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Abstract 

1. Heterozygosity is a metric of genetic variability frequently used to inform the management of 

threatened taxa. Estimating observed and expected heterozygosities from genome-wide se-

quence data has become increasingly common, and these estimates are often derived directly 

from genotypes at single nucleotide polymorphism (SNP) markers. While many SNP markers 

can provide precise estimates of genetic processes, the results of 8downstream9 analysis with 

these markers may depend heavily on 8upstream9 filtering decisions.  

2. Here we explore the downstream consequences of sample size, rare allele filtering, missing 

data thresholds and known population structure on estimates of observed and expected het-

erozygosity using two reduced-representation sequencing datasets, one from the mosquito 

Aedes aegypti (ddRADseq) and the other from a threatened grasshopper, Keyacris scurra 

(DArTseq).  

3. We show that estimates based on polymorphic markers only (i.e. SNP heterozygosity) are al-

ways biased by global sample size (N), with smaller N producing larger estimates. By contrast, 

results are unbiased by sample size when calculations consider monomorphic as well as poly-

morphic sequence information (i.e. genome-wide or autosomal heterozygosity). SNP hetero-

zygosity is also biased when differentiated populations are analysed together, while autoso-

mal heterozygosity remains unbiased. We also show that when nucleotide sites with missing 

genotypes are included, observed and expected heterozygosity estimates diverge in propor-

tion to the amount of missing data permitted at each site. 

4. We make three recommendations for estimating genome-wide heterozygosity: (i) autosomal 

heterozygosity should be reported instead of (or in addition to) SNP heterozygosity; (ii) sites 

with any missing data should be omitted; (iii) populations should be analysed in independent 

runs. This should facilitate comparisons within and across studies and between observed and 

expected measures of heterozygosity. 

 

Key-words: Heterozygosity, Single Nucleotide Polymorphisms (SNPs), RADseq, DArTseq, 
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Introduction 

The power provided by single nucleotide polymorphism (SNP) markers detected using 

genome-wide sequencing approaches is leading to their increased use in conservation 

genetic studies (Garner et al., 2016). SNPs are popular for investigating levels of genetic 

differentiation among remnant populations and for comparing levels and patterns of 

genetic variation within populations (Campbell et al., 2019; Maroso et al., 2016) which 

provides information on the adaptive potential of populations (Ørsted et al., 2019) as well 

as patterns of inbreeding and relatedness (Mulvena et al., 2020). Results from SNP studies 

are being interpreted for use in management decisions that include genetic rescue, genetic 

mixing and founder selection in threatened species programs (Fitzpatrick et al., 2020). The 

relative ease of generating SNP genotypes is leading to their increased use by non-

specialists, particularly through the availability of companies such as Diversity Arrays 

Technology (https://www.diversityarrays.com), which provide SNP genotypes through 

customised in-house processes (Gruber et al., 2017; Mulvena et al., 2020; Wright et al., 

2019).  

Considering the popularity of SNP markers, it is important to be aware of any biases 

inherent in their application to conservation genetics and elsewhere. While potential biases 

have been considered for the detection of structure between populations (Linck & Battey, 

2019; Wright et al., 2019), there has been less focus on the estimation of genetic variability 

within populations. These estimates are important because they link to the evolutionary 

potential of populations, which is typically higher in populations with greater genetic 

variability (Hoffmann et al., 2017; Ørsted et al., 2019). Genetic variability of populations is 

therefore crucial when making genetic management decisions for threatened species 

(Hoffmann et al., 2020; Weeks et al., 2011). 

Genetic variation in populations is measured in several ways, the most common of which 

are heterozygosity (observed and expected) and the proportion of nucleotide sites that are 

polymorphic. Heterozygosity is usually estimated from a substantial number of individuals 

sampled from each population, but with large quantities of sequence data fewer individuals 

may be needed (Nazareno et al., 2017). Accurate heterozygosity estimates also require that 

the apparent diversity at a site is not related to errors introduced during sequencing or 

genotyping, the latter of which requires adequate coverage to ensure that both strands of a 

diploid individual are sequenced (Nielsen et al., 2011). While expected heterozygosity is 

estimated from allele frequencies, observed heterozygosity is estimated from individual 

genotypes directly and depends on both the amount of genetic variation in the population 

and the level of inbreeding, which increases homozygosity (Ritland, 1996). Inbreeding can 

thus be estimated by comparing observed heterozygosity to expected heterozygosity, with 

the latter expected to be relatively higher when there is inbreeding (FIS > 0).  
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For heterozygosity, hi, the observed heterozygosity for an individual at site i can be averaged 

across n sites as 
∑ ℎ�…���=1�  and averaged across a sample of individuals to provide a 

population estimate. This can be calculated from variation at polymorphic sites only (i.e. 

