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Abstract

1. Heterozygosity is a metric of genetic variability frequently used to inform the management of
threatened taxa. Estimating observed and expected heterozygosities from genome-wide se-
guence data has become increasingly common, and these estimates are often derived directly
from genotypes at single nucleotide polymorphism (SNP) markers. While many SNP markers
can provide precise estimates of genetic processes, the results of ‘downstream’ analysis with
these markers may depend heavily on ‘upstream’ filtering decisions.

2. Here we explore the downstream consequences of sample size, rare allele filtering, missing
data thresholds and known population structure on estimates of observed and expected het-
erozygosity using two reduced-representation sequencing datasets, one from the mosquito
Aedes aegypti (ddRADseq) and the other from a threatened grasshopper, Keyacris scurra
(DArTseq).

3. We show that estimates based on polymorphic markers only (i.e. SNP heterozygosity) are al-
ways biased by global sample size (N), with smaller N producing larger estimates. By contrast,
results are unbiased by sample size when calculations consider monomorphic as well as poly-
morphic sequence information (i.e. genome-wide or autosomal heterozygosity). SNP hetero-
zygosity is also biased when differentiated populations are analysed together, while autoso-
mal heterozygosity remains unbiased. We also show that when nucleotide sites with missing
genotypes are included, observed and expected heterozygosity estimates diverge in propor-
tion to the amount of missing data permitted at each site.

4. We make three recommendations for estimating genome-wide heterozygosity: (i) autosomal
heterozygosity should be reported instead of (or in addition to) SNP heterozygosity; (ii) sites
with any missing data should be omitted; (iii) populations should be analysed in independent
runs. This should facilitate comparisons within and across studies and between observed and
expected measures of heterozygosity.

Key-words: Heterozygosity, Single Nucleotide Polymorphisms (SNPs), RADseq, DArTseq,
Filtering, Conservation, Population Structure, Genetic Mixing
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Introduction

The power provided by single nucleotide polymorphism (SNP) markers detected using
genome-wide sequencing approaches is leading to their increased use in conservation
genetic studies (Garner et al., 2016). SNPs are popular for investigating levels of genetic
differentiation among remnant populations and for comparing levels and patterns of
genetic variation within populations (Campbell et al., 2019; Maroso et al., 2016) which
provides information on the adaptive potential of populations (@rsted et al., 2019) as well
as patterns of inbreeding and relatedness (Mulvena et al., 2020). Results from SNP studies
are being interpreted for use in management decisions that include genetic rescue, genetic
mixing and founder selection in threatened species programs (Fitzpatrick et al., 2020). The
relative ease of generating SNP genotypes is leading to their increased use by non-
specialists, particularly through the availability of companies such as Diversity Arrays
Technology (https://www.diversityarrays.com), which provide SNP genotypes through
customised in-house processes (Gruber et al., 2017; Mulvena et al., 2020; Wright et al.,
2019).

Considering the popularity of SNP markers, it is important to be aware of any biases
inherent in their application to conservation genetics and elsewhere. While potential biases
have been considered for the detection of structure between populations (Linck & Battey,
2019; Wright et al., 2019), there has been less focus on the estimation of genetic variability
within populations. These estimates are important because they link to the evolutionary
potential of populations, which is typically higher in populations with greater genetic
variability (Hoffmann et al., 2017; @rsted et al., 2019). Genetic variability of populations is
therefore crucial when making genetic management decisions for threatened species
(Hoffmann et al., 2020; Weeks et al., 2011).

Genetic variation in populations is measured in several ways, the most common of which
are heterozygosity (observed and expected) and the proportion of nucleotide sites that are
polymorphic. Heterozygosity is usually estimated from a substantial number of individuals
sampled from each population, but with large quantities of sequence data fewer individuals
may be needed (Nazareno et al., 2017). Accurate heterozygosity estimates also require that
the apparent diversity at a site is not related to errors introduced during sequencing or
genotyping, the latter of which requires adequate coverage to ensure that both strands of a
diploid individual are sequenced (Nielsen et al., 2011). While expected heterozygosity is
estimated from allele frequencies, observed heterozygosity is estimated from individual
genotypes directly and depends on both the amount of genetic variation in the population
and the level of inbreeding, which increases homozygosity (Ritland, 1996). Inbreeding can
thus be estimated by comparing observed heterozygosity to expected heterozygosity, with
the latter expected to be relatively higher when there is inbreeding (Fis > 0).
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For heterozygosity, h;, the observed heterozygosity for an individual at site i can be averaged

