

1 **Pastures and Climate Extremes: Impacts of cool season warming and drought on the**
2 **productivity of key pasture species in a field experiment**

3

4 Amber C. Churchill^{*a,1}, Haiyang Zhang^a, Kathryn J. Fuller^a, Burhan Amiji^a, Ian C.
5 Anderson^a, Craig V. M. Barton^a, Yolima Carrillo^a, Karen L. M. Catunda^a, Manjunatha H.
6 Chandregowda^a, Chioma Igwenagu^a, Vinod Jacob^a, Gil Won Kim^{a,b} Catriiona A. Macdonald^a,
7 Belinda E. Medlyn^a, Ben D. Moore^a, Elise Pendall^a, Jonathan M. Plett^a, Alison K. Post^{a,c}, Jeff
8 R. Powell^a, David T. Tissue^{a,d}, Mark G. Tjoelker^a, Sally A. Power^a

9

10 ^aHawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW
11 Australia

12

13 ^bInstitute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South
14 Korea

15

16 ^cThe Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ,
17 USA

18

19 ^dGlobal Centre for Land-based Innovation, Western Sydney University, Hawkesbury
20 Campus, Richmond, NSW, Australia

21

22 ¹Present address: Department of Ecology, Evolutionary Biology and Behavior
23 University of Minnesota, St. Paul, MN, USA

24 *Correspondence: Corresponding author achurchi@umn.edu

25

26 **Key words (6-10)**

27 Climate warming, seasonal drought, plant functional groups, grassland, rangeland,
28 aboveground production, PACE field facility

29 **Abstract**

30 Shifts in the timing, intensity and/or frequency of climate extremes, such as severe drought
31 and heatwaves, can generate sustained shifts in ecosystem function with important ecological
32 and economic impacts for rangelands and managed pastures. The Pastures and Climate
33 Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts
34 of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a
35 factorial combination of drought and elevated temperature (ambient +3 °C) on pasture
36 productivity. The experiment included nine common pasture and Australian rangeland
37 species from three plant functional groups (C_3 grasses, C_4 grasses and legumes) planted in
38 monoculture. Winter/spring drought resulted in productivity declines of 45% on average and
39 up to 74% for the most affected species (*Digitaria eriantha*) during the 6-month treatment
40 period, with eight of the nine species exhibiting significant yield reductions. Despite
41 considerable variation in species' sensitivity to drought, C_4 grasses were more strongly
42 affected by this treatment than C_3 grasses or legumes. Warming also had negative effects on
43 cool-season productivity, associated at least partially with exceedance of optimum growth
44 temperatures in spring and indirect effects on soil water content. The combination of
45 winter/spring drought and year-round warming resulted in the greatest yield reductions. We
46 identified responses that were either additive such that there was only as significant warming
47 effect under drought (*Festuca*), or less-than-additive, where there was no drought effect under
48 warming (*Medicago*), compared to ambient plots. Results from this study highlight the
49 sensitivity of diverse pasture species to increases in winter and spring drought severity
50 similar to those predicted for this region, and that anticipated benefits of cool-season

51 warming are unlikely to be realised. Overall, the substantial negative impacts on productivity
52 suggest that future, warmer, drier climates will result in shortfalls in cool-season forage
53 availability, with profound implications for the livestock industry and natural grazer
54 communities.

55
56

57 **1 Introduction**

58 Climate change is a dominant driver of ecosystem change across the globe (Steffen et al.,
59 2015; Sage, 2019). Exposure to high temperatures and changes in rainfall regimes have been
60 shown to disrupt physiological function and alter plant species' interactions, ultimately
61 driving changes in productivity and ecological processes such as nutrient and water cycling
62 (Parmesan et al., 2000; Backhaus et al., 2014; Frank et al., 2015; Ma et al., 2015). Predicting
63 the impact of climate change on these processes is challenging, as temperature profiles
64 (including minimum and maximum values) and the frequency, timing and size of rainfall
65 events play major roles in driving change in ecosystem function, whereas climate models and
66 projections often focus on only changes in mean annual temperature or precipitation
67 (Easterling et al., 2000; Kreyling et al., 2008; Jentsch et al., 2009). Despite a recent increase
68 in the number of studies focusing on climate extremes (De Boeck et al., 2015, 2019; Knapp et
69 al., 2017; Hanson and Walker, 2019), relatively few have addressed the ecological
70 implications of seasonal shifts in climate, which is important for understanding the
71 underlying trade-offs between plant phenology and associated plant functional group
72 responses (i.e. C₃ vs. C₄, legumes; Beier et al., 2012). This is especially true for studies
73 considering the impact of multiple climate variables simultaneously as the combination may
74 generate contrasting predictions for different plant functional groups (Beier et al., 2012).

75

76 Shifts in the seasonality of precipitation associated with climate change are predicted for
77 many terrestrial ecosystems (IPCC, 2021). These changes are likely to have serious economic
78 ramifications in biomes where productivity is tightly coupled with seasonal rainfall patterns
79 (O'Mara, 2012; Godde et al., 2020), especially in warmer regions where the absence of low-
80 temperature constraints allows year-round plant growth that depends on seasonal rainfall
81 (Arredondo et al., 2016; Zeiter et al., 2016). Grassland phenology is often predicted based on

82 classifications of plant traits or functional groups, with different optimum temperatures for
83 photosynthesis (C₃ vs. C₄ grasses; Munson and Long, 2017; Ode and Tieszen, 1980; Winslow
84 et al., 2003), timing of flowering in relation to peak summer temperatures (Sherry et al.,
85 2007), life history strategies (annual vs. perennial; Cleland et al., 2006; Enloe et al., 2004;
86 Veenendaal et al., 1996) and life forms (grasses/legumes/forbs etc.; König et al., 2018; Lesica
87 and Kittelson, 2010; Rathcke and Lacey, 1985). In temperate and subtropical climates,
88 grasslands dominated by C₃ grasses mainly accrue biomass during cooler periods of the year
89 (i.e. winter or spring), while C₄-dominated grasslands typically accumulate biomass later in
90 the growing season, when temperatures are higher (Pearcy and Ehleringer, 1984; Pearcy et
91 al., 1987; Adams et al., 2016; Wilcox et al., 2016). These broad patterns are based on key
92 differences in optimum temperatures for photosynthesis (**Figure 1**), as well as differences in
93 water-use-efficiency and strategies for nutrient acquisition. Field-based manipulations
94 examining impacts of drought on grassland production have primarily been conducted at the
95 community scale, where both direct and indirect (inter-specific competition) responses
96 combine to determine community-level productivity. For pasture systems, however, it is
97 important to evaluate climate impacts for a wide range of forage species grown in
98 monoculture in order to predict productivity responses and capacity to expand into new
99 regions or vulnerability within current ranges as local climate shifts (Johnston, 1996; Bindi
100 and Olesen, 2011).

101
102 In addition to changing rainfall regimes, rising temperatures are expected to have direct and
103 indirect impacts on many ecosystem processes (Bai et al., 2013; Novem Auyeung et al.,
104 2013; Song et al., 2019). In temperate climates, direct effects range from shifts in the timing
105 of peak productivity relative to the start of the growing season (typically earlier) to extending
106 the length of the growing season (Keatinge et al., 1998; Walker et al., 2006). The majority of

107 field-based temperature manipulations have been conducted in temperate or cold-climate
108 ecosystems, where low temperatures constrain growth for part of the year. These studies
109 often find increased productivity and shifts in growth phenology, notably growth starting
110 earlier and/or continuing later into the year, associated with warming (Aerts et al., 2006;
111 Kueppers et al., 2017; Lu et al., 2013; Walker et al., 2006; **Figure 1**), although there are
112 exceptions (Dukes et al., 2005; Arnone et al., 2011; Deutsch et al., 2011). Warming
113 experiments in warm-temperate or subtropical climates with comparatively short mild winters
114 and hot summers are relatively rare. These are, however, needed to evaluate the effects of
115 rising temperatures in circumstances where warming results in exceedance of thermal optima
116 for growth (Dukes et al., 2005; Volder et al., 2013; Song et al., 2019) and for regions where
117 forage species grow throughout the year.

118
119 Plant functional groups are predicted to differ in their responses to warming, with warm-
120 season species such as tropical grasses likely to benefit from increased winter or spring
121 temperatures, while temperate grasses may be particularly vulnerable to higher spring or
122 summer temperatures, especially when soil moisture is limiting (Munson and Long, 2017;
123 **Figure 1**). Legume responses to warming are also likely to vary between seasons. For
124 example, as with grasses, warming during the cooler months can bring temperatures closer to
125 thermal optima (Sanz-Sáez et al., 2012; Whittington et al., 2013; Peng et al., 2020) ultimately
126 promoting greater production (**Figure 1**). However, higher late spring and summer
127 temperatures may result in growth reductions as a consequence of thermal constraints on
128 nitrogen fixation and increased respiratory carbon losses or reduced photosynthesis if
129 temperatures exceed temperature optima (Aranjuelo et al., 2007; Whittington et al., 2012).
130 The impact of warmer temperatures on the timing and amount of biomass production in

131 different species across seasons is an important knowledge gap, both in pastures and native
132 grasslands and rangelands.

133

134 While studies that address the impact of either precipitation or temperature on plant
135 physiology and ecosystem function are valuable, warmer temperatures frequently co-occur
136 with drought (De Boeck et al., 2010; Dai, 2011; Yuan et al., 2016; Boer et al., 2020).

137 Consequently, it is necessary to evaluate the impacts of co-occurring climate stressors on
138 plant community structure and ecosystem function (Sherry et al., 2008; Hoeppner and Dukes,
139 2012). Climate models predict that temperate and sub-tropical Australia will be subject to
140 large reductions in winter and spring rainfall (CSIRO, 2020) and grasslands across the globe
141 are expected to experience more frequent and severe drought (Wang et al., 2021). Given the
142 importance of pastures and rangelands for maintaining food security (O'Mara, 2012; Nábrádi,
143 2016; Godde et al., 2020), we established a large-scale, field experiment (at the **P**Astures and
144 **C**limate **E**xtremes- PACE- field facility) to evaluate plant species' responses to winter/spring
145 rainfall reduction and year-round warming. Specifically, we asked: 1) How does
146 winter/spring drought affect productivity in a range of pasture species? 2) Do drought
147 responses in pasture grasses depend on their functional group? 3) Does cool-season warming
148 enhance productivity and/or exacerbate the impacts of drought in the considered species?

149

150 **2 Methods**

151 **2.1 Site description**

152 The PACE facility was constructed in 2017 at the Hawkesbury Campus of Western Sydney
153 University, in Richmond, New South Wales, Australia (S33.60972, E150.73833, elevation 25
154 m). Mean annual precipitation at this location is 800 mm (Australian Government Bureau of
155 Meteorology, Richmond - UWS Hawkesbury Station 1980-2010); however, there is large

156 inter-annual variability (annual precipitation 500-1400 mm over the past 30 years). Winter
157 and spring precipitation accounts for 40% of annual rainfall. Mean annual temperature is 17.2
158 °C, with the monthly maximum and minimum occurring in January (22.9° C) and July (10.2°
159 C), respectively (BOM, 2020). The site is fenced to prevent access by mammalian herbivores.
160 The soil is a loamy sand with a volumetric water holding capacity of 15-20% (**Table S1**).

161
162 The field facility comprises six replicate polytunnel shelters constructed from galvanized
163 steel frames. These are covered with a single layer of 180 µm polyethylene (Argosee,
164 Australia) to intercept all ambient precipitation, although the long sides are open to a height
165 of 1.5 m to allow free flow of air (**Figure 1**). Shelters are 48 m long by 8 m wide, with a
166 maximum height of 4.6 m, and are oriented along a SW-NE axis with the open ends facing
167 into the direction of the prevailing wind. Each shelter has eight treatment plots (4 m by 4 m;
168 **Figure 1**) that are further subdivided into four subplots (**Figure 1B; Figure S1**), with
169 different plant species assigned at the subplot level (total 192 subplots). All surface soils were
170 rotary-tilled to a depth of 12 cm to homogenize the upper soil profile prior to pasture
171 establishment. All 4 x 4 m plots have a full root barrier installed to a depth of 90 cm to ensure
172 hydrological isolation between treatments; the nested 2 x 2 m subplots have an additional root
173 barrier between them to a depth of 30 cm to minimise root ingress.

174
175 Nine plant species were grown in monoculture subplots, along with three sets of two-species
176 mixtures, for a total of twelve different planting combinations replicated in six independent
177 shelters. However, for the purposes of this study, we focused on the nine monoculture species
178 only. Species encompassed a range of functional diversity (C₃ and C₄ grasses, legumes;
179 annuals and perennials) and origins (native grasses, and tropical or temperate introduced
180 pasture grasses and legumes; **Table 1**) that are commonly found in improved grasslands

181 (pastures) or rangelands (Clements et al., 2003). Sward establishment was initiated during
182 early spring 2017 and yield data for the pilot year (2018-2019) are included in the supplement
183 (**Table S2**). Initial sowing included a fertilizer addition in the form of diammonium
184 phosphate (110 kg ha⁻¹), and swards were subsequently managed via hand-weeding, herbicide
185 and, where needed, insecticide application to maintain target species, in line with industry
186 practice. Subplots with legumes received appropriate rhizobium inoculant during sward
187 establishment: ALOSCA granular inoculant for *Biserrula* subplots (Group BS; ALOSCA
188 Technologies, Western Australia, Australia); Easy Rhiz soluble legume inoculant and
189 protecting agent for *Medicago* subplots (Group AL; New Edge Microbials, New South
190 Wales, Australia). Subplots received top-up fertilization seasonally to replace nutrients
191 removed from the soil (55 kg ha⁻¹; Cal-Gran Aftergraze, Incitec Pivot Fertilisers, Australia).

