

1 Haplotype Reconstruction in Connected Tetraploid F1 2 Populations

3 Chaozhi Zheng*, Rodrigo R. Amadeu, Patricio R. Munoz, Jeffrey B. Endelman

4 December 9, 2020

5 **Running head:** Haplotype Reconstruction in Tetraploids

6 **Key words:** multiparental population, hidden Markov model, tetraploid potato, double reduc-
7 tion, QTL mapping

8 ***Corresponding author:**

9 Chaozhi Zheng

10 Biometris

11 Wageningen University and Research

12 PO Box 16, 6700AA Wageningen

13 The Netherlands

14 Email: chaozhi.zheng@wur.nl

15 Abstract

16 In diploid species, many multi-parental populations have been developed to increase genetic
17 diversity and quantitative trait loci (QTL) mapping resolution. In these populations, haplotype
18 reconstruction has been used as a standard practice to increase QTL detection power in compar-
19 ison with the marker-based association analysis. To realize similar benefits in tetraploid species
20 (and eventually higher ploidy levels), a statistical framework for haplotype reconstruction has
21 been developed and implemented in the software PolyOrigin for connected tetraploid F1 pop-
22 ulations with shared parents. Haplotype reconstruction proceeds in two steps: first, parental
23 genotypes are phased based on multi-locus linkage analysis; second, genotype probabilities for
24 the parental alleles are inferred in the progeny. PolyOrigin can utilize genetic marker data from
25 single nucleotide polymorphism (SNP) arrays or from sequence-based genotyping; in the lat-
26 ter case, bi-allelic read counts can be used (and are preferred) as input data to minimize the
27 influence of genotype call errors at low depth. To account for errors in the input map, PolyO-
28 rigin includes functionality for filtering markers, inferring inter-marker distances, and refining
29 local marker ordering. Simulation studies were used to investigate the effect of several vari-
30 ables on the accuracy of haplotype reconstruction, including the mating design, the number
31 of parents, population size, and sequencing depth. PolyOrigin was further evaluated using an
32 autotetraploid potato dataset with a 3x3 half-diallel mating design. In conclusion, PolyOrigin
33 opens up exciting new possibilities for haplotype analysis in tetraploid breeding populations.

34 Introduction

35 Polyploid species have more than two sets of chromosomes, and are especially common in flow-
36 ering plants. Unveiling the genetic architecture of complex traits is fundamental in plant genet-
37 ics and breeding, including for economically important tetraploid crops such as alfalfa, potato,
38 and blueberry. Several methods have been developed for haplotype reconstruction in a poly-
39 ploid bi-parental population derived from non-inbred parents (hereafter F1 population). Condi-
40 tional on parental phases, XIE and XU (2000) developed a hidden Markov model (HMM) for
41 ancestral inference, although the model does not represent biological processes in a tetraploid
42 F1 (HACKETT 2001). LUO *et al.* (2001) developed a heuristic algorithm for parental phasing
43 in a tetraploid F1, based on two-point linkage analyses. HACKETT *et al.* (2003) modified the
44 phasing algorithm (LUO *et al.* 2001) for analyzing SNP dosage data, and developed a HMM
45 for ancestral inference by assuming only bivalent chromosome pairings. ZHENG *et al.* (2016)
46 developed the integrated HMM framework TetraOrigin for parental phasing and ancestral in-
47 ference, accounting for both bivalent and quadrivalent formations in meiosis. The MAPpoly
48 software (MOLLINARI and GARCIA 2019; MOLLINARI *et al.* 2020) uses two-point procedures
49 and HMMs for parental phasing and ancestral inference in polyploids up to 8 \times , assuming only
50 bivalents.

51 One disadvantage of biparental populations is their limited genetic diversity, such that the
52 discovered QTL may lose their predictive ability in a broader set of germplasm. To overcome
53 this, many diploid multiparental populations have been recently produced, especially in crops
54 (see review by HUANG *et al.* 2015). Several software tools are available for haplotype recon-
55 struction in diploid multiparental populations (MOTT *et al.* 2000; BROMAN *et al.* 2003; ZHENG
56 *et al.* 2015; BROMAN *et al.* 2019), whereas there is no such tool for polyploid multiparental pop-
57 ulations. The primary aim of this work is to build an HMM framework called PolyOrigin for
58 tetraploid (extendable to higher ploidy levels) multiparental populations, extending the previ-
59 ous framework TetraOrigin from a bi-parental F1 to multiple F1 populations that may share
60 parents. Similar to TetraOrigin, PolyOrigin allows preferential bivalent chromosome pairing
61 and quadrivalent formation, so that we do not make a strict distinction between allopolyploids
62 and autopolyploids. In addition to the basic algorithm of TetraOrigin, PolyOrigin includes extra

63 procedures to increases the robustness to the various errors in the input data.

64 One source of error may be the uncertainty when calling dosage from intensity signals of a
65 SNP array or allele counts of next generation sequencing (NGS) data. We account for parental
66 errors by a correction procedure during ancestral inference, whereas TetraOrigin introduced a
67 parental error parameter (ZHENG *et al.* 2016). In addition, we include a procedure for marker
68 deletion during parental phasing, and the markers with parental errors are likely to be removed.
69 On the other hand, since it has been shown that read depths of 60-80 are required for accu-
70 rately inferring dosage in autotetraploids (UITDEWILLIGEN *et al.* 2013; MATIAS *et al.* 2019),
71 PolyOrigin can account for the dosage uncertainties by using NGS read count data directly.

72 Another source of errors is the input marker map. The marker deletion procedure during
73 parental phasing can also remove those markers that are misgrouped or long-range misordered,
74 in addition to parental errors. The map construction packages such as MAPpoly (MOLLI-
75 NARI and GARCIA 2019; MOLLINARI *et al.* 2020) and polyMapR (BOURKE *et al.* 2018) order
76 markers by the multidimensional scaling algorithm (PREEDY and HACKETT 2016), based on
77 two-point linkage analyses. Such input genetic maps can be improved by an extra step of map
78 refinement using a multi-locus HMM approach. The map refinement consists of local marker
79 reordering and inferring inter-marker genetic distance—the latter becoming necessary when the
80 input marker map is a physical map.

81 We evaluate PolyOrigin by extensive simulation studies and with a real tetraploid potato
82 dataset. For the simulation studies, we compare PolyOrigin with TetraOrigin and MAPpoly and
83 investigate the effect of mating design such as the number of parents. We also investigate the
84 robustness to low depth sequencing and errors in the input dosage data and marker map.

85 Methods

86 Figure 1 shows an overview of PolyOrigin. Suppose that we have a collection of tetraploid F1
87 populations. Each F1 population can be either a cross between two parents or a self-fertilization
88 population from a single parent. The set of populations can be represented by an un-directed
89 graph (e.g. Figure 1A), with nodes representing parents and edges representing the crosses
90 or selfings. This is called a connected F1 since two populations can be connected by parent

sharing. PolyOrigin requires two inputs: (1) a mating design describing the parents of each F1 offspring, and (2) a genotypic data matrix for all parents and offspring at a set of SNP markers. Genotypic data include a genetic map or physical map of the markers. We assumed that all markers are bi-allelic, and denote the two alleles by 1 and 2 and define a genetic dosage as the count of allele 2. We model marker data independently across linkage groups, and thus describe the model for only one linkage group.

Notations for the PolyOrigin model will be introduced in the following description and are summarized in Table 1. We use t to index a marker, p for a parent, i for an F1 population, and j for an individual in a given F1 population. Denote by y_t^p the observed genotypic data for parent $p = 1, \dots, L$ at marker $t = 1, \dots, M$, and $y_t^{i,j}$ the genotypic data for individual j of F1 population i at marker t . Figure 1B shows that the PolyOrigin model has three kinds of hidden variables: h_t^p denotes phased genotype for parent p at locus t , $x_t^{i,j}$ denotes phased origin-genotype for offspring (i, j) at marker t , and $v^{i,j}$ denotes valent formation for producing offspring (i, j) from their parents. Here the term origin-genotype denotes a combination of parental origins, referring to each parental homolog as a distinct allele.

The workflow of PolyOrigin consists of three steps: parental phasing, map refinement, and ancestral inference (Figure 1C). In the third step, HMM decoding and parental error correction are iterated until no errors can be detected, which are also performed prior to map refinement. The parental phasing corresponds to the maximum likelihood estimation of h_t^p . And the HMM decoding corresponds to the estimation of $x_t^{i,j}$, averaging over all possible $v^{i,j}$ values. In the following, we will describe the basic HMM and the three steps.

112 HMM

Conditional on phased parental genotypes, offspring are independent of each other. For a given offspring (i, j) and its valent formation $v^{i,j}$, genotypic data $y^{i,j} = \{y_t^{i,j}\}_{t=1}^M$ can be modeled by a HMM, which can be described by a genotype model specifying the probability of $y_t^{i,j}$ given hidden $x_t^{i,j}$, conditionally independent among markers, and a parental origin process specifying the joint prior probability of $x^{i,j} = \{x_t^{i,j}\}_{t=1}^M$.

Genotype model: At a locus t , the genotype likelihood $l_t^{i,j} = P(y_t^{i,j} | x_t^{i,j})$ depends implicitly

119 on parental phases via the unknown true dosage $d_t^{i,j} = f(x_t^{i,j}, h^{\Omega(i,j)})$, a deterministic function
 120 of hidden origin-genotype $x_t^{i,j}$ and phased genotypes $h^{\Omega(i,j)}$ for the parents $\Omega(i, j)$ of offspring
 121 (i, j) . We consider three possible representations of genotypic data $y_t^{i,j}$. First, $y_t^{i,j}$ is represented
 122 by a dosage. The dosage likelihood is given by

$$l_t^{i,j}(\varepsilon_t) = (1 - \varepsilon_t)I(y_t^{i,j} = d_t^{i,j}) + \frac{\varepsilon_t}{K}I(y_t^{i,j} \neq d_t^{i,j}) \quad (1)$$

123 where ploidy level $K = 4$, indicator function $I(s)$ equals 1 if statement s is true and 0 otherwise,
 124 and ε_t denotes the dose error probability at marker t . If a dosage error occurs, the resulting
 125 dosage is randomly drawn from the other K dosages.

126 Second, $y_t^{i,j}$ is represented by a pair of read counts. Let r_1 and r_2 be the counts of sequence
 127 reads for alleles 1 and 2, respectively, at marker t for offspring (i, j) . Assume that the read
 128 counts r_1 and r_2 are generated by an unknown dosage d' that is different from $d_t^{i,j}$ with error
 129 probability ε_t , for example, because of the misalignment of reads to the reference genome. We
 130 integrate out d' to obtain the read count likelihood

$$l_t^{i,j}(\varepsilon_t) = \sum_{d'} P(y_t^{i,j} | d') P(d' | d_t^{i,j}, \varepsilon_t) \quad (2)$$

131 where $P(d' | d_t^{i,j}, \varepsilon_t)$ can be obtained from equation (1) by replacing $y_t^{i,j}$ with d' , and $P(y_t^{i,j} | d')$
 132 can be obtained from the following binomial model

$$P(y_t^{i,j} = (r_1, r_2) | d') = \binom{r_1 + r_2}{r_1} q^{r_1} (1 - q)^{r_2} \quad (3)$$

$$q = \left(1 - \frac{d'}{K}\right) (1 - \epsilon) + \frac{d'}{K} \epsilon \quad (4)$$

133 where q denotes the probability of a sampled read being allele 1, d'/K denotes the probability of
 134 allele 2 being sampled, and ϵ denotes the sequencing error probability of observing the incorrect
 135 allele. By default, we set $\epsilon = 0.001$, and the dependence of likelihood on ϵ is not shown in
 136 equation (3).

137 Third, $y_t^{i,j}$ is represented by the vector of probabilities $\{P(y_t^{i,j} | d')\}_{d'=0}^K$, a generalization of

138 the first and second representations, and the data likelihood is given by

$$l_t^{i,j}(\varepsilon_t) = (1 - \varepsilon_t)P(y_t^{i,j}|d_t^{i,j}) + \frac{\varepsilon_t}{K} [S - P(y_t^{i,j}|d_t^{i,j})] \quad (5)$$

139 according to equations (1) and (2), where $S = \sum_{d'=0}^K P(y_t^{i,j}|d')$. The probability vector can be
140 calculated from equations (3) and (4) for the NGS read counts.

141 For example, suppose that $h_t^{P1} = 1121$ and $h_t^{P2} = 2112$ for the two parents $\Omega(i, j) =$
142 $(P1, P2)$ of offspring (i, j) , and $x_t^{i,j} = (1, 2, 6, 8)$ denotes that the offspring is descended from
143 homologs 1 and 2 of parent $P1$ and homologs 6 and 8 of parent $P2$; we denote the four homol-
144 ogous chromosomes of the first parent $P1$ by 1 – 4, and 5 – 8 for the second parent $P2$. Thus
145 the true phased genotype is 1112 and the true dosage is 1. If dosage $y_t^{i,j} = 1$, $l_t^{i,j}(\varepsilon_t) = 1 - \varepsilon_t$.
146 If read count $y_t^{i,j} = (3, 1)$, the probability vector is $(0.0040, 0.4219, 0.25, 0.0471, 0.0000)$ for
147 $\varepsilon = 0.001$, and thus $l_t^{i,j}(\varepsilon_t) = 0.4219 - 0.3466\varepsilon_t$. If probability vector $y_t^{i,j} = (0.2, 0.5, 0.3, 0, 0)$,
148 $l_t^{i,j}(\varepsilon_t) = 0.5 - 0.375\varepsilon_t$. If $y_t^{i,j}$ is a missing value, $l_t^{i,j}(\varepsilon_t) = 1$.

149 **Parental origin process:** ZHENG *et al.* (2016) have described a discrete time Markov chain
150 model for the parental origin process along four homologs of an offspring in a F1 population.
151 The same model can be used for an offspring resulting from selfing, except that the state space is
152 different. A discrete time Markov chain model consists of two components: a discrete distribu-
153 tion $P(x_1)$ of the states at the first marker $t = 1$, and a transition probability matrix $P(x_{t+1}|x_t)$
154 describing how the states change from marker t to the next $t + 1$ for $t = 1, \dots, M - 1$, so that
155 the joint prior distribution is given by $P(x_1) \prod_{t=1}^{M-1} P(x_{t+1}|x_t)$, because of the Markov approx-
156 imation. Here we summarize the two components.