n
i=1 hi...n

across n sites as and averaged across a sample of individuals to provide a

population estimate. This can be calculated from variation at polymorphic sites only (i.e.
SNP heterozygosity) or at both polymorphic and monomorphic sites (i.e. genome-wide or
autosomal heterozygosity). Both SNP heterozygosity and autosomal heterozygosity appear
in the literature; most population-focussed studies tend to report SNP heterozygosity (Bock
et al., 2018; Chen et al., 2016; Jones et al., 2012; Mathur et al., 2019; Surbakti et al., 2020)
although others use autosomal heterozygosity (Hohenlohe et al., 2010) which is the
parameter reported in studies comparing individual genomes (Gopalakrishnan et al., 2017;
Westbury et al., 2019). As SNP heterozygosities will be orders of magnitude larger than
autosomal heterozygosities, the two parameters cannot be directly compared, though for
studies of a single population autosomal heterozygosity can be converted to SNP
heterozygosity by dividing the estimate by the proportion of polymorphic sites. Fig. S1
provides a visualisation of how observed heterozygosity is calculated using all sequence
information (autosomal heterozygosity) and using polymorphic markers only (SNP
heterozygosity).

This paper investigates how SNP heterozygosity and autosomal heterozygosity perform
under variable conditions of sampling and filtering. These include local and global sample
size, rare allele filtering, missing data thresholds and the analysis of multiple differentiated
populations, all of which are common sources of variability within or between studies. We
explore these questions with a pair of genome-wide datasets of the sort frequently used for
assessing variation in wild populations. We focus initially on a ddRADseq dataset from one
population of a common species and then consider a DArTseq dataset from a threatened
species that covers multiple populations. We make some recommendations for assessing
heterozygosity when study aims include comparisons of genetic variability across
populations and with other studies.

Materials and Methods

Sequence data from the same population

We start by considering a single, well-mixed population. We use double digest restriction-
site associated (ddRAD) sequence data obtained from 100 female Aedes aegypti mosquitoes
sampled from a 0.125 km? area of Kuala Lumpur, Malaysia (Jasper et al., 2019). Note that as
this ddRADseq dataset contains only females, and as Ae. aegypti mosquitoes do not have
definable sex chromosomes but rather a small sex-determining region (Fontaine et al.,
2017), we did not need to filter out genotypes at sex chromosomes.
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We took subsamples from this population as follows.

Ten subsamples:-We tested the effect of five population sample sizes (n =10, 5, 4, 3, 2) on
heterozygosity estimates by subsampling the 100 individuals, without replacement. We
repeated the subsampling 10 times for each sample size n.

Nested subsamples: We tested the effect of six larger sample sizes (n =50, 40, 30, 20, 10, 5)
on heterozygosity estimates by subsampling the 100 individuals twice, without replacement.
This can help indicate whether filtering choices produce similar patterns at large n as at
small n. These subsamples were also used to test whether different filtering choices could
produce variable heterozygosity estimates from the same sample of individuals. To reduce
variation among subsamples of different size, we used a nested subsampling approach. The
100 individuals were randomly assigned to two groups, A and B, each of n = 50. Group A and
Group B were then subsampled once at each n, but where each subsample could only
include individuals that were included at the next highest n. For instance, the subsample at
n = 30 could only contain individuals that were present in the n = 40 subsample to allow for
a direct comparison between sample sizes.

Sequence data from multiple populations

We considered the issue of multiple populations being included in a comparison by
reanalysing a set of four populations of Keyacris scurra (Key’s Matchstick Grasshopper)
taken from a larger set of sequencing data derived from a Diversity Arrays Technology
(DArT) approach. Keyacris scurra has recently been listed as endangered and is currently
restricted in range to refugia in south-eastern Australia. These four populations have
experienced very low gene flow and are highly differentiated (pairwise Fst = 0.14—-0.28). The
four populations were processed and sequenced together as part of the same project
(Hoffmann et al., 2020). Note that no reference assembly is available for this species so the
term “autosomal heterozygosity” here will also include sequence data from any
differentiated sex chromosomes (or regions of chromosomes).

Sequence processing

For the ddRADseq dataset, aligned sequences were built into a Stacks.v2 (Catchen et al.,
2013) catalog with the program ref_map. For the DArTSeq dataset, sequence data were
built into a de novo Stacks catalog using the program denovo_map, allowing for up to four
mismatches within and between individuals. We analysed both datasets with the Stacks
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program “Populations”, which was used to estimate observed and expected heterozygosity
for a range of filtering settings described below.

Results

Estimates based on polymorphic sites (SNP heterozygosity)

Our first aim was to see how a dataset filtered with settings typically used for assessing
genetic structure (i.e. variation between populations) might perform when used to estimate
heterozygosity (i.e. variation within populations). Analysis of genetic structure will usually
consider only polymorphic sites (SNPs). When filtering SNPs, a common approach is to
combine the entire data set, remove sites not genotyped in a sufficient number of
individuals (typically 70-95%), and then filter out sites with a minor allele frequency (MAF)
or minor allele count (MAC) that is not met globally (Lemopoulos et al., 2019; Mathur et al.,
2019; Mulvena et al., 2020). Simulations suggest that a MAC > 3 may be optimal for
detecting population structure, as excluding rare alleles can lead to erroneous inferences of
admixture but including singletons and doubletons can confound model-based inferences of
structure (Linck & Battey, 2019).

