals and thus hinder potential biological discoveries. To date,
normalization approaches have struggled to mitigate the variability introduced by technical factors
whilst preserving biological variance, especially for protracted acquisitions. Here, we designed an
experiment with an arrangement to embed biological sample replicates to measure the variance
within and between batches for over 1,000 human plasma samples run over 44 days. We integrate
these replicates in a novel workflow to remove unwanted variation in a hierarchical structure (hRUV)
by progressively merging the adjustments in neighbouring batches. We demonstrate significant
improvement of hRUV over existing methods in maintaining biological signals whilst removing
unwanted variation for large scale metabolomics studies.

Introduction

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a preferred method of
metabolomic acquisition given its high sensitivity and dynamic range. Typically, a range of
metabolites can be separated on a single high performance LC column and their relative abundance
quantified in MS/MS. This enables capture of fingerprints of specific biological processes that are
critical in precision medicine applications such as studying complex metabolic diseases, and
discovering new therapeutic targets and biomarkers!. There are a number of large-scale cohort studies
that have performed metabolomic analyses, such as the Consortium of Metabolomics Studies
(COMETS)?, and the Framingham Heart Study (FHS)?.

Despite a rapid increase in the number of large-scale metabolomics studies, the normalization of
metabolomics data remains a key challenge*. Due to the data acquisition time of studies with large
sample size, prolonged study recruitment and potentially multiple samples at various time points for
each participant, the data acquisition process may require the samples be divided into multiple
batches, and may span anywhere from months to years*>. Signals often drift over extended periods
due to multiple factors including buffer changes, pooled quality control (QC) sample solutions,
instrument cleanliness, and machine scheduled maintenance®. Common intra-batch variations include
changes in LC-MS/MS performance due to instrument-dependent factors such as component failure
or inconsistency, and fouling of the column, LC or MS source. Common inter-batch variations
include time-dependent instrument variations such as instrument cleaning, tuning, column change,
or inconsistent sample preparation factors including change in equipment and operator. These
technical factors have substantial impact in downstream analytics and need to be appropriately
accounted for to maximise the opportunity to identify true biological signals.

Several workflows have been designed for analysing metabolomics data (e.g. MetaboAnalyst’ and
NormalyzerDE?®). However, most of them adapt common normalization methods developed for other
omics platforms and do not account for signal drift across extended time or inter-plate variations
which are distinct unwanted variations commonly observed in metabolomics studies. A limited
number of metabolomics specific normalizations methods have been developed (Table 1). These
include: Support Vector Regression (SVR)?, Systematic Error Removal using Random Forest
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(SERRF)’, and Removal of Unwanted Variation based approaches'®!!. These approaches utilise

pooled QC samples to control signal drift by fitting non-linear models or by estimating inter-plate
variations. The common assumption of these approaches is that the pooled QC samples are identical
over an extended period of time. Whilst, this is appropriate for a short period of time the assumption
may not hold for large-scale metabolomics data over months or years and currently there are no
existing methods to account for normalization over an extended period.

In this paper, we present a novel experimental sample arrangement strategy to embed biological
sample replicates throughout large scale experiments to facilitate the estimation of unwanted
variation within and between batches with RUV-III'?, which we will refer to as RUV in this paper.
We propose a novel hierarchical approach to removing unwanted variation by harnessing information
from sample replicates embedded in the sequence of experimental runs/batches and applying signal
drift correction with robust linear or non-linear smoothers. An in-house targeted metabolomics study
was performed on a hospital-based cohort of patients with atherosclerosis (BioHEART- CT) was
conducted based on the proposed sample arrangement strategy, and we utilise this to assess the
normalization on a number of criteria including retention of biological signal, low variability among
replication, and reproducibility of results in comparison to other existing methods. The hRUV
method is accessible as an R package and also as a shiny application at
https://shiny.maths.usyd.edu.au/hRUV/.

Results

Replicate arrangement strategy in large scale metabolomics study. We developed a series of
technical replications designed as a framework to enable effective data harmonization in large cohorts
studies or studies over extended periods of time. Our design includes three types of replicates within
each 8x12 =96-well plate, here called batch. These are the (i) classical pooled QC samples, (ii) single
sample replicates in each row of a plate from a random selection of non-replicated samples in
previous rows which we call ‘short replicates’, and (iii) five randomly selected non-short replicated
samples from each plate are replicated to the next plate, which we call ‘batch replicates’. Fig. 1a and
b illustrates a schematic layout of the sample replicates design.

The classical pooled QC consists of a mixture of 10 uL of each of the 1,002 samples, pooled together
into a single tube. The pooled QC sample was aliquoted and frozen, and a fresh aliquot was thawed
for each batch to minimize the impact of repeated freeze thaw cycles. The spacing of the technical
short replicates approximately 10 samples apart capture variation within a short time (approximately
5 hours, based on 30 minutes of run time per sample). This is a good measure of the variation of the
metabolomics experiment. In contrast to pooled QC samples, where one sample is repeated many
times, short technical replicates are duplicates of different samples; this increase in heterogeneity of
samples for the estimation of unwanted variation is more robust compared to estimation with pooled
QC. Finally, the batch replicates measure the variation that occurs across different batches. These
replicates are typically 60-70 samples apart, capturing variation over a longer time period of 48-72
hours.