157 The two gametes in an offspring are assumed to be produced independently. The initial
158 distribution for a zygote can be obtained by the Kronecker product between the two initial
159 distributions, one for each of the two gametes. Similarly, the transition probability matrix for
160 a zygote can be obtained by the Kronecker product between the transition probability matrices
161 for the two gametes. Denote by $v^{i,j} = (v_1, v_2)$ the valent formation v_1 (v_2) for the first (second)
162 gamete in an offspring (i, j) . We describe the parental origin process in a gamete, for example,
163 the first gamete, conditional on a given value of v_1 .

164 Denoting the four homologs of the gamete parent by 1 – 4, v_1 can take four possible values:

[1, 2][3, 4], [1, 3][2, 4], [1, 4][2, 3], and [1, 2, 3, 4], where the first three values denote bivalent formations, and the last value denotes quadrivalent formation. For example $v_1 = [1, 2][3, 4]$, the initial distribution is assumed to be discrete uniform among gamete states (1, 3), (1, 4), (2, 3), and (2, 4), The transition probability matrix is given by the Kronecker product $P_{bi} \otimes P_{bi}$, where

$$P_{bi} = \begin{bmatrix} 1 - r_{bi} & r_{bi} \\ r_{bi} & 1 - r_{bi} \end{bmatrix}$$

describes the transition between origins 1 and 2 along the homolog produced by the parental homolog pair [1, 2], and it refers to the transition between origins 3 and 4 for the homolog pair [3, 4]. Here r_{bi} denotes the inter-marker recombination fraction assuming bivalent formation. For quadrivalent formation $v_1 = [1, 2, 3, 4]$, the initial distribution is assumed to be discrete uniform among the 16 possible pairs of origins 1-4, and the transition probability matrix is given by $P_{quad} \otimes P_{quad}$, where

$$P_{quad} = \begin{bmatrix} 1 - r_{quad} & r_{quad}/3 & r_{quad}/3 & r_{quad}/3 \\ r_{quad}/3 & 1 - r_{quad} & r_{quad}/3 & r_{quad}/3 \\ r_{quad}/3 & r_{quad}/3 & 1 - r_{quad} & r_{quad}/3 \\ r_{quad}/3 & r_{quad}/3 & r_{quad}/3 & 1 - r_{quad} \end{bmatrix}$$

describes the transition among origins 1-4 along each homolog produced by quadrivalent formation. Here r_{quad} denotes the inter-marker recombination fraction assuming quadrivalent formation. We assume that there is no genetic interference, and use the Haldane's map function (HALDANE 1919; LUO *et al.* 2006),

$$r_{bi} = \frac{1}{2} (1 - e^{-2d})$$

$$r_{quad} = \frac{3}{4} (1 - e^{-4d/3})$$

where d is the inter-marker genetic distance in Morgan.

If an offspring is produced by crossing between two different parents, the bivalent pairing v_2 takes possible values: [5, 6][7, 8], [5, 7][6, 8], [5, 8][6, 7], and [5, 6, 7, 8]. If the offspring is

182 self-fertilized, v_2 takes the same set of values as those of v_1 . The HMM state space for a selfing
183 offspring is thus different from that of a cross-fertilized offspring, but the size of the state space
184 and the transition probability matrix are the same.

185 **Parental phasing**

186 We extend the phasing algorithm of ZHENG *et al.* (2016) from a single bi-parental F1 cross
187 to connected F1 populations. The phasing algorithm is to optimize the log-likelihood $\log l =$
188 $\sum_{i,j} \log l^{i,j}$, where the individual log-likelihood $\log l^{i,j} = \log [P(y^{i,j} | h^{\Omega(i,j)}, v^{i,j}, \varepsilon)]$. Here $\varepsilon =$
189 $\{\varepsilon_t\}_{t=1}^M$ for genotyping error probabilities at all markers, $h^p = \{h_t^p\}_{t=1}^M$ for the hidden phased
190 genotypes of parent p at all markers, while the hidden origin-genotypes $x^{i,j} = \{x_t^{i,j}\}_{t=1}^M$ are
191 integrated out in $\log l^{i,j}$. Note that $\log l$ depends implicitly on the marker ordering and inter-
192 marker distances.

193 The phasing algorithm starts with the initialization of h_t^p for all parents by randomly drawing
194 h_t^p from its prior distribution $p(h_t^p | y_t^p)$. For example, if dosage $y_t^p = 1$, h_t^p follows a prior uniform
195 discrete distribution among the four possible phased genotypes: 1112, 1121, 1211, and 2111.
196 If probability vector $y_t^p = (0.2, 0.5, 0.3, 0, 0)$, h_t^p takes 1111 with probability 0.2, takes one of
197 the four phased genotypes: 1112, 1121, 1211, and 2111 with equal probability 0.125, and takes
198 one of the six phased genotypes 1122, 1212, 1221, 2112, 2121, and 2211 with equal probability
199 0.05. If y_t^p is a pair of read counts, it can be firstly transformed into a probability vector. If y_t^p is
200 a missing value, h_t^p takes one of the $2^K = 16$ phased genotypes with equal probability 1/16.

201 After initialization, each phasing iteration performs alternative maximization among valent
202 formations and phased parental genotypes. First, independently for each offspring, the valent
203 formation $v^{i,j}$ is given by maximizing the individual log-likelihood $\log l^{i,j}$ with respect to $v^{i,j}$,
204 conditional on the phased parental genotypes $h^{\Omega(i,j)}$. For the sake of computational efficiency,
205 we consider only bivalent formation. We calculate the individual log-likelihood $\log l^{i,j}$ for a
206 given $v^{i,j}$ by the forward algorithm for HMM (RABINER 1989). Second, sequentially for each
207 parent $p = 1, \dots, n_p$, we obtain the maximum possible h^p , conditional on valent formations
208 $\{v^{i,j}\}_{i,j}$ for all offspring and phased genotypes $\{h^{p'}\}_{p' \neq p}$ for all the other parents. Specifically,
209 we calculate a proposed phase h^p that approximates the maximum possible phase, accept it if

210 the target function $logl$ is increased, and otherwise reject it and keep the current phase. We
211 obtain proposed h^p in a forward-backward procedure, which can be adapted from the detailed
212 description for a single F1 population (ZHENG *et al.* 2016).

213 When phasing iteration gets stuck such that the proposed parental phase for every parent
214 is rejected, we delete markers that do not fit into the marker sequence. Because the number
215 of markers deleted is negatively correlated with genotyping error probability, we estimate ε by
216 maximizing the target function $logl$, prior to marker deletion, assuming that ε does not vary
217 with markers. We perform the estimation of ε and marker deletion only once for the sake of
218 computational efficiency. We delete markers using the Vuong's closeness test, a likelihood-
219 ratio-based test that can be used for comparing two non-nested models (VUONG 1989). We
220 calculate the Vuong test statistic for all markers simultaneously and delete those markers with
221 p-values significant at 0.05.

222 A single phasing run stops if the parental phases do not change for 5 consecutive iterations,
223 or the number of iterations reaches 30. To find the global maximum, we perform multiple
224 phasing runs independently and select the one with the largest $logl$. We repeat phasing runs
225 until the so-far maximum phases have been obtained 3 times or the number of runs reaches 10.
226 In comparison with the TetraOrigin algorithm (ZHENG *et al.* 2016), we decrease some default
227 values such as the maximum number of phasing runs, because the differences among phasing
228 runs may be caused by the parental errors, and the PolyOrigin algorithm has additional error
229 correction in the ancestral inference.

230 Map refinement

231 Prior to map refinement, ancestral inference with parental error correction is performed to cor-
232 rect parental phase errors and exclude outlier offspring. Conditional on the phased parental
233 genotypes, map refinement iteratively updates local marker ordering, inter-marker genetic dis-
234 tance, valent formation $v^{i,j}$, and marker-specific error probability ε_t . The estimation of $v^{i,j}$ is
235 the same as that in the parental phasing, except that quadrivalent formation is allowed. To de-
236 crease the effect of offspring genotyping errors, ε_t is estimated by maximizing $logl$ using the
237 local Brent method (BRENT 1973), sequentially for marker $t = 1, \dots, M$, and markers with

238 $\varepsilon_t \geq 0.5$ are deleted. Similarly, inter-marker distance is estimated by maximizing $\log l$ using the
239 local Brent method (BRENT 1973).

240 In each iteration, the local marker ordering is refined by sliding a window along chromo-
241 some at a step of one marker, and the ordering refinement starts with window size 2 and in-
242 creases until no proposed reversion at the given window size is accepted during a scan along
243 chromosome. The ordering of markers within a sliding window is reversed with probability
244 $\min(1, e^{\Delta \log l/T})$, where $\Delta \log l$ is the increase of $\log l$ due to reversion and T is temperature in
245 the simulated annealing (KIRKPATRICK *et al.* 1983). The temperature T is set to 4 in the first
246 iteration, and decreases by half after each iteration.

247 The map refinement can be divided into three stages with decreasing number of updat-
248 ing variables. The first stage updates local ordering, inter-marker distance, $v^{i,j}$, and ε_t , and it
249 changes into the second stage when $T \leq 0.5$ and the maximum sliding window size equals
250 2. The second stage consists of two iterations: it updates only inter-marker distance and strips
251 markers at a chromosome end if there exists a distance jump greater than 20 cM and the frac-
252 tion of markers deleted is less than 5%. The third stage estimates inter-marker distances for
253 selected skeleton markers in five iterations. The chromosome is divided into 50 segments, and
254 the marker with smallest ε_t is selected in each segment. The inter-marker distances in the final
255 map are re-scaled piece-wisely, based on the estimated skeleton marker map.

256 Ancestral inference

257 Conditional on phased parental genotypes and the refined genetic map, each offspring is an-
258 alyzed independently with a HMM. The step of ancestral inference performs iteratively the
259 estimation of marker specific ε_t , HMM decoding, and parental error correction, until there are
260 no error corrections. The estimation of $\varepsilon = \{\varepsilon_t\}_{t=1}^M$ is conditional on valent formations $\{v^{i,j}\}_{i,j}$
261 for all offspring, and the estimations of ε and $v^{i,j}$ are the same as those in map refinement.

262 In the HMM decoding, the posterior probability $P(x_t^{i,j} | y^{i,j}, v^{i,j}, \varepsilon)$ and the individual marginal
263 likelihood $P(y^{i,j} | v^{i,j}, \varepsilon)$ are calculated by the forward-backward algorithm for HMM (RA-
264 BINER 1989), conditional on each of the 16 possible values of $v^{i,j}$, allowing for quadrivalent
265 formation. Assuming a discrete uniform prior distribution of $v^{i,j}$, we can obtain the posterior

266 distribution $P(v^{i,j}|y^{i,j}, \varepsilon)$ from the individual marginal likelihood according to the Bayesian
267 theorem (GELMAN *et al.* 2013). Finally, we can obtain phased origin-genotype probability

$$P(x_t^{i,j}|y^{i,j}, \varepsilon) = \sum_{v^{i,j}} P(x_t^{i,j}|y^{i,j}, v^{i,j}, \varepsilon) P(v^{i,j}|y^{i,j}, \varepsilon) \quad (6)$$

268 where the summation is over the 16 possible values of $v^{i,j}$, and the dependencies on phased
269 genotypes $h^{\Omega(i,j)}$ for the parents of offspring (i, j) are not shown.

270 In the parental error correction, we first perform dosage calling based on the HMM decod-
271 ing. Specifically, we calculate the dosage posterior probability $P(d_t^{i,j}|y^{i,j}, \varepsilon)$ by summing the
272 condition probability $P(x_t^{i,j}|y^{i,j}, \varepsilon)$ in equation (6) over $x_t^{i,j}$ such that $d_t^{i,j} = f(x_t^{i,j}, h^{\Omega(i,j)})$. The
273 dosage is called to be the maximum possible one if its posterior probability is larger than 0.5,
274 and otherwise it is set to missing. Secondly, we detect suspicious markers at which the fraction
275 of mismatches between called genotypes and observed offspring genotypes is larger than 0.15.
276 Here mismatch refers to the input dosage being different from the called dosage, or the input
277 probability of the called dosage being less than 0.01. Lastly, at each suspicious marker t and
278 for each parent p , we replace the current value of h_t^p by the one with minimum mismatches
279 in offspring dosages, among all the 16 possible values of h_t^p , if the number of mismatches is
280 decreased by at least 3.

281 The final output of ancestral inference is given by unphased origin-genotype probability
282 $P(z_t^{i,j}|y^{i,j}, \varepsilon)$ for all offspring at all markers by summarizing the corresponding phased origin-
283 genotype probabilities $P(x_t^{i,j}|y^{i,j}, \varepsilon)$, where $z_t^{i,j}$ is given by the sorted value of $x_t^{i,j}$. For example,
284 unphased origin-genotype $z_t^{i,j} = (1, 3, 6, 7)$ for cross-fertilized offspring (i, j) corresponds to
285 four phased origin-genotypes $x_t^{i,j} = (1, 3, 6, 7), (1, 3, 7, 6), (3, 1, 6, 7)$, and $(3, 1, 7, 6)$.

286 In addition, we detect outlier offspring according to the estimated distribution of the number
287 of recombination breakpoints. Specifically, for each offspring at each marker, the unphased
288 origin-genotype is called to be the maximum possible one if its posterior probability is larger
289 than 0.6, and otherwise it is set to missing. For an offspring, we count the number of changes in
290 origin-genotype along the four homologs of a linkage group after skipping the missing genotype
291 calls, and obtain the number of recombination breakpoints by summing the number of changes
292 over all linkage groups. An offspring is labeled as outlier if $A > Q_3 + fence * (Q_3 - Q_1)$,

293 where the Anscombe transform $A = 2\sqrt{b + 3/8}$ with b being the number of breakpoints in the
294 offspring (ANSCOMBE 1948), the Tukey's *fence* is set to 3 (TUKEY 1977), and Q_1 and Q_3 are
295 the lower and upper quartiles of the transformed values.

296 **Algorithm evaluation**

297 We evaluated the performance and robustness of PolyOrigin by extensive simulations using
298 PedigreeSim (VOORRIPS and MALIEPAARD 2012) and updog (GERARD *et al.* 2018) with
299 a custom-made R package wrap-up called PedigreeSimR available at <https://github.com/rramadeu/PedigreeSimR>. We quantified parental phasing error as the fraction of
300 estimated parental phases different from the true phases, and ancestral inference error was de-
301 fined as 1 minus the posterior probability of the true unphased origin-genotype, averaged over
302 offspring and markers.

304 We first set up default parameter values as a baseline and then simulated four scenarios,
305 where a few parameters varied while keeping the others at the baseline. For a given set of
306 parameter values, we simulated three replicates and obtained results by averaging over them.