Population comparisons using polymorphic sites only: effects of sample size

We start with a simple comparison of how global (N) and local (n) sample size affects SNP
heterozygosity estimates. For this we use the ten subsamples (n =10, 5, 4, 3, 2), which we
analyse first individually (i.e. with each subsample run in a separate Stacks run) and then
together (i.e. where the ten subsamples are run in a single Stacks run). To investigate these
effects at n 2 5, we use the nested subsamples from Groups A and B, first analysing each
subsample from Group A in individual runs, then analysing each pair of subsamples of equal
n from A and B together. Filtering followed a standard approach for assessing genetic
structure, retaining a single SNP from each RAD locus (--write-single-snp) which had no
more than 20% missing data and that had a MAC 2 3. Observed and expected
heterozygosities were estimated from these filtered polymorphic sites.
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Fig. 1: Boxplots showing effects of local and global sample size on heterozygosity estimates.
Observed (blue; a-d,i-l,g-t) and expected (red; e-h,m-p,u-x) heterozygosities have been derived
from three filtering treatments: polymorphic sites only, < 20% missing data, MAC > 3 (a-h);
polymorphic sites only, 0% missing data, MAC > 1 (i-p); polymorphic and monomorphic sites, 0%
missing data (g-x). Treatments have been applied to four Ae. aegypti datasets described in the main
text: ten subsamples each of size n, analysed in individual runs (a,e,l,m,q,u); ten subsamples each
of size n, analysed together in a single run (b,f,j,n,r,v); single nested subsamples from Group A, each
undergoing jack-knife resampling (c,g,k,0,s,w); nested subsamples from Group A and Group B
analysed together, each undergoing jack-knife resampling (d,h,l,p,t,x). All Y-axes use a log-10 scale.

SNP heterozygosity estimates are shown in Fig. 1a-h and indicate how this type of filtering
approach presents problems for comparing estimates across studies. In all cases, observed
and expected heterozygosities were larger when fewer samples were used for estimation.
Specifically, heterozygosities are biased by global N (total sample size in the analysis) rather
than local n (sample size of each population), as evident from comparisons of subsamples of
equal n analysed either in individual runs or together. Although these effects reduce as N
increases, they persist even with n =40 and N > 80.

The source of this issue is that heterozygosity is generally lower for SNPs with rare alleles
(where most individuals are homozygous for the common allele) than for SNPs with
common alleles. For instance, for the n = 3 subsamples analysed in individual runs, all SNPs
have minor alleles at 0.5 frequency when MAC > 3 is applied (Fig. 13, e), leading to expected
heterozygosity of 0.5. As additional samples are added, SNPs with rare alleles become more
likely to be detected, leading to lower heterozygosity estimates (c.f. Fig. S1). As MAC
filtering is applied globally, heterozygosity is lower when populations are analysed together
(Fig. 1b, f) as global sample size is ten times larger in these runs. However, even in these
runs there were clear differences between SNP heterozygosity estimates forn =10 (N =
100) and n <5 (N < 50).

Considering these inconsistencies in SNP heterozygosity estimates when filtering datasets
with ‘typical’ settings for genetic structure, we reran the above analyses with MAC > 1 and
selecting all SNPs rather than one per RAD locus. These analyses thus considered variation
at all polymorphic sites including those with singletons and doubletons. We used a
maximum missing data threshold of 0% (or as specified), to avoid potential artefacts caused
by including sites with missing data (see Fig. 2). Including all polymorphic sites reduced the
bias from sample size; however, similar patterns of strong bias were still observed (Fig. 1i-p).
Thus, while including singletons and doubletons reduces sample size biases because rare
alleles are then more likely to be detected in small samples, the biases will nevertheless
persist when sites are filtered on the basis of polymorphism.


https://doi.org/10.1101/2020.12.20.423694
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423694; this version posted June 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Population comparisons using polymorphic sites only: missing data thresholds

We investigated effects of missing data thresholds on SNP heterozygosity using the nested
subsamples from Group A, filtered with thresholds of 0% (i.e. no missing data allowed), 10%,
20%, 30%, 40%, or 50%. Thus in each case variation in heterozygosity was assessed in a
single population of size n (n = 50, 40, 30, 20, 10, 5). We compared results from the two
filtering protocols described previously: a standard protocol for assessing genetic structure
(one SNP per RADtag with MAC > 3) and one that retains all polymorphic sites (MAC > 1).