192

193 **2.2 Experimental treatments**

194 All nine species were exposed to a winter/spring drought treatment, and a subset of two
195 species (*Festuca*, *Medicago*) received a warming treatment in a factorial combination with
196 drought (**Figure S1**). The drought treatment comprised a control (Control: C) and a drought
197 (Drought: D) watering regime that was applied during the 6-month austral winter/spring
198 period (1 June to 30 November 2019). A 60% reduction in winter/spring rainfall was chosen
199 for the drought manipulation as representing the upper end of climate model predictions for
200 end-of-century seasonal rainfall change for south-eastern Australia, under RCP8.5 (CSIRO,
201 2020). Furthermore, a 60% reduction in winter/spring rainfall aligns with historical climate
202 extremes for key pasture growing regions across south-eastern Australia (BOM, 2019); this
203 treatment therefore represented historically relevant rainfall extremes, which are predicted to
204 increase in both frequency and duration. The control was set to represent a typical

205 precipitation regime for the local area, accounting for long-term patterns in seasonality and in
206 the statistical distribution of event sizes and timing within seasons (**Figure S2**).

207

208 The warming treatment comprised a year-round temperature increase of +3 °C (**Table 1**)
209 achieved using infra-red (IR) heaters, approximating predicted changes in temperature for
210 Australia by 2080 under RCP7.0 (IPCC, 2017) and SSP3-7.0 (IPCC, 2021) scenarios.

211 Elevated temperatures (eT) were applied to two 4 x 4 m plots within each shelter; one plot
212 received the control irrigation (eT-C), while the other plot received the drought treatment
213 (eT-D) and these were paired with two ambient temperature (aT) plots, one receiving control
214 irrigation (aT-C) and the other the drought treatment (aT-D). Each warmed plot had a heating
215 array comprising eight 1000W ceramic heaters (FTE 1000W, Ceramicx, Ireland) mounted on
216 an aluminium frame (4 m x 4 m) suspended 1.4 m above ground level (**Figure 2C**). Lamps
217 were positioned to give uniform coverage of IR radiation across the four composite subplots.
218 The power level to the heating lamps was adjusted each minute, via pulse width modulation
219 using a solid-state relay controlled by a data logger (CR1000, Campbell Scientific), based on
220 a proportional-integral control algorithm. Target temperatures for these plots were controlled
221 via feedback from IR-sensors (SI-100, Apogee Instruments, Logan, UT, USA) mounted at a
222 height of 3.8 m, recording plot surface temperatures every five minutes; temperatures thus
223 represent plot-level means for the plant canopy and, where visible, soil, and are henceforth
224 referred to as canopy temperatures. The + 3 °C warming treatment was applied with reference
225 to canopy temperatures for the relevant control and drought treatments (i.e., aT-C paired to
226 eT-C and aT-D paired to eT-D) to account for differences in soil moisture and vegetation
227 cover between these plots.

228

229 **2.3 Environmental monitoring**

230 Each shelter had a data logger (CR1000, Campbell Scientific) that recorded environmental
231 conditions and regulated the heating lamps. Soil moisture sensors (16 per shelter; Time
232 Domain Reflectometers; CS616, Campbell Scientific) recorded volumetric soil water content
233 (0-15 cm) every 15 min in all six replicates of four different species subplots and treatment
234 combinations (**Table S3**); in the *Medicago* subplots soil water content was also monitored at
235 a second depth (15-30 cm). Soil temperature probes (T107, Campbell Scientific) were
236 installed in the top 6-12 cm of the soil of eight subplots per shelter (all four drought and
237 warming treatment combinations of *Festuca* and *Medicago*) to record soil temperature every
238 15 min (**Table S3**). Air temperature and humidity sensors (Series RHP-2O3B, Dwyer
239 Instruments Inc, USA) mounted in force-ventilated radiation shields were installed inside
240 three of the rainout shelters at 0.6 m height, with records collected every 5 min to determine
241 any shelter effects on environmental conditions. Additionally, three sets of sensors were
242 installed at the same height outside the shelters. Photosynthetically active radiation (PAR)
243 was recorded at 5-min intervals using PAR sensors (Apogee quantum sensor, USA) installed
244 at a 6 m height outside two shelters, with two additional sensors located within shelters at 3
245 m.

246

247 **2.4 Biomass harvests**

248 All subplots were regularly harvested by clipping to determine aboveground productivity
249 during active growing periods. This ‘surrogate grazing’ involved use of hand shears and a
250 sickle mower. Timing of harvests was based on grazing recommendations for individual
251 species (Clements et al., 2003); hence, there were 2 (*Chloris* and *Digitaria*) or 3 (all other
252 species) harvests per species during the six-month winter and spring period in 2019 (Clark et
253 al., 2016). During each harvest plants were cut to 5 cm above the soil surface and weighed

254 (fresh and dry mass), with a sub-sample of harvested material sorted to determine the
255 proportion of live and dead biomass. The weed (i.e. non-target species) fraction from each
256 subplot was also assessed and was excluded from aboveground biomass measurements (<
257 5%). All materials were oven-dried at 70 °C for at least 48 hours prior to determining dry
258 mass.

259

260 **2.5 Calculations and statistical analyses**

261 The responses of temperature and soil water content to drought and warming treatments were
262 determined based on subplot-level (soil moisture, soil temperature) or plot-level (canopy
263 temperature) daily mean values. Aboveground production responses were determined based
264 on subplot totals, summed across all harvests conducted during the 6-month winter/spring
265 drought period.

266

267 Statistical analyses of treatment effects were conducted using linear mixed effects models
268 with climate treatments ('drought' or 'control': D or C, 'warming' or 'ambient': eT or aT) as
269 fixed effects and random effects defined as 'subplot nested within plot' or 'plot' (to account
270 for non-independence among continuous measurements) nested within 'shelter' (to account
271 for the blocked design), and 'date' (to account for temporal variation). Volumetric water
272 content data in *Medicago* subplots were also analysed for differences between upper (0-15
273 cm) and lower (15-30 cm) depths among climate treatments by including 'depth' as a fixed
274 effect. Climate treatment effects on aboveground production were analysed using two
275 different linear mixed effects models based on our hypotheses comparing responses among
276 different functional plant groups using a 'functional group' categorical predictor fixed effect.
277 For the first set of these analyses, 'drought' and 'warming' treatments were included as fixed
278 effects; 'Species' was also included as a random effect for models examining differences

279 among ‘functional groups’ (as a fixed effect), and ‘plot nested within shelter’ was included as
280 a nested random effect for all models. Aboveground production was natural log-transformed
281 to meet assumptions of constant variance, where indicated in statistical tables. All analyses
282 were conducted in R version 4.0.0 (R Core Team, 2020) using the package lme4 (Bates,
283 2015) and Kenward-Roger degrees of freedom were calculated using the Anova function in
284 the ‘car’ package (Fox and Weisberg, 2019). Pairwise comparisons to determine treatment
285 effects on soil or canopy temperature and soil water content, or aboveground production
286 among species or functional groups, were conducted using the package ‘emmeans’ (Length,
287 2020) and the Tukey method for *P*-value adjustment.

288

289 To compare responses to drought among species and functional groups, log response ratios
290 between paired control and droughted subplots within a shelter were calculated for
291 aboveground biomass summed across all harvests to derive a treatment effect size:

$$292 \quad \text{Effect size} = \exp \left(\overline{\ln \left(\frac{\text{Drought}}{\text{Control}} \right)} \right) - 1 \quad (1)$$

293

294 Linear mixed effects models were used for this second set of analyses evaluating differences
295 in the effect size among 1) species and 2) functional groups, with both specified as fixed
296 effects. Random effects included ‘shelter’ for both models, while the model for 2) also
297 included ‘species’ as an independent random effect. Modelled data were back transformed
298 prior to visualization of species- and functional group-level differences. The standard error of
299 the mean effect size was calculated as the product of the back-transformed mean and the
300 standard error of the effect size.

301

302 Interactions between warming and drought, the effect of drought on warming responses, and
303 the effect of warming on drought effects, were calculated as the log response ratio between

304 single factor treatment effects within a shelter for each period (Dieleman et al., 2012). These
305 ratios were calculated such that the effect of drought was examined by comparing the effect
306 size (Equation 1) for each warming level (aT-D / aT-C, eT-D / eT-C). The effect of warming
307 was examined as the effect size for each drought level (eT-C / aT-C, eT-D / aT-D) and the
308 effect of warming on the drought response as the ratio between these two effects ((eT-D / aT-
309 D)/(eT-C / aT-C)).

310

311 **3 Results**

312 **3.1 Drought and warming treatment effects on environmental conditions**

313 Drought and warming significantly altered soil water content and temperature across the six-
314 month winter/spring study period (**Figure 3**, **Figure S3-6**, **Tables S4** and **S5**). During this
315 time, droughted subplots of all continuously monitored species (*Biserrula*, *Festuca*,
316 *Medicago*, and *Lolium*) had significantly reduced soil moisture in the upper 15 cm (**Figure 3**;
317 **Figure S3**; $P < 0.05$) compared with controls. Additionally, soil water contents in all
318 droughted subplots were less variable compared to their respective control subplots (**Figure**
319 **3A, B**).

320

321 Soil water content was reduced by warming in *Festuca* subplots, particularly under drought
322 conditions ($P = 0.03$; **Figure S2**), although there were intermittent short-term positive effects
323 of warming on soil moisture following irrigation events for this species (**Figure 3B**). Soil
324 water content (0-15 cm) in *Medicago* subplots was unaffected by warming. There was,
325 however, evidence of greater soil water content at depth (15-30 cm) in droughted *Medicago*
326 soils, compared with surface levels (**Figure S4**).

327

328 Plot-level canopy temperatures were consistently increased by both drought ($P < 0.001$, + 1.0
329 °C) and warming ($P < 0.001$, + 3.0 °C). There were, however, no interactions between
330 drought and warming due to the experimental design which referenced warming treatments to
331 ambient temperatures for the respective droughted or control plot (**Figure S5; Table S4**).
332 Additionally, warming altered the maximum and minimum temperatures and thus the
333 temperature range within plots (**Figure S5; Table S5**). Warmed plots of *Festuca* and
334 *Medicago* had no days when minimum canopy temperatures fell below freezing (compared to
335 one day in ambient plots) and only 15 days when canopy temperatures fell below 5 °C
336 (compared to 45 days in ambient plots). At the other end of the scale, the warming treatment
337 resulted in an additional 16 days when canopy temperatures exceeded 40 °C and an extra 8
338 days where temperatures exceeded 45 °C (**Figure 3C, D**). Subsurface soil temperatures were
339 also significantly increased by both drought (*Festuca*) and warming (*Festuca* and *Medicago*)
340 (**Figure S6**). Overall, soil temperature responses were similar between species, although
341 drought amplified the warming effect in *Festuca* but not *Medicago* soils.
342

343 Shelter effects on air temperature, relative air humidity, and PAR levels were even across
344 shelters; on average there was an 11% decrease in temperature, a 6% increase in relative
345 humidity and a 22% reduction in PAR under shelters, as compared to outside (**Figure S7**).
346 Shelter effect on air temperature changed from winter to spring, with a slight cooling effect
347 during the winter, likely due to lower levels of radiation, and gradually transitioned to a
348 neutral and then positive effect during late spring (**Figure S7b**).
349

350 **3.2 Aboveground production response to drought**

351 During the 6-month winter/spring drought period, total aboveground production ranged from
352 2,800 to 8,300 kg ha⁻¹ under control conditions (**Figure 4A**). The most productive species

353 were *Themedia*, *Medicago* and *Rytidosperma*, while *Festuca*, *Chloris* and *Biserrula* were the
354 least productive. Droughted subplots were significantly less productive than their respective
355 controls, with an average yield reduction of ~45% across the nine species (**Figure 4B; Table**
356 **2**). There was also a significant interaction between drought and species, with eight of the
357 nine species having significantly lower productivity under drought (**Table 2**). The remaining
358 species (*Lolium*, a perennial C₃ grass) experienced late spring die back and had a non-
359 significant 11% reduction in total productivity summed across the six months ($P = 0.51$).

360

361 The drought effect size, quantified as the log response ratio between control and droughted
362 subplots, varied among species (**Figure 4B**) with the greatest reductions being shown by two
363 of the C₄ grasses (*Digitaria*: 74% and *Themedia*: 59% yield reduction). The two legume
364 species showed intermediate reductions (*Biserrula*: 56% and *Medicago*: 37%), while C₃
365 grasses were the most variable group (*Lolium*: 11% to *Phalaris*: 48% reduction). All plant
366 functional groups were negatively impacted by drought, with C₄ grasses experiencing
367 significantly greater loss of productivity than C₃ grasses or legumes (**Figure 5; Table 2**).

Table 1. The origin, growth form and photosynthetic pathway of pasture and rangeland species selected for study in a drought and warming field experiment in the PACE facility

Species*	Origin	Growth Form	Photosynthetic pathway	Warming Treatment
<i>Biserrula pelecinus</i>	Temperate, introduced	Legume	C ₃	
<i>Medicago sativa</i>	Temperate, introduced	Legume	C ₃	Yes
<i>Festuca arundinacea</i>	Temperate, introduced	Grass	C ₃	Yes
<i>Lolium perenne</i>	Temperate, introduced	Grass	C ₃	
<i>Phalaris aquatica</i>	Temperate, introduced	Grass	C ₃	
<i>Rytidosperma caespitosum</i>	Temperate, native	Grass	C ₃	
<i>Chloris gayana</i>	Tropical, introduced	Grass	C ₄	
<i>Digitaria eriantha</i>	Tropical, introduced	Grass	C ₄	
<i>Themeda triandra</i>	Tropical, native	Grass	C ₄	

*Species referenced by genus names in the text

Table 2. Linear mixed effects model output for the effects of drought on aboveground productivity of nine pasture and rangeland species during the 6-month winter/spring period.