307 **Baseline setup:** We simulated only one linkage group and first specified the true parental
308 haplotypes. In the scenarios with fixed number of markers, the true parental haplotypes were
309 given by the 32 real potato haplotypes; see the description in *Real Potato datasets*. The genetic
310 length is 149 cM, with the number of polymorphic markers varying from $M = 201$ in the
311 first two parents ($L = 2$) to $M = 258$ for $L = 8$. In the scenarios with varying number
312 of markers, the true parental haplotypes were obtained by first simulating a genetic map and
313 then phased parental genotypes at each marker. The inter-marker distances were first simulated
314 from a Poisson distribution and then re-scaled to obtain the total genetic length of 100 cM,
315 and the four homologous haplotypes of a parent were simulated by first randomly sampling a
316 dosage and then randomly sampling a phased genotype compatible with the sampled dosage,
317 independently at each marker.

318 We simulated two kinds of polysomic inheritance: (1) both preferential bivalent pairing and
319 quadrivalent formation were allowed, $prefPairing = 0.5$ and $quadrivalents = 0.5$, so that
320 double reduction is possible; (2) only random bivalent pairing was allowed, $prefPairing = 0$

321 and *quadrivalents* = 0, so that double reduction is not possible.

322 The true offspring genotypes were obtained by combining true founder haplotypes and sim-
323 ulated inheritance, from which observed genotypic data were obtained by applying an error
324 model and a missing pattern. For SNP array dosage data, an error occurred in each parental or
325 offspring dosage with probability $\varepsilon = 0.01$, and the resulting dosage was set to one of the other
326 dosages with equal probability. Each parental or offspring dosage was missing with probability
327 0.1. NGS data were simulated with average depth $D = 5, 10, \dots, 80$, sequencing error rate
328 0.005, allelic bias 0.7, and over-dispersion 0.005 (GERARD *et al.* 2018). A read depth equaled
329 zero (i.e. missing data) with probability 0.1 and otherwise followed a Poisson distribution with
330 mean $D/0.9$.

331 The default mating design was a half-diallel design with $L = 5$ parents, where all 10 pos-
332 sible combinations of parents were crossed, and each cross produced an equal number of off-
333 spring.

334 **Simulation scenarios:** We divided simulated scenarios into four groups according to their study
335 purposes: (1) comparisons with previous methods, (2) effect of population design, (3) effect of
336 genotyping design, and (4) robustness to errors in the marker map.

337 To compare with MAPpoly (MOLLINARI and GARCIA 2019; MOLLINARI *et al.* 2020) and
338 TetraOrigin (ZHENG *et al.* 2016), we simulated bi-parental F1 populations. Missing dosages in
339 parents were not allowed, which is required by MAPpoly. We simulated SNP array data with
340 population size varying from $N = 10$ to $N = 200$ and two kinds of polysomic inheritance: one
341 with double reduction and the other without double reduction.

342 To study the effect of population design, we simulated SNP array data for four mating de-
343 signs: linear design where each parent was crossed with the next, circular design differing from
344 the linear design by an extra cross between the first and the last parents, star design where the
345 first parent is crossed with each of the other parents, and diallel design where all pairs of parents
346 were crossed. The naming of mating design is based on the un-directed graph representation
347 of the connected F1 populations. We varied three parameters: the number L of parents, the
348 number S of selfing populations, and the total population size N , one at a time, while keeping
349 all other parameter values at the baseline. When increasing S from 1 to 5, the selfing population

350 was created in order from parents 1 to 5.

351 To study the effect of genotyping design, we simulated genotyping by SNP array and NGS
352 data in the diallel designs with no selfings ($S = 0$), using simulated true parental haplotypes
353 with various marker densities. The SNP array design aimed to study the robustness to geno-
354 typing error probability ε for two population sizes $N = 50$ and 200 , with $L = 5$ parents. The
355 sequencing design aimed to study the effect of read depth D and the number M of markers for
356 three diallel designs with $L = 2$, 5 , and 10 parents, the number of offspring per parent being
357 fixed to 90 so that $N = 180$, 450 , and 900 , respectively.

358 To study the robustness to errors in the input marker map, we first simulated SNP array
359 data in the diallel design with no selfings ($S = 0$) and $L = 5$ parents for two population sizes
360 $N = 50$ and 200 , using the true parental haplotypes with $M = 242$ markers. To study the
361 effect of markers that are wrongly positioned in long range, we disturbed marker ordering by
362 randomly selecting $f_{exch}M/2$ markers on one chromosome arm and $f_{exch}M/2$ markers on the
363 other arm, and then exchanging them between two arms. To study the effect of erroneous local
364 marker ordering, we obtained a disturbed genetic map by ordering markers according to the
365 sum of true marker index t and a normal distributed random variable with mean 0 and standard
366 deviation σ_{local} , while keeping the original marker locations.

367 **Real Potato datasets:** A set of 32 chromosome-length SNP haplotypes from potato were used
368 as the true parental haplotypes to simulate populations and evaluate algorithm performance; see
369 Supplementary Material, Table S1. The 32 haplotypes correspond to chromosome group 4 of
370 8 tetraploid potato clones, genotyped with version 2 of the potato SNP array, which had 12K
371 markers (HAMILTON *et al.* 2011; FELCHER *et al.* 2012). The eight clones were mated in pairs to
372 create four F1 populations (ENDELMAN *et al.* 2018), and the software MAPpoly (MOLLINARI
373 and GARCIA 2019; MOLLINARI *et al.* 2020) was used for parental phasing.

374 In addition, a 3x3 half-diallel population in potato was used for evaluation; see Table S2 for
375 the dosage data with physical map, and Table S3 for the mating design. Three parents (W6511-
376 1R, W9914-1R, and Villetta Rose) were mated in all three pairwise combinations to create a
377 total population of 434 clones (individual F1 population sizes of 162, 155, and 117). Clones
378 were genotyped with version 3 of the potato SNP array, which had an additional 9K markers

379 from VOS *et al.* (2015) compared to version 2. Allele dosage was assigned using R package
380 fitPoly (VOORRIPS *et al.* 2011; ZYCH *et al.* 2019) and 5078 markers distributed across all 12
381 chromosome groups remained after curation. Physical positions for the input map were based
382 on the potato DMv4.03 reference genome (POTATO GENOME SEQUENCING CONSORTIUM
383 2011; SHARMA *et al.* 2013).

384 **Parameter setup:** For simulated data, local ordering and inter-marker distances were refined
385 only when studying the robustness to errors in the input genetic map. For real potato data,
386 PolyOrigin estimated the inter-marker distances, conditional on the input marker ordering. We
387 set up TetraOrigin to have the same option values as those of PolyOrigin. We set up MAPpoly
388 by following its online tutorial. See the Supplementary Materials for the detailed description of
389 the parameter setup for running PolyOrigin, TetraOrigin, and MAPpoly.

390 **Data availability**

391 PolyOrigin has been implemented in Julia 1.5.3, and is freely available under the GNU General
392 Public License 3.0 from the web site: <https://github.com/chaozhi/PolyOrigin.jl>. Real potato datasets in Tables S1-S3 are available at FigShare.

394 **Results**

395 **Comparisons with previous methods**

396 Figure 2 shows the comparisons of PolyOrigin with TetraOrigin and MAPpoly for a single
397 F1 population considering quadrivalent formation (double-reduction is possible). As shown in
398 Figure 2A, both PolyOrigin and MAPpoly have no phasing error when population size $N \geq$
399 100, but the MAPpoly software did not produce a solution for the smaller sizes, whereas the
400 phasing error for TetraOrigin was around 0.02 because of the parental dosage errors in the
401 simulated data ($\varepsilon = 0.01$). PolyOrigin and MAPpoly deleted those markers with parental
402 dosage errors (Figure 2B), while TetraOrigin has no function of marker deletion. Note that
403 TetraOrigin may account for parental dosage errors by assuming a non-zero parental genotyping
404 error probability, but this leads to much longer computation time.

405 Figure 2C shows that TetraOrigin has slightly worse performance in ancestral inference than
406 PolyOrigin, resulting from its higher parental phasing error (Figure 2A). On the other hand, the
407 worse performance of MAPpoly than TetraOrigin and PolyOrigin is mainly because MAPpoly
408 does not account for double reduction. Figure S1 shows that MAPpoly has a similar parental
409 phasing error and a lower ancestral inference error for the simulated data without double reduc-
410 tion.

411 Figure 2D shows that the computational time of TetraOrigin is around 6 times as long as that
412 of PolyOrigin for population size $N = 200$, although the algorithm of PolyOrigin is almost the
413 same as TetraOrigin for a single F1 population. In comparison, MAPpoly is around 10 times as
414 long as that of PolyOrigin for $N = 200$. For the smaller population sizes ($N \leq 50$), MAPpoly
415 collapsed for unknown reasons.

416 **Effect of population design**

417 Figure 3 shows the effect of population design on parental phasing, where the effect of the four
418 design parameters: mating design, population size N , number S of selfings, and number L of
419 parents, is summarized through the number of gametes contributed by each parent. Note that the
420 number of gametes is the same as the number of offspring produced by each parent in the case
421 of no selfings ($S = 0$). It is shown that the parental phasing error becomes very small (<0.01)
422 when the number of gametes from each parent is no less than 30. One exception out of 792 data
423 points in Figure 3A is the high phasing error 0.1 at the number 50 of gametes, corresponding
424 to the middle parent in one of three replicate datasets with linear design, $L = 3$, $S = 0$, and
425 $N = 50$. Further examination shows that the exceptional high error results from a single switch
426 error in the parental haplotypes.

427 Figure S2 shows the effect of the four design parameters on parental phasing, where the
428 phasing error is averaged over parents and replicates for a given combination of the four design
429 parameter values. It is not unexpected that the parental phasing error increases with the number
430 L of parents and decreases with the total population size N . For the small population size $N \leq$
431 50, the star mating design performed much worse than the linear, circular and diallel designs,
432 particularly at the medium number S of selfings, where the numbers of gametes contributed by

433 parents are more unequal than at the two extreme values of S . Figure S2F shows that there are
434 no noticeable differences between a single F1 population of size N and the collection of two
435 independent selfing populations of size $N/2$; see also Figure 3D.

436 Figure S3 shows that the effect of population design on ancestral inference mainly results
437 from its effect on parental phasing.

438 **Effect of genotyping design**

439 **SNP array design:** Figure 4A, C, and E show the effect of dosage error probability ε in the
440 diallel populations with population sizes $N = 50$ and 200. Figure 4A and C show that PolyO-
441 rigin is robust to ε , except for small $N = 50$ and large $\varepsilon > 0.1$, and Figure 4E shows that the
442 fraction of markers deleted increases gradually with ε but it is always smaller than ε , indicating
443 that both marker deletion and parental error correction contribute to the robustness.

444 Figure 4B, D, and F show the effect of marker density. Figure 4B shows that parental
445 phasing is robust to marker density except for small $N = 50$ and low $M \leq 100$, and Figure 4D
446 shows that the ancestral inference error decreases rapidly with marker density. Figure 4F shows
447 that the fraction of markers deleted is independent of marker density and is always smaller than
448 ε .

449 **Sequencing design:** Figure 5 shows the effect of read depth D (number of reads per marker per
450 individual) and the number M of markers for NGS data in the diallel populations with $L = 2, 5$,
451 and 10 parents, the total population size N being adjusted so that the number N/L of offspring
452 per parent is fixed. Figure 5A and C show that parental phasing is robust to read depth and
453 marker density, except for low $D < 10$ and small $M < 250$. As shown in Figure 5B and D,
454 the ancestral inference error decreases with M up to 2000 and with D up to 20, and it levels off
455 when $D > 20$.

456 Figure 5E and F show the effect of D and M , under the constraint that $D \times M = 10000$,
457 where the product $D \times M$ denotes the total number of reads, or the NGS cost per individual.
458 Figure 5F shows that the optimal strategy for decreasing ancestral inference error is to increase
459 M instead of D under the cost constraint, although parental phasing error increases with M but
460 it is still very small at $M = 2000$ or $D = 5$ (Figure 5E).

461 Figure 5C-F show that the number L of parents has little effect on parental phasing and
462 ancestral inference, if the population size N is increased proportionally, although the parental
463 phasing error for $L = 2$ is slightly greater than that for $L = 5$ and 10.

464 **Robustness to errors in input map**

465 Figure 6 shows map refinement in the presence of long-range or local disturbances in the input
466 genetic maps in the diallel populations with population sizes $N = 50$ and 200. Figure 6A-
467 B show that map improvement is more effective in the large populations ($N = 200$) than in
468 the small populations ($N = 50$), and that it is more effective in the presence of long-range
469 disturbances than in the presence of local disturbances. This is because most markers with long-
470 range disturbances have been deleted (Figure 7E), while few markers with local disturbances
471 have been deleted (Figure 7F). Figure 6C-D show that map length is slightly underestimated
472 and inflated under strong disturbances.

473 Figure 7 shows that both parental phasing and ancestral inference are robust to long-range
474 or local disturbances in the input marker maps, although the ancestral inference error slightly
475 increases with the disturbance strength. Figure 7A-D show that the robustness is stronger in
476 large populations ($N = 200$), partially because marker deletion and parental error correction
477 are less effective in small populations ($N = 50$).

478 **Evaluation with real data**

479 PolyOrigin was applied to a 3×3 half-diallel population of autotetraploid potato. The inferred
480 frequency of quadrivalents is 19% on average, ranging from 9% to 40% across the 12 chromo-
481 somes, and the frequencies of the three possible bivalent pairings for each parent were nearly
482 equal, as expected for a true autoploid (Figure S4). Of the 5078 markers, 32 were discarded
483 due to poor fit, and 11 genotype errors were detected in the parents, 10 of which involved an
484 allele dosage error of magnitude 1. Even though all 434 progeny had passed sensitive quality
485 control tests for parentage based on the genome-wide markers (ENDELMAN *et al.* 2017), Poly-
486 Origin flagged 19 outlier offspring due to an excessive number of haplotype breakpoints (Figure
487 S5).

488 Double reduction refers to the inheritance of both sister chromatids at a single locus in the
489 diploid gamete. Figure 8A shows one such offspring, and the double reduction events are visible
490 as dark blue segments in linkage groups 2, 5, and 6. The predicted haplotypes from MAPpoly
491 (Figure 8B) are similar to PolyOrigin except in regions of double reduction, where the MAPpoly
492 solution tends to shows a large number of haplotype breakpoints (Figure S5). Figure 8C shows
493 that the fraction of gametes with double reduction obtained by PolyOrigin increases from almost
494 0 at centromeres to the maximum 0.078 at telomeres. Note that the fraction would increase by
495 a factor of about 2 if it had been calculated as the fraction of zygotes with double reduction
496 (BOURKE *et al.* 2015).