We see a considerable effect of missing data thresholds on SNP heterozygosity (Fig. 2a-f).
Samples of larger n were more strongly affected by choice of missing data threshold, with
stringent filtering tending to produce higher estimates. When 50 individuals were used with
MAC 2 3 filtering (Fig. 2a), a 10% missing data threshold (a common parameter setting)
produced an estimate for observed heterozygosity 1.22 times higher than filtering with a
30% threshold (also a common parameter setting). This effect was stronger with MAC > 1
filtering (1.36 times higher; Fig. 2d). Expected heterozygosities were less biased by missing
data thresholds but effects were still evident (Fig. 2b,e).

The higher observed heterozygosity estimates at 0% versus 50% thresholds might be
expected if there is a correlation between errors and the presence of missing data at a site.
In that case, errors at monomorphic sites with high missing data could be read as low
frequency polymorphisms, pushing down heterozygosity estimates when N is large. Also,
when singletons and doubletons are included more low-frequency errors would be included
in calculations, leading to the stronger effects seen when MAC > 1 filtering was applied.

Finally, the large population sizes in Ae. aegypti indicate this Malaysian sample is unlikely to
contain inbred individuals, and thus we do not expect observed and expected
heterozygosities to differ substantially. We note that when estimates of observed and
expected heterozygosity are compared, these parameters are most similar when filtering
with a 0% missing data threshold and start to diverge as this threshold is increased. These
divergences are consistent across filtering types, from ~1.10 at 0% missing data to ~1.27 at
20% and ~1.50 at 50%. Less stringent missing data thresholds may thus introduce artefacts
of differential observed and expected heterozygosities, which may lead to incorrect
inferences of local breeding patterns.

In light of these inconsistencies, SNP heterozygosity appears prone to bias, regardless of
whether filtering follows a typical protocol used for genetic structure or when considering
every polymorphic site. This bias is demonstrated in Fig. S1, which shows how, when
calculating SNP heterozygosity, the numerator remains proportionate to the number of
heterozygous sites regardless of sample size, but the denominator is consistently biased
downwards. This downward bias should diminish for very large N but for rare populations or
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Fig. 2: Boxplots showing effects of missing data thresholds on heterozygosity estimates. Observed
(blue; a,d,g) and expected (red; b,e,h) heterozygosities have been derived from the nested
subsamples from Group A following three filtering treatments: polymorphic sites only, MAC 2 3 (a-
c); polymorphic sites only, MAC 2 1 (d-f); polymorphic and monomorphic sites (g-i). For each n, the
subsample has been filtered using a progression of missing data thresholds: from left to right, 0%,
10%, 20%, 30%, 40%, 50%. Each estimate has undergone jack-knife resampling. Subfigures c,f,i
aggregate results across all subsamples to show how observed (left) and expected (right)
heterozygosities diverge with less stringent missing data thresholds. All Y-axes use a log-10 scale.
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small budgets this cannot be solved by sequencing more individuals. This limits the potential
for SNP heterozygosity estimates in one study to inform the results of other studies.

Estimates based on all polymorphic and monomorphic sites (autosomal
heterozygosity)

Given the above challenges, we next explored how sample size and missing data affect
autosomal heterozygosity, which considers both monomorphic and polymorphic
nucleotides. We ran analyses on identical datasets to those used previously. For filtering, we
used no MAC cut-off, and estimated heterozygosity across every site rather than every
polymorphic site. In the output from the Stacks.v2 program “Populations”, this corresponds
to the entries in the “# All positions (variant and fixed)” subsection. We used a maximum
missing data threshold of 0% (unless specified differently).

Population comparisons using all sites: effects of sample size

When considering variation at all nucleotide sites, observed and expected heterozygosity
estimates are far less affected by N than SNP heterozygosity estimates (Fig. 1g-x). Though
there was some variability among subsamples of smaller n, observed heterozygosities of
~0.00039 and expected heterozygosities of ~0.00040 were consistently recorded. The
similar estimates for these two parameters match expectations for this sample of Malaysian
Ae. aegypti, where inbreeding is unlikely given the large size of mosquito populations and
the spatial distribution of sampling.

These consistent estimates are expected when all sites are taken into account because for
smaller samples the higher frequency of heterozygotes at polymorphic sites will be offset by
the lower number of polymorphic sites overall. Heterozygosity estimates from a set of
individuals thus correlate directly with population heterozygosity because sites are not first
filtered by polymorphism (Fig. S1). In this sense, autosomal heterozygosity is a parameter
that is both more robust to variation in study design and also a more accurate measure of
genetic variation which can be used in comparisons across studies and organisms (Westbury
et al., 2019).