Response	Fixed Effects	F value	P value	R ² m [#]	R ² c [§]
Biomass	Drought	131.8 _{1,23}	<0.01	0.75	0.78
	Species	24.0 _{8,69}	<0.01		
	Drought x Species	4.2 _{8,69}	<0.01		
Biomass	Drought	114.8 _{1,23}	<0.01	0.27	0.78
	FG [*]	0.0 _{2,6}	0.97		
	Drought x FG	6.4 _{2,84}	<0.01		

All biomass data were ln transformed to meet assumptions of constant variance. F value subscripts indicate degrees of freedom, ^{*}FG refers to functional group, [#]R²m indicates marginal error associated with linear model fixed effects, [§]R²c indicates conditional error or the total variation described by the full model including nested random effects (plots within a shelter).

369

370 **3.3 Effects of warming and drought-warming interactions on aboveground biomass production**

372 Warming during the 6-month winter/spring period generally reduced productivity (**Table 3**).
373 While there was a broadly consistent response to the combination of drought and warming
374 (**Table 3**), the absolute magnitude of productivity decline differed between the two species
375 (**Figure 6A**). Warming resulted in a significant decline in winter/spring productivity in
376 *Festuca* that was greater under drought (control: 18 %, drought: 31% reduction; **Figure 6B**,
377 **C**). *Medicago* swards were not significantly affected by warming under either precipitation
378 treatment (**Figure 6C**). Additionally, while *Medicago* swards that experienced ambient
379 temperatures were negatively impacted by drought, productivity of swards that were exposed
380 to both warming and drought did not differ significantly from those receiving the control
381 precipitation regime (**Figure 6B**). This indicates that warming slightly reduces the negative
382 effects of drought for *Medicago* (**Figure 6A, C**), although interactions between warming and
383 drought were not significant for either species (**Figure 6D**).

384

385

Table 3. Linear mixed effects model output for the combined effects of drought and warming on aboveground productivity of both *Medicago sativa* and *Festuca arundinacea* during the 6-month winter/spring period.

Response	Fixed Effects	F value	P value	R²m[#]	R²c^{\$}
Biomass	Drought	23.2 _{1,15}	<0.01	0.79	0.86
	Warming	6.9 _{1,15}	0.02		
	Species	208.3 _{1,20}	<0.01		
	D x W	0.0 _{1,15}	0.86		
	D x S	0.7 _{1,20}	0.42		
	W x S	1.6 _{1,20}	0.22		
	D x W x S	2.5 _{1,20}	0.13		

Biomass data were ln transformed to meet assumptions of constant variance, F value subscripts indicate degrees of freedom, [#]R²m indicates marginal error associated with linear model fixed effects, ^{\$}R²c indicates conditional error or the total variation described by the full model including nested random effects (plots within a shelter).

386 **4 Discussion**

387 Projections of future climate change, including increases in the frequency and magnitude of
388 extreme climate events, are likely to disrupt ecosystem functioning (Jentsch and
389 Beierkuhnlein, 2008; Knapp et al., 2008; Nijp et al., 2015), with important consequences for
390 the productivity of pastures and rangelands (Jiménez et al., 2011; Godde et al., 2020). We
391 found that eight of the nine C₃ and C₄ species exposed to extreme winter/spring drought
392 experienced significant reductions in cool season productivity, with 45% declines on average
393 among species and losses of up to 74%, relative to controls. Despite large species differences
394 in drought sensitivity, we did find evidence for functional group-specific responses between
395 C₄ grasses, C₃ grasses, and legumes, such that C₄ grasses had the greatest response to
396 drought. Furthermore, we found no evidence of a positive effect of warming on the
397 productivity of two temperate species' (*Festuca* and *Medicago*) and the combination of
398 warming and drought resulted in the greatest biomass declines, which were either additive
399 (*Festuca*) or less-than-additive (*Medicago*). Taken together, these results demonstrate the
400 utility of evaluating responses of a range of species to single and compound climate extremes
401 for improved forecasts of future grassland vulnerability to climate change.

402

403 **4.1 Productivity responses to winter/spring drought**

404 Decades of research focused on examining grassland responses to drought have emphasized
405 the importance of regional climate context (Heisler-White et al., 2009; Knapp et al., 2017;
406 Slette et al., 2019) including rainfall seasonality (Padrón et al., 2020). The timing of drought
407 in relation to plant growth is a key factor influencing species' responses to changing rainfall
408 regimes, with evidence that shifts in rainfall seasonality can be more important than changes
409 in the amount of rainfall (Belovsky and Slade, 2020). Cool season rainfall has been found to
410 drive soil water storage and long-term patterns of productivity in many grasslands and

411 regions with year-round patterns of plant growth (Derner et al., 2020). Furthermore, there is
412 evidence that winter precipitation can offset the effects of spring/summer drought (Fry et al.,
413 2013). Locally in South-eastern Australia, projections for increased severity of winter/spring
414 drought (CSIRO, 2020) are likely to have large impacts on the seasonality of pasture and
415 rangeland productivity. Similar shifts in precipitation may have far reaching implications for
416 decisions on stocking densities and associated livestock production around the world (Derner
417 et al., 2020).

418

419 Changes in the seasonality of precipitation and the timing of when drought occurs with a
420 growing season, is particularly important in ecosystems that comprise a mixture of C₃ and C₄
421 plant species with distinct growth phenologies. In our warm temperate/subtropical region, we
422 predicted that cool-season drought would more negatively impact C₃ species due, in part, to
423 the timing of high soil water deficits during their period of active growth as well as
424 differences in water use efficiency. We found that while some individual C₃ species (e.g.
425 *Festuca*) experienced large growth reductions in response to cool-season drought, as a group,
426 C₄ species were more negatively affected than their temperate C₃ counterparts. This finding
427 has numerous implications for the sustainability of forage production, particularly in systems
428 where growth occurs year-round due to a lack of cold temperature constraints. Firstly,
429 sustained rainfall and soil water deficits during this period will have direct impacts on
430 productivity of temperate species that are active in winter and early spring, contributing to
431 winter feed-gaps. Secondly, the accumulated soil water deficit during periods of winter and
432 early spring drought can have negative impacts on the spring growth of warm-season (C₄)
433 grasses, as seen in our study and those of others in the USA (Prevéy and Seastedt, 2014;
434 Arredondo et al., 2016). If this response is consistent across C₄ grass species, management
435 recommendations that promote switching to more heat-tolerant C₄ species to accommodate

436 increased temperatures in traditionally temperate/sub-tropical cropping regions (Johnston,
437 1996) may not result in yield gains during the spring and early summer.

438

439 Legumes had the most consistent drought response, although broad generalizations are
440 limited with results from only two species. Compared with other species in this study,
441 *Medicago* experienced only modest impacts of drought on aboveground production. This may
442 have been a consequence of deep tap roots (Li et al., 2012; Nie et al., 2015), allowing access
443 to deep soil water to sustain growth during dry periods. Deep rooting strategies can also
444 facilitate shifts in moisture depth profiles due to hydraulic lift (Raza et al., 2013), thereby
445 reducing drought effects at the sward level (Liste and White, 2008; Pang et al., 2013).
446 *Biserrula*, also a deep-rooted legume (Loi et al., 2005; Haling et al., 2016), experienced
447 greater productivity losses in response to drought, compared to *Medicago*. However, unlike
448 *Medicago*, a perennial whose swards develop over multiple years (Li et al., 2012), *Biserrula*
449 is an annual species, regenerating from seed early in spring each year. These life history
450 differences that influence growth seasonality along with the significant effect of winter/spring
451 drought on productivity of the tropical (C₄) grasses, highlight the importance of drought
452 timing in relation to species' growth phenology (Wilcox et al., 2017; Yao et al., 2019), which
453 is at least partially reflected in their functional group classifications.

454

455 **4.2 Plant responses to warming and drought × warming interactions**

456 Gradual warming associated with climate change is predicted to affect ecosystems through a
457 variety of mechanisms, including direct impacts of increased air and soil temperature on
458 species' physiology and indirect impacts on soil water content via increases in evaporation or
459 transpiration (Deutsch et al., 2011). Many temperate and cold-climate systems report gains in
460 productivity associated with warming (Bloor et al., 2010; Wang et al., 2012), due to reduced

461 exposure to growth-limiting cold temperatures (Mori et al., 2014; Naudts et al., 2011; Reyer
462 et al., 2013) or greater nutrient availability resulting from increased microbial activity (Bloor
463 et al., 2010; Dellar et al., 2018). The beneficial impacts of warming on grassland productivity
464 have been reported both globally (Gao et al., 2016) and locally (Cullen et al., 2009). In other
465 systems, however, warming can shift temperatures beyond critical physiological thresholds,
466 resulting in reduced growth or even tissue die-back (Bastos et al., 2014; Cremonese et al.,
467 2017). In our sub-tropical system, we found no increase in productivity associated with cool-
468 season warming for either pasture species. Rather, we found a significant overall decline in
469 productivity in response to elevated temperature. This is despite an increase in winter
470 growing degree days and a reduction in frost exposure, changes that are expected to increase
471 winter and early spring growth (Chang et al., 2017; Piao et al., 2019). It is likely, therefore,
472 that lower productivity was associated with supra-optimal temperatures for these species
473 during spring and/or warming-associated reductions in water availability. In addition to these
474 productivity changes, changes to the nutritional quality of pastures can be anticipated and will
475 impact livestock production under future, more extreme climate conditions (Catunda et al.,
476 2021).

477

478 *Festuca* and *Medicago* are widely planted across Europe, North and South America,
479 Australasia and Africa (Gibson and Newman, 2001; Ghaleb et al., 2021), contributing to the
480 pasture feed-base that underpins global livestock production. These temperate species have
481 optimum temperatures for photosynthesis in the region of 20-29°C (*Festuca*; (Sasaki et al.,
482 2002; Sinclair et al., 2007; Jacob et al., 2020) and 15-30°C (*Medicago*; Al-hamdan and
483 Todd, 1990; Jacob et al., 2020). Whilst winter warming is, therefore, likely to stimulate gross
484 photosynthetic rates, spring temperatures were regularly above these thresholds, especially in
485 the later part of the season where daily maxima of over 45°C were recorded in warmed plots.

486 The exceedance of thermal optima, along with increased respiratory carbon losses at warmer
487 temperatures (Heskel et al., 2016; Chandregowda, 2021) may explain observed productivity
488 declines in response to warming. There was, however, also evidence of small reductions in
489 soil water content associated with the warming treatment, particularly for *Festuca*. Given the
490 generally low levels of soil water availability in these well-drained sandy soils, this increased
491 soil moisture stress may have contributed to the large decline in aboveground productivity
492 observed in warmed plots for this species. Although higher temperatures are generally
493 associated with increased productivity in northern hemisphere grasslands (Craine et al.,
494 2012), warming can have both positive (winter) and negative (summer) impacts, depending
495 on ambient temperature (Kreyling et al., 2019). Contrary to expectations, our findings
496 indicate that perceived benefits of winter and spring warming may not be realized under field
497 conditions, especially where ambient levels of soil water availability are sub-optimal for
498 growth. Similar negative relationships between grassland productivity and cool season
499 temperatures have also been reported elsewhere from long term survey data (Wu et al., 2021).

500

501 High temperatures and drought are strongly coupled (Seneviratne et al., 2010) and their co-
502 occurrence can exacerbate soil water deficits as a result of evaporation from surface soils and
503 increased requirements for transpirational cooling (Ciais et al., 2005; Kirschbaum and
504 McMillan, 2018). However, the ecological impacts of these co-occurring stressors depend on
505 the physiological thermal optima and drought adaptation strategies of individual species, with
506 additive, greater-than-additive or less-than-additive responses all reported (Zavalloni et al.,
507 2008; Wu et al., 2011; Dreesen et al., 2012; Yu et al., 2012; De Boeck et al., 2016). In our
508 study both species exposed to warming alongside drought experienced the greatest
509 productivity declines in this combined treatment, with effects being either additive (*Festuca*)
510 or less-than-additive (*Medicago*) such that the effects of winter-spring drought were lower

511 reduced under continuous warming. An exacerbation of drought effects at higher
512 temperatures has been reported across biomes and plant functional groups, often associated
513 with reductions in soil moisture (Adams et al., 2009; Orsenigo et al., 2014; De Boeck et al.,
514 2016), such as we found for *Festuca*. This connection between temperature and water
515 availability is likely to amplify the intensity of ecological drought under future climates (Dai,
516 2011; IPCC, 2021).

517

518 Alternatively, temperature-driven reduction in available water has the potential to provide
519 drought-priming effects, through ‘stress-memory’, that reduce impacts of subsequent water
520 stress (Zavalloni et al., 2008). The less-than-additive productivity response in *Medicago*
521 exposed to the combined warming and drought treatment suggests the possibility of plant
522 acclimation to water stress, following prolonged exposure to low-severity droughts associated
523 with the warming treatment (Schwinning et al., 2004; Walter et al., 2013; Backhaus et al.,
524 2014). This acclimation may be important for the persistence and profitability of this pasture
525 species in the future. Similar less-than-additive temperature and drought interactions have
526 been observed in temperate grasslands and more generally across major biomes in meta-
527 analyses (De Boeck et al., 2011; Wu et al., 2011; Song et al., 2019). Importantly, our results
528 align with model predictions of productivity declines in Australian rangelands in response to
529 moderate (+3 °C) warming combined with reduced rainfall (McKeon et al., 2009).