SNP heterozygosity) or at both polymorphic and monomorphic sites (i.e. genome-wide or 

autosomal heterozygosity). Both SNP heterozygosity and autosomal heterozygosity appear 

in the literature; most population-focussed studies tend to report SNP heterozygosity (Bock 

et al., 2018; Chen et al., 2016; Jones et al., 2012; Mathur et al., 2019; Surbakti et al., 2020) 

although others use autosomal heterozygosity (Hohenlohe et al., 2010) which is the 

parameter reported in studies comparing individual genomes (Gopalakrishnan et al., 2017; 

Westbury et al., 2019). As SNP heterozygosities will be orders of magnitude larger than 

autosomal heterozygosities, the two parameters cannot be directly compared, though for 

studies of a single population autosomal heterozygosity can be converted to SNP 

heterozygosity by dividing the estimate by the proportion of polymorphic sites. Fig. S1 

provides a visualisation of how observed heterozygosity is calculated using all sequence 

information (autosomal heterozygosity) and using polymorphic markers only (SNP 

heterozygosity).  

This paper investigates how SNP heterozygosity and autosomal heterozygosity perform 

under variable conditions of sampling and filtering. These include local and global sample 

size, rare allele filtering, missing data thresholds and the analysis of multiple differentiated 

populations, all of which are common sources of variability within or between studies. We 

explore these questions with a pair of genome-wide datasets of the sort frequently used for 

assessing variation in wild populations. We focus initially on a ddRADseq dataset from one 

population of a common species and then consider a DArTseq dataset from a threatened 

species that covers multiple populations. We make some recommendations for assessing 

heterozygosity when study aims include comparisons of genetic variability across 

populations and with other studies.  

 

 

Materials and Methods  

Sequence data from the same population  

We start by considering a single, well-mixed population. We use double digest restriction-

site associated (ddRAD) sequence data obtained from 100 female Aedes aegypti mosquitoes 

sampled from a 0.125 km2 area of Kuala Lumpur, Malaysia (Jasper et al., 2019). Note that as 

this ddRADseq dataset contains only females, and as Ae. aegypti mosquitoes do not have 

definable sex chromosomes but rather a small sex-determining region (Fontaine et al., 

2017), we did not need to filter out genotypes at sex chromosomes.  
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We took subsamples from this population as follows.  

Ten subsamples: We tested the effect of five population sample sizes (n = 10, 5, 4, 3, 2) on 

heterozygosity estimates by subsampling the 100 individuals, without replacement. We 

repeated the subsampling 10 times for each sample size n. 

Nested subsamples: We tested the effect of six larger sample sizes (n = 50, 40, 30, 20, 10, 5) 

on heterozygosity estimates by subsampling the 100 individuals twice, without replacement. 

This can help indicate whether filtering choices produce similar patterns at large n as at 

small n. These subsamples were also used to test whether different filtering choices could 

produce variable heterozygosity estimates from the same sample of individuals. To reduce 

variation among subsamples of different size, we used a nested subsampling approach. The 

100 individuals were randomly assigned to two groups, A and B, each of n = 50. Group A and 

Group B were then subsampled once at each n, but where each subsample could only 

include individuals that were included at the next highest n. For instance, the subsample at 

n = 30 could only contain individuals that were present in the n = 40 subsample to allow for 

a direct comparison between sample sizes.  

 

 

Sequence data from multiple populations  

We considered the issue of multiple populations being included in a comparison by 

reanalysing a set of four populations of Keyacris scurra (Key9s Matchstick Grasshopper) 
taken from a larger set of sequencing data derived from a Diversity Arrays Technology 

(DArT) approach. Keyacris scurra has recently been listed as endangered and is currently 

restricted in range to refugia in south-eastern Australia. These four populations have 

experienced very low gene flow and are highly differentiated (pairwise FST = 0.14–0.28). The 

four populations were processed and sequenced together as part of the same project 

(Hoffmann et al., 2020). Note that no reference assembly is available for this species so the 

term <autosomal heterozygosity= here will also include sequence data from any 

differentiated sex chromosomes (or regions of chromosomes).  

 

Sequence processing 

For the ddRADseq dataset, aligned sequences were built into a Stacks.v2 (Catchen et al., 

2013) catalog with the program ref_map. For the DArTSeq dataset, sequence data were 

built into a de novo Stacks catalog using the program denovo_map, allowing for up to four 

mismatches within and between individuals. We analysed both datasets with the Stacks 
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program <Populations=, which was used to estimate observed and expected heterozygosity 

for a range of filtering settings described below. 