Population comparisons using all sites: effects of missing data thresholds

Missing data thresholds had a smaller effect on autosomal heterozygosity than on SNP
heterozygosity (Fig. 2g,h). Nevertheless, the same problematic pattern is clear in the

10
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divergence between observed and expected heterozygosities when sites with missing data
are included, which was of equivalent magnitude to divergences in SNP heterozygosity (Fig.
2 i). Considering these results, we propose that heterozygosity estimation should exclude
nucleotide sites that have any missing genotypes, as these may be more likely to contain
errors or otherwise skew parameter estimates. While this filtering might at first appear
overly stringent, autosomal heterozygosity is calculated using far more sites than SNP
heterozygosity, and should normally be based on sufficient sites even after strict filtering.
For example, when a 20% missing data threshold is used to estimate SNP heterozygosity
(MAC > 1) in 50 individuals, heterozygosity is estimated from 95,293 polymorphic sites.
When a 0% missing data threshold is used to estimate autosomal heterozygosity (MAC > 0),
heterozygosity is estimated from 7,813,360 sites, of which 17,968 are polymorphic. This
does not imply that the consistency in autosomal heterozygosity estimates is due to a larger
number of sites; an increase in the number of sites will not resolve biases in SNP
heterozygosity which reflect the sample size of individuals rather than sites (Fig. S1).
Similarly, the specific number of nucleotides used in autosomal heterozygosity calculations
may vary across studies, but should accurately reflect the degree of variation across the
genome.

Multiple population considerations

We first estimated heterozygosity for the four K. scurra populations using equal sample sizes
of 10. Fig. S2 compares results of a 0% missing data threshold against a 20% threshold,
showing that at 20%, the ratio of observed to expected heterozygosity is higher (x = 1.156)
than at 0% (x = 1.091), supporting our previous findings that missing data may bias the ratio
of heterozygosities. Accordingly, we used a 0% missing data threshold in the following
analyses.

Population comparisons: local sample size variation

Although global sample size analysed above had little effect on autosomal heterozygosity
when n 2 10, we have yet to consider differences in sample size among populations. We
estimated heterozygosity for the four K. scurra populations with one population (Goulburn)
set at either half (5,10,10,10) or double (10,5,5,5) the size of the other populations
compared to an equal population size. We compared results for autosomal heterozygosity
and SNP heterozygosity following previous filtering settings (MAC = 3 and MAC > 1).

When 10 individuals are analysed from each population, the Goulburn, Hall and

Wallendbeen populations all have similar heterozygosities, while Cooma is much lower (Fig.
11
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3). There was no strong effect from unequal sample size for either autosomal heterozygosity
(Fig. 3 e,f) or for SNP heterozygosity using all polymorphic sites (Fig. 3c,d), but filtering at
MAC = 3 revealed such an effect (Fig. 3a,b). The Goulburn population had either higher or
lower heterozygosity than the Hall and Wallendbeen populations, depending on whether
Goulburn had a greater or smaller n. This bias could lead to misinterpretation of relative SNP
heterozygosities within studies when populations with different sample sizes are analysed
together.

Population comparisons: impact of population structure

Next, we investigate the effects of combining genetically differentiated populations in an
analysis. In terms of mtDNA variation and DArT SNPs, Cooma was separate from the other
populations and particularly Wallendbeen (Hoffmann et al., 2020). We estimated SNP and
autosomal heterozygosities for each of the four K. scurra populations analysed individually
(i.e. with each population in a separate Stacks run) and compared this to populations
analysed together (i.e. with all populations in a single Stacks run).

Autosomal heterozygosity is unaffected by whether differentiated populations are analysed
individually or together (Fig. 4b). However, strong biases on SNP heterozygosity are evident
(Fig. 4a). When the four populations are analysed individually, estimates are much higher
than when analysed together. Additionally, the population at Cooma, which otherwise
recorded the lowest heterozygosity of the four populations, has higher heterozygosity than
all other populations when analysed by itself.

As allele frequencies vary among these populations, many variant sites will only be
polymorphic in one or two populations and are monomorphic in the others. Thus when
populations are analysed together, estimates for each population will include these variant
sites that are locally monomorphic, leading to lower heterozygosity estimates than when
analysed individually.