530

531 Many studies have highlighted the importance of a species’ persistence in drought and high
532 temperatures (Culvenor et al., 2016), and this is especially true for perennial grasses and
533 legumes in managed grasslands (Norton et al., 2009). Further work investigating the
534 mechanisms underpinning species’ responses will help refine predictions about the impacts of
535 multiple, co-occurring changes under future climates. This study provides important, new

536 experimental, field-based data on the effects of extreme drought on a wide variety of pasture
537 species and two native grasses, and, for a sub-set of species, in combination with continuous
538 warming. These data complement information from modelling studies (Kaine and Tozer,
539 2005; Cullen et al., 2009) and comparisons across precipitation gradients (Clark et al., 2016)
540 to quantify impacts of future, more extreme rainfall regimes on the productivity of the pasture
541 and rangeland feed base that underpins livestock grazing in many parts of the world (Godde
542 et al., 2020). Work is underway to characterise relationships between productivity losses and
543 plant traits and strategies relating to the acquisition and use of water (root traits, plant-
544 microbial interactions, plant hydraulics) and the allocation of carbon (above- versus
545 belowground, root and crown carbohydrate storage), to determine the mechanisms
546 responsible for the observed species' differences to drought and warming. This information
547 will be key to extrapolating findings from this study to a wider range of locations and
548 grassland species, including many of international relevance in production systems across the
549 globe.

550

551 **5 Conclusions**

552 This paper introduces a new experimental facility used to simulate future, more extreme
553 climates, under field conditions. We found consistent negative effects of severe winter/spring
554 drought on seven pasture species and two native Australian rangeland grasses, highlighting
555 the challenges associated with future climate risk management for livestock production
556 systems. Strong reductions in cool season productivity for all functional groups highlight
557 potential climate constraints on winter forage availability, but also species' persistence
558 throughout the warmer summer months. Furthermore, the expanded use of tropical C₄ grasses
559 to mitigate declines in temperate C₃ species with rising global temperatures may lead to lower
560 cool-season productivity due to the relatively high seasonal drought sensitivity of the C₄

561 grasses examined in this study. Trade-offs are therefore implicit in planting decisions aimed
562 at enhancing pasture drought tolerance, given the increases in mean and maximum
563 temperatures that are already being observed globally. Additionally, substantial productivity
564 declines associated with warming, even in the cooler months, highlight the important role of
565 temperature in altering ecosystem water balance and, potentially, carbon dynamics,
566 suggesting limited benefits from future warming in warm temperate and sub-tropical systems.
567 Selection of species and cultivars with the physiological and/or phenological traits that
568 support sustained productivity under more extreme climate conditions will become
569 increasingly important as climate change undermines the performance of traditional pasture
570 and rangeland species.

571

572 **6 Conflict of Interest**

573 The authors declare that the research was conducted in the absence of any commercial or
574 financial relationships that could be construed as a potential conflict of interest.

575

576 **7 Author Contributions/Funding/Acknowledgements**

577 The authors would like to acknowledge individuals whose efforts supported the data
578 collection and site management for this work, including Angelica Vårhammar, Jackson
579 Bridges-Parlett, Alexandra Boyd, Shania Therese Didier Serre, Samantha Weller, Jinyan
580 Yang and Arjunan Krishnananthaselvan. We also gratefully acknowledge expert input to
581 early project discussions from Cath Lescun, Tom Davison, Tom Dickson, Allen Newman,
582 Warwick Badgery, Suzanne Boschma, Richard Eckard, Brendan Cullen and Alan Humphries,
583 and to Heritage Seeds for providing seeds. This project was supported by funding from Meat
584 and Livestock Australia's Donor Company (P.PSH. 0793), Dairy Australia (C100002357)
585 and Western Sydney University. Authors ACC and SAP wrote the paper with input from all

586 co-authors on draft iterations; ACC conducted statistical analyses with input from BEM, HZ,
587 JRP and KJF; SAP, EP, MGT, DTT, CVMB, BA, JRP, JMP, CAM, BDM, YC, ICA
588 designed the field experiment with input from ACC, HZ and KJF; ACC, HZ, KJF, KLMC,
589 MC, CI, VJ, GWK and AKP collected field samples.

590

591 **8 Data Availability Statement**

592 The datasets analysed for this study can be found in the Dryad Repository upon publication
593 of this manuscript.

594 **8 References**

595 Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J. C., Breshears,
596 D. D., Zou, C. B., et al. (2009). Temperature sensitivity of drought-induced tree
597 mortality portends increased regional die-off under global-change-type drought. *Proc.
598 Natl. Acad. Sci. U. S. A.* 106, 7063–6. doi:10.1073/pnas.0901438106.

599 Adams, M. A., Turnbull, T. L., Sprent, J. I., and Buchmann, N. (2016). Legumes are
600 different: leaf nitrogen, photosynthesis, and water use efficiency. *Proc. Natl. Acad. Sci.
601* 113, 4098–4103. doi:10.1073/pnas.1523936113.

602 Aerts, R., Cornelissen, J. H. C., and Dorrepaal, E. (2006). Plant performance in a warmer
603 world: general responses of plants from cold, northern biomes and the importance of
604 winter and spring events. *Plant Ecol.* 182, 65–77. doi:10.1007/s11258-005-9031-1.

605 Al-hamdani, S., and Todd, G. W. (1990). Effects of temperature on photosynthesis on
606 photosynthate partitioning in alfalfa. *Can. J. Plant Sci.* 70, 203–208.

607 Aranjuelo, I., Irigoyen, J. J., and Sánchez-Díaz, M. (2007). Effect of elevated temperature
608 and water availability on CO₂ exchange and nitrogen fixation of nodulated alfalfa plants.
609 *Environ. Exp. Bot.* 59, 99–108. doi:10.1016/j.envexpbot.2005.10.008.

610 Arnone, J. A., Jasoni, R. L., Lucchesi, A. J., Larsen, J. D., Leger, E. A., Sherry, R. A., et al.
611 (2011). A climatically extreme year has large impacts on C₄ species in tallgrass prairie
612 ecosystems but only minor effects on species richness and other plant functional groups.
613 *J. Ecol.* 99, 678–688. doi:10.1111/j.1365-2745.2011.01813.x.

614 Arredondo, T., García-Moya, E., Huber-Sannwald, E., Loescher, H. W., Delgado-Balbuena,
615 J., and Luna-Luna, M. (2016). Drought manipulation and its direct and legacy effects on
616 productivity of a monodominant and mixed-species semi-arid grassland. *Agric. For.
617 Meteorol.* 223, 132–140. doi:10.1016/j.agrformet.2016.03.011.

618 Backhaus, S., Kreyling, J., Grant, K., Beierkuhnlein, C., Walter, J., and Jentsch, A. (2014).
619 Recurrent mild drought events increase resistance toward extreme drought stress.
620 *Ecosystems* 17, 1068–1081. doi:10.1007/s10021-014-9781-5.

621 Bai, E., Li, S., Xu, W., Li, W., Dai, W., and Jiang, P. (2013). A meta-analysis of
622 experimental warming effects on terrestrial nitrogen pools and dynamics. *New Phytol.*
623 199, 431–40. doi:10.1111/nph.12252.

624 Bastos, A., Gouveia, C. M., Trigo, R. M., and Running, S. W. (2014). Analysing the spatio-
625 temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in
626 Europe. *Biogeosciences* 11, 3421–3435. doi:10.5194/bg-11-3421-2014.

627 Bates, D., Maechler, M., Bolker, B. M., and Walker, S. (2015). Fitting linear mixed-effects

628 models using lme4. *J. Stat. Softw.* 67, 1–48. Available at: <http://arxiv.org/abs/1406.5823>.

629 Beier, C., Beierkuhnlein, C., Wohlgemuth, T., Penuelas, J., Emmett, B. A., Körner, C., et al.

630 (2012). Precipitation manipulation experiments - challenges and recommendations for

631 the future. *Ecol. Lett.* 15, 899–911. doi:10.1111/j.1461-0248.2012.01793.x.

632 Belovsky, G. E., and Slade, J. B. (2020). Climate change and primary production: Forty years

633 in a bunchgrass prairie. *PLoS One* 15, e0243496. doi:10.1371/journal.pone.0243496.

634 Bindi, M., and Olesen, J. E. (2011). The responses of agriculture in Europe to climate change.

635 *Reg. Environ. Chang.* 11, 151–158. doi:10.1007/s10113-010-0173-x.

636 Bloor, J. M. G., Pichon, P., Falcimagne, R., Leadley, P., and Soussana, J.-F. (2010). Effects

637 of warming, summer drought, and CO₂ enrichment on aboveground biomass production,

638 flowering phenology, and community structure in an upland grassland ecosystem.

639 *Ecosystems* 13, 888–900. doi:10.1007/s10021-010-9363-0.

640 Boer, M. M., Resco De Dios, V., and Bradstock, R. A. (2020). Unprecedented burn area of

641 Australian mega forest fires. *Nat. Clim. Chang.* 10, 170. doi:10.1038/s41558-020-0710-

642 7.

643 BOM (2019). Daily rainfall Richmond-UWS Hawkesbury. *Clim. Data Online*. Available at:

644 <http://www.bom.gov.au/climate/data/index.shtml?bookmark=136>.

645 Chandregowda, M. (2021). Aboveground-belowground linkages and carbon allocation in

646 pasture grasses during climate extremes. Western Sydney University Ph.D. Thesis.

647 Chang, J., Ciais, P., Viovy, N., Soussana, J. F., Klumpp, K., and Sultan, B. (2017). Future

648 productivity and phenology changes in European grasslands for different warming

649 levels: implications for grassland management and carbon balance. *Carbon Balance*

650 *Manag.* 12. doi:10.1186/s13021-017-0079-8.

651 Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., et al. (2005). Europe-

652 wide reduction in primary productivity caused by the heat and drought in 2003. *Nature*

653 437, 529–533. doi:10.1038/nature03972.

654 Clark, S. G., Nie, Z. N., Culvenor, R. A., Harris, C. A., Hayes, R. C., Li, G. D., et al. (2016).

655 Field evaluation of cocksfoot, Tall Fescue and Phalaris for dry marginal environments of

656 South-Eastern Australia. 1. Establishment and herbage production. *J. Agron. Crop Sci.*

657 202, 96–114. doi:10.1111/jac.12152.

658 Cleland, E. E., Chiariello, N. R., Loarie, S. R., Mooney, H. A., and Field, C. B. (2006).

659 Diverse responses of phenology to global changes in a grassland ecosystem. *PNAS* 103,

660 13740–13744. doi:10.1073/pnas.0600815103.

661 Clements, B., Ayres, L., Langford, C., McGarva, L., Simpson, P., Hennessy, G., et al. (2003).

662 The grazier's guide to pastures: sowing and managing profitable pastures in the central
663 and southern Tablelands, Monaro and Upper South West Slopes of New South Wales.
664 NSW.

665 Craine, J. M., Nippert, J. B., Elmore, A. J., Skibbe, A. M., Hutchinson, S. L., and Brunsell, N.
666 A. (2012). Timing of climate variability and grassland productivity. *Proc. Natl. Acad.
667 Sci.* 109, 3401–3405. doi:10.1073/pnas.1118438109.

668 Cremonese, E., Filippa, G., Galvagno, M., Siniscalco, C., Oddi, L., Morra di Cella, U., et al.
669 (2017). Heat wave hinders green wave: The impact of climate extreme on the phenology
670 of a mountain grassland. *Agric. For. Meteorol.* 247, 320–330.
671 doi:10.1016/j.agrformet.2017.08.016.

672 CSIRO (2020). State of the Climate. doi:ISBN:978-1-4863-1509-3.

673 Cullen, B. R., Johnson, I. R., Eckard, R. J., Lodge, G. M., Walker, R. G., Rawnsley, R. P., et
674 al. (2009). Climate change effects on pasture systems in south-eastern Australia. *Crop
675 Pasture Sci.* 60, 933–942. doi:10.1071/CP09019.

676 Culvenor, R. A., Clark, S. G., Harris, C. A., Hayes, R. C., Li, G. D., Nie, Z. N., et al. (2016).
677 Field evaluation of cocksfoot, tall fescue and Phalaris for dry marginal environments of
678 South-Eastern Australia. 2. Persistence. *J. Agron. Crop Sci.* 202, 355–371.
679 doi:10.1111/jac.12141.

680 Dai, A. (2011). Drought under global warming: A review. *Clim. Chang.* 2, 45–65.
681 doi:10.1002/wcc.81.

682 De Boeck, H. J., Bassin, S., Verlinden, M., Zeiter, M., and Hiltbrunner, E. (2016). Simulated
683 heat waves affected alpine grassland only in combination with drought. *New Phytol.*
684 209, 531–541. doi:10.1111/nph.13601.

685 De Boeck, H. J., Bloor, J. M. G., Aerts, R., Bahn, M., Beier, C., Emmett, B. A., et al. (2019).
686 Understanding ecosystems of the future will require more than realistic climate change
687 experiments – A response to Korell et al. *Glob. Chang. Biol.*, 19–20.
688 doi:10.1111/gcb.14854.