 

 

Results 

Estimates based on polymorphic sites (SNP heterozygosity) 

Our first aim was to see how a dataset filtered with settings typically used for assessing 

genetic structure (i.e. variation between populations) might perform when used to estimate 

heterozygosity (i.e. variation within populations). Analysis of genetic structure will usually 

consider only polymorphic sites (SNPs). When filtering SNPs, a common approach is to 

combine the entire data set, remove sites not genotyped in a sufficient number of 

individuals (typically 70-95%), and then filter out sites with a minor allele frequency (MAF) 

or minor allele count (MAC) that is not met globally (Lemopoulos et al., 2019; Mathur et al., 

2019; Mulvena et al., 2020). Simulations suggest that a MAC g 3 may be optimal for 

detecting population structure, as excluding rare alleles can lead to erroneous inferences of 

admixture but including singletons and doubletons can confound model-based inferences of 

structure (Linck & Battey, 2019). 

 

Population comparisons using polymorphic sites only: effects of sample size  

We start with a simple comparison of how global (N) and local (n) sample size affects SNP 

heterozygosity estimates. For this we use the ten subsamples (n = 10, 5, 4, 3, 2), which we 

analyse first individually (i.e. with each subsample run in a separate Stacks run) and then 

together (i.e. where the ten subsamples are run in a single Stacks run). To investigate these 

effects at n g 5, we use the nested subsamples from Groups A and B, first analysing each 
subsample from Group A in individual runs, then analysing each pair of subsamples of equal 

n from A and B together. Filtering followed a standard approach for assessing genetic 

structure, retaining a single SNP from each RAD locus (--write-single-snp) which had no 

more than 20% missing data and that had a MAC g 3. Observed and expected 

heterozygosities were estimated from these filtered polymorphic sites. 
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Fig. 1: Boxplots showing effects of local and global sample size on heterozygosity estimates. 

Observed (blue; a-d,i-l,q-t) and expected (red; e-h,m-p,u-x) heterozygosities have been derived 

from three filtering treatments: polymorphic sites only, f 20% missing data, MAC g 3 (a-h); 

polymorphic sites only, 0% missing data, MAC g 1 (i-p); polymorphic and monomorphic sites, 0% 

missing data (q-x). Treatments have been applied to four Ae. aegypti datasets described in the main 

text: ten subsamples each of size n, analysed in individual runs (a,e,I,m,q,u); ten subsamples each 

of size n, analysed together in a single run (b,f,j,n,r,v); single nested subsamples from Group A, each 

undergoing jack-knife resampling (c,g,k,o,s,w); nested subsamples from Group A and Group B 

analysed together, each undergoing jack-knife resampling (d,h,l,p,t,x). All Y-axes use a log-10 scale. 

 

 

SNP heterozygosity estimates are shown in Fig. 1a-h and indicate how this type of filtering 

approach presents problems for comparing estimates across studies. In all cases, observed 

and expected heterozygosities were larger when fewer samples were used for estimation. 

Specifically, heterozygosities are biased by global N (total sample size in the analysis) rather 

than local n (sample size of each population), as evident from comparisons of subsamples of 

equal n analysed either in individual runs or together. Although these effects reduce as N 

increases, they persist even with n = 40 and N g 80. 

The source of this issue is that heterozygosity is generally lower for SNPs with rare alleles 

(where most individuals are homozygous for the common allele) than for SNPs with 

common alleles. For instance, for the n = 3 subsamples analysed in individual runs, all SNPs 

have minor alleles at 0.5 frequency when MAC g 3 is applied (Fig. 1a, e), leading to expected 

heterozygosity of 0.5. As additional samples are added, SNPs with rare alleles become more 

likely to be detected, leading to lower heterozygosity estimates (c.f. Fig. S1). As MAC 

filtering is applied globally, heterozygosity is lower when populations are analysed together 

(Fig. 1b, f) as global sample size is ten times larger in these runs. However, even in these 

runs there were clear differences between SNP heterozygosity estimates for n = 10 (N = 

100) and n f 5 (N f 50). 

Considering these inconsistencies in SNP heterozygosity estimates when filtering datasets 

with 8typical9 settings for genetic structure, we reran the above analyses with MAC g 1 and 
selecting all SNPs rather than one per RAD locus. These analyses thus considered variation 

at all polymorphic sites including those with singletons and doubletons. We used a 

maximum missing data threshold of 0% (or as specified), to avoid potential artefacts caused 

by including sites with missing data (see Fig. 2). Including all polymorphic sites reduced the 

bias from sample size; however, similar patterns of strong bias were still observed (Fig. 1i-p). 