This design was used to generate data for a large metabolomics study consisting of 1,002 individuals
from the BioHEART-CT biobank and quantification of 100 metabolites per individual. The exact
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sample designs are given in Supplementary Table 1. In total we had 164 replicates from one pooled
QC sample, 230 duplicates from samples across 15 batches, and 140 ‘batch’ duplicates from 70
samples. As expected, variation between replicates within a batch tends to be smaller compared to
replicates between batches, as demonstrated in Supplementary Fig 1. A shiny application was
developed to enable easy generation of the replicate design upon input of the desired plate size and
the desired number of inter-plate replicates. The experimental design with appropriate numbers and
assignment of replicates inserted is then exported as a Comma Separated Values (CSV) file. The
extra replicate tubes were prepared during the aliquoting and inserted into the appropriate positions
during sample processing.

In this current study, a 96 well plate was the natural unit to define as a batch, but in practice, one
could select any number of runs (e.g., 100, subjects to the tray capacity of the autosampler) as the
unit for a batch. The notions of short and long (batch) replicates can be applied to any batch size to
assess variation over a variety of distances.

A novel hierarchical method to remove unwanted variation (hRUV) in large scale omics
experiments. To enable effective data harmonization across large cohort studies or across an
extended period of time, we propose a novel hierarchical approach to correct for the unwanted
variation between smaller subsets of batches individually, and to sequentially expand to the next set
of batches. The two key components of the hRUV can be summarized as follows: (i) signal drift
correction within batches with a robust smoother that captures the irregular patterns affecting each
metabolite; and (ii) a scalable hierarchical approach to removal of unwanted variation between
batches with the use of carefully assigned sample replicates.

The signal drift within each batch was corrected using a robust smoother that captures the trends
visible by run order. We explored linear (robust linear model) and non-linear (local regression) model
fitting smoothers to capture and remove the run order effects in the data. This is because, due to their
chemical and physical properties (Supplementary Fig 2a), each metabolite is affected differently
across runs within each batch. These unique changes in signal for each metabolite need to be treated
separately.

The concept of sequential batch correction is introduced here to enable scalability for large scale
cohort studies. This is a clear contrast to the conventional data integration for normalization that
involves estimating unwanted variation across all batches as whole (Fig. 1d). Supplementary Fig 2b
shows the inter-batch variation and the differences in the corresponding adjustment factors over time,
highlighting the need for dynamic normalization. To this end, we propose two tree structured
approaches to estimating the different forms of unwanted variation across a large-scale cohort study,
and to dynamically modify the batch effect removal across time. Fig. 1d illustrates the two
approaches: balanced tree and the concatenating tree. The balanced tree approach requires loga(7)
RUYV adjustments to deal with n batches, while the concatenating tree approach requires n-1 RUV
adjustments. The concatenating approach requires more computation than the balanced tree approach
but has an advantage when future integration with new batches is necessary. For once the initial
batches are normalised, the additional RUV adjustments are needed are only as many as the number
of new batches. While the balanced tree approach is quicker for large n, if m new batches are
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introduced in the future, the data will require additional log>(n+m) RUV adjustments from individual
batch level.

The details of hRUV are included in the Methods section. The final output of hRUV is a single
normalised and batch-corrected matrix with all input matrices merged and ready for downstream
analysis.

Implementation of a smoother and RUV with sample replicates enables effective adjustment of
within plate variation. We assess the performance of signal drift correction by comparing the results
of smoothers against themselves and against the commonly used approaches (see Methods). Here,
we applied both linear and non-linear smoothers to two sets of sample types; pooled QC samples, or
all biological samples within a batch. In general, all four adjustment approaches (loess, rlm,
loessSample, rimSample) give adjusted values that have effectively removed any signal drift
associated with experimental run order (Supplementary Fig. 3d-f). The intra-batch correction with
all biological samples performs comparably to adjustments performed with pooled QC samples
(Supplementary Fig. 3). This suggests a possible reduction in pooled QC samples during
experimental design, and thus reducing the total run cost.

In addition to using robust smoothers, the use of RUV with short replicates within each batch after a
robust smoother further reduced the sample variations as demonstrated in Supplementary Fig. 2c.
Thus using a robust smoother and RUV with short replicates provides effective removal of various
unwanted intra-batch variations (Fig. 2) and highlights the value of intra-batch sample replicates.

hRUYV is more effective in removing unwanted variation compared to other existing methods.
Across an extended period of time, there are many different types of unwanted variation. Figure 3a
shows that across 1,000 samples, we observe constant or irregular signal drift or abrupt jumps in
signals. The run plots (Fig. 3a) illustrate the removal of technical variations introduced between
batches and from run time effects for the metabolite glutamate.