689 De Boeck, H. J., Dreesen, F. E., Janssens, I. A., and Nijs, I. (2010). Climatic characteristics
690 of heat waves and their simulation in plant experiments. *Glob. Chang. Biol.* 16, 1992–
691 2000. doi:10.1111/j.1365-2486.2009.02049.x.

692 De Boeck, H. J., Dreesen, F. E., Janssens, I. A., and Nijs, I. (2011). Whole-system responses
693 of experimental plant communities to climate extremes imposed in different seasons.
694 *New Phytol.* 189, 806–817. doi:10.1111/j.1469-8137.2010.03515.x.

695 De Boeck, H. J., Vicca, S., Roy, J., Nijs, I., Milcu, A., Kreyling, J., et al. (2015). Global

696 change experiments: challenges and opportunities. *Bioscience* 65, 922–931.
697 doi:10.1093/biosci/biv099.

698 Dellar, M., Topp, C. F. E., Banos, G., and Wall, E. (2018). A meta-analysis on the effects of
699 climate change on the yield and quality of European pastures. *Agric. Ecosyst. Environ.*
700 265, 413–420. doi:10.1016/j.agee.2018.06.029.

701 Derner, J. D., Raynor, E. J., Reeves, J. L., Augustine, D. J., and Milchunas, D. G. (2020).
702 Climatic and management determinants of large herbivore production in semiarid
703 grassland. *Agric. Ecosyst. Environ.* 290, 106761. doi:10.1016/j.agee.2019.106761.

704 Deutsch, E. S., Bork, E. W., Cahill, J. F., and Chang, S. X. (2011). Short-term plant
705 community responses to warming and defoliation in a northern temperate grassland.
706 *ISRN Ecol.* 2011, 1–8. doi:10.5402/2011/926061.

707 Dieleman, W. I. J., Vicca, S., Dijkstra, F. A., Hagedorn, F., Hovenden, M. J., Larsen, K. S., et
708 al. (2012). Simple additive effects are rare: a quantitative review of plant biomass and
709 soil process responses to combined manipulations of CO₂ and temperature. *Glob.*
710 *Chang. Biol.* 18, 2681–2693. doi:10.1111/j.1365-2486.2012.02745.x.

711 Dreesen, F. E., De Boeck, H. J., Janssens, I. A., and Nijs, I. (2012). Summer heat and drought
712 extremes trigger unexpected changes in productivity of a temperate annual/biannual
713 plant community. *Environ. Exp. Bot.* 79, 21–30. doi:10.1016/j.envexpbot.2012.01.005.

714 Dukes, J. S., Chiariello, N. R., Cleland, E. E., Moore, L. A., Shaw, M. R., Thayer, S., et al.
715 (2005). Responses of grassland production to single and multiple global environmental
716 changes. *PLoS Biol.* 3, e319. doi:10.1371/journal.pbio.0030319.

717 Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E., and Ambenje, P.
718 (2000). Observed variability and trends in extreme climate events: a brief review. *Bull.*
719 *Am. Meteorol. Soc.* 81, 417–425. doi:10.1175/1520-
720 0477(2000)081<0417:OVATIE>2.3.CO;2.

721 Enloe, S. F., DiTomaso, J. M., Orloff, S. B., and Drake, D. J. (2004). Soil water dynamics
722 differ among rangeland plant communities dominated by yellow starthistle (*Centaurea*
723 *solstitialis*), annual grasses, or perennial grasses. *Weed Sci.* 52, 929–935.
724 doi:10.1614/ws-03-156r.

725 Fox, J., and Weisberg, S. (2019). *An R companion to applied regression*. Third. Thousand
726 Oaks, CA: Sage.

727 Frank, D., Reichstein, M., Bahn, M., Frank, D. C., Mahecha, M. D., Smith, P., et al. (2015).
728 Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and
729 potential future impacts. *Glob. Chang. Biol.*, n/a-n/a. doi:10.1111/gcb.12916.

730 Fry, E. L., Manning, P., Allen, D. G. P., Hurst, A., Everwand, G., Rimmmer, M., et al. (2013).
731 Plant functional group composition modifies the effects of precipitation change on
732 grassland ecosystem function. *PLoS One* 8. doi:10.1371/journal.pone.0057027.

733 Gao, Q., Schwartz, M. W., Zhu, W., Wan, Y., Qin, X., Ma, X., et al. (2016). Changes in
734 global grassland productivity during 1982 to 2011 attributable to climatic factors.
735 *Remote Sens.* 8, 1–12. doi:10.3390/rs8050384.

736 Ghaleb, W., Ahmed, L. Q., Escobar-Gutiérrez, A. J., and Julier, B. (2021). The history of
737 domestication and selection of Lucerne: a new perspective from the genetic diversity for
738 seed germination in response to temperature and scarification. *Front. Plant Sci.* 11, 1–
739 11. doi:10.3389/fpls.2020.578121.

740 Gibson, D. J., and Newman, J. A. (2001). *Festuca arudinacea* Schreber (*F. elatior* L. ssp.
741 *arundinacea* (Schreber) Hackel). *J. Ecol.* 89, 304–324. Available at:
742 <https://www.jstor.org/stable/3599410>.

743 Godde, C. M., Boone, R., Ash, A. J., Waha, K., Sloat, L., Thornton, P. K., et al. (2020).
744 Global rangeland production systems and livelihoods at threat under climate change and
745 variability. *Environ. Res. Lett.* 15, 44021. doi:10.1088/1748-9326/ab7395.

746 Haling, R. E., Yang, Z., Shadwell, N., Culvenor, R. A., Stefanski, A., Ryan, M. H., et al.
747 (2016). Growth and root dry matter allocation by pasture legumes and a grass with
748 contrasting external critical phosphorus requirements. *Plant Soil* 407, 67–79.
749 doi:10.1007/s11104-016-2808-2.

750 Hanson, P. J., and Walker, A. P. (2019). Advancing global change biology through
751 experimental manipulations: Where have we been and where might we go? *Glob.*
752 *Chang. Biol.* 26, 287–299. doi:10.1111/gcb.14894.

753 Heisler-White, J. L., Blair, J. M., Kelly, E. F., Harmoney, K., and Knapp, A. K. (2009).
754 Contingent productivity responses to more extreme rainfall regimes across a grassland
755 biome. *Glob. Chang. Biol.* 15, 2894–2904. doi:10.1111/j.1365-2486.2009.01961.x.

756 Heskel, M. A., O’Sullivan, O. S., Reich, P. B., Tjoelker, M. G., Weerasinghe, L. K.,
757 Penillard, A., et al. (2016). Convergence in the temperature response of leaf respiration
758 across biomes and plant functional types. *Proc. Natl. Acad. Sci. U. S. A.* 113, 3832–
759 3837. doi:10.1073/pnas.1520282113.

760 Hoeppner, S. S., and Dukes, J. S. (2012). Interactive responses of old-field plant growth and
761 composition to warming and precipitation. *Glob. Chang. Biol.* 18, 1754–1768.
762 doi:10.1111/j.1365-2486.2011.02626.x.

763 IPCC (2017). IPCC fifth assessment report (AR5) observed climate change impacts database,

764 Version 2.01. Palisades, NY doi:<https://doi.org/10.7927/H4FT8J0X>.

765 IPCC (2021). *Climate Change 2021: The Physical Science Basis. Contribution of Working*
766 *Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate*
767 *Change*. 6th ed. , eds. V. Masson-Delmotte, P. Zhai, A. Pirani, S. . Connors, C. Pean, S.
768 Berger, et al. Cambridge University Press.

769 Jacob, V., Zhang, H., Churchill, A. C., Yang, J., Choat, B., Medlyn, B. E., et al. (2020).
770 Warming reduces net carbon gain and productivity in *Medicago sativa* L. and *Festuca*
771 *arundinacea*. *Agronomy* 10. doi:[10.3390/agronomy10101601](https://doi.org/10.3390/agronomy10101601).

772 Jentsch, A., and Beierkuhnlein, C. (2008). Research frontiers in climate change: effects of
773 extreme meteorological events on ecosystems. *Comptes Rendus - Geosci.* 340, 621–628.
774 doi:[10.1016/j.crte.2008.07.002](https://doi.org/10.1016/j.crte.2008.07.002).

775 Jentsch, A., Kreyling, J., Boettcher-Treschkow, J., and Beierkuhnlein, C. (2009). Beyond
776 gradual warming: extreme weather events alter flower phenology of European grassland
777 and heath species. *Glob. Chang. Biol.* 15, 837–849. doi:[10.1111/j.1365-2486.2008.01690.x](https://doi.org/10.1111/j.1365-2486.2008.01690.x).

779 Jiménez, M. A., Jaksic, F. M., Armesto, J. J., Gaxiola, A., Meserve, P. L., Kelt, D. A., et al.
780 (2011). Extreme climatic events change the dynamics and invasibility of semi-arid
781 annual plant communities. *Ecol. Lett.* 14, 1227–1235. doi:[10.1111/j.1461-0248.2011.01693.x](https://doi.org/10.1111/j.1461-0248.2011.01693.x).

783 Johnston, W. H. (1996). The place of C₄ grasses in temperate pastures in Australia. *New Zeal.*
784 *J. Agric. Res.* 39, 527–540. doi:[10.1080/00288233.1996.9513213](https://doi.org/10.1080/00288233.1996.9513213).

785 Kaine, G. W., and Tozer, P. R. (2005). Stability, resilience and sustainability in pasture-based
786 grazing systems. *Agric. Syst.* 83, 27–48. doi:[10.1016/j.agsy.2004.03.001](https://doi.org/10.1016/j.agsy.2004.03.001).

787 Keatinge, J. D. H., Qi, A., Wheeler, T. R., Ellis, R. H., and Summerfield, R. J. (1998). Effects
788 of temperature and photoperiod on phenology as a guide to the selection of annual
789 legume cover and green manure crops for hillside farming systems. *F. Crop. Res.* 57,
790 139–152. doi:[10.1016/S0378-4290\(97\)00122-6](https://doi.org/10.1016/S0378-4290(97)00122-6).

791 Kirschbaum, M. U. F., and McMillan, A. M. S. (2018). Warming and elevated CO₂ have
792 opposing influences on transpiration. Which is more important? *Curr. For. Reports* 4,
793 51–71. doi:[10.1007/s40725-018-0073-8](https://doi.org/10.1007/s40725-018-0073-8).

794 Knapp, A. K., Avolio, M. L., Beier, C., Carroll, C. J. W., Collins, S. L., Dukes, J. S., et al.
795 (2017). Pushing precipitation to the extremes in distributed experiments:
796 recommendations for simulating wet and dry years. *Glob. Chang. Biol.* 23, 1774–1782.
797 doi:[10.1111/gcb.13504](https://doi.org/10.1111/gcb.13504).

798 Knapp, A. K., Beier, C., Briske, D. D., Classen, A. T., Luo, Y., Reichstein, M., et al. (2008).
799 Consequences of more extreme precipitation regimes for terrestrial ecosystems.
800 *Bioscience* 58, 811. doi:10.1641/B580908.

801 König, P., Tautenhahn, S., Cornelissen, J. H. C., Kattge, J., Bönisch, G., and Römermann, C.
802 (2018). Advances in flowering phenology across the Northern Hemisphere are explained
803 by functional traits. *Glob. Ecol. Biogeogr.* 27, 310–321. doi:10.1111/geb.12696.

804 Kreyling, J., Beierkuhnlein, C., Ellis, L., and Jentsch, A. (2008). Invasibility of grassland and
805 heath communities exposed to extreme weather events- additive effects of diversity
806 resistance and fluctuating physical environment. *Oikos* 117, 1542–1554.
807 doi:10.1111/j.2008.0030-1299.16653.x.

808 Kreyling, J., Grant, K., Hammerl, V., Arfin-Khan, M. A. S., Malyshev, A. V., Peñuelas, J., et
809 al. (2019). Winter warming is ecologically more relevant than summer warming in a
810 cool-temperate grassland. *Sci. Rep.* 9, 1–9. doi:10.1038/s41598-019-51221-w.

811 Kueppers, L. M., Conlisk, E., Castanha, C., Moyes, A. B., Germino, M. J., de Valpine, P., et
812 al. (2017). Warming and provenance limit tree recruitment across and beyond the
813 elevation range of subalpine forest. *Glob. Chang. Biol.* 23, 2383–2395.
814 doi:10.1111/gcb.13561.

815 Length, R. (2020). emmeans: estimated marginal means, aka least-squares means.
816 <https://cran.r-project.org/package=emmeans>. Available at: <https://cran.r-project.org/package=emmeans>.

817 Lesica, P., and Kittelson, P. M. (2010). Precipitation and temperature are associated with
818 advanced flowering phenology in a semi-arid grassland. *J. Arid Environ.* 74, 1013–1017.
819 doi:10.1016/j.jaridenv.2010.02.002.

820 Li, F., Kautz, T., Pude, R., and Köpke, U. (2012). Nodulation of lucerne (*Medicago sativa* L.)
821 roots: Depth distribution and temporal variation. *Plant, Soil Environ.* 58, 424–428.
822 doi:10.17221/314/2012-pse.

823 Liste, H.-H., and White, J. C. (2008). Plant hydraulic lift of soil water – implications for crop
824 production and land restoration. *Plant Soil* 313, 1–17. doi:10.1007/s11104-008-9696-z.

825 Loi, A., Howieson, J. G., Nutt, B. J., and Carr, S. J. (2005). A second generation of annual
826 pasture legumes and their potential for inclusion in Mediterranean-type farming systems.
827 *Aust. J. Exp. Agric.* 45, 289–299. doi:10.1071/ea03134.