497 Another notable difference between the PolyOrigin and MAPpoly solutions is the length
498 of the genetic map (Figure 8D). The MAPpoly map was 19.4 Morgans (M) compared to 12.1
499 M for PolyOrigin, which is more similar to the estimates of 10–11 M published in biparental
500 linkage mapping studies (MASSA *et al.* 2015; BOURKE *et al.* 2016; DA SILVA *et al.* 2017).
501 One source of map inflation with MAPpoly appears to be elevated estimates of recombination
502 frequency in the pericentromeric regions (Figure 8B). Even when the three F1 populations were
503 analyzed separately with PolyOrigin, more accurate map lengths were obtained (Figure S6)

504 Similar to the simulation studies, PolyOrigin was much faster than MAPpoly in analyzing
505 the real potato data ($N = 434$ and $M = 5078$). The computational times were 230 hours for
506 MAPpoly, 10 hours for PolyOrigin analyzing the three F1 populations jointly, and 4.9 hours for
507 PolyOrigin analyzing the data separately. We did not use parallel computation in the analysis,
508 although both PolyOrigin and MAPpoly can perform parallel computation at the chromosome
509 level.

510 Discussion

511 We have developed a new method, implemented in PolyOrigin, for haplotype reconstruction in
512 connected tetraploid F1 populations, each F1 population being produced by cross-fertilization
513 between two parents or self-fertilization from a single parent. PolyOrigin extends the previous
514 HMM framework TetraOrigin (ZHENG *et al.* 2016) from a F1 cross to multiple F1 crosses. Both
515 PolyOrigin and TetraOrigin use a forward-backward procedure for parental phasing, whereas

516 MAPpoly (MOLLINARI and GARCIA 2019; MOLLINARI *et al.* 2020) uses only a forward proce-
517 dure for parental phasing in a F1 cross. This algorithmic difference may explain why MAPpoly
518 did not work for small population sizes.

519 In comparison to the basic steps of parental phasing and ancestral inference in TetraOrigin,
520 PolyOrigin has added a procedure of marker deletion in the step of parental phasing. The marker
521 deletion is based on the Vuong's closeness test (VUONG 1989) with the default significant level
522 0.05, which has been shown to be very effective to remove long-range misplaced markers and
523 some markers with parental errors. In the parental phasing by sequentially adding markers,
524 MAPpoly uses two limit parameters controlling marker deletion: one for the maximum increase
525 of map length, and one for the maximum number of linkage phase configurations to be tested.
526 It is not obvious how to set these parameter values, and too many testing phase configurations
527 will considerably increase computation time.

528 PolyOrigin has also added a procedure of parental error correction in the step of ances-
529 tral inference. The procedure corrects parental dosages and phases by minimizing the num-
530 ber of mismatches between the observed and estimated genotypes in offspring, conditional on
531 phased parent genotypes, which is computationally more efficient than TetraOrigin introduc-
532 ing a parental dosage error parameter. Not surprisingly, the error correction procedure is not
533 effective in small populations, particularly, with low depth NGS data.

534 Another quality-control feature implemented in PolyOrigin is the automated outlier detec-
535 tion of progeny with an excessive number of haplotype switches. In the simulated datasets, very
536 few outliers were ever detected, which suggests a very small false discovery rate. However, we
537 are unable to explain why 19 of the 434 potato progeny were outliers. The potato SNP array has
538 been shown to be a powerful tool for detecting pedigree errors (ENDELMAN *et al.* 2017), and all
539 434 progeny passed these quality control measures. Perhaps some of the complex chromoso-
540 mal behavior possible in meiosis I is poorly captured by the genetic model in PolyOrigin. The
541 average frequency of 27% quadrivalents in the potato population, with some variation between
542 parents and chromosomes, is consistent with previous studies based on marker data (BOURKE
543 *et al.* 2015) and cytological techniques (CHOUDHARY *et al.* 2020).

544 To increase the robustness to dosage uncertainties in low depth NGS data, PolyOrigin has

545 integrated a dosage calling procedure by analyzing read counts directly, where the probabilities
546 of read counts given all possible dosages are calculated. These probabilities can also be pro-
547 vided by posterior dosage probabilities exported by the softwares such as polyRAD (CLARK
548 *et al.* 2019) for NGS data and fitPoly (VOORRIPS *et al.* 2011; ZYCH *et al.* 2019) for SNP array
549 data. In comparison, TetraOrigin can analyze only dosage data, and MAPpoly cannot analyze
550 read counts directly, relying instead on an input file with genotype probabilities.

551 PolyOrigin allows flexibility in the mating and genotyping designs for linkage mapping
552 projects. Our results show that the parental phasing error is less than 0.01 when the number of
553 offspring per parent is over 30. This implies that incomplete diallel designs, such as linear or
554 star, can be used with similar performance to a complete diallel, which can be difficult to create
555 due to reproductive limitations of the parents. We also show that because PolyOrigin effectively
556 pools data across the entire chromosome, reliable genotype calls can be made in autotetraploids
557 with much less read depth per marker, such as 10 or 20X, compared with values of 60-80X when
558 genotype calls are made independently for each marker (UITDEWILLIGEN *et al.* 2013; MATIAS
559 *et al.* 2019). For the design of sequence-based genotyping platforms with a fixed number of
560 markers (e.g., baits or amplicons) and reads per sample, we have shown that increasing the
561 number of markers leads to more accurate results even though the number of reads per marker
562 decreases.

563 Computationally, PolyOrigin is about one order of magnitude faster than TetraOrigin, mainly
564 because TetraOrigin is implemented in Mathematica (WOLFRAM RESEARCH 2016) while Poly-
565 Origin is implemented in Julia (BEZANSON *et al.* 2017). Although MAPpoly is implemented
566 in R (R CORE TEAM 2019) and C/C++, it is more than one order of magnitude slower than
567 PolyOrigin, probably because the phasing algorithm of MAPpoly requires two-point linkage
568 analyses. In addition, the computational time of PolyOrigin scales linearly with the number of
569 parents, population size, and the number of markers (Figure S7).

570 PolyOrigin has been implemented and tested for tetraploid, and most parts of the algorithm
571 can be extended easily to higher ploidy levels. However, a stochastic algorithm would be needed
572 to infer valent formations for hexaploids or higher, because the number of possible valent for-
573 mations increases rapidly with ploidy level and the current implementation of PolyOrigin con-

574 siders all possible configurations. For example, there are 105 possible bivalent chromosome
575 pairings in octoploid and thus 105^2 combinations for biparental populations, not to mention the
576 demanding modeling and computational requirements for multivalent formation.

577 In conclusion, we have developed a novel method PolyOrigin for haplotype reconstruction
578 in connected tetraploid F1 populations, which opens up exciting new possibilities for haplotype-
579 based QTL mapping in such populations. Extensive evaluations have shown that PolyOrigin is
580 robust to various sources of errors in input genetic data and is around one order of magnitude
581 faster than the previous methods that works only for a single F1 population.

582 Acknowledgments

583 Financial support provided by USDA NIFA Award No. 2019-67013-29166. CZ developed
584 the PolyOrigin model and algorithm and wrote the first draft of the manuscript. RRA wrote
585 the wrap-up PedigreeSimR and helped using MAPpoly. JBE provided potato data and helped
586 reshape the manuscript. All authors participated in study design and provided critical feedback.
587 All authors read and approved the final manuscript.

588 Literature Cited

589 ANSCOMBE, F. J., 1948 The transformation of poisson, binomial and negative-binomial data.
590 *Biometrika* **35**: 246–254.

591 BEZANSON, J., A. EDELMAN, S. KARPINSKI, and V. B. SHAH, 2017 Julia: A fresh approach
592 to numerical computing. *Siam Review* **59**: 65–98.

593 BOURKE, P. M., G. VAN GEEST, R. E. VOORRIPS, J. JANSEN, T. KRANENBURG, *et al.*,
594 2018 polymapRd-linkage analysis and genetic map construction from F-1 populations of
595 outcrossing polyploids. *Bioinformatics* **34**: 3496–3502.

596 BOURKE, P. M., R. E. VOORRIPS, T. KRANENBURG, J. JANSEN, R. G. F. VISSER, *et al.*,
597 2016 Integrating haplotype-specific linkage maps in tetraploid species using SNP markers.
598 *Theoretical and Applied Genetics* **129**: 2211–2226.

599 BOURKE, P. M., R. E. VOORRIPS, R. G. F. VISSER, and C. MALIEPAARD, 2015 The double-
600 reduction landscape in tetraploid potato as revealed by a high-density linkage map. *Genetics*
601 **201**: 853–U94.

602 BRENT, R. P., 1973 *Algorithms for Minimization Without Derivatives*. Courier Corporation.

603 BROMAN, K., H. WU, S. SEN, and G. CHURCHILL, 2003 R/qtl: QTL mapping in experimental
604 crosses. *Bioinformatics* **19**: 889–890.

605 BROMAN, K. W., D. M. GATTI, P. SIMECEK, N. A. FURLOTTE, P. PRINS, *et al.*, 2019 R/qtl2:
606 Software for mapping quantitative trait loci with high-dimensional data and multiparent pop-
607 ulations. *Genetics* **211**: 495–502.

608 CHOUDHARY, A., L. WRIGHT, O. PONCE, J. CHEN, A. PRASHAR, *et al.*, 2020 Varietal vari-
609 ation and chromosome behaviour during meiosis in *solanum tuberosum*. *Heredity* : 1–15.

610 CLARK, L. V., A. E. LIPKA, and E. J. SACKS, 2019 polyRAD: Genotype calling with un-
611 certainty from sequencing data in polyploids and diploids. *G3: Genes Genomes Genetics* **9**:
612 663–673.

613 DA SILVA, W. L., J. INGRAM, C. A. HACKETT, J. J. COOMBS, D. DOUCHES, *et al.*, 2017
614 Mapping loci that control tuber and foliar symptoms caused by pvy in autotetraploid potato
615 (*solanum tuberosum* l.). *G3: Genes, Genomes, Genetics* **7**: 3587–3595.

616 ENDELMAN, J. B., C. A. S. CARLEY, P. C. BETHKE, J. J. COOMBS, M. E. CLOUGH, *et al.*,
617 2018 Genetic variance partitioning and genome-wide prediction with allele dosage informa-
618 tion in autotetraploid potato. *Genetics* **209**: 77–87.

619 ENDELMAN, J. B., C. A. S. CARLEY, D. S. DOUCHES, J. J. COOMBS, B. BIZIMUNGU,
620 *et al.*, 2017 Pedigree reconstruction with genome-wide markers in potato. *American journal*
621 *of potato research* **94**: 184–190.

622 FELCHER, K. J., J. J. COOMBS, A. N. MASSA, C. N. HANSEY, J. P. HAMILTON, *et al.*, 2012
623 Integration of two diploid potato linkage maps with the potato genome sequence. *PLOS ONE*
624 **7**: e36347.

625 GELMAN, A., H. S. STERN, J. B. CARLIN, D. B. DUNSON, A. VEHTARI, *et al.*, 2013
626 *Bayesian data analysis*. Chapman and Hall/CRC.

627 GERARD, D., L. F. V. FERRAO, A. A. F. GARCIA, and M. STEPHENS, 2018 Genotyping
628 polyploids from messy sequencing data. *Genetics* **210**: 789–807.

629 HACKETT, C. A., 2001 A comment on xie and xu: 'Mapping quantitative trait loci in tetraploid
630 species'. *Genetical Research* **78**: 187–189.

631 HACKETT, C. A., B. PANDE, and G. J. BRYAN, 2003 Constructing linkage maps in autote-
632 traploid species using simulated annealing. *Theoretical and Applied Genetics* **106**: 1107–
633 1115.

634 HALDANE, J., 1919 The combination of linkage values and the calculation of distances between
635 the loci of linked factors. *J Genet* **8**: 299–309.

636 HAMILTON, J. P., C. N. HANSEY, B. R. WHITTY, K. STOFFEL, A. N. MASSA, *et al.*, 2011
637 Single nucleotide polymorphism discovery in elite north american potato germplasm. *BMC
638 Genomics* **12**: 302.

639 HUANG, B. E., K. L. VERBYLA, A. P. VERBYLA, C. RAGHAVAN, V. K. SINGH, *et al.*, 2015
640 MAGIC populations in crops: current status and future prospects. *Theoretical and Applied
641 Genetics* **128**: 999–1017.

642 KIRKPATRICK, S., C. D. GELATT, and M. P. VECCHI, 1983 Optimization by simulated an-
643 nealing. *Science* **220**: 671–680.

644 LUO, Z., C. HACKETT, J. BRADSHAW, J. McNICOL, and D. MILBOURNE, 2001 Construction
645 of a genetic linkage map in tetraploid species using molecular markers. *Genetics* **157**: 1369–
646 1385.

647 LUO, Z. W., Z. ZHANG, L. LEACH, R. M. ZHANG, J. E. BRADSHAW, *et al.*, 2006 Construct-
648 ing genetic linkage maps under a tetrasomic model. *Genetics* **172**: 2635–2645.

649 MASSA, A. N., N. C. MANRIQUE-CARPINTERO, J. J. COOMBS, D. G. ZARKA, A. E.
650 BOONE, *et al.*, 2015 Genetic linkage mapping of economically important traits in cultivated
651 tetraploid potato (*solanum tuberosum* l.). *G3:genes Genomes Genetics* **5**: 2357–2364.

652 MATIAS, F. I., K. G. XAVIER MEIRELES, S. T. NAGAMATSU, S. C. LIMA BARRIOS,
653 C. BORGES DO VALLE, *et al.*, 2019 Expected genotype quality and diploidized marker data
654 from genotyping-by-sequencing of *Urochloa* spp. tetraploids. *The Plant Genome* **12**: 1–9.

655 MOLLINARI, M., and A. A. F. GARCIA, 2019 Linkage analysis and haplotype phasing in
656 experimental autopolyploid populations with high ploidy level using hidden markov models.
657 *G3: Genes Genomes Genetics* **9**: 3297–3314.

658 MOLLINARI, M., B. A. OLUKOLU, G. D. PEREIRA, A. KHAN, D. GEMENET, *et al.*, 2020
659 Unraveling the hexaploid sweetpotato inheritance using ultra-dense multilocus mapping. *G3:*
660 *Genes Genomes Genetics* **10**: 281–292.

661 MOTT, R., C. TALBOT, M. TURRI, A. COLLINS, and J. FLINT, 2000 A method for fine
662 mapping quantitative trait loci in outbred animal stocks. *Proc. Natl. Acad. Sci. U. S. A.* **97**:
663 12649–12654.

664 POTATO GENOME SEQUENCING CONSORTIUM, 2011 Genome sequence and analysis of the
665 tuber crop potato. *Nature* **475**: 189–U94.