Thus, while including singletons and doubletons reduces sample size biases because rare 

alleles are then more likely to be detected in small samples, the biases will nevertheless 

persist when sites are filtered on the basis of polymorphism. 
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Population comparisons using polymorphic sites only: missing data thresholds  

We investigated effects of missing data thresholds on SNP heterozygosity using the nested 

subsamples from Group A, filtered with thresholds of 0% (i.e. no missing data allowed), 10%, 

20%, 30%, 40%, or 50%. Thus in each case variation in heterozygosity was assessed in a 

single population of size n (n = 50, 40, 30, 20, 10, 5). We compared results from the two 

filtering protocols described previously: a standard protocol for assessing genetic structure 

(one SNP per RADtag with MAC g 3) and one that retains all polymorphic sites (MAC g 1). 

We see a considerable effect of missing data thresholds on SNP heterozygosity (Fig. 2a-f). 

Samples of larger n were more strongly affected by choice of missing data threshold, with 

stringent filtering tending to produce higher estimates. When 50 individuals were used with 

MAC g 3 filtering (Fig. 2a), a 10% missing data threshold (a common parameter setting) 

produced an estimate for observed heterozygosity 1.22 times higher than filtering with a 

30% threshold (also a common parameter setting). This effect was stronger with MAC g 1 
filtering (1.36 times higher; Fig. 2d). Expected heterozygosities were less biased by missing 

data thresholds but effects were still evident (Fig. 2b,e). 

The higher observed heterozygosity estimates at 0% versus 50% thresholds might be 

expected if there is a correlation between errors and the presence of missing data at a site. 

In that case, errors at monomorphic sites with high missing data could be read as low 

frequency polymorphisms, pushing down heterozygosity estimates when N is large. Also, 

when singletons and doubletons are included more low-frequency errors would be included 

in calculations, leading to the stronger effects seen when MAC g 1 filtering was applied. 

Finally, the large population sizes in Ae. aegypti indicate this Malaysian sample is unlikely to 

contain inbred individuals, and thus we do not expect observed and expected 

heterozygosities to differ substantially. We note that when estimates of observed and 

expected heterozygosity are compared, these parameters are most similar when filtering 

with a 0% missing data threshold and start to diverge as this threshold is increased. These 

divergences are consistent across filtering types, from ~1.10 at 0% missing data to ~1.27 at 

20% and ~1.50 at 50%. Less stringent missing data thresholds may thus introduce artefacts 

of differential observed and expected heterozygosities, which may lead to incorrect 

inferences of local breeding patterns. 

In light of these inconsistencies, SNP heterozygosity appears prone to bias, regardless of 

whether filtering follows a typical protocol used for genetic structure or when considering 

every polymorphic site. This bias is demonstrated in Fig. S1, which shows how, when 

calculating SNP heterozygosity, the numerator remains proportionate to the number of 

heterozygous sites regardless of sample size, but the denominator is consistently biased 

downwards. This downward bias should diminish for very large N but for rare populations or  
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Fig. 2: Boxplots showing effects of missing data thresholds on heterozygosity estimates. Observed 

(blue; a,d,g) and expected (red; b,e,h) heterozygosities have been derived from the nested 

subsamples from Group A following three filtering treatments: polymorphic sites only, MAC g 3 (a-

c); polymorphic sites only, MAC g 1 (d-f); polymorphic and monomorphic sites (g-i). For each n, the 

subsample has been filtered using a progression of missing data thresholds: from left to right, 0%, 

10%, 20%, 30%, 40%, 50%. Each estimate has undergone jack-knife resampling. Subfigures c,f,i 

aggregate results across all subsamples to show how observed (left) and expected (right) 

heterozygosities diverge with less stringent missing data thresholds. All Y-axes use a log-10 scale. 
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small budgets this cannot be solved by sequencing more individuals. This limits the potential 

for SNP heterozygosity estimates in one study to inform the results of other studies. 

 

 

Estimates based on all polymorphic and monomorphic sites (autosomal 

heterozygosity) 

Given the above challenges, we next explored how sample size and missing data affect 

autosomal heterozygosity, which considers both monomorphic and polymorphic 

nucleotides. We ran analyses on identical datasets to those used previously. For filtering, we 

used no MAC cut-off, and estimated heterozygosity across every site rather than every 

polymorphic site. In the output from the Stacks.v2 program <Populations=, this corresponds 

to the entries in the <# All positions (variant and fixed)= subsection. We used a maximum 

missing data threshold of 0% (unless specified differently). 