828 Lu, M., Zhou, X., Yang, Q., Li, H., Fang, C., Chen, J., et al. (2013). Responses of ecosystem
829 carbon cycle to experimental warming: a meta-analysis. *Ecology* 94, 726–738.

830 Ma, X., Huete, A., Moran, S., Ponce-Campos, G., and Eamus, D. (2015). Abrupt shifts in

832 phenology and vegetation productivity under climate extremes. *J. Geophys. Res.*
833 *Biogeosciences* 120, 2036–2052. doi:10.1002/2015JG003144.

834 McKeon, G. M., Stone, G. S., Syktus, J. I., Carter, J. O., Flood, N. R., Ahrens, D. G., et al.
835 (2009). Climate change impacts on northern Australian rangeland livestock carrying
836 capacity: A review of issues. *Rangel. J.* 31, 1–29. doi:10.1071/RJ08068.

837 Meteorology, B. of (2020). Bureau of Meteorology. *Gov. Aust.* Available at:
838 <http://www.bom.gov.au/> [Accessed August 15, 2018].

839 Mori, A. S., Fujii, S., and Kurokawa, H. (2014). Ecological consequences through responses
840 of plant and soil communities to changing winter climate. *Ecol. Res.* 29, 547–559.
841 doi:10.1007/s11284-013-1091-4.

842 Munson, S. M., and Long, A. L. (2017). Climate drives shifts in grass reproductive
843 phenology across the western USA. *New Phytol.* 213, 1945–1955.
844 doi:10.1111/nph.14327.

845 Nábrádi, A. (2016). The economic value of grassland products. *Appl. Stud. Agribus. Commer.*
846 1, 19–28. doi:10.19041/abstract/2007/1/2.

847 Naudts, K., Van den Berge, J., Janssens, I. A., Nijs, I., and Ceulemans, R. (2011). Does an
848 extreme drought event alter the response of grassland communities to a changing
849 climate? *Environ. Exp. Bot.* 70, 151–157. doi:10.1016/j.envexpbot.2010.08.013.

850 Nie, Z., Mitchell, M., Clark, S., and Smith, K. (2015). Distribution of lucerne roots in
851 summer-dry environments of southern Australia. in *Proceedings of the 17th ASA*
852 *Conference* (Hobart, Australia), 1–4.

853 Nijp, J. J., Limpens, J., Metselaar, K., Peichl, M., Nilsson, M. B., van der Zee, S. E. A. T. M.,
854 et al. (2015). Rain events decrease boreal peatland net CO₂ uptake through reduced light
855 availability. *Glob. Chang. Biol.* 21, 2309–2320. doi:10.1111/gcb.12864.

856 Norton, M. R., Volaire, F., Lelièvre, F., and Fukai, S. (2009). Identification and measurement
857 of summer dormancy in temperate perennial grasses. *Crop Sci.* 49, 2347–2352.
858 doi:10.2135/cropsci2009.06.0319.

859 Novem Auyeung, D. S., Suseela, V., and Dukes, J. S. (2013). Warming and drought reduce
860 temperature sensitivity of nitrogen transformations. *Glob. Chang. Biol.* 19, 662–676.
861 doi:10.1111/gcb.12063.

862 O’Mara, F. P. (2012). The role of grasslands in food security and climate change. *Ann. Bot.*
863 110, 1263–1270. doi:10.1093/aob/mcs209.

864 Ode, D. J., and Tieszen, L. L. (1980). The seasonal contribution of C₃ and C₄ plant species to
865 primary production in a mixed prairie. *Ecology* 61, 1304–1311.

866 Orsenigo, S., Mondoni, A., Rossi, G., and Abeli, T. (2014). Some like it hot and some like it
867 cold, but not too much: Plant responses to climate extremes. *Plant Ecol.* 215, 677–688.
868 doi:10.1007/s11258-014-0363-6.

869 Padrón, R. S., Gudmundsson, L., Decharme, B., Ducharne, A., Lawrence, D. M., Mao, J., et
870 al. (2020). Observed changes in dry-season water availability attributed to human-
871 induced climate change. *Nat. Geosci.* 13, 477–481. doi:10.1038/s41561-020-0594-1.

872 Pang, J., Wang, Y., Lambers, H., Tibbett, M., Siddique, K. H. M., and Ryan, M. H. (2013).
873 Commensalism in an agroecosystem: hydraulic redistribution by deep-rooted legumes
874 improves survival of a droughted shallow-rooted legume companion. *Physiol. Plant.*
875 149, 79–90. doi:10.1111/ppl.12020.

876 Parmesan, C., Root, T. L., and Willig, M. R. (2000). Impacts of extreme weather and climate
877 on terrestrial biota. *Bull. Am. Meteorol. Soc.* 81, 443–450.

878 Pearcy, R. W., Caldwell, M. M., Keeley, J. E., Monson, R. K., and Strain, B. R. (1987).
879 Carbon gain by plants in natural environments. *Bioscience* 37, 21–29.
880 doi:10.2307/1310174.

881 Pearcy, R. W., and Ehleringer, J. (1984). Comparative ecophysiology of C₃ and C₄ plants.
882 *Plant. Cell Environ.* 7, 1–13. doi:10.1111/j.1365-3040.1984.tb01194.x.

883 Peng, A., Klanderud, K., Wang, G., Zhang, L., Xiao, Y., and Yang, Y. (2020). Plant
884 community responses to warming modified by soil moisture in the Tibetan Plateau.
885 *Arctic, Antarct. Alp. Res.* 52, 60–69. doi:10.1080/15230430.2020.1712875.

886 Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., et al. (2019). Plant phenology and
887 global climate change: current progresses and challenges. *Glob. Chang. Biol.* 25, 1922–
888 1940. doi:10.1111/gcb.14619.

889 Power, S. A., Barnett, K. L., Ochoa-hueso, R., Facey, S. L., Gibson-Forty, E. V. J., Hartley,
890 S. E., et al. (2016). DRI-Grass: A new experimental platform for addressing grassland
891 ecosystem responses to future precipitation scenarios in South-East Australia. *Front.*
892 *Plant Sci.* 7, 1–14. doi:10.3389/fpls.2016.01373.

893 Prevéy, J. S., and Seastedt, T. R. (2014). Seasonality of precipitation interacts with exotic
894 species to alter composition and phenology of a semi-arid grassland. *J. Ecol.* 102, 1549–
895 1561. doi:10.1111/1365-2745.12320.

896 R Core Team (2020). R: A language and environment for statistical computing. <http://www.r-project.org/>. Available at: <http://www.r-project.org/>.

897 Rathcke, B., and Lacey, E. P. (1985). Phenological patterns of terrestrial plants. *Annu. Rev.*
898 *Ecol. Syst.* 16, 179–214.

900 Raza, A., Friedel, J. K., Moghaddam, A., Ardakani, M. R., Loiskandl, W., Himmelbauer, M.,
901 et al. (2013). Modeling growth of different lucerne cultivars and their effect on soil
902 water dynamics. *Agric. Water Manag.* 119, 100–110. doi:10.1016/j.agwat.2012.12.006.

903 Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P., Bonfante, A., et
904 al. (2013). A plant's perspective of extremes: terrestrial plant responses to changing
905 climatic variability. *Glob. Chang. Biol.* 19, 75–89. doi:10.1111/gcb.12023.

906 Sage, R. F. (2019). Global change biology: a primer. *Glob. Chang. Biol.*, gcb.14893.
907 doi:10.1111/gcb.14893.

908 Sanz-Sáez, Á., Erice, G., Aguirreolea, J., Irigoyen, J. J., and Sánchez-Díaz, M. (2012).
909 Alfalfa yield under elevated CO₂ and temperature depends on the *Sinorhizobium* strain
910 and growth season. *Environ. Exp. Bot.* 77, 267–273.
911 doi:10.1016/j.envexpbot.2011.11.017.

912 Sasaki, H., Fukuyama, M., Onoue, T., Suyama, T., and Ahoji, A. (2002). Effects of
913 increasing CO₂ concentration and leaf temperature on the photosynthesis of Tall Fescue
914 (*Festuca arundinacea* Schreb.). *Grassl. Sci.* 48, 12–16.

915 Schwinning, S., Sala, O. E., Loik, M. E., and Ehleringer, J. R. (2004). Thresholds, memory,
916 and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. *Oecologia*
917 141, 191–193. doi:10.1007/s00442-004-1683-3.

918 Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., et al. (2010).
919 Investigating soil moisture-climate interactions in a changing climate: a review. *Earth-
920 Science Rev.* 99, 125–161. doi:10.1016/j.earscirev.2010.02.004.

921 Sherry, R. A., Weng, E., Arnone, J. A., Johnson, D. W., Schimel, D. S., Verburg, P. S., et al.
922 (2008). Lagged effects of experimental warming and doubled precipitation on annual
923 and seasonal aboveground biomass production in a tallgrass prairie. *Glob. Chang. Biol.*
924 14, 2923–2936. doi:10.1111/j.1365-2486.2008.01703.x.

925 Sherry, R. A., Zhou, X., Gu, S., Arnone, J. A., Schimel, D. S., Verburg, P. S., et al. (2007).
926 Divergence of reproductive phenology under climate warming. *PNAS* 104, 198–202.

927 Sinclair, T., Fiscus, E., Wherley, B., Durham, M., and Rufty, T. (2007). Atmospheric vapor
928 pressure deficit is critical in predicting growth response of “cool-season” grass *Festuca*
929 *arundinacea* to temperature change. *Planta* 227, 273–276. doi:10.1007/s00425-007-
930 0645-5.

931 Slette, I. J., Post, A. K., Awad, M., Even, T., Punzalan, A., Williams, S., et al. (2019). How
932 ecologists define drought, and why we should do better. *Glob. Chang. Biol.* 25, 3193–
933 3200. doi:10.1111/gcb.14747.

934 Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., et al. (2019). A meta-
935 analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to
936 global change. *Nat. Ecol. Evol.* 3, 1309–1320. doi:10.1038/s41559-019-0958-3.

937 Steffen, W., Richardson, K., Rockström, J., Cornell, S., Fetzer, I., Bennett, E., et al. (2015).
938 Planetary boundaries: guiding human development on a changing planet. *Science (80-.).*
939 347, 1259855. doi:10.1126/science.1259855.

940 Veenendaal, E. M., Ernst, W. H. O., and Modise, G. S. (1996). Reproductive effort and
941 phenology of seed production of savanna grasses with different growth form and life
942 history. *Vegetatio* 123, 91–100. doi:10.1007/BF00044891.

943 Volder, A., Briske, D. D., and Tjoelker, M. G. (2013). Climate warming and precipitation
944 redistribution modify tree-grass interactions and tree species establishment in a warm-
945 temperate savanna. *Glob. Chang. Biol.* 19, 843–857. doi:10.1111/gcb.12068.

946 Walker, M. D., Wahren, C.-H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, J.
947 M., et al. (2006). Plant community responses to experimental warming across the tundra
948 biome. *Proc. Natl. Acad. Sci. U. S. A.* 103, 1342–6. doi:10.1073/pnas.0503198103.

949 Walter, J., Jentsch, A., Beierkuhnlein, C., and Kreyling, J. (2013). Ecological stress memory
950 and cross stress tolerance in plants in the face of climate extremes. *Environ. Exp. Bot.*
951 94, 3–8. doi:10.1016/j.envexpbot.2012.02.009.

952 Wang, C., Sun, Y., Chen, H. Y. H., Yang, J., and Ruan, H. (2021). Meta-analysis shows non-
953 uniform responses of above- and belowground productivity to drought. *Sci. Total
954 Environ.* 782, 146901. doi:10.1016/j.scitotenv.2021.146901.

955 Wang, S., Duan, J., Xu, G., Wang, Y., Zhang, Z., Rui, Y., et al. (2012). Effects of warming
956 and grazing on soil N availability , species composition , and ANPP in an alpine
957 meadow. *Ecology* 93, 2365–2376. doi:10.1890/11-1408.1.

958 Whittington, H. R., Deede, L., and Powers, J. S. (2012). Growth responses, biomass
959 partitioning, nitrogen isotopes of prairie legumes in response to elevated temperature
960 and varying nitrogen source in a growth chamber experiment. *Am. J. Bot.* 99, 838–846.
961 doi:10.3732/ajb.1100283.

962 Whittington, H. R., Tilman, D., and Powers, J. S. (2013). Consequences of elevated
963 temperatures on legume biomass and nitrogen cycling in a field warming and
964 biodiversity experiment in a North American prairie. *Funct. Plant Biol.* 40, 1147–1158.
965 doi:10.1071/FP12345.

966 Wilcox, K. R., Blair, J. M., Smith, M. D., and Knapp, A. K. (2016). Does ecosystem
967 sensitivity to precipitation at the site- level conform to regional- scale predictions?

968 *Ecology* 97, 561–568. doi:10.1007/s13398-014-0173-7.2.

969 Wilcox, K. R., Shi, Z., Gherardi, L. A., Lemoine, N. P., Koerner, S. E., Hoover, D. L., et al.

970 (2017). Asymmetric responses of primary productivity to precipitation extremes: A

971 synthesis of grassland precipitation manipulation experiments. *Glob. Chang. Biol.* 23,

972 4376–4385. doi:10.1111/gcb.13706.

973 Winslow, J. C., Hunt, E. R., and Piper, S. C. (2003). The influence of seasonal water

974 availability on global C₃ versus C₄ grassland biomass and its implications for climate

975 change research. *Ecol. Modell.* 163, 153–173. doi:10.1016/S0304-3800(02)00415-5.