A similar explanation accounts for the sharp variation in estimates at Cooma. When
analysed individually, Cooma recorded fewer polymorphic sites (3235) than the other
populations (4693, 4734, 5182); this pattern was also observed when populations were
analysed together. However, heterozygosity at these 3235 polymorphic sites was higher
than at the other populations.
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a Observed (SNP MAC3) b Expected (SNP MAC3)

eLGNe 0.10434  0.09091 0.13365 LGN 0.11182  0.09554  0.14469
LAl 0.05185 0.05742 0.06084 Cooma 0.06034  0.05766
GEUN 0.11530 0.12599  0.13065 GEl 0.12009 0.13212  0.13355

UEICLCLEEL N 0.12204 0.13395  0.11562 UEIEHGLEEIE 0.12499  0.13705  0.12227

{10,10.10,10} {5,10,10,10} {10,555} {10,10.10,10} {5,10,10,10}  {10,5,5,5}

c Observed (SNP MAC1) d Expected (SNP MAC1)

eI 0.07515 0.07503  0.08664 UL 0.07935 0.07768 0.09399
LWL CHN 0.03790 0.04166  0.04506 Cooma 0.04264
GEUN 0.08296 0.08721  0.10039 GEI 0.08650 0.09345 0.09785

UEICHGLECL I 0.08938  0.09465 0.10076 UEIEHGLEELEE 0.09530 0.09972  0.10125

{10,10.10,10} {5,10,10,10} {10,555} {10,10.10,10} {5,10,10,10}  {10,5,5,5}

e Observed (Autosomal) f Expected (Autosomal)

Goulburn 0.00312 0.00293 0.00331 Goulburn 0.00330 0.00304 0.00360
e TUEN 0.00158 0.00163  0.00172 e il 0.00154 5 0.00163
Hall 0.00345 0.00341 0.00384 Hall 0.00359 0.00365 0.00374

UEICLELEEL N 0.00371  0.00370  0.00386 UZICEHGLEELEE 0.00396 0.00390 0.00388

{10,1010,10} {5,10,10,10}  {10,5,5,5} {10,10.10,10} {5,10,10,10}  {10,5,5,5}

Fig. 3: Effects of differential local sample size on heterozygosity estimates. Observed (blue; a,c,e)
and expected (red; b,d,f) heterozygosities have undergone three filtering treatments: polymorphic
sites only, MAC 2 3 (a,b); polymorphic sites only, MAC 2 1 (c,d); polymorphic and monomorphic
sites (e,f). Numbers in brackets indicate sample sizes for the four K. scurra populations sequentially
(Goulburn to Wallendbeen). Shading reflects similarity among numbers.
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a Observed (SNP MAC1) b Observed (Autosomal)
Goulburn 0.07515 0.23314 Goulburn 0.00312 0.00339
Cooma 0.03790 0.27138 Cooma 0.00158 0.00179
Hall 0.08296 0.23740 Hall 0.00345 0.00331
Wallendbeen 0.08938 0.23777 Wallendbeen 0.00371 0.00355
{10,10.10,10} 10 individually {10,10.10,10} 10 individually
c No. Sites d No. Polymorphic sites
Goulburn 101968 Goulburn 1356
Cooma 101968 Cooma 562
Hall 101972 Hall 1408
Wallendbeen 101971 Wallendbeen 1557
{1 0,10:1 0,10} 10 indlividually {1 0,10:10,10} 10 indlividually

Fig. 4: Effects of population genetic structure on heterozygosity estimates. Observed SNP
heterozygosities (a) and autosomal heterozygosities (b) are presented for the four K. scurra
populations which have either been analysed together in a single run or in separate runs
individually. The number of sites (c) and number of locally polymorphic sites (d) retained after
filtering are also presented. Shading reflects similarity among numbers.

These findings show how SNP heterozygosity estimates represent different parameters
when populations are analysed in individual runs compared to when they are analysed
alongside other populations. When analysed individually, the SNP heterozygosity of a
population is equal to autosomal heterozygosity multiplied by the proportion of sites that
are polymorphic (Fig. S1). When analysed with other populations, the SNP heterozygosity of
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a population will be shaped by whichever other populations are included, as the structure
between these populations will determine which locally monomorphic sites are called as
SNPs. Accordingly, SNP heterozygosities, if they are to be reported, should probably be
calculated from populations analysed individually, and the total number of polymorphic
sites should also be reported for each population to provide further context to the
heterozygosity estimates. For autosomal heterozygosity, analysing multiple populations at
once introduces no biases while conferring no advantage, but does reduce the number of
retained sites (Fig. 4 c,d). It follows that calculations of autosomal heterozygosity should
analyse each population in individual runs. For observed autosomal heterozygosity, this
could be extended to analysing each individual in turn if needed.

Comparing heterozygosity estimates

A final consideration concerns how to interpret heterozygosity estimates across studies. We
have proposed several guidelines for filtering data to allow cross-study comparisons. The
most important of these is that heterozygosity estimates should be derived from variation
at both monomorphic and polymorphic sites. Table 1 compares variation in SNP
heterozygosity with variation in autosomal heterozygosity for the four K. scurra populations
analysed individually. We did not compare populations when analysed together due to the
confoundment of SNP heterozygosities in these analyses (Fig. 4).