 

Population comparisons using all sites: effects of sample size 

When considering variation at all nucleotide sites, observed and expected heterozygosity 

estimates are far less affected by N than SNP heterozygosity estimates (Fig. 1q-x). Though 

there was some variability among subsamples of smaller n, observed heterozygosities of 

~0.00039 and expected heterozygosities of ~0.00040 were consistently recorded. The 

similar estimates for these two parameters match expectations for this sample of Malaysian 

Ae. aegypti, where inbreeding is unlikely given the large size of mosquito populations and 

the spatial distribution of sampling.  

These consistent estimates are expected when all sites are taken into account because for 

smaller samples the higher frequency of heterozygotes at polymorphic sites will be offset by 

the lower number of polymorphic sites overall. Heterozygosity estimates from a set of 

individuals thus correlate directly with population heterozygosity because sites are not first 

filtered by polymorphism (Fig. S1). In this sense, autosomal heterozygosity is a parameter 

that is both more robust to variation in study design and also a more accurate measure of 

genetic variation which can be used in comparisons across studies and organisms (Westbury 

et al., 2019). 

 

Population comparisons using all sites: effects of missing data thresholds  

Missing data thresholds had a smaller effect on autosomal heterozygosity than on SNP 

heterozygosity (Fig. 2g,h). Nevertheless, the same problematic pattern is clear in the 
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divergence between observed and expected heterozygosities when sites with missing data 

are included, which was of equivalent magnitude to divergences in SNP heterozygosity (Fig. 

2 i).  Considering these results, we propose that heterozygosity estimation should exclude 

nucleotide sites that have any missing genotypes, as these may be more likely to contain 

errors or otherwise skew parameter estimates. While this filtering might at first appear 

overly stringent, autosomal heterozygosity is calculated using far more sites than SNP 

heterozygosity, and should normally be based on sufficient sites even after strict filtering. 

For example, when a 20% missing data threshold is used to estimate SNP heterozygosity 

(MAC g 1) in 50 individuals, heterozygosity is estimated from 95,293 polymorphic sites. 

When a 0% missing data threshold is used to estimate autosomal heterozygosity (MAC g 0), 
heterozygosity is estimated from 7,813,360 sites, of which 17,968 are polymorphic. This 

does not imply that the consistency in autosomal heterozygosity estimates is due to a larger 

number of sites;  an increase in the number of sites will not resolve biases in SNP 

heterozygosity which reflect the sample size of individuals rather than sites (Fig. S1). 

Similarly, the specific number of nucleotides used in autosomal heterozygosity calculations 

may vary across studies, but should accurately reflect the degree of variation across the 

genome. 

 

 

Multiple population considerations 

We first estimated heterozygosity for the four K. scurra populations using equal sample sizes 

of 10. Fig. S2 compares results of a 0% missing data threshold against a 20% threshold, 

showing that at 20%, the ratio of observed to expected heterozygosity is higher (x̄ = 1.156) 

than at 0% (x̄ = 1.091), supporting our previous findings that missing data may bias the ratio 

of heterozygosities. Accordingly, we used a 0% missing data threshold in the following 

analyses. 

 

Population comparisons: local sample size variation 

Although global sample size analysed above had little effect on autosomal heterozygosity 

when n g 10, we have yet to consider differences in sample size among populations. We 

estimated heterozygosity for the four K. scurra populations with one population (Goulburn) 

set at either half (5,10,10,10) or double (10,5,5,5) the size of the other populations 

compared to an equal population size. We compared results for autosomal heterozygosity 

and SNP heterozygosity following previous filtering settings (MAC g 3 and MAC g 1). 

When 10 individuals are analysed from each population, the Goulburn, Hall and 

Wallendbeen populations all have similar heterozygosities, while Cooma is much lower (Fig. 
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3). There was no strong effect from unequal sample size for either autosomal heterozygosity 

(Fig. 3 e,f) or for SNP heterozygosity using all polymorphic sites (Fig. 3c,d), but filtering at 

MAC g 3 revealed such an effect (Fig. 3a,b). The Goulburn population had either higher or 

lower heterozygosity than the Hall and Wallendbeen populations, depending on whether 

Goulburn had a greater or smaller n. This bias could lead to misinterpretation of relative SNP 

heterozygosities within studies when populations with different sample sizes are analysed 

together. 

 

Population comparisons: impact of population structure 

Next, we investigate the effects of combining genetically differentiated populations in an 

analysis. In terms of mtDNA variation and DArT SNPs, Cooma was separate from the other 

populations and particularly Wallendbeen (Hoffmann et al., 2020). We estimated SNP and 

autosomal heterozygosities for each of the four K. scurra populations analysed individually 

(i.e. with each population in a separate Stacks run) and compared this to populations 

analysed together (i.e. with all populations in a single Stacks run). 