976 Wu, G. L., Cheng, Z., Alatalo, J. M., Zhao, J., and Liu, Y. (2021). Climate warming

977 consistently reduces grassland ecosystem productivity. *Earth's Futur.* 9, 1–14.

978 doi:10.1029/2020EF001837.

979 Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., and Hungate, B. A. (2011). Responses of

980 terrestrial ecosystems to temperature and precipitation change: A meta-analysis of

981 experimental manipulation. *Glob. Chang. Biol.* 17, 927–942. doi:10.1111/j.1365-

982 2486.2010.02302.x.

983 Yao, X., Wu, J., and Gong, X. (2019). Precipitation and seasonality affect grazing impacts on

984 herbage nutritive values in alpine meadows on the Qinghai-Tibet Plateau. *J. Plant Ecol.*

985 12, 993–1008. doi:10.1093/jpe/rtz027.

986 Yu, J., Chen, L., Xu, M., and Huang, B. (2012). Effects of elevated CO₂ on physiological

987 responses of Tall Fescue to elevated temperature, drought stress, and the combined

988 stresses. *Crop Sci.* 52, 1848–1858. doi:10.2135/cropsci2012.01.0030.

989 Yuan, W., Cai, W., Chen, Y., Liu, S., Dong, W., Zhang, H., et al. (2016). Severe summer

990 heatwave and drought strongly reduced carbon uptake in Southern China. *Sci. Rep.* 6, 1–

991 12. doi:10.1038/srep18813.

992 Zavalloni, C., Gielen, B., Lemmens, C. M. H. M., De Boeck, H. J., Blasi, S., Van Den Bergh,

993 S., et al. (2008). Does a warmer climate with frequent mild water shortages protect

994 grassland communities against a prolonged drought? *Plant Soil* 308, 119–130.

995 doi:10.1007/s11104-008-9612-6.

996 Zeiter, M., Schärrer, S., Zweifel, R., Newbery, D. M., and Stampfli, A. (2016). Timing of

997 extreme drought modifies reproductive output in semi-natural grassland. *J. Veg. Sci.* 27,

998 238–248. doi:10.1111/jvs.12362.

999

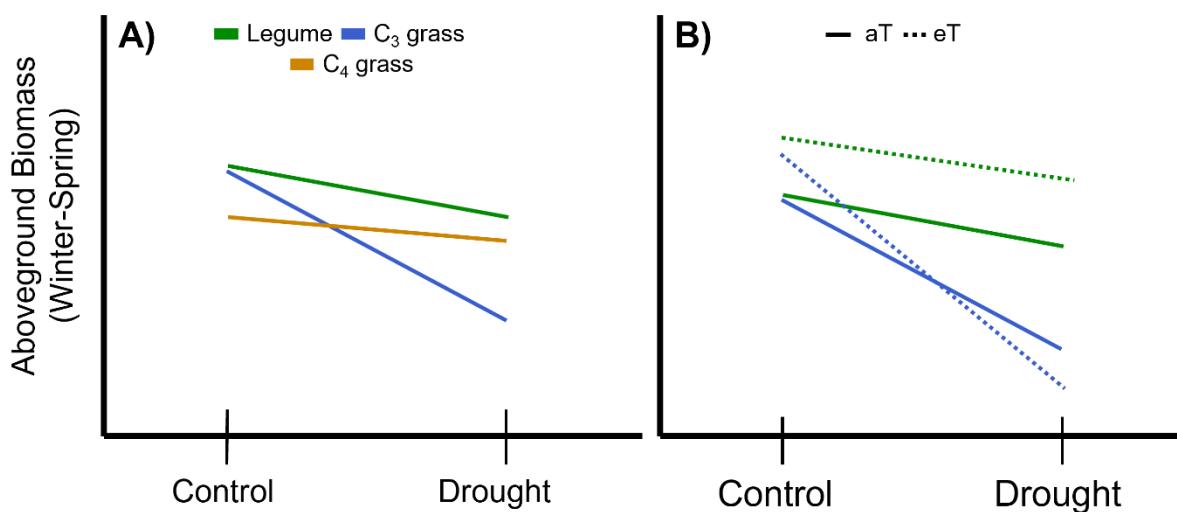
1000

1001 **Figure Captions**

1002 **Figure 1.** Schematic representation of expected changes in aboveground plant biomass
1003 during winter and spring associated with concurrent drought for A) plant functional groups
1004 including legumes and grasses relying on either the C₃ or C₄ photosynthetic pathways.
1005 Legumes are predicted to be less affected by drought (shallower slope) due to their higher
1006 nutrient and water use efficiency compared with C₃ grasses, while C₃ grasses are predicted to
1007 be most affected by drought due to a comparatively lower water use efficiency. C₄ grasses are
1008 predicted to have lower biomass due to low temperature constraints on growth but lower
1009 drought sensitivity than C₃ species due to greater water use efficiency. B) For legumes
1010 (green) and C₃ grasses (blue) winter and spring warming (eT) is predicted to increase
1011 productivity under the control precipitation treatment relative to ambient temperature (aT;
1012 solid line); potential interactions between drought and warming can include an amplifying
1013 effect resulting in increased loss of biomass (C₃ grass) or a stabilizing effect where warming
1014 offsets the impact of drought on biomass (legume).

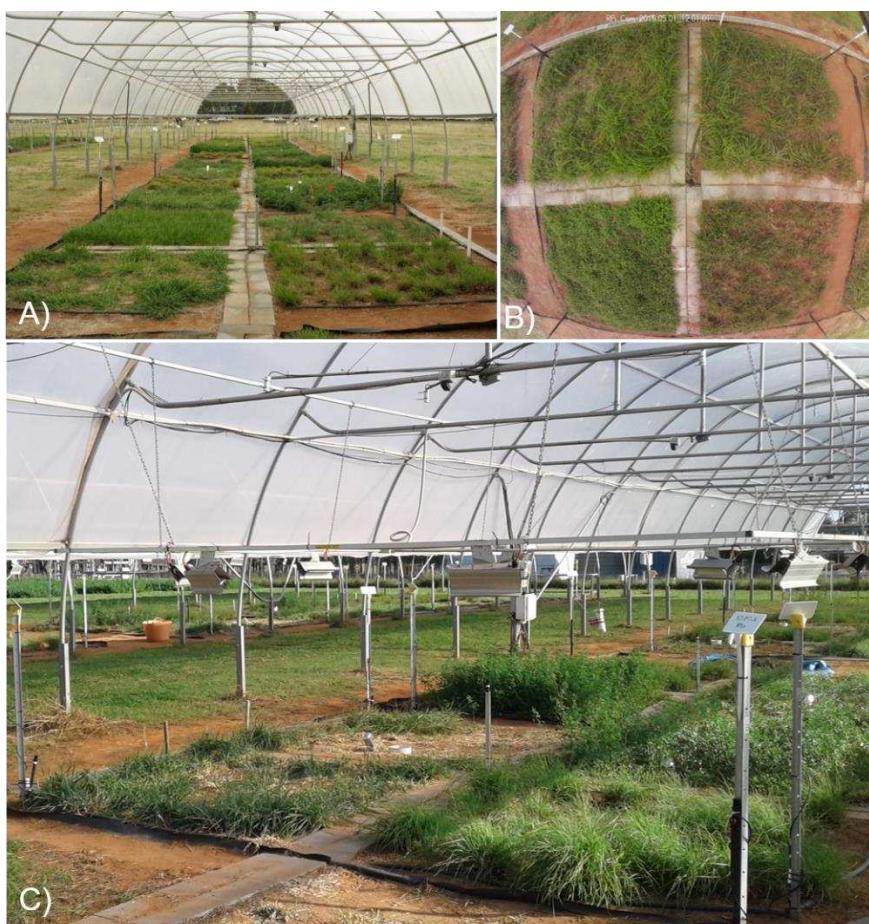
1015
1016 **Figure 2.** The Pastures and Climate Extremes (PACE) field facility located at Western
1017 Sydney University in Richmond, New South Wales, Australia. A) There are six open-sided
1018 polytunnels, each with eight experimental plots; B) Experimental plots (4 x 4 m) received a
1019 drought, warming, or drought + warming treatment and are each divided into four discrete 2 x
1020 2 m subplots comprising nine different pasture species in monoculture; C) Heater (infra-red:
1021 IR) arrays were mounted above the vegetation canopy and warmed the plot surface an
1022 average of 3 °C above paired (control, drought) ambient temperature plots.

1023
1024 **Figure 3.** Experimental treatment effects of winter/spring drought (control: C, drought: D)
1025 applied during the period between 1 June to 30 November 2019 and year-round warming
1026 (ambient temperature: aT, elevated temperature: eT) treatments on soil moisture (panels A
1027 and B) and canopy temperature (panels C and D) averaged across the six shelters, from 1
1028 May 2019 to 30 November 2019. A) Average soil volumetric water content in *Festuca* sub-
1029 plots (additional species are shown in Figure S2) with 95% confidence intervals as well as
1030 individual irrigation events as daily rainfall totals for control (black bars) and drought (red
1031 bars) plots over the 6-month period of study; B) Treatment differences in soil water content
1032 from aT-C plots over time in the *Festuca* subplots, noting the winter/spring drought treatment
1033 period between 1 June and 30 November 2019; C) Daily maximum canopy temperature,
1034 relative to maximum ambient air temperature (black line) and 40 °C (representing extreme
1035 temperatures, dashed lines); D) Daily minimum temperature compared with minimum air
1036 temperature (black line) and 0 °C (dashed lines).


1037
1038 **Figure 4.** A) Aboveground production summed for all harvests during the 6-month winter/spring
1039 drought period. Large points shown are means ± 1 standard error (control = solid symbol,
1040 droughted = open symbol) and opaque points show species level variability in biomass.
1041 Significant pairwise comparisons for the effect of drought treatment are indicated as follows:
1042 NS= not significant, * $P < 0.05$, ** $P = <0.01$, *** $P = < 0.001$. B) drought effect size (log
1043 response ratio of drought vs control production during the 6-month drought treatment period).
1044 Values for panel B are mean values with 95% confidence intervals and same letter designations
1045 indicate non-significant differences among plantings. Abbreviations are as follows: *Biserrula*
1046 (*Bis*), *Chloris* (*Chl*), *Digitaria* (*Dig*), *Festuca* (*Fes*), *Lolium* (*Lol*), *Medicago* (*Med*), *Phalaris*
1047 (*Pha*), *Rytidosperma* (*Ryt*), *Themeda* (*The*).

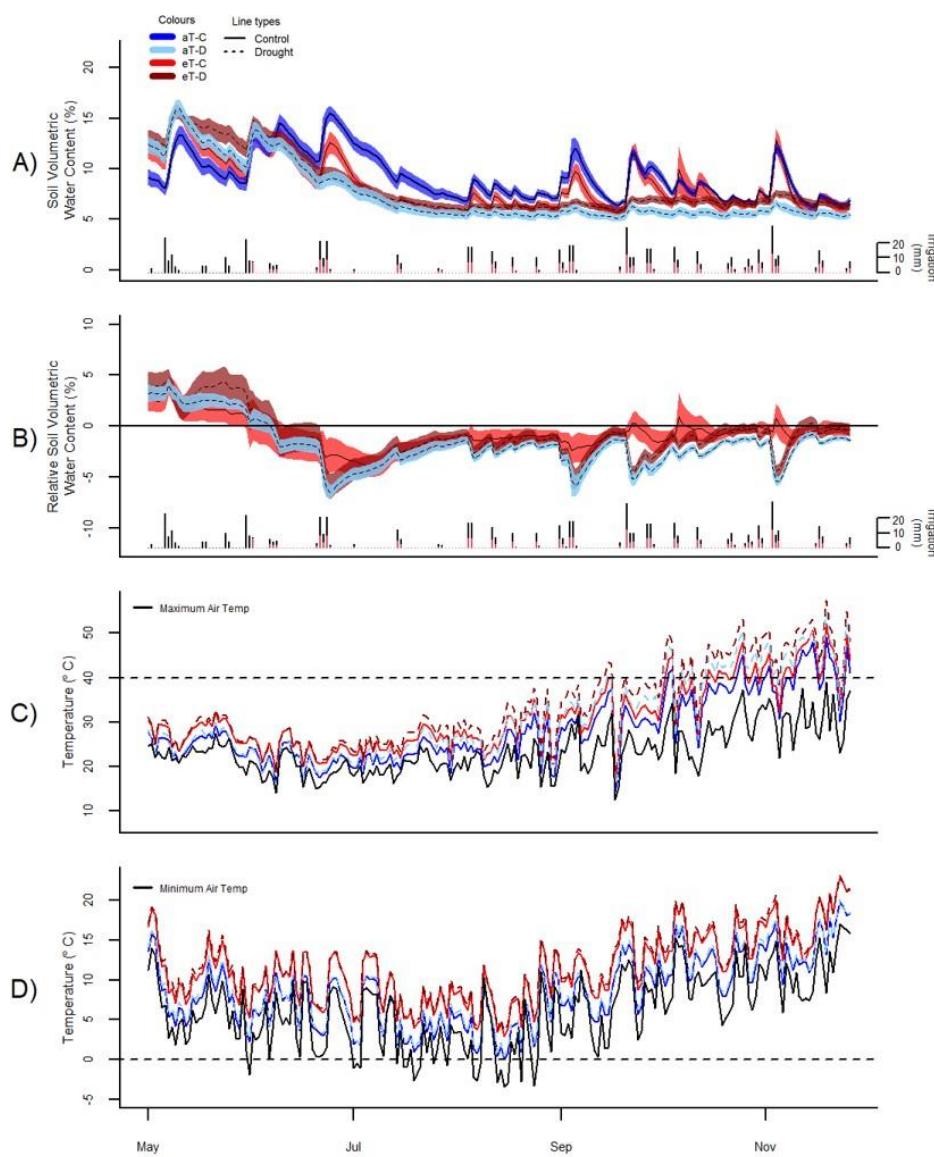
1048
1049 **Figure 5.** Aboveground production summed for all harvests during the 6-month winter/spring
1050 drought period by functional group. Large points shown are means ± 1 standard error (control =