Next, in comparison, we note that the hierarchical RUV normalisation was better at removing
unwanted between-batch variation than the original single-step RUV. We compared the standard
deviation (SD) between all sets of replicates, with lower values indicating better performance as the
replicates should theoretically be identical. Figure 3b highlights lower SD between hierarchical
normalization methods (colored in orange and red) and single-step ones (colored in blue and green),
suggesting that the hierarchical approach is more effective in batch-correction across extended
periods of time. Additionally, hierarchical approaches following intra-batch RUV (colored red)
showed even lower sample replicate variation.
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hRUYV retains biological signals and outperforms existing normalization methods. To examine
the extent to which our method removes only unwanted variation and retains known biological
signals, we performed supervised machine learning to illustrate our ability to identify known
biological signals for disease prediction. Here we have chosen hypertension as a response variable
and performed supervised machine learning classification to detect hypertension status from
metabolomics abundance. We anticipate that a normalization method that retains biological signals
has a higher classification accuracy. The differential expression (DE) analysis to identify
corresponding biomarkers (DE metabolites) measures the interpretability of the signal.

We observed that the average accuracy of hierarchical based normalization methods were generally
higher compared to one-step methods (Fig 3c). The ‘loessAllShort batch Hc’ method showed the
best performance in prediction accuracy. This approach first adjusted for signal drift by fitting a loess
line through all the samples and RUV corrected with short technical replicates within a batch,
followed by applying RUV in a hierarchical fashion using batch technical replicates.

Proline, valine, cyclic adenosine monophosphate and dimethyl guanidino valeric acid are metabolites
known to be associated with individual’s hypertension'*~!°. We observed all these metabolites to be
significantly differentially expressed in association with the hypertension status of over 1,000
patients only in hRUV normalized data. Other methods were only capable of identifying subsets of
these metabolites.

In general, we found that hRUV performed favorably in terms of maintaining strong biological signal
and reducing unwanted variation such as signal drift and batch specific noise in this large study (Fig.
4). Our evaluation metrics capture the trade-off between these two broad objectives. hARUV manages
the trade-off between removing unwanted variation and retaining known clinical features of interest.
We observed that the ratio, SVR, SERRF and RLSC methods have removed batch effects and
reduced sample and pooled QC replicate variance, but as a trade-off these methods result in a loss of
biological signals, as evident by the low AUC and prediction accuracy values. Visualizing all these
quantities on a heatmap, we find that hRUV methods are ranked in the top 5-10 in most of the
evaluation criteria (Fig. 4). The hRUV normalized data show the least variation across the different
types of replicate samples and correctly removed batch driven technical noise, whilst maintaining a
strong biological signal (Fig. 3b and Supplementary Fig 5a-b).

hRUYV is robust to the key decisions and the types of hierarchical structure and choice of
negative controls. We have investigated a number of parameters under the hRUV framework,
including the various kinds of technical replication, types of negative control metabolite and types of
hierarchical structure. We have explored different combinations of replication including pooled QC,
inter-batch, and intra-batch replicates. We found that corrections with only pooled QC sample
replicates over-estimates the unwanted variation and thus removes biological signals from the data,
see Supplementary Fig 6. This highlights the value of using sample replicates as opposed to the
pooled QC samples in the estimation of intra- and inter-batch unwanted variation.

In contrast, the two hierarchical approaches in our hRUV show only a small differences in many of
the evaluation measures. Both the balanced trees and the concatenating approaches performed
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adjustments between two sets of batches with 5 inter-batch replicates at each layer. As summarized
in Fig 4, the normalization results are very similar between the two types of tree structure.

We explored several approaches to obtaining negative controls for RUV, including a data driven
iterative procedure to select stable metabolites and the selection of all metabolites, and saw little
difference between the normalised data outputs. We saw that the use of sample replicates
demonstrated the greatest impact on the final normalized data (Supplementary Fig. 7).

Discussion

In this manuscript, we introduce a design strategy and present hRUV, a novel hierarchical approach
to remove unwanted variations and batch correct for large scale metabolomics data, where there is a
substantial unmet need. We illustrated the performance of this approach using metabolomics data
derived from over 1,000 patients in the BioHEART-CT biobank that was run over 15 plates across
44 days.

The careful arrangement of sample replicates on each plate is an important design consideration for
large-scale mass-spectrometry studies. Here we believe that systematic arrangements perform better
with hRUV normalization than fully random ones. In our current design, the samples to be replicated
were selected randomly from the previous plate and the corresponding repeats (batch replicates) were
placed at the start of the current plate. Ideally we’d expect to select samples with this strategy whose
positions were evenly distributed across the plate, but it is possible by chance to select samples whose
positions are from only the first half or only the second half of the previous plate (Supplementary
Table 1). This unintended clustering of selected samples was observed between batches 6 and 7, and
also between batches 13 and 14, where replicates are selected only from the second half of the
previous plate. This limits our ability to capture the unwanted variability across the whole plate, and
as a result, we saw a slight shift in signal between these two batches for selected metabolites
(Supplementary Fig 5c).