Autosomal heterozygosity is unaffected by whether differentiated populations are analysed 

individually or together (Fig. 4b). However, strong biases on SNP heterozygosity are evident 

(Fig. 4a). When the four populations are analysed individually, estimates are much higher 

than when analysed together. Additionally, the population at Cooma, which otherwise 

recorded the lowest heterozygosity of the four populations, has higher heterozygosity than 

all other populations when analysed by itself.  

As allele frequencies vary among these populations, many variant sites will only be 

polymorphic in one or two populations and are monomorphic in the others. Thus when 

populations are analysed together, estimates for each population will include these variant 

sites that are locally monomorphic, leading to lower heterozygosity estimates than when 

analysed individually.  

A similar explanation accounts for the sharp variation in estimates at Cooma. When 

analysed individually, Cooma recorded fewer polymorphic sites (3235) than the other 

populations (4693, 4734, 5182); this pattern was also observed when populations were 

analysed together. However, heterozygosity at these 3235 polymorphic sites was higher 

than at the other populations.  
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Fig. 3: Effects of differential local sample size on heterozygosity estimates. Observed (blue; a,c,e) 

and expected (red; b,d,f) heterozygosities have undergone three filtering treatments: polymorphic 

sites only, MAC g 3 (a,b); polymorphic sites only, MAC g 1 (c,d); polymorphic and monomorphic 
sites (e,f). Numbers in brackets indicate sample sizes for the four K. scurra populations sequentially 

(Goulburn to Wallendbeen). Shading reflects similarity among numbers. 
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Fig. 4: Effects of population genetic structure on heterozygosity estimates. Observed SNP 

heterozygosities (a) and autosomal heterozygosities (b) are presented for the four K. scurra 

populations which have either been analysed together in a single run or in separate runs 

individually. The number of sites (c) and number of locally polymorphic sites (d) retained after 

filtering are also presented. Shading reflects similarity among numbers. 

 

 

These findings show how SNP heterozygosity estimates represent different parameters 

when populations are analysed in individual runs compared to when they are analysed 

alongside other populations. When analysed individually, the SNP heterozygosity of a 

population is equal to autosomal heterozygosity multiplied by the proportion of sites that 

are polymorphic (Fig. S1). When analysed with other populations, the SNP heterozygosity of 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2021. ; https://doi.org/10.1101/2020.12.20.423694doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.20.423694
http://creativecommons.org/licenses/by/4.0/


   

 

 

15 

 

 

a population will be shaped by whichever other populations are included, as the structure 

between these populations will determine which locally monomorphic sites are called as 

SNPs. Accordingly, SNP heterozygosities, if they are to be reported, should probably be 

calculated from populations analysed individually, and the total number of polymorphic 

sites should also be reported for each population to provide further context to the 

heterozygosity estimates. For autosomal heterozygosity, analysing multiple populations at 

once introduces no biases while conferring no advantage, but does reduce the number of 

retained sites (Fig. 4 c,d). It follows that calculations of autosomal heterozygosity should 

analyse each population in individual runs. For observed autosomal heterozygosity, this 

could be extended to analysing each individual in turn if needed. 

 

 

Comparing heterozygosity estimates 

A final consideration concerns how to interpret heterozygosity estimates across studies. We 

have proposed several guidelines for filtering data to allow cross-study comparisons. The 

most important of these is that heterozygosity estimates should be derived from variation 

at both monomorphic and polymorphic sites. Table 1 compares variation in SNP 

heterozygosity with variation in autosomal heterozygosity for the four K. scurra populations 

analysed individually. We did not compare populations when analysed together due to the 

confoundment of SNP heterozygosities in these analyses (Fig. 4).  

For K. scurra, variation in autosomal heterozygosity is approximately twice as large as 

variation in SNP heterozygosity (Table 1). A large difference in SNP heterozygosity might not 

be detected even when comparing populations with very low and very high levels of genetic 

variation because the exclusion of monomorphic sites in each population will reduce 

differences in genetic variability among the populations.  

 

 

Table 1. Magnitude of heterozygosity differences between populations for SNP and autosomal 

heterozygosity. Calculations are based on the results from Fig. 4. MAX/MIN is the ratio between the 

largest score and the smallest score. 