For K. scurra, variation in autosomal heterozygosity is approximately twice as large as
variation in SNP heterozygosity (Table 1). A large difference in SNP heterozygosity might not
be detected even when comparing populations with very low and very high levels of genetic
variation because the exclusion of monomorphic sites in each population will reduce
differences in genetic variability among the populations.

Table 1. Magnitude of heterozygosity differences between populations for SNP and autosomal
heterozygosity. Calculations are based on the results from Fig. 4. MAX/MIN is the ratio between the
largest score and the smallest score.

SNP heterozygosity (MAC = 1) Autosomal heterozygosity

Observed Expected Observed Expected

MAX/MIN 1.164 1.064 1.983 2.230
Coefficient of variance 0.063 0.024 0.236 0.267
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Discussion

Comparisons of heterozygosity across populations and species are frequently used to inform
management decisions in conservation programs. An example of a relevant management
action involves selecting populations for genetic and evolutionary rescue, which aims to
decrease levels of inbreeding and increase levels of genetic variation in target populations
through targeted introductions of individuals from other populations (Hoffmann et al.,
2020; Whiteley et al., 2015). The usefulness of source populations for conservation
translocations is to a large extent determined by their genetic variability (@rsted et al., 2019;
Reid et al., 2016). Tracking changes in heterozygosity across time can also be a worthwhile
means of tracking the genetic health of threatened populations (Mitrovski et al., 2008) and
is particularly useful for determining outcomes of management interventions (Weeks et al.,
2017). All of these objectives require that heterozygosity estimates are comparable across
populations within a study and across different studies.

In this paper, we have shown that filtering genome-wide sequence data using optimal
settings for detecting genetic structure will produce heterozygosity estimates that are
poorly-suited to these comparisons. Specifically we show that heterozygosity estimates that
consider only polymorphic sites (SNP heterozygosity) are always biased by global sample
size (N), with smaller sample sizes producing larger heterozygosity estimates.
Heterozygosity estimates that consider monomorphic and polymorphic sites (autosomal
heterozygosity) do not suffer from these biases. We also found that when sites with missing
data are included, observed and expected heterozygosity estimates diverge, with the
divergence proportional to the amount of missing data permitted. When multiple
populations were analysed together, SNP heterozygosity estimates were additionally biased
by allele frequency differences among populations. While analysing populations together
did not bias autosomal heterozygosity, it conferred no advantages over analysing
populations individually but reduced the number of available sites due to missing data
filtering.

Following this, we propose three general guidelines that should help meaningful
comparisons: (i) studies aiming to summarise population genetic variation should report
autosomal heterozygosity, either by itself or alongside SNP heterozygosity; (ii) sites with
missing data should be omitted from heterozygosity calculations; and (iii) populations
should be analysed in independent runs. Although we have not explicitly investigated the
importance of sequencing coverage, this is widely known to be critical for accurately
identifying heterozygotes (Nielsen et al., 2011). This being the case, our findings that
heterozygosity estimates can be consistent even at low n (Fig. 7a) point to the optimal
design for heterozygosity being deep sequencing of a small number of individuals (perhaps
5-10) from each population, rather than shallower sequencing of many individuals. Previous
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work has found these numbers to be adequate (Nazareno, Bemmels, Dick, & Lohmann,
2017).

SNP heterozygosity is frequently the only measure of heterozygosity reported (Bock et al.,
2018; Chen et al., 2016; Jones et al., 2012; Mathur et al., 2019; Surbakti et al., 2020).
Although there may be cases where SNP heterozygosity is the appropriate parameter, it will
be subject to biases from sample size that do not affect autosomal heterozygosity, making
the latter a better ‘default’ choice for reporting variation in populations. As taxa of
conservation interest are frequently rare or difficult to sample in large numbers, large
sample sizes for all populations would be difficult to achieve. SNP heterozygosity also does
not capture all the variation in the genome. For instance, K. scurra from Cooma had a higher
SNP heterozygosity estimate (when calculated in an independent run) yet fewer
polymorphic sites than the other populations; this low level of polymorphism was evident in
the autosomal heterozygosity estimate.

While we advocate autosomal heterozygosity as a default choice for reporting genome-wide
averages, there may be circumstances where variation at a specific set of sites is of interest
(e.g. Chen et al., 2016). In this case, heterozygosity can be estimated free of bias provided
that this specific set of sites is not further filtered by polymorphism when new populations
are analysed, and thus sites should be retained even if the new population is locally
monomorphic. Returning to the work of Nazareno et al. (2017), the consistency of their
heterozygosity estimates across subsamples of different size is due to these subsamples not
being refiltered by polymorphism. While Nazareno et al. (2017) effectively demonstrates
how heterozygosity can be estimated with small samples, this approach would not be
applicable to comparisons across populations. Likewise, assessing variation at a specific set
of sites may evade sample size biases, but other biases may be introduced when assessing
variation in populations with different allele frequencies to those in populations used to
select the initial set of variable sites.