666 PREEDY, K. F., and C. A. HACKETT, 2016 A rapid marker ordering approach for high-density
667 genetic linkage maps in experimental autotetraploid populations using multidimensional scal-
668 ing. *Theoretical and Applied Genetics* **129**: 2117–2132.

669 R CORE TEAM, 2019 *R: A Language and Environment for Statistical Computing*. R Foundation
670 for Statistical Computing, Vienna, Austria.

671 RABINER, L., 1989 A tutorial on hidden markov models and selected applications in speech
672 recognition. *Proceedings of the IEEE* **77**: 257–286.

673 SHARMA, S. K., D. BOLSER, J. DE BOER, M. SONDERKAER, W. AMOROS, *et al.*, 2013
674 Construction of reference chromosome-scale pseudomolecules for potato: Integrating the

675 potato genome with genetic and physical maps. *G3: Genes Genomes Genetics* **3**: 2031–
676 2047.

677 TUKEY, J. W., 1977 *Exploratory data analysis*, volume 2. Reading, MA.

678 UITDEWILLIGEN, J. G. A. M. L., A. M. A. WOLTERS, B. B. D'HOOP, T. J. A. BORM,
679 R. G. F. VISSER, *et al.*, 2013 A next-generation sequencing method for genotyping-by-
680 sequencing of highly heterozygous autotetraploid potato. *PLOS ONE* **8**: e62355.

681 VOORRIPS, R. E., G. GORT, and B. VOSMAN, 2011 Genotype calling in tetraploid species
682 from bi-allelic marker data using mixture models. *BMC Bioinformatics* **12**: 172.

683 VOORRIPS, R. E., and C. A. MALIEPAARD, 2012 The simulation of meiosis in diploid and
684 tetraploid organisms using various genetic models. *BMC Bioinformatics* **13**: 248.

685 VOS, P. G., J. G. UITDEWILLIGEN, R. E. VOORRIPS, R. G. VISSER, and H. J. VAN ECK,
686 2015 Development and analysis of a 20k SNP array for potato (*Solanum tuberosum*): an
687 insight into the breeding history. *Theoretical and Applied Genetics* **128**: 2387–2401.

688 VUONG, Q. H., 1989 Likelihood ratio tests for model selection and non-nested hypotheses.
689 *Econometrica: Journal of the Econometric Society* : 307–333.

690 WOLFRAM RESEARCH, I., 2016 *Mathematica*. Wolfram Research, Inc., Champaign, Illinois,
691 version 11.0 edition.

692 XIE, C. G., and S. H. XU, 2000 Mapping quantitative trait loci in tetraploid populations.
693 *Genetical Research* **76**: 105–115.

694 ZHENG, C., M. P. BOER, and F. A. VAN EEWIJK, 2015 Reconstruction of genome ancestry
695 blocks in multiparental populations. *Genetics* **200**: 1073–1087.

696 ZHENG, C., R. E. VOORRIPS, J. JANSEN, C. A. HACKETT, J. HO, *et al.*, 2016 Probabilistic
697 multilocus haplotype reconstruction in outcrossing tetraploids. *Genetics* **203**: 119–131.

698 ZYCH, K., G. GORT, C. A. MALIEPAARD, R. C. JANSEN, and R. E. VOORRIPS, 2019 FitTe-
699 tra 2.0-improved genotype calling for tetraploids with multiple population and parental data
700 support. *BMC Bioinformatics* **20**: 148.

701 **Figures**

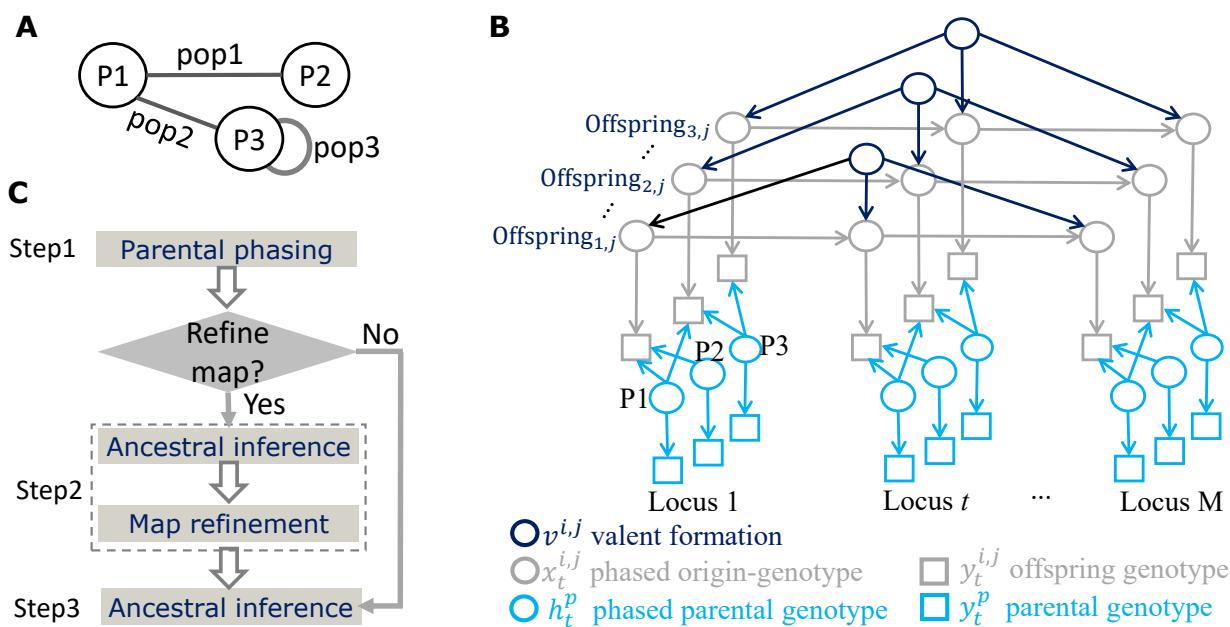


Figure 1: Model and workflow of PolyOrigin. **(A)** Mating design of the three F1 populations derived from three parents: P1, P2, and P3, where population 3 was derived by self-pollinating P3. **(B)** The directed acyclic graph of the PolyOrigin model for the connected F1 populations in (A). The symbol $Offspring_{i,j}$ denotes an offspring j of population i . The squares denote the input marker data, the circles denote random variables to be inferred, and the arrows denote probabilistic relationships to be modeled. This panel is adapted from Figure 1 of ZHENG *et al.* (2016). **(C)** Workflow consists of three steps. The purpose of ancestral inference in the optional Step2 is to correct parental errors and exclude outlier offspring.

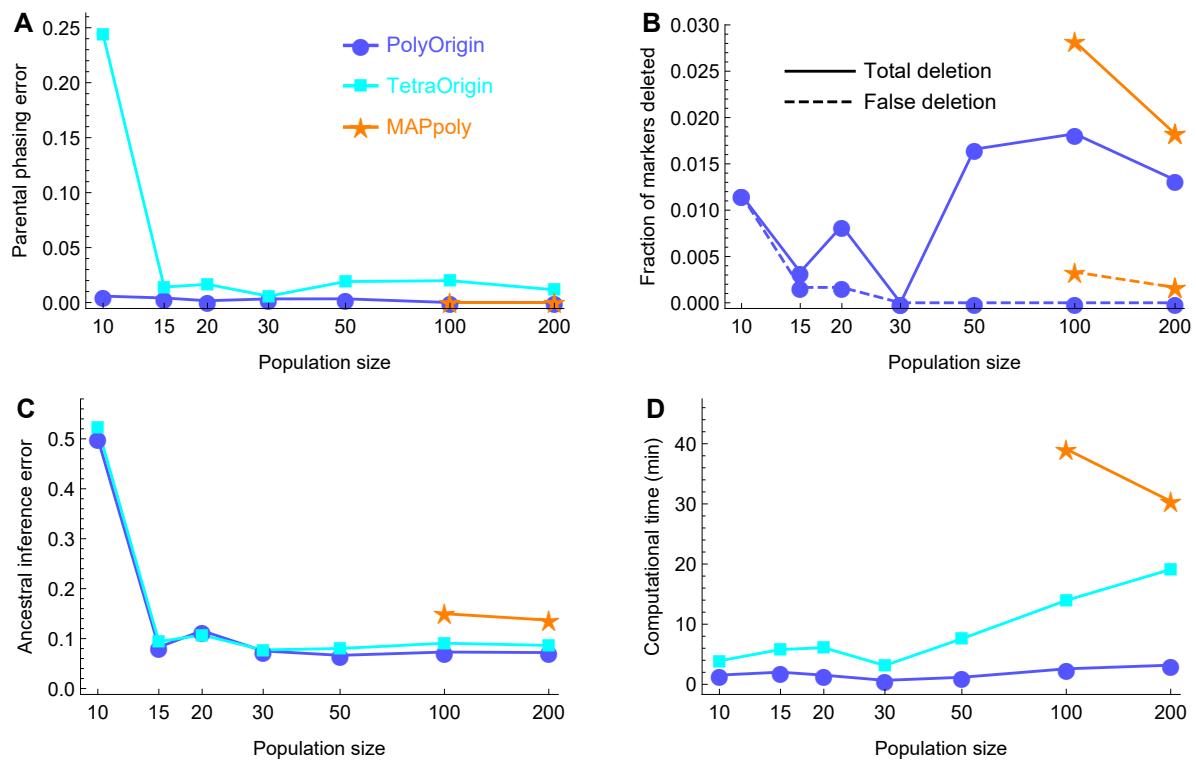


Figure 2: Comparisons of PolyOrigin, TetraOrigin, and MAPpoly in a single F1 population considering quadrivalent formation (double reduction is possible). **(A&C)** Errors in parental phasing and ancestral inference, respectively. **(B)** Fraction of markers deleted. The input number of markers $M = 201$. TetraOrigin has no marker deletion. The dashed lines denote the fraction of markers that are deleted and have no parental dosage errors. **(D)** Computational time in minutes.

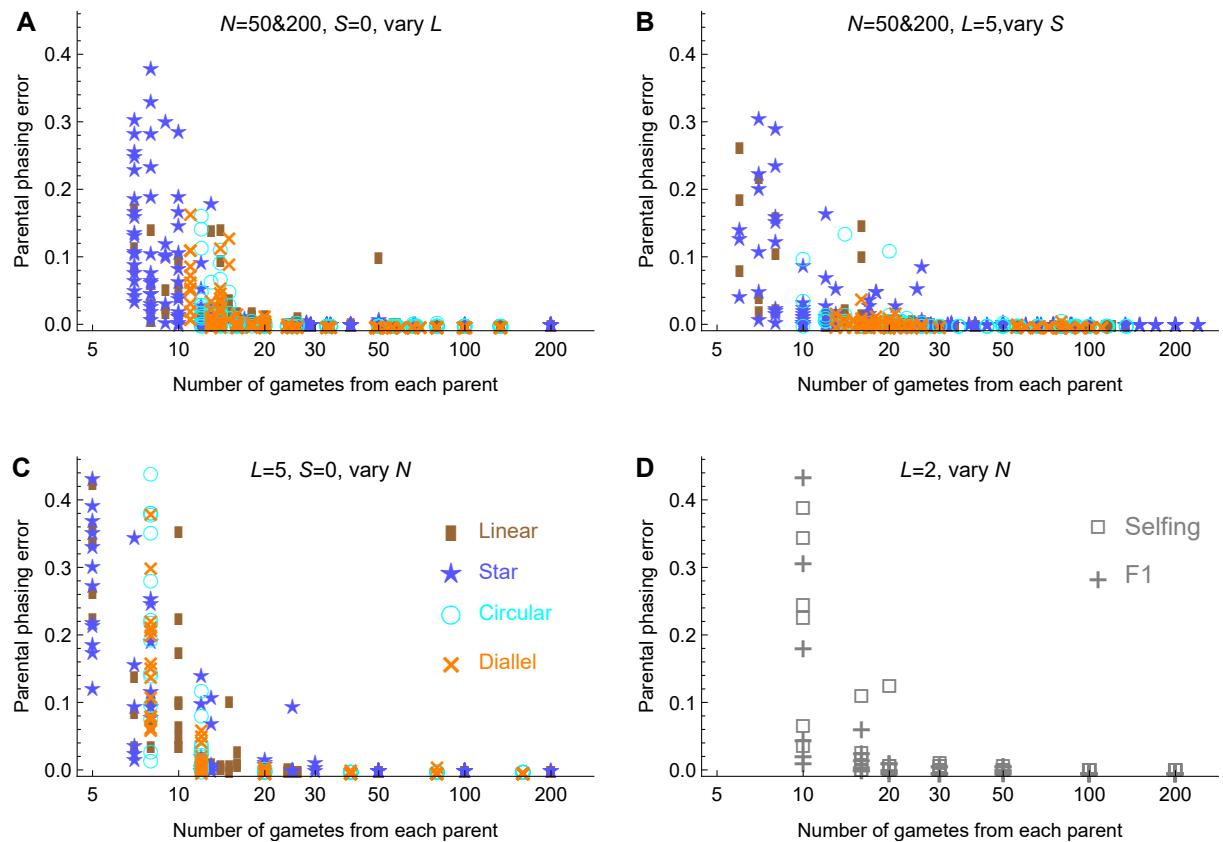


Figure 3: Effect of population design on parental phasing. The x-axis denotes the number of gametes contributed by each parent. The y-axis denotes the parental phasing error for each parent in each of the three replicates given each combination of the design parameter values. **(A-C)** Effect for the populations with varying number L of parents, number S of selfings, and population size N , respectively, for each of the four mating designs. Panels **A-B** include the results for two sizes of 50 and 100. **(D)** Effect for bi-parental F1 and two independent selfing populations.