While the proposed hRUV algorithm expects data without missing values, this is often not possible
in large-scale metabolomics data due to the nature of the mass spectrometry technology pragmatic
issues related to real world clinical studies. To this end, we include an option for users in which the
missing values are first imputed prior to applying hRUV and the missing values can be replaced back
after hRUV integration. This allows many more sparse metabolites to be incorporated for
downstream analyses which is an important aspect in large-scale metabolomics studies and may
improve our chance of identifying novel metabolites from the data.

The negative controls are used in RUV to estimate the unwanted variation. The challenge with
metabolomics is that the signals of the metabolites are dependent on their individual chemical
properties*!! and thus the selection of appropriate negative controls to correct for batch effect is a
challenge. Whilst hRUV function accepts a user-defined set of negative controls, in our exploration
of data driven negative control metabolites compared to all metabolites as negative control, we have
found no significant differences between the two approaches in removal of unwanted variation and
utility of inter-batch sample replicates were more effective for batch correction (Supplementary Fig.
7).
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In summary, hRUV uses sample replicates to integrate data from many batches in large-scale
metabolomics studies. We show the value of suitably located sample replicates for estimating
unwanted variation and guiding the design of future studies. While several other existing methods
exist to correct large numbers of batches for intra-batch signal drift and inter-batch unwanted
variation, hRUV performs consistently better than them in retaining biological variation whilst at the
same time removing unwanted variation within and across batches.

Methods

Clinical samples. The samples used were from the BoOHEART-CT discovery cohort, which has been
described in detail previously!®. The study was approved by the Northern Sydney Local Health
District Human Research Ethics Committee (HREC/17/HAWKE/343) and all participants provided
informed, written consent. Briefly, patients undergoing clinically indicated CT coronary angiogram
for suspected coronary artery disease were recruited from multiple sites in Sydney, Australia. Blood
samples were taken at time of recruitment, and after appropriate processing, plasma samples
including replicates were aliquoted and stored at -80°C until analysis.

Metabolites were prepared as previously described!”'®. In brief, 10ul plasma was mixed with 90ul
HILIC sample buffer, an acetonitrile: methanol: formic acid mix (75:25:0.2, v:v:v). The resulting
mixture was vortexed and spun at 14,000 rpm for 20 minutes to remove plasma protein. The
metabolite containing supernatant was then transferred to a glass HPLC sample vial and resolved on
an Agilent 1260 Infinity HPLC System, and m/z was determined by Qtrap5500 (Sciex)!”-'®. Each
sample was eluted over a 25 minute period, and each batch of samples took 40 hours to complete. A
total of 15 batches were completed over 44 days.

Technical replicate design. For each 96 (8 by 12) well plate, in order of run by rows, the first three
wells were populated with three pooled QC samples, then a single pooled QC sample was repeated
after every 10 runs. For each row of the plate from the second onwards, we randomly selected a single
biological sample from the previous row to be replicated at random position in a row (short replicate).
For each plate, after the first three pooled QC samples, a random selection of 5 biological samples
from the previous plate was repeated (batch replicate) and short replicates are embedded at each row.
All randomization was performed using the sample function in R. The replicate design is available
as a function plateDesign in the ARUV package, and also in our shiny application
http://shiny.maths.usyd.edu.au/hRUV.
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Pre-processing of metabolomics data. Metabolite elution characteristics were pre-determined using
pure standards. Metabolite abundance peaks were integrated using the area under the curve for
calibrated peaks from MultiQuant (SCIEX), with manual adjustments to the curves when necessary.
This ensures the consistency of all the peaks integrated. The m/z signals were log, transformed and
metabolites that were not present in at least 50% of the samples were filtered out. Missing values
were imputed using k-nearest neighbour with default parameters implemented in DMwR2'® package
in R. We examined the three consecutive QC samples embedded at the start of each plate and
removed any outlying measurements.

Hierarchical approach to removal of unwanted variation (hRUV). The hRUV algorithm was
designed for experiments with a large number of batches, and consists of two key components,
including (i) within batch signal drift adjustment with robust smoothers and RUV; and (ii) the
adjustment of the datasets with unwanted variation using an RUV in a hierarchical approach. The
main inputs to hRUV consist of a list of raw signal matrix, with rows corresponding to metabolites
and columns to samples as SummarizedExperiment? objects in R, a specific intra- and inter-
batch normalisation method, structure of the tree and the parameters for RUV. hRUV performs
repeated RUV procedures to sequentially adjust the data over a large collection of batches, with the
number of unwanted variation factors (k) defaulting to 5.

Part I: Signal drift adjustment within a batch
In the present setting, batch refers to one 96-well plate. However, this can be any pre-specified
number of samples.

(i) Standard adjustment (ratio) - The signal ratio was calculated by dividing the sample signal to
its nearest pooled QC sample run. Let us denote P, as the early run pooled QC sample at run L and
P; . as the next pooled QC sample in a batch at run L+M, where M denotes the number of run gaps
between P, and P; ;. Then the signal ratio is defined as follows:

IfL<ZSL+%,

else if L + % <l <L+M

—~ _ _Si
Su = P
L+M

where s;; denotes a signal of a sample with metabolite i at run number /.