 SNP heterozygosity (MAC ≥ 1) Autosomal heterozygosity 

 Observed Expected Observed Expected 

MAX/MIN 1.164 1.064 1.983 2.230 

Coefficient of variance 0.063 0.024 0.236 0.267 
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Discussion 

Comparisons of heterozygosity across populations and species are frequently used to inform 

management decisions in conservation programs. An example of a relevant management 

action involves selecting populations for genetic and evolutionary rescue, which aims to 

decrease levels of inbreeding and increase levels of genetic variation in target populations 

through targeted introductions of individuals from other populations (Hoffmann et al., 

2020; Whiteley et al., 2015). The usefulness of source populations for conservation 

translocations is to a large extent determined by their genetic variability (Ørsted et al., 2019; 

Reid et al., 2016). Tracking changes in heterozygosity across time can also be a worthwhile 

means of tracking the genetic health of threatened populations (Mitrovski et al., 2008) and 

is particularly useful for determining outcomes of management interventions (Weeks et al., 

2017). All of these objectives require that heterozygosity estimates are comparable across 

populations within a study and across different studies. 

In this paper, we have shown that filtering genome-wide sequence data using optimal 

settings for detecting genetic structure will produce heterozygosity estimates that are 

poorly-suited to these comparisons. Specifically we show that heterozygosity estimates that 

consider only polymorphic sites (SNP heterozygosity) are always biased by global sample 

size (N), with smaller sample sizes producing larger heterozygosity estimates. 

Heterozygosity estimates that consider monomorphic and polymorphic sites (autosomal 

heterozygosity) do not suffer from these biases. We also found that when sites with missing 

data are included, observed and expected heterozygosity estimates diverge, with the 

divergence proportional to the amount of missing data permitted. When multiple 

populations were analysed together, SNP heterozygosity estimates were additionally biased 

by allele frequency differences among populations. While analysing populations together 

did not bias autosomal heterozygosity, it conferred no advantages over analysing 

populations individually but reduced the number of available sites due to missing data 

filtering. 

Following this, we propose three general guidelines that should help meaningful 

comparisons: (i) studies aiming to summarise population genetic variation should report 

autosomal heterozygosity, either by itself or alongside SNP heterozygosity; (ii) sites with 

missing data should be omitted from heterozygosity calculations; and (iii) populations 

should be analysed in independent runs. Although we have not explicitly investigated the 

importance of sequencing coverage, this is widely known to be critical for accurately 

identifying heterozygotes (Nielsen et al., 2011). This being the case, our findings that 

heterozygosity estimates can be consistent even at low n (Fig. 7a) point to the optimal 

design for heterozygosity being deep sequencing of a small number of individuals (perhaps 

5-10) from each population, rather than shallower sequencing of many individuals. Previous 
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work has found these numbers to be adequate (Nazareno, Bemmels, Dick, & Lohmann, 

2017).  

SNP heterozygosity is frequently the only measure of heterozygosity reported (Bock et al., 

2018; Chen et al., 2016; Jones et al., 2012; Mathur et al., 2019; Surbakti et al., 2020). 

Although there may be cases where SNP heterozygosity is the appropriate parameter, it will 

be subject to biases from sample size that do not affect autosomal heterozygosity, making 

the latter a better 8default9 choice for reporting variation in populations. As taxa of 

conservation interest are frequently rare or difficult to sample in large numbers, large 

sample sizes for all populations would be difficult to achieve. SNP heterozygosity also does 

not capture all the variation in the genome. For instance, K. scurra from Cooma had a higher 

SNP heterozygosity estimate (when calculated in an independent run) yet fewer 

polymorphic sites than the other populations; this low level of polymorphism was evident in 

the autosomal heterozygosity estimate.  

While we advocate autosomal heterozygosity as a default choice for reporting genome-wide 

averages, there may be circumstances where variation at a specific set of sites is of interest 

(e.g. Chen et al., 2016). In this case, heterozygosity can be estimated free of bias provided 

that this specific set of sites is not further filtered by polymorphism when new populations 

are analysed, and thus sites should be retained even if the new population is locally 

monomorphic. Returning to the work of Nazareno et al. (2017), the consistency of their 

heterozygosity estimates across subsamples of different size is due to these subsamples not 

being refiltered by polymorphism. While Nazareno et al. (2017) effectively demonstrates 

how heterozygosity can be estimated with small samples, this approach would not be 

applicable to comparisons across populations. Likewise, assessing variation at a specific set 

of sites may evade sample size biases, but other biases may be introduced when assessing 

variation in populations with different allele frequencies to those in populations used to 

select the initial set of variable sites. 