Whole-genome sequencing studies frequently report autosomal rather than SNP
heterozygosity (Gopalakrishnan et al., 2017; Westbury et al., 2019). However, this
methodology has been less commonly applied in reduced-representation sequencing
studies such as those using RADseq or DArTseq markers. One reason for this may be that
whole-genome studies frequently analyse single individuals rather than a sample, and as
SNP heterozygosity calculated from a single diploid individual will always be equal to 1 (Fig.
S1) this approach would not be considered. Another reason may be that reduced-
representation protocols are commonly applied to wild populations of understudied
organisms, where the first step is typically to analyse genetic structure among populations.
Monomorphic sites are uninformative for most analyses of genetic structure and thus these
are typically removed during filtering, and this remaining set of SNPs will be used to
estimate both genetic structure and heterozygosity. Here we propose that analysis of
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genetic structure (variation between populations) and heterozygosity (variation within
populations) be treated as distinct targets and filtered using different parameter settings.

When expected heterozygosity is higher than observed heterozygosity, it is often treated as
evidence for local inbreeding (Hoffmann et al., 2020), an important parameter that can
indicate a need for genetic intervention in threatened species (Ralls et al., 2018). However,
Fig. 2 shows that inferences of inbreeding in the presence of missing data may be
confounded, as observed and expected heterozygosities quickly diverge as sites with
missing data are included, leading to Fis > 0. These opposing effects of missing data filters on
observed and expected heterozygosities are consistent with sequencing error rates being
higher at nucleotide positions where there are some missing genotypes. A possible
explanation is that sequencing errors are more likely at monomorphic sites; these sites are
more common, and more likely to be retained than errors at polymorphic sites which may
introduce a third allele and be removed from the dataset (most filtering protocols retain
only biallelic sites). Monomorphic sites with errors may therefore be coded as low-
frequency SNPs. Including them could affect the observed and expected autosomal
heterozygosity estimates differently depending on whether errors are mostly coded as
homozygous or heterozygous.

Despite these issues, the K. scurra data also indicate clear instances where inbreeding levels
differ across populations. We note that for K. scurra from Cooma, observed and expected
heterozygosities were almost identical, while expected heterozygosities are 8-15% higher in
the other populations, suggesting a situation where inbreeding in Cooma is low but genetic
variability is also low. An accurate assessment of inbreeding in populations versus low
genetic variation is important when making recommendations around genetic mixing of
threatened populations, which can target both the masking of deleterious genes expressed
as a consequence of inbreeding as well as problems from low levels of genetic variability
(Hoffmann et al., 2020; Ralls et al., 2018; Weeks et al., 2011). It would be worth further
evaluating optimal filtering strategies for assessing the ratio of observed and expected
heterozygosities, using a set of populations where inbreeding is known to occur in some
populations but not others.

This study has highlighted issues with estimating population heterozygosities from SNP data
directly, and shown that autosomal heterozygosity estimates are more robust to the
influence of sample size and are likely to be more comparable across studies. We provide
general guidelines for estimating population heterozygosity from genome-wide sequence
data that are usually different from guidelines for estimating other population genetic
parameters such as gene flow, population structure, relatedness and effective population
size. As in previous assessments (Linck & Battey, 2019), our results demonstrate that SNP
datasets need to be carefully evaluated when they are used to obtain genetic parameters
for populations that inform management decisions.
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Fig S1. Estimating heterozygosity in a hypothetical population of diploid individuals.

Analyses consider population samples of n =1 (a,b), 5 (c,d), 10 (e,f) and 20 (g,h). Observed
heterozygosity is calculated using all sites irrespective of polymorphism (autosomal
heterozygosity: a,c,e,g) or using SNPs only (SNP heterozygosity: b,d,f,h). Individuals have been
genotyped at 15 sites, and the circles indicate the unphased genotype at each site. When
autosomal heterozygosity is calculated, the numerator and denominator remain proportionate
to the number of sites evaluated (denominator) and the number of heterozygous sites
(numerator) regardless of sample size. When SNP heterozygosity is calculated, the denominator
is biased by whether SNPs with rare alleles are detected in the sample, which will remain an
issue even at large n. These biases will be present in both observed and expected
heterozygosity. Note that in actual sequence data the proportion of monomorphic sites will be
much higher than shown here, producing smaller autosomal heterozygosity estimates.
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Fig S2. Estimates of observed and expected autosomal heterozygosity in four K. scurra
populations filtered with 0% vs 20% missing data thresholds. The mean heterozygosity ratio
between observed and expected values at 0% is 1.09, and at 20% it is 1.16. Entries with similar
shading are more similar to each other.
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