(ii) Loess line - A loess line was fitted to all the biological samples for each metabolite within a batch
with the default span parameter of 0.75. The differences between the fitted line to the median of each
metabolite across all samples per batch were calculated for adjustment of each samples as follows:

371'\1' = yij + (571 _y/l;*)

where y;; represents a log, transformed signal for sample j in metabolite i in a batch and y,,* denote
a loess fitted value of y;; and ¥, denote the median of y;; for all j. Here, the loess line uses the 1oess

function in the stats®! package.
9
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(iii) Linear line - Robust linear model (rlm) was fitted on a /og, transformed signal against the run
index using the r 1m function from the MASS?? package to all the biological samples with a maximum
iteration set to 100. The adjustments of each sample were calculated as with to the loess approach
where 37?‘ would denote the predicted value of y;.

(iv) Loess line fitting with pooled QC samples - Similar to (ii), we fit the loess line to the pooled
QC samples only. The adjustment values of each sample were calculated using the predicted values
from the model ()75*).

V5 =y + 00 = 70

(vii) Linear line fitting with pooled QC samples - Likewise, we fit the rlm to the pooled QC
samples. The adjustment values of each sample were calculated using the predicted values from the
model.

(viii) RUV based approaches - We incorporated sample replicates into our design matrix of RUV
introduced by Molania et al'2. These sample replicates are utilised to estimate the unwanted variation
as the signals of these replicate samples should theoretically be identical. All metabolites were
selected as the negative controls for RUV and the number of unwanted factors to use (k) was taken
as 5.

Part I1: Hierarchical batch integration design

(i) Balanced tree. The balanced tree approach to normalisation is to perform removal of unwanted
variation measured between pairs of different batch groups at different levels of the tree. In this
approach, we began by removing unwanted variation between pairs of neighbouring batches. In the
next layer of adjustment, we paired the two neighbouring groups of integrated batches (sets of 2
batches) and repeated the process to expand the number of batches per set until the last layer, where
we had a single group of all the batches which was normalised, as illustrated in schematics in Figure
1d. For a study with » batches, this will requires log2(n) RUV adjustments.

(ii) Concatenation. As with the balanced tree approach, the concatenating approach performs
removal of unwanted variation measured between pairs of batches, but in a sequential progression.
We began with the first two batches for batch correction and sequentially introduced the next batch
to remove unwanted variation as illustrated in schematics in Figure 1d. For a study with n batches,
this will require an n-1 number of RUV adjustments.

For both balanced tree and concatenation methods, we apply RUV at each layer as follows:

Let us denote by B the pair of batches of interest, M as the number of metabolites, and S as the number
of samples in batches B. The mean adjusted sample Z,,;. can be calculated as:

Zmbs = Ymps — Y.
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where Y, is the average expression of metabolite m across samples S and batches B calculated by:

1
Y., = Est Yinbss

The mean adjusted data Zsycan be fitted to the model underlying the RUV model, which is

formulated as:

Zsxm = XsxpPpxm + Wsxi@ixm + €sxm
where X is the matrix of factor of interest; p is the number of factors of interest; /# is the unobserved
design matrix corresponding to the unwanted factors; & is the linear dimension of the unwanted
factors, which is unknown; e denotes the random error. Thus the RUV normalised data can be
represented as:

Zsxm = Zsxm — WoxkQixm

After the RUV, Y,, is returned back to the mean adjusted RUV normalised data as follows:

A

Z*mbs = Zmps T Y.

Data driven negative metabolite selection

We explored adaptive data driven selection of negative control metabolites in comparison to a
selection of all metabolites in an RUV method. The adaptive selection was performed by ranking
non-differentially expressed metabolites by p-values per batch for the hypertension response variable.
We utilised differential expression analysis with the /imma®} package (version 3.46) in R.

Performance evaluation / evaluation metric processing

We evaluate hRUV methods including 13 publicly available metabolomics data normalization
methods (Table 1). Details of the method abbreviations is explained in Table 2. These packages were
installed either through the official CRAN or Bioconductor website where available, or from GitHub
pages. For all 13 existing methods, we used the default settings and parameters as described in the
package README or vignette for training each model.

Evaluation metrics and plots
(i) Skewness - The skewness of samples were calculated with skewness function from e/071%*

package in R.

Let us denote x; for the non-missing elements of x, n for the number of samples, ufor the sample
mean, s for the sample standard deviation, and m, = };(x; — )" /n for the sample moments of
order r. The skewness then can be calculated as:

Skewness = m; /s>,

(ii) Normality metric - The normality tests were performed with Shapiro-Wilk normality test
implemented in shapiro.test function from the stats?' package in R.
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(iii) Predictability with accuracy - To assess the predictability of a normalised dataset, we utilised
a binary diagnosis of hypertension as the response variable. This was chosen as it had a reasonably
balanced class distribution, as 39% of the cohort had hypertension. We used a Support Vector
Machine (SVM) implemented in the el/071?* package to predict the hypertension status of
participants of the study. We measured the average accuracy via a 30-repeated 10 folds cross-
validation strategy.