Whole-genome sequencing studies frequently report autosomal rather than SNP 

heterozygosity (Gopalakrishnan et al., 2017; Westbury et al., 2019). However, this 

methodology has been less commonly applied in reduced-representation sequencing 

studies such as those using RADseq or DArTseq markers. One reason for this may be that 

whole-genome studies frequently analyse single individuals rather than a sample, and as 

SNP heterozygosity calculated from a single diploid individual will always be equal to 1 (Fig. 

S1) this approach would not be considered. Another reason may be that reduced-

representation protocols are commonly applied to wild populations of understudied 

organisms, where the first step is typically to analyse genetic structure among populations. 

Monomorphic sites are uninformative for most analyses of genetic structure and thus these 

are typically removed during filtering, and this remaining set of SNPs will be used to 

estimate both genetic structure and heterozygosity. Here we propose that analysis of 
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genetic structure (variation between populations) and heterozygosity (variation within 

populations) be treated as distinct targets and filtered using different parameter settings.  

When expected heterozygosity is higher than observed heterozygosity, it is often treated as 

evidence for local inbreeding (Hoffmann et al., 2020), an important parameter that can 

indicate a need for genetic intervention in threatened species (Ralls et al., 2018). However, 

Fig. 2 shows that inferences of inbreeding in the presence of missing data may be 

confounded, as observed and expected heterozygosities quickly diverge as sites with 

missing data are included, leading to FIS > 0. These opposing effects of missing data filters on 

observed and expected heterozygosities are consistent with sequencing error rates being 

higher at nucleotide positions where there are some missing genotypes. A possible 

explanation is that sequencing errors are more likely at monomorphic sites; these sites are 

more common, and more likely to be retained than errors at polymorphic sites which may 

introduce a third allele and be removed from the dataset (most filtering protocols retain 

only biallelic sites). Monomorphic sites with errors may therefore be coded as low-

frequency SNPs. Including them could affect the observed and expected autosomal 

heterozygosity estimates differently depending on whether errors are mostly coded as 

homozygous or heterozygous.  

Despite these issues, the K. scurra data also indicate clear instances where inbreeding levels 

differ across populations. We note that for K. scurra from Cooma, observed and expected 

heterozygosities were almost identical, while expected heterozygosities are 8-15% higher in 

the other populations, suggesting a situation where inbreeding in Cooma is low but genetic 

variability is also low. An accurate assessment of inbreeding in populations versus low 

genetic variation is important when making recommendations around genetic mixing of 

threatened populations, which can target both the masking of deleterious genes expressed 

as a consequence of inbreeding as well as problems from low levels of genetic variability 

(Hoffmann et al., 2020; Ralls et al., 2018; Weeks et al., 2011). It would be worth further 

evaluating optimal filtering strategies for assessing the ratio of observed and expected 

heterozygosities, using a set of populations where inbreeding is known to occur in some 

populations but not others.  

This study has highlighted issues with estimating population heterozygosities from SNP data 

directly, and shown that autosomal heterozygosity estimates are more robust to the 

influence of sample size and are likely to be more comparable across studies. We provide 

general guidelines for estimating population heterozygosity from genome-wide sequence 

data that are usually different from guidelines for estimating other population genetic 

parameters such as gene flow, population structure, relatedness and effective population 

size. As in previous assessments (Linck & Battey, 2019), our results demonstrate that SNP 

datasets need to be carefully evaluated when they are used to obtain genetic parameters 

for populations that inform management decisions. 
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Fig S1. Estimating heterozygosity in a hypothetical population of diploid individuals.  

Analyses consider population samples of n = 1 (a,b), 5 (c,d), 10 (e,f) and 20 (g,h). Observed 

heterozygosity is calculated using all sites irrespective of polymorphism (autosomal 

heterozygosity: a,c,e,g) or using SNPs only (SNP heterozygosity: b,d,f,h). Individuals have been 

genotyped at 15 sites, and the circles indicate the unphased genotype at each site. When 

autosomal heterozygosity is calculated, the numerator and denominator remain proportionate 

to the number of sites evaluated (denominator) and the number of heterozygous sites 

(numerator) regardless of sample size. When SNP heterozygosity is calculated, the denominator 

is biased by whether SNPs with rare alleles are detected in the sample, which will remain an 

issue even at large n. These biases will be present in both observed and expected 

heterozygosity. Note that in actual sequence data the proportion of monomorphic sites will be 

much higher than shown here, producing smaller autosomal heterozygosity estimates. 
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Fig S2. Estimates of observed and expected autosomal heterozygosity in four K. scurra 

populations filtered with 0% vs 20% missing data thresholds. The mean heterozygosity ratio 

between observed and expected values at 0% is 1.09, and at 20% it is 1.16. Entries with similar 

shading are more similar to each other.  
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