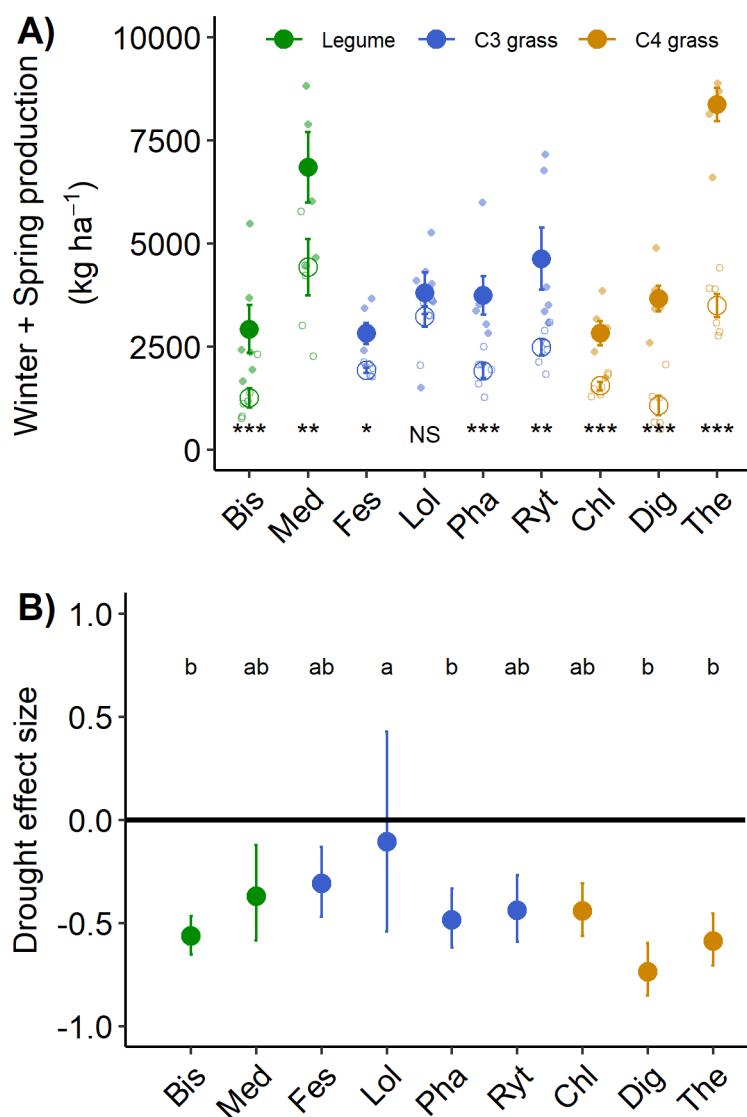
1051 solid symbol, droughted = open symbol) and opaque points show subplot level variability in
1052 biomass for each species within the functional group. Significant pairwise comparisons for the
1053 effect of drought within a functional group are indicated matching Fig 4.


1054

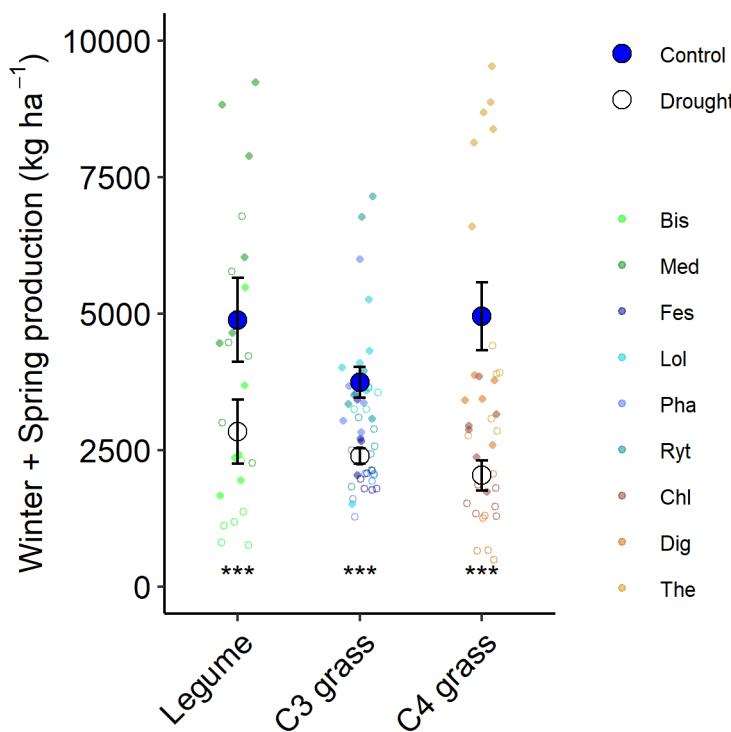
1055 **Figure 6.** Aboveground production for *Festuca* and *Medicago* exposed to the combined
1056 effects of drought (control: C and droughted: D) and warming (ambient: aT and elevated: eT)
1057 treatments during A) the 6-month winter/spring drought period. Treatment effect sizes during
1058 the winter/spring drought period for B) drought under ambient (also shown in Fig 4) and
1059 elevated temperatures, C) warming, under control and droughted conditions, and D) the effect
1060 of warming on biomass responses to drought (for panel D, positive values indicate a
1061 reduction in drought impact under warming). Values in panel A are means \pm 1 SE; while
1062 panels B-D are means and 95% confidence intervals. Spp. abbreviations and significance
1063 levels follow Fig. 4.

Figure 1. Schematic representation of expected changes in aboveground plant biomass during winter and spring associated with concurrent drought for A) plant functional groups including legumes and grasses relying on either the C_3 or C_4 photosynthetic pathways. Legumes are predicted to be less affected by drought (shallow slope) due to their higher nutrient and water use efficiency compared with C_3 grasses, while C_3 grasses are predicted to be most affected by drought due to a comparatively lower water use efficiency. C_4 grasses are predicted to have lower biomass due to low temperature constraints on growth but lower drought sensitivity than C_3 species due to greater water use efficiency. B) For legumes (green) and C_3 grasses (blue) winter and spring warming (eT) is predicted to increase productivity under the control precipitation treatment relative to ambient temperature (aT; solid line); potential interactions between drought and warming can include an amplifying effect resulting in increased loss of biomass (C_3 grass) or a stabilizing effect where warming offsets the impact of drought on biomass (legume).


1064


Figure 2. The Pastures and Climate Extremes (PACE) field facility located at Western Sydney University in Richmond, New South Wales, Australia. A) There are six open-sided polytunnels, each with eight experimental plots; B) Experimental plots (4 x 4 m) received a drought, warming, or drought + warming treatment and are each divided into four discrete 2 x 2 m subplots comprising nine different pasture species in monoculture; C) Heater (infra-red: IR) arrays were mounted above the vegetation canopy and warmed the plot surface an average of 3 °C above paired (control, drought) ambient temperature plots.

1065


1066

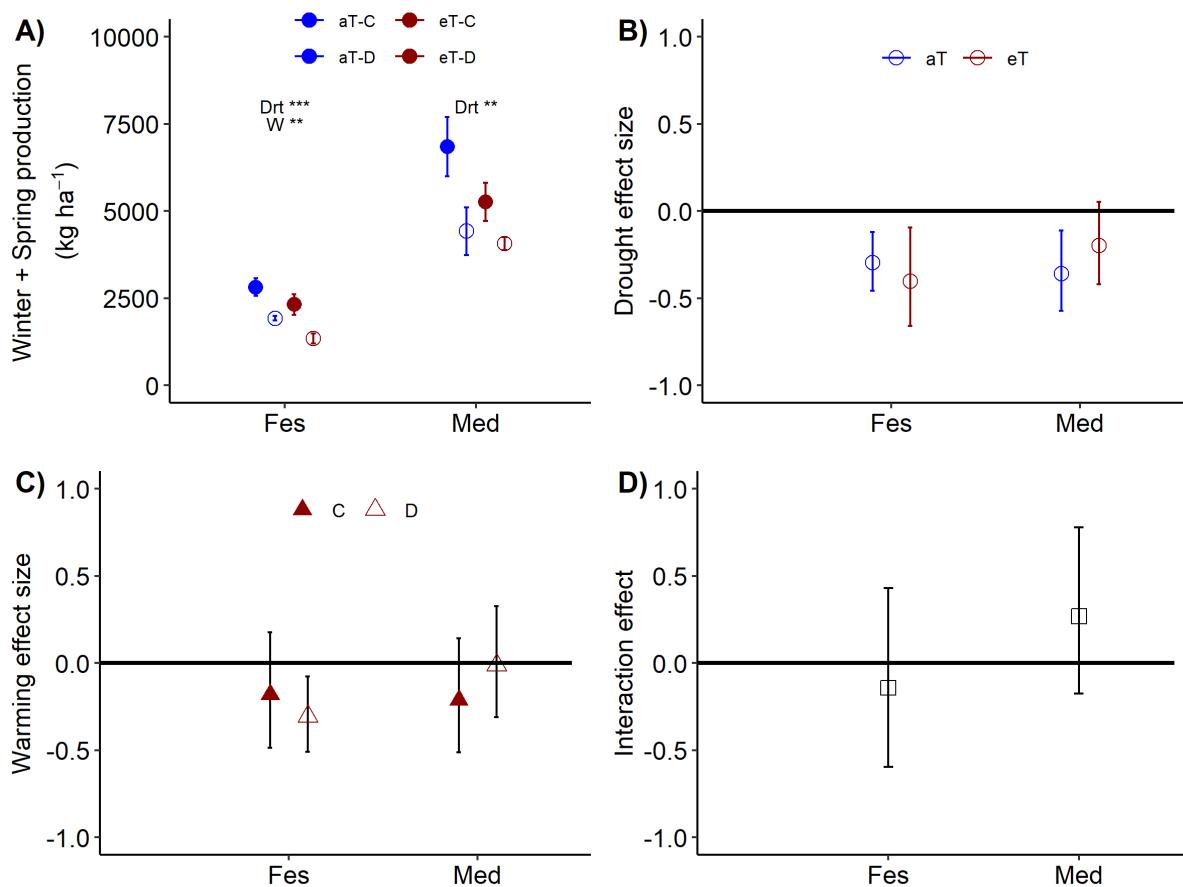

Figure 3. Experimental treatment effects of winter/spring drought (control: C, drought: D) applied during the period between 1 June to 30 November 2019 and year-round warming (ambient temperature: aT, elevated temperature: eT) treatments on soil moisture (panels A and B) and canopy temperature (panels C and D) averaged across the six shelters, from 1 May 2019 to 30 November 2019. A) Average soil volumetric water content in *Festuca* sub-plots (additional species are shown in Figure S2) with 95% confidence intervals as well as individual irrigation events as daily rainfall totals for control (black bars) and drought (red bars) plots over the 6-month period of study; B) Treatment differences in soil water content from aT-C plots over time in the *Festuca* subplots, noting the winter/spring drought treatment period between 1 June and 30 November 2019; C) Daily maximum canopy temperature, relative to maximum ambient air temperature (black line) and 40 °C (representing extreme temperatures, dashed lines); D) Daily minimum temperature compared with minimum air temperature (black line) and 0 °C (dashed lines).

Figure 4. A) Aboveground production summed for all harvests during the 6-month winter/spring drought period. Large points shown are means \pm 1 standard error (control = solid symbol, droughted = open symbol) and opaque points show species level variability in biomass; B) drought effect size (log response ratio of drought vs control production during the 6-month drought treatment period). Values for panel B are mean values with 95% confidence intervals and same letter designations indicate non-significant differences among plantings. Abbreviations are as follows: *Biserrula* (Bis), *Chloris* (Chl), *Digitaria* (Dig), *Festuca* (Fes), *Lolium* (Lol), *Medicago* (Med), *Phalaris* (Pha), *Rytidosperma* (Ryt), *Themeda* (The). Significant pairwise comparisons for the effect of drought treatment are indicated as follows: NS= not significant, * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.

Figure 5. Aboveground production summed for all harvests during the 6-month winter/spring drought period by functional group. Large points shown are means ± 1 standard error (control = solid symbol, droughted = open symbol) and opaque points show subplot level variability in biomass for each species within the functional group. Significant pairwise comparisons for the effect of drought within a functional group are indicated matching Fig 4.

Figure 6. Aboveground production for *Festuca* and *Medicago* exposed to the combined effects of drought (control: C and droughted: D) and warming (ambient: aT and elevated: eT) treatments during A) the 6-month winter/spring drought period. Treatment effect sizes during the winter/spring drought period for B) drought under ambient (also shown in Fig 4) and elevated temperatures, C) warming, under control and droughted conditions, and D) the effect of warming on biomass responses to drought (for panel D, positive values indicate a reduction in drought impact under warming). Values in panel A are means \pm 1 SE; while panels B-D are means and 95% confidence intervals. Spp. abbreviations and significance levels follow Fig. 4.

1072

1073