(iv) Signal strength with AUC - We use the same prediction model from (iii) and calculate the area
under the ROC curve (AUC) values.

(v) Standard deviation of replicates (SD replicates) - To demonstrate the variation between the
replicate samples after normalisation, for each set of replicated sample, we calculated the standard
deviation for each metabolite and visualised the results as a boxplot. A low standard deviation
indicates a small variability between the replicates and thus illustrates that the replicates are close to
identical.

(vi) Clustering by batch (Reduction in batch effect) - To assess the removal of batch effects, we
performed unsupervised hierarchical and k-means clustering (hclust and kmeans in stats?!
package in R respectively) where we set the number of clusters & to the number of batches. The
cluster output is evaluated using adjusted rand index (ARI):

_ 2 (ad — bc)
ARI (a + b)(b+d) + (a+c)(c+ad)

where a is the number of pairs of samples partitioned into the same batch group by the clustering
method, b is the number of pairs of samples partitioned into the same cluster but does not belong to
the different batch group, ¢ is the number of pairs of samples partitioned into different clusters but
belongs to the same batch group and d is the number of pairs of samples correctly partitioned into
different clusters. A low ARI value indicates lower concordance with the batch information and thus
demonstrates removal of batch effect in the data.

(vii) Differential expression (DE) analysis of hypertension - To assess the biological signal in the
normalised data, we performed DE analysis with the R package /imma®*. We identified a set of
metabolites with a 5% level of significance and verified their association with hypertension from
the literature.

Diagnostic Plots

To graphically assess whether the normalization method or the choice of parameters of hRUV has
effectively corrected the batch effect, we have provided three kinds of diagnostic plots: (1) PCA
plots; (2) relative log expression (RLE) plots'®; (3) metabolite run plots.

1. PCA. PCA plots were generated using all metabolites. We show the first and second principal
components.
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2. Relative Log Expression (RLE) plot. RLE plots are a useful tool to visualize unwanted variation.
RLA plots are boxplots of RLA for each sample, calculated as Y;; — Y;, where ¥; = median{Y; =
1,2,...}, and Yj; is the log signal value of metabolite i in sample j. The samples from different batches
should have a similar distribution, and the medians of the boxplots should be close to zero if the
unwanted variations are removed.

3. Metabolite run plot. Metabolite plots are a useful diagnostic visualisation to visualise the signal
drifts. The run plots are a scatter plot of signals for each metabolite against the run order of all the
samples. The overall shape of the scatter plot should be a flat horizontal bar. All other shapes of trend
in the scatter plot is an indication of a signal drift.
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Code availability

The hRUV implementation is available as an R package stored at the GitHub,
https://github.com/SydneyBioX/hRUV and as a web shiny application at
http://shiny.maths.usyd.edu.au/hRUV.
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Figures and Table

Table 1 List of existing nor

malisation methods.

Tags

Method

Resource/implementation

log2Raw_batch

RUV-III'2

R package ruv version 0.9.7.1

R package MetNormalizer®

MetNormalizer+SVR Support vector regression version 1.3.02
Robust locally estimated R package NormalyzeMets?®
NormalizeMets+RLSC scatterplot smoothing?’ version 0.24
Online:
Systematic error removal using|https://slfan.shinyapps.io/ShinyS
SERRF random forest’ ERRF/

NormalyzerDE RLR

Global robust linear
regression?®

NormalyzerDE CycLoess

Cyclic loess?’

NormalyzerDE VSN

Variance-stabilising
normalisation®®

NormalyzerDE+GI

Global intensity

NormalyzerDE+Quantile

Quantile normalisation®’

NormalyzerDE+mean Mean*°
NormalyzerDE+median ~ [Median®'
R package NormalyserDE?®
NormalyzerDE+log2 log> transformation version 1.7.0
Ratio Ratio*

Table 2 A normalisation method abbreviation dictionary.

Tags Definition

XY Methods separated by ' ' indicates 2 levels of adjustments applied. In this
example, X is the intra batch adjustment applied and Y indicates the inter
batch adjustment method applied.

X+Y Methods separated by 4+’ denotes a method Y implemented in an R
package X.

loess A loess line fitting method with pooled QC samples.

rlm A robust linear model fitted to pooled QC samples.

loessSample A loess line fitting method only on biological samples.
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rimSample A robust linear model fitted only on biological samples.
short RUYV with short (intra-batch) sample replicates
batch RUYV with batch (inter-batch) sample replicates
“H A hierarchical balanced tree approach
_Hc A hierarchical concatenating tree approach
bPiate 1 Plate2 Plate3 Plate 4 PaeN €
Al e P Biological signals
a Patei I o o—o Predictability - Accuracy
® Identification of DE metabolites
; I ... ROC curve
AUC
® 2
s Variability and reproducibility
D6 @ i 7Y Sample replicate variability s
O Non-replicate samples — — QC sample replicate variability oy 'Eg:‘"
@ Intra-batch sample replicate ) : PCA plots . e
@ Inter-batch sample replicate Signal drifts over runs Run plots Batch clustering
c o T e :
Normalised sianal o? ¥y " Distributional characteristics
ormalised signals e O P ° 5 RLE plats )
(o] [ (o] o] o e O ‘Nmamym
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= B T
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Inter-batch correction approaches