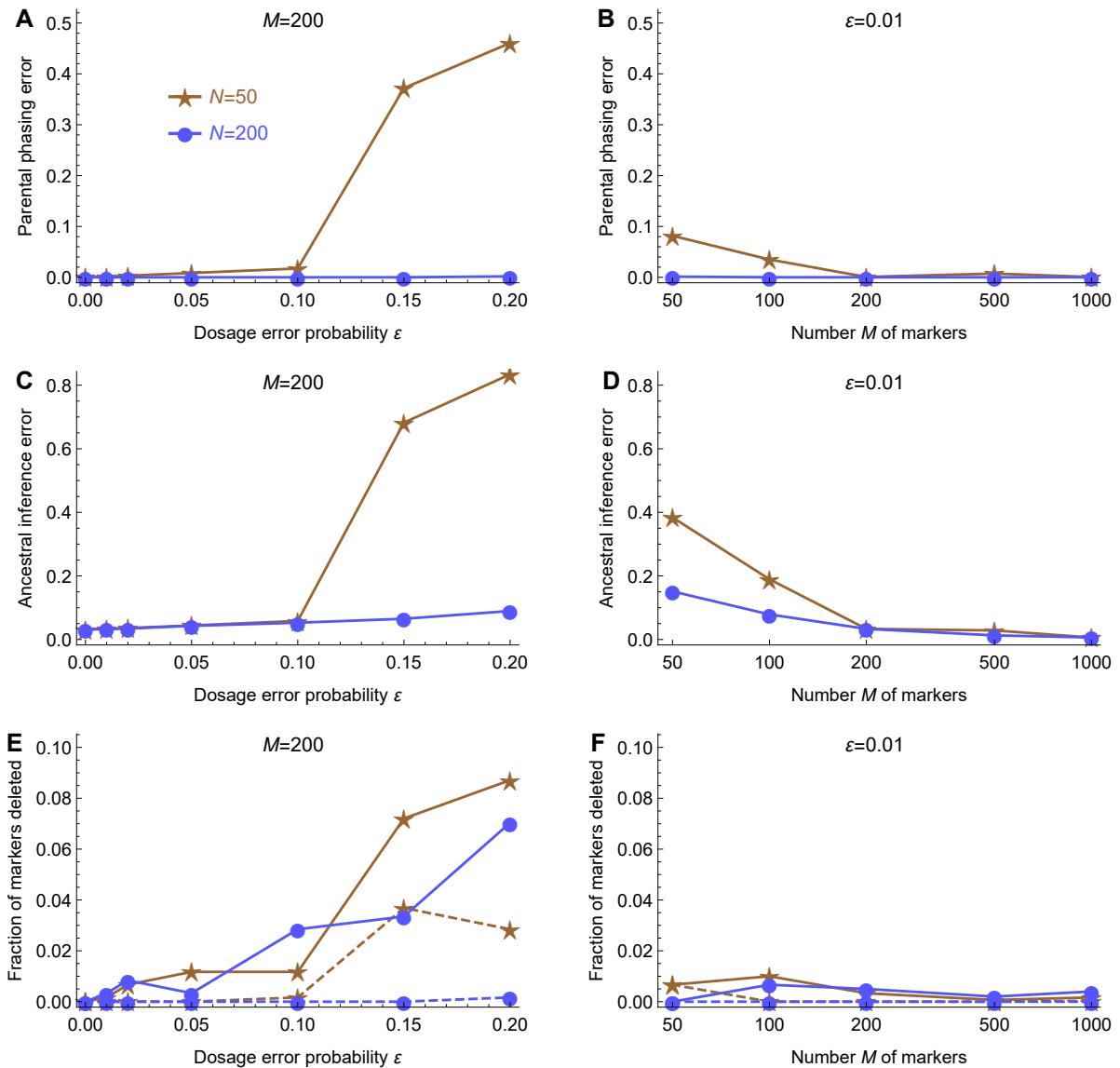


Figure 4: Effect of dosage error probability ε and marker density for SNP array dosage data in the diallel populations with no selfing ($S = 0$) and $L = 5$ parents. (A, C & E) Effect of ε on parental phasing, ancestral inference, and marker deletion, respectively, with $M = 200$. (B, D & F) Effect of marker density on parental phasing, ancestral inference, and marker deletion, respectively, with $\varepsilon = 0.01$. The dashed lines in (E & F) denote the fraction of markers that are deleted and have no parental dosage errors.

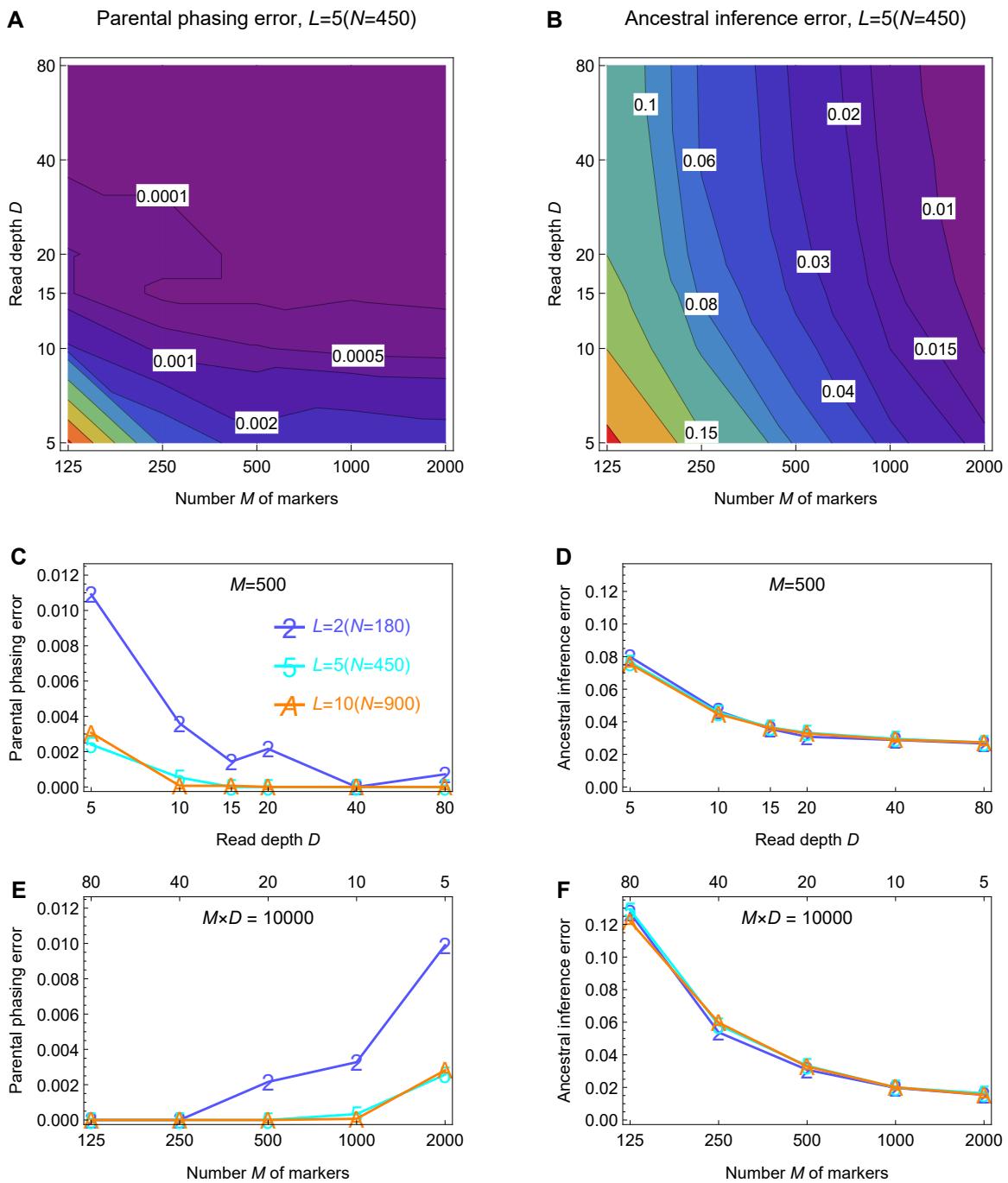


Figure 5: Effect of read depth D and the number M of markers for NGS data in the diallel populations with no selfing ($S = 0$) and $L = 2, 5$, and 10 parents. **(A)** Contour plot of the parental phasing error as a function of the number M of markers and read depth D . **(B)** Contour plot of the ancestral inference error as a function of M and D . **(C&D)** Effect of read depth D on parental phasing and ancestral inference, respectively, with $M = 500$. **(E&F)** Effect of read depth D on parental phasing and ancestral inference, respectively, with $M \times D = 10000$.

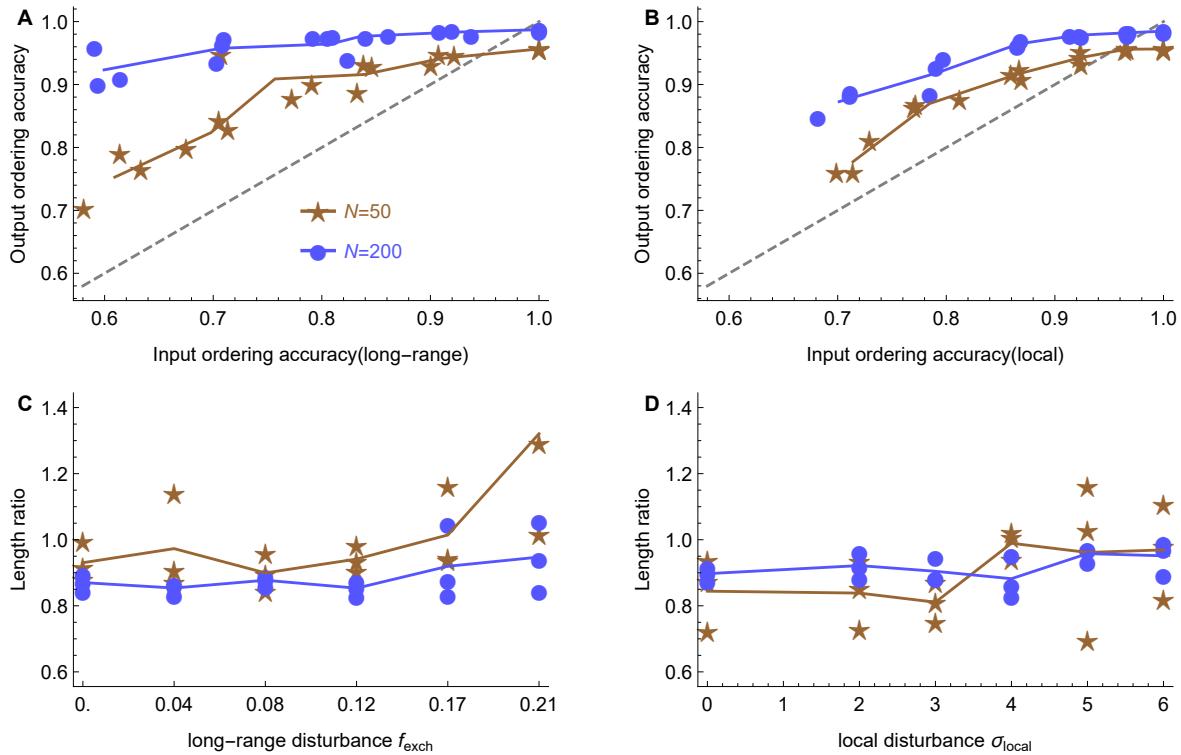


Figure 6: Refinement of the input genetic maps with long-range or local disturbances in the diallel populations with no selfings ($S = 0$) and $L = 5$ parents. **(A&B)** Improvement of marker ordering in the presence of long-range and local disturbances, respectively, the dashed lines denoting $y = x$. **(C&D)** Ratio of estimated genetic length to true value in the presence of long-range and local disturbances, respectively.

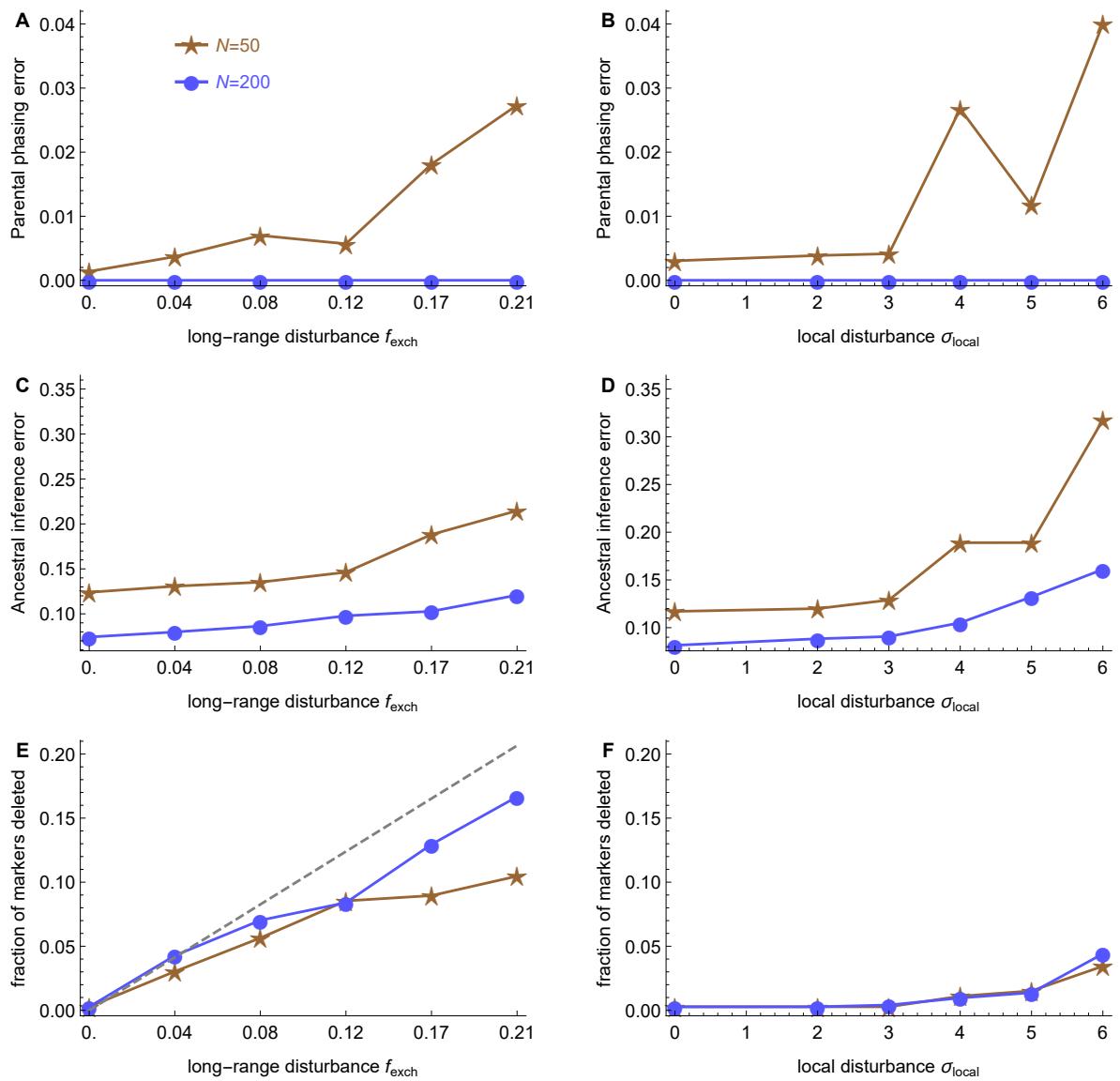


Figure 7: Effect of long-range or local disturbances in the input genetic maps in the diallel populations with no selfings ($S = 0$) and $L = 5$ parents. The left and right panels denote the effect of long-range and local disturbances, respectively. **(A&B)** Effect on parental phasing. **(C&D)** Effect on ancestral inference. **(E&F)** Fraction of markers deleted. The dashed line denotes $y = x$.