After batch correction

.oo.-.' ..o.."o‘.‘o°..'oo.. - ) —

Fig. 1 Schematic overview of the hRUYV pipeline. a A schematic illustration of the plasma sample
arrangement for the experimental plate where intra-batch sample replicates (green circles) and inter-
batch sample replicates (blue circles) are embedded. b A schematic illustration of overall sample
replicate design and arrangements. ¢ Continuing the color scheme from b, two illustrative run plots
requiring intra-batch correction, with signal drift and other variations illustrated in the grey boxes. d
A demonstration of signal variation before and after inter-batch correction in hRUV. A common
approach to inter-batch correction is illustrated as conventional RUV and the proposed hierarchical
approaches are illustrated. e A list of evaluation criteria to assess hRUV performances grouped into
categories of biological signals, variability and reproducibility and distributional characteristics. f A
screenshot of the user-friendly shiny application.
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Fig. 2 Examples of typical technical variations and signal drifts within each batches for
different metabolites and comparison to normalized data. (Note vertical scale change.) a-c PCA
plots of raw data in batches 6, 7 and 10 respectively, each marker is coloured by the sample run order.
d-f Run plots exhibiting metabolite signal drift for glucosePos2, glutamine, and 1-methyl histamine
respectively, for their respective batches. g-i PCA plots from the same batches as a-c respectively
with intra-batch normalised data using loessSampleShort method. j-1 Run plot for the metabolites
and batches illustrated in d-f but with intra-batch data normalized using loessSampleShort method.

a Glutamate, Iog2Raw b Standard deviation of sample replicates
225- 100":':.:-_.
20.0- WMW """: -.
0.75-
17.5
. s
15.0- g
. = 0.50-
125 8
Glutamate, loessSampleAllShort ° I :
< l
225- ] “ . g 0.25 I E ' !
2200 M W ) z "ﬁ; ? L ‘L ‘
Sirs " o 4 i 0.00-
o 15.0- < [ Hypertension prediction accuracy

0.700-
125"
Glutamate, loessSampleAllShort_batch_Hc

225 . 0.675- +
. % Y
T
17.5- 50.650-
o
15.0 < +
125 . ; ; . ; d
0 250 500 750 1000 1250 0625
Run order *
Batch information 0.600 gy o ) I ) ) S T ) S ) T
e & s & e e e s o e s s e s o 0 Ff S O 2 LK RS S 5
QPP P N CE F IR S o o o730 5
1 2 34 5 6 7 8 910 111213 1415 & SIS IS g%
| S
Method types EFEEXEAEN SF s
Hierarchical approach OFIE, SRS & EF
. FREHFOEESE & & P
g Raw - Simple RUV based ‘ (with intra-RUV method) \1\0}\\\%@% E & ‘a@ ¥ ¥ &
Simple regression/ < <
- centering ‘ Hierarchical approach Methods

Fig. 3 Key assessments of hRUV performances. a A run plot of raw, intra-batch corrected and final
hRUYV normalised data in all 15 batches of the BoOHEART-CT cohort. The x-axis indicates the run
order, the y-axis indicates the signal of glutamate, and samples are coloured by the batch numbers. b
Boxplots of all sample replicate standard deviations, where lower values indicate better performance.
The boxes are colored by the approach taken to normalize the data. The y-axis of the plot is restricted
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to a range between 0 to 1 to highlight the differences between the majority of the methods. SERRF
and MetNormalizer+SVR’s median sample replicate SD was greater than 1 and thus is not shown. ¢
Boxplots of hypertension prediction accuracies for all methods. Higher prediction accuracy indicates
better performance. The coloring of the boxes are consistent with that in b.
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explored in this study and the x-axis represents all the qualitative evaluation metrics used for
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into 3 groups, high, medium and low. The colored bar on the right indicates the categorized method
approaches consistent with Fig. 3b-c.

References

1. Clish, C. B. Metabolomics: an emerging but powerful tool for precision medicine. Mol. Case
Stud. 1, a000588 (2015).

2. Yu, B. et al. The Consortium of Metabolomics Studies (COMETS): Metabolomics in 47
Prospective Cohort Studies. Am. J. Epidemiol. 188, 991-1012 (2019).

3. Tsao, C. W. & Vasan, R. S. Cohort Profile: The Framingham Heart Study (FHS): overview of
milestones in cardiovascular epidemiology. Int. J. Epidemiol. 44, 1800-1813 (2015).

4. Misra, B. B. Data normalization strategies in metabolomics: Current challenges, approaches,
and tools. Eur. J. Mass Spectrom. 26, 165—174 (2020).

5. Shen, X. et al. Normalization and integration of large-scale metabolomics data using support
vector regression. Metabolomics 12, 89 (2016).