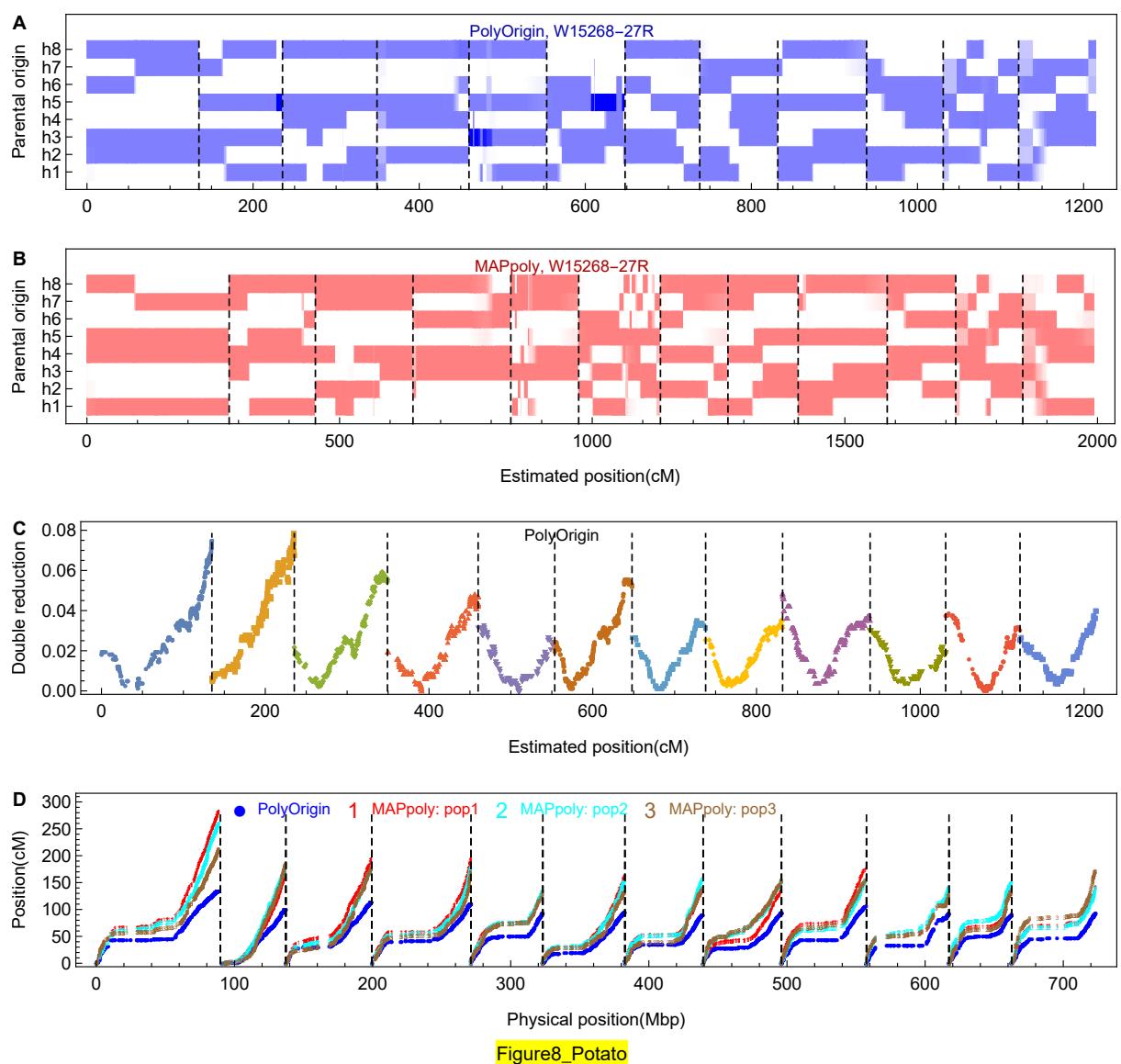


Figure 8: Comparison of PolyOrigin with MAPpoly for the 3x3 potato diallel population. Dashed vertical lines denote chromosome boundaries. **(A)** Posterior probabilities obtained by PolyOrigin for the example offspring (W15268-27R). The darker the color, the higher the probability. **(B)** Posterior probabilities obtained by MAPpoly for the same example offspring. **(C)** Variation of double reduction along chromosome obtained by PolyOrigin. The y-axis denotes the fraction of gametes having two copies of the same parental haplotype, based on the maximum possible origin-genotypes of offspring at a given marker. **(D)** Comparison of the estimated genetic maps with the physical map. On the y-axis of (A&B), h1-h4 denote the homologs from the first parent (W6511-1R) of the offspring, and h5-h8 for the second parent (VillettaRose).

Table 1: List of symbols used in PolyOrigin and their brief descriptions

Symbol	Description
t	Subscript for a marker
p	Superscript for a parent
(i, j)	Superscript for an offspring, individual j of F1 population i .
L	Number of parents
N	Total number of offsprings in connected F1
M	Number of markers
D	Average number of sequence reads for an individual at a marker.
S	Number of selfing populations in a mating design
K	Poidy level, $K = 4$ for tetraploid
$P(x), P(y x)$	Probability of x , conditional probability of y given x
y_t^p, y^p	Observed genotypic data of parent p at marker t , $y^p = \{y_t^p\}_{t=1}^M$
$y_t^{i,j}, y^{i,j}$	Observed genotypic data of offspring (i, j) at marker t , $y^{i,j} = \{y_t^{i,j}\}_{t=1}^M$
h_t^p, h_p	Hidden phased genotype of parent p at marker t , $h^p = \{h_t^p\}_{t=1}^M$
$x_t^{i,j}, x^{i,j}$	Hidden origin-genotype of offspring (i, j) at marker t , $x^{i,j} = \{x_t^{i,j}\}_{t=1}^M$
$v^{i,j}$	Hidden valent formation of offspring (i, j)
$\varepsilon_t, \varepsilon$	Genotyping error probability at marker t , $\varepsilon = \{\varepsilon_t\}_{t=1}^M$
ϵ	Sequencing read error probability
$h^{\Omega(i,j)}$	$\{h^p\}_{p \in \Omega(i,j)}$ for the parents $\Omega(i, j)$ of offspring (i, j)
$d_t^{i,j}$	True dosage of offspring (i, j) at marker t , $d_t^{i,j} = f(x_t^{i,j}, h^{\Omega(i,j)})$
d	Genetic distance in unit of Morgan
r_{bi}	Recombination fraction for bivalent pairing, $r_{bi} = \frac{1}{2}(1 - e^{-2d})$
r_{quad}	Recombination fraction for quadrivalent formation, $r_{quad} = \frac{3}{4}(1 - e^{-4d/3})$
$l_t^{i,j}$	Individual likelihood at marker t , $l_t^{i,j} = P(y_t^{i,j} x_t^{i,j}, \varepsilon_t)$
$logl$	Marginal log-likelihood, $logl = \sum_{i,j} \log [P(y^{i,j} h^{\Omega(i,j)}, v^{i,j}, \varepsilon)]$
T	Temperature in the simulation annealing for refining local ordering
$P(x_t^{i,j} y^{i,j}, \varepsilon)$	Posterior probability of phased origin-genotype $x_t^{i,j}$
$P(z_t^{i,j} y^{i,j}, \varepsilon)$	Posterior probability of unphased origin-genotype $z_t^{i,j}$
f_{exch}	Fraction of long-range disturbed markers
σ_{local}	Intensity of local disturbances in marker ordering

702

Supplementary Materials

703 **Parameter setups**

704 **PolyOrigin**

705 For a simulated dataset, the Julia command line used for PolyOrigin is given by

706 `polyOrigin(genofile, pedfile)`

707 where `genofile` specifies input marker data, including genetic map, and genotypic data of
708 parents and offspring, and `pedfile` specifies the population mating design. The default set-
709 tings `epsilon=0.01` and `seqerr = 0.001` are used, specifying the initial value for the interal es-
710 timation of dosage error probability and the sequencing error probability in the case of read
711 count data. By default, the input marker map is genetic map and it will not be refined (`is-`
712 `physmap=false`), parental phasing assumes only bivalent formations (`chrpairing_phase=22`),
713 and both bivalent and quadrivalent formations are considered for ancestral inference and parental
714 error correction (`chrpairing=44`).

715 For the real potato dataset with physical map, the Julia command line is given by

716 `polyOrigin(genofile,pedfile,`
717 `isphysmap=true, recomrate=1.25,`
718 `refinemap=true, refineorder=false)`

719 where the keyword argument `isphysmap` specifies that input map is physical map with marker
720 positions in unit of base pair, and `recomrate` specified the global constant recombination rate
721 in unit of cM/Mbp. `refinemap=true` indicates the performance of map refinement, and `refine-`
722 `order=false` indicates the refinement of inter-marker distances but not marker ordering.

723 **TetraOrigin**

724 The Mathematica command line used for TetraOrigin is given by

725 `inferTetraOrigin[genofile, eps0, epsF, ploidy, outstem,`

```
726     maxStuck -> 5, maxIteration -> 30, maxPhasingRun -> 10,  
727     bivalentPhasing -> True, bivalentDecoding -> False]  
  
728 where genofile specifies the input genotypic data. epsF and epsO specify the dosage error  
729 probability in parents and offspring, respectively. ploidy=4 for tetraploids, and outsem specifies  
730 the string ID of output file. The options maxStuck, maxIteration, and maxPhasingRun for the  
731 parental phasing algorithm are re-set to be consistent with PolyOrigin. And the default settings  
732 for bivalentPhasing and bivalentDecoding are consistent with PolyOrigin.
```

733 For the simulated F1 datasets, we set *epsO* to the true value 0.01. Although the true parental
734 error probability is also 0.01, we set *epsF*=0 because a non-zero setting would result in much
735 longer computational time.

736 MAPpoly

737 We closely follow the online MAPpoly tutorial on building a genetic map using potato genotype
738 data. The R command lines used for MAPpoly are divided into the following steps

```
739 #step1: read data  
740 dat.dose.csv <- read_geno_csv(file.in = genofile, ploidy = 4)  
741  
742 #step2: marker filtering  
743 pval.bonf <- 0.05/dat.dose.csv$n.mrk  
744 dat.chi.filt <- filter_segregation(dat.dose.csv,  
745     chisq.pval.thres = pval.bonf, inter = FALSE)  
746 dat.seq <- make_seq_mappoly(dat.chi.filt, "all")  
747  
748 #step3: two-point analysis  
749 counts <- cache_counts_twopt(input.seq = dat.seq, get.from.web = TRUE)  
750 all.rf.pairwise <- est_pairwise_rf(input.seq = dat.seq,  
751     count.cache = counts, n.clusters = 1)  
752  
753 #step4: parental phasing and marker spacing for a given marker ordering
```

```
754 map <- est_rf_hmm_sequential(input.seq = dat.seq,
755     start.set = 10,
756     thres.twopt = 10,
757     thres.hmm = 10,
758     extend.tail = NULL,
759     info.tail = TRUE,
760     twopt = all.rf.pairwise,
761     sub.map.size.diff.limit = 20,
762     phase.number.limit = 50,
763     reestimate.single.ph.configuration = TRUE,
764     tol = 10e-3,
765     tol.final = 10e-4)
766 map.error <- est_full_hmm_with_global_error(input.map = map,
767     error = epsilon)
768
769 #step5: calculate genotype probability
770 genoprob <- calc_genoprob_error(input.map = map.error,
771     error = epsilon)
```

772 We skip the step of marker grouping and marker ordering by using the true genetic map or
773 the real physical map. The dosage error probability *epsilon* is set to the true value for simulating
774 data, and 0.02 for the real potato data, based on the estimation of PolyOrigin.

775 **Supplementary figures**

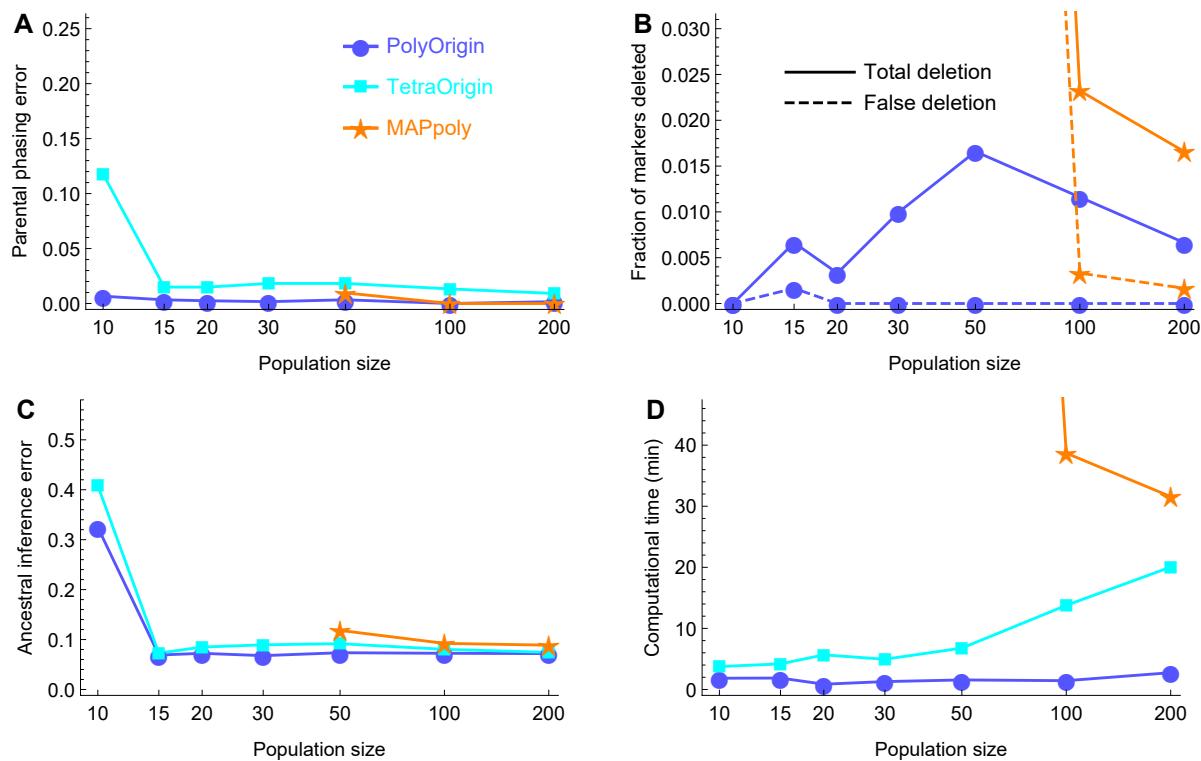


Figure S1: Comparison of PolyOrigin, TetraOrigin, and MAPpoly for the simulated F1 populations without double reduction. The dashed lines in (C) denote the fraction of markers that are deleted and have no parental dosage errors. For $N = 50$, MAPpoly deleted 23% markers and took the computational time of 303 minutes.