6. Dunn, W. B., Wilson, 1. D., Nicholls, A. W. & Broadhurst, D. The importance of experimental
design and QC samples in large-scale and MS-driven untargeted metabolomic studies of
humans. Bioanalysis 4, 2249-2264 (2012).

7. Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways
from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743—760 (2011).

8. Willforss, J., Chawade, A. & Levander, F. NormalyzerDE: Online Tool for Improved
Normalization of Omics Expression Data and High-Sensitivity Differential Expression
Analysis. J. Proteome Res. 18, 732740 (2019).

9. Fan, S. et al. Systematic Error Removal Using Random Forest for Normalizing Large-Scale
Untargeted Lipidomics Data. Anal. Chem. 91, 3590-3596 (2019).

10. De Livera, A. M. et al. Normalizing and Integrating Metabolomics Data. Anal. Chem. 84,

10768-10776 (2012).

20


https://doi.org/10.1101/2020.12.21.423723
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423723; this version posted December 22, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Livera, A. M. D. et al. Statistical Methods for Handling Unwanted Variation in Metabolomics
Data. Anal. Chem. 87, 36063615 (2015).

Molania, R., Gagnon-Bartsch, J. A., Dobrovic, A. & Speed, T. P. A new normalization for
Nanostring nCounter gene expression data. Nucleic Acids Res. 47, 6073—6083 (2019).
Flores-Guerrero Jose L. et al. Concentration of Branched-Chain Amino Acids Is a Strong Risk
Marker for Incident Hypertension. Hypertension 74, 1428—1435 (2019).

Teymoori, F. et al. Various proline food sources and blood pressure: substitution analysis. /nt.
J. Food Sci. Nutr. 71, 332-340 (2020).

Siffert, W. G Protein Polymorphisms in Hypertension, Atherosclerosis, and Diabetes. Annu.
Rev. Med. 56, 17-28 (2004).

Kott, K. A. et al. Biobanking for discovery of novel cardiovascular biomarkers using imaging-
quantified disease burden: protocol for the longitudinal, prospective, BioHEART-CT cohort
study. BMJ Open 9, 028649 (2019).

Koay, Y. C. et al. Ingestion of resistant starch by mice markedly increases microbiome-derived
metabolites. FASEB J. 33, 8033-8042 (2019).

Koay, Y. C. et al. Effect of chronic exercise in healthy young male adults: a metabolomic
analysis. Cardiovasc. Res. (2020) doi:10.1093/cvr/cvaa051.

Torgo, L. Data Mining with R, learning with case studies, 2nd edition. (Chapman and
Hall/CRC, 2016).

Morgan, M., Obenchain, V., Hester, J. & Pages, H. SummarizedExperiment:
SummarizedExperiment container. (2020).

R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for
Statistical Computing, 2020).

Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).

Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43, e47—e47 (2015).

21


https://doi.org/10.1101/2020.12.21.423723
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423723; this version posted December 22, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

24. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e/071: Misc Functions of
the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. (2020).

25. Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using
gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6,
1060-1083 (2011).

26. De Livera, A. M., Olshansky, G., Simpson, J. A. & Creek, D. J. NormalizeMets: assessing,
selecting and implementing statistical methods for normalizing metabolomics data.
Metabolomics 14, 54 (2018).

27. Chawade, A., Alexandersson, E. & Levander, F. Normalyzer: A Tool for Rapid Evaluation of
Normalization Methods for Omics Data Sets. J. Proteome Res. 13, 3114-3120 (2014).

28. Wei, X. et al. MetPP: a computational platform for comprehensive two-dimensional gas
chromatography time-of-flight mass spectrometry-based metabolomics. Bioinformatics 29,
1786—-1792 (2013).

29. Veselkov, K. A. et al. Optimized Preprocessing of Ultra-Performance Liquid
Chromatography/Mass Spectrometry Urinary Metabolic Profiles for Improved Information
Recovery. Anal. Chem. 83, 5864-5872 (2011).

30. Lee, J. et al. Quantile normalization approach for liquid chromatography-mass spectrometry-
based metabolomic data from healthy human volunteers. Anal. Sci. Int. J. Jpn. Soc. Anal.
Chem. 28, 801-805 (2012).

31. ’Kindt, R., Morreel, K., Deforce, D., Boerjan, W. & Van Bocxlaer, J. Joint GC—MS and LC—
MS platforms for comprehensive plant metabolomics: Repeatability and sample pre-treatment.
J. Chromatogr. B 877, 3572-3580 (2009).

32. Wang, W. et al. Quantification of Proteins and Metabolites by Mass Spectrometry without
Isotopic Labeling or Spiked Standards. Anal. Chem. 75, 4818-4826 (2003).

33. Roberts, L. D., Souza, A. L., Gerszten, R. E. & Clish, C. B. Targeted Metabolomics. Curr.
Protoc. Mol. Biol. 98, 30.2.1-30.2.24 (2012).

22


https://doi.org/10.1101/2020.12.21.423723
http://creativecommons.org/licenses/by-nc-nd/4.0/