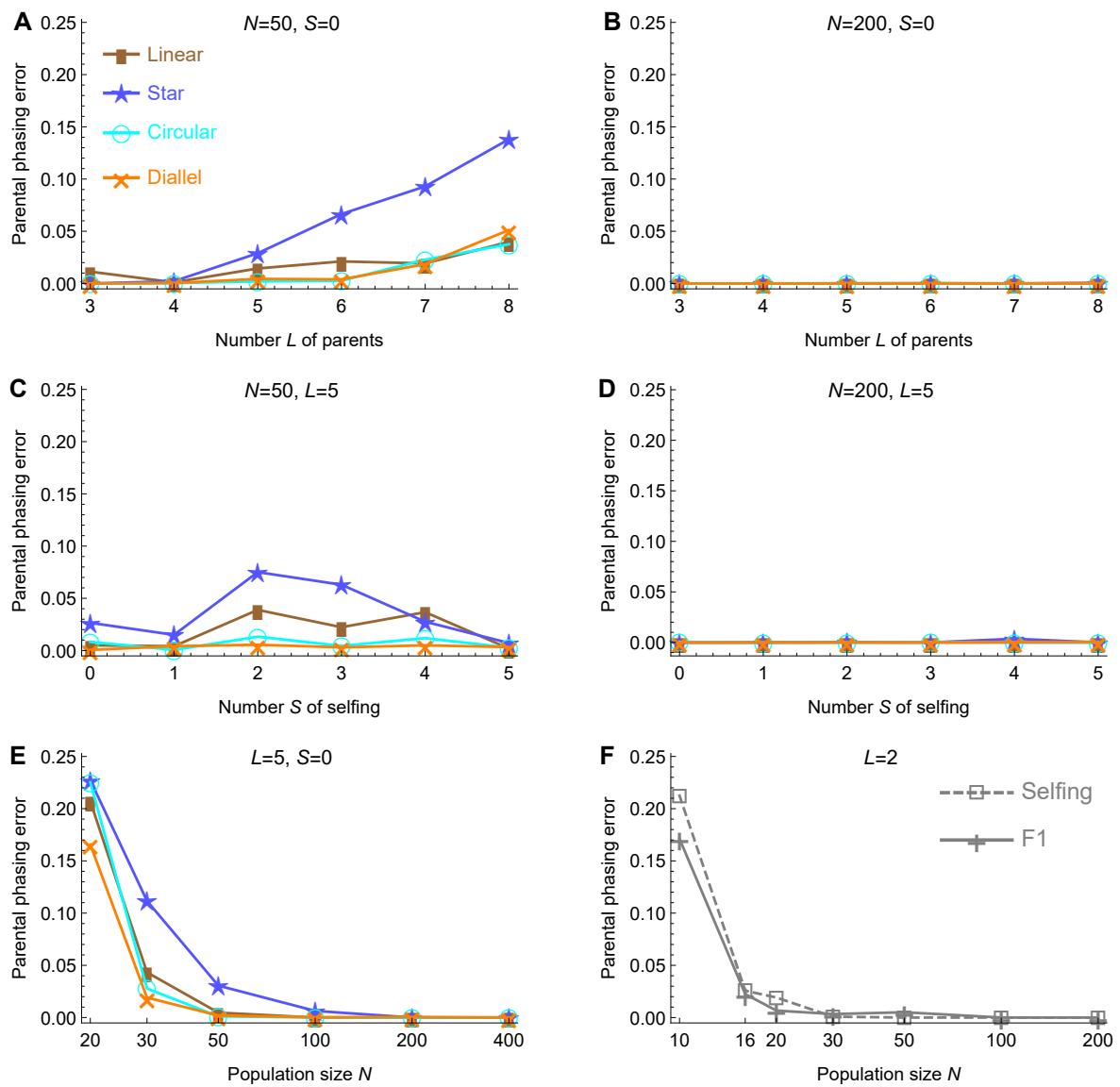


Figure S2: Effect of population design on parental phasing. (A&B) Effect of the number L of parents for populations with no selfings ($S = 0$) and sizes of $N = 50$ and 200 , respectively. (C&D) Effect of the number S of selfings for populations with $L = 5$ parents and sizes of $N = 50$ and 200 , respectively. (E) Effect of population size N for $L = 5$ parents. (F) Effect of population size N for bi-parental F1 and two independent selfing populations.

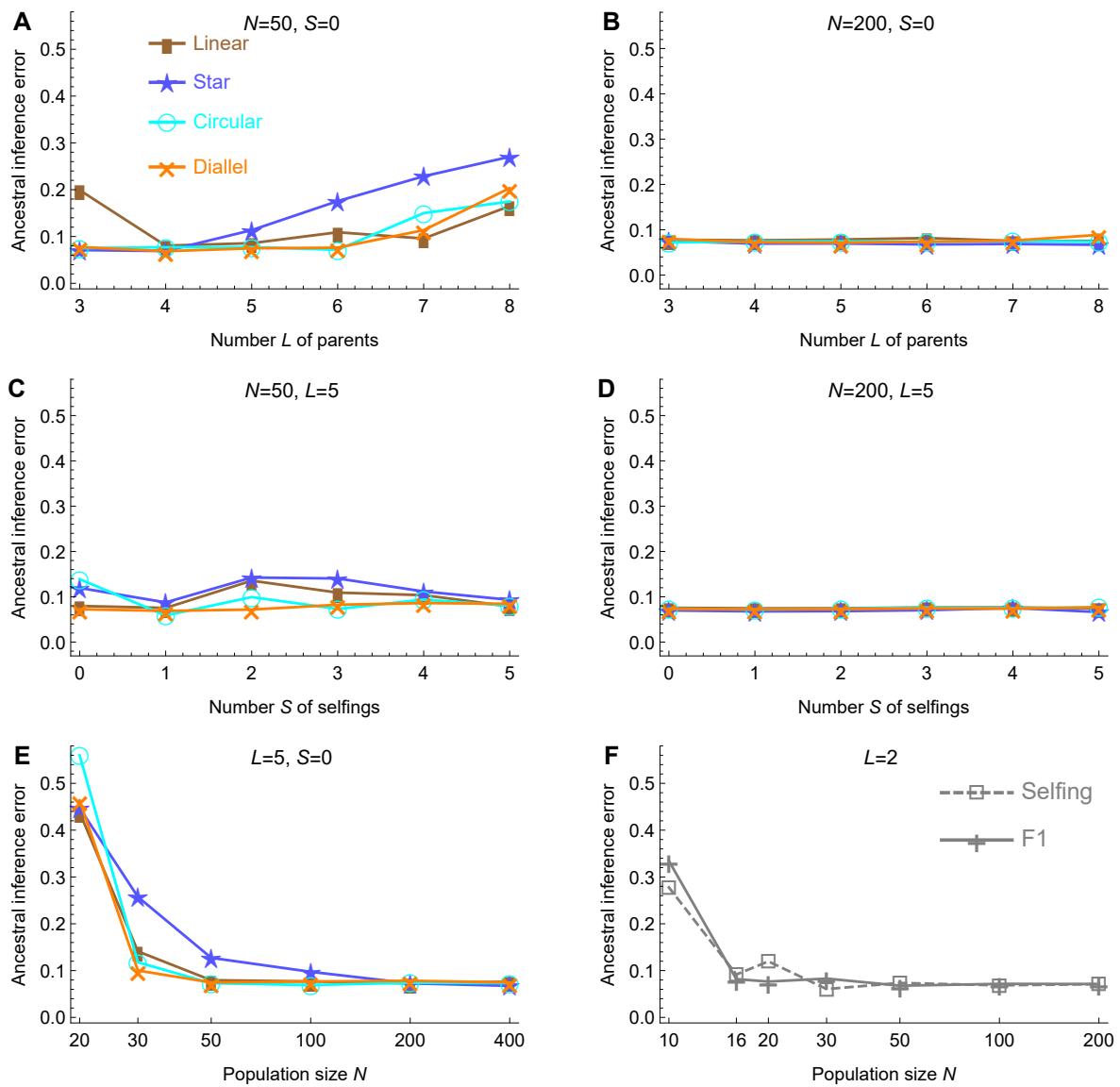


Figure S3: Effect of population design on ancestral inference. **(A&B)** Effect of the number L of parents for populations with no selfings ($S = 0$) and sizes of $N = 50$ and 200 , respectively. **(C&D)** Effect of the number S of selfings for populations with $L = 5$ parents and sizes of $N = 50$ and 200 , respectively. **(E)** Effect of population size N for $L = 5$ parents. **(F)** Effect of population size N for bi-parental F1 and two independent selfing populations.

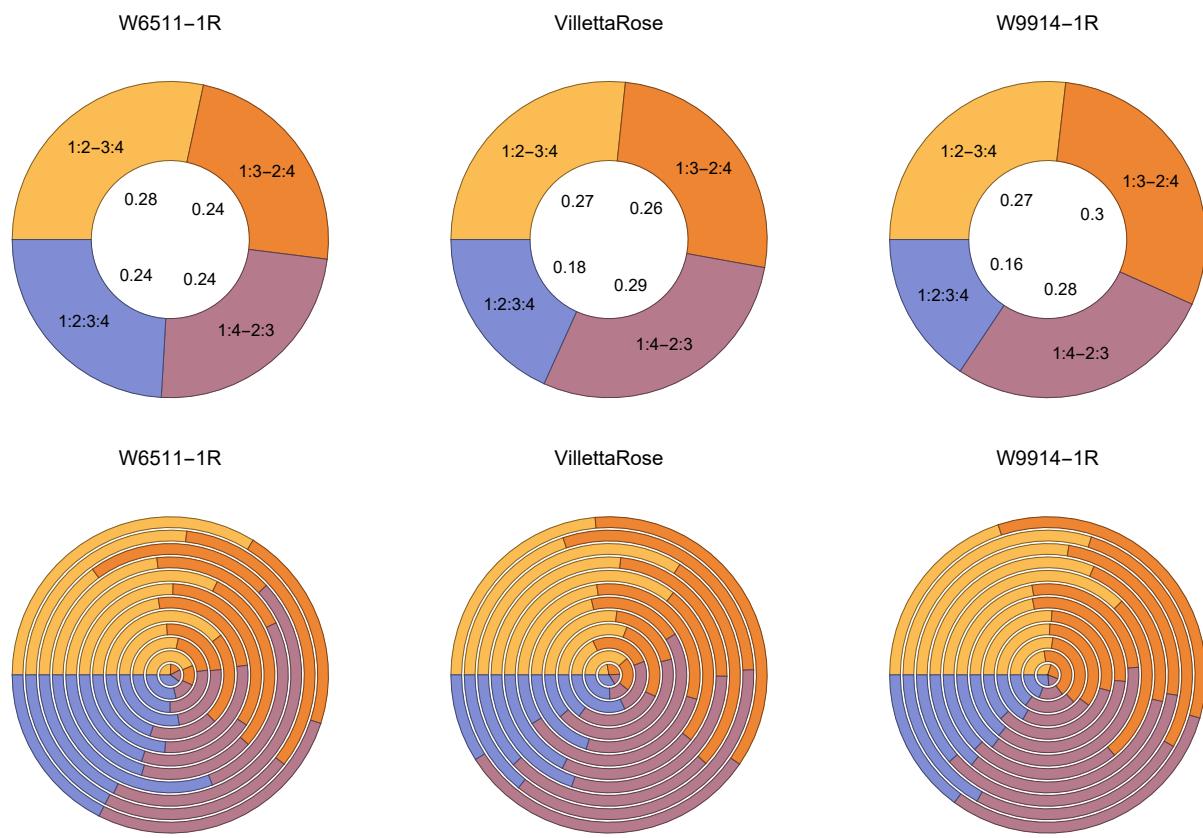


Figure S4: The proportion of valent configurations for the 12 chromosomes of potato in the 3x3 half-diallel with parents VillettaRose, W6511-1R, and W9914-1R. The proportion was calculated based on the maximum possible configurations for each offspring and each chromosome. The configuration 1:2:3:4 refers to a quadrivalent, while the other three refer to bivalent pairs (the colon separates paired homologs). Each bottom panel denotes the proportions among the 12 chromosomes starting from the inner, and the upper panels denote the averages over chromosomes

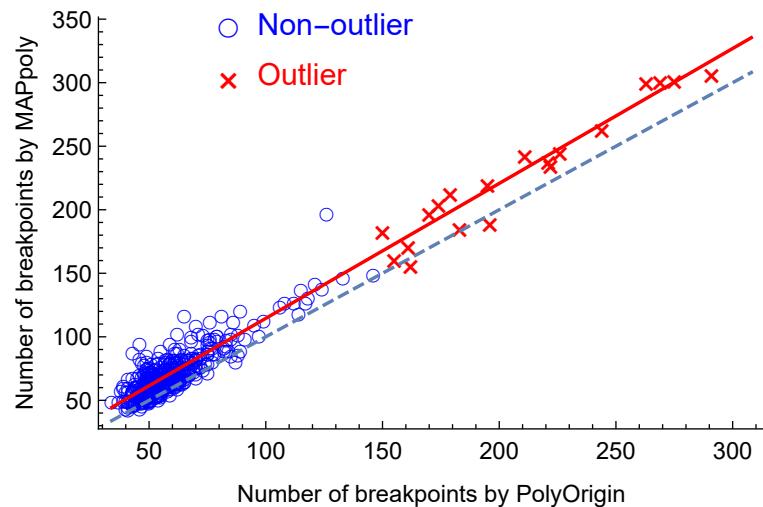


Figure S5: Comparison of PolyOrigin with MAPpoly in terms of the number of haplotype breakpoints for each offspring. Red crosses denote outlier offspring labeled by PolyOrigin, and blue circles denote non-outliers. Dashed line denotes $y = x$, and red line denotes the regression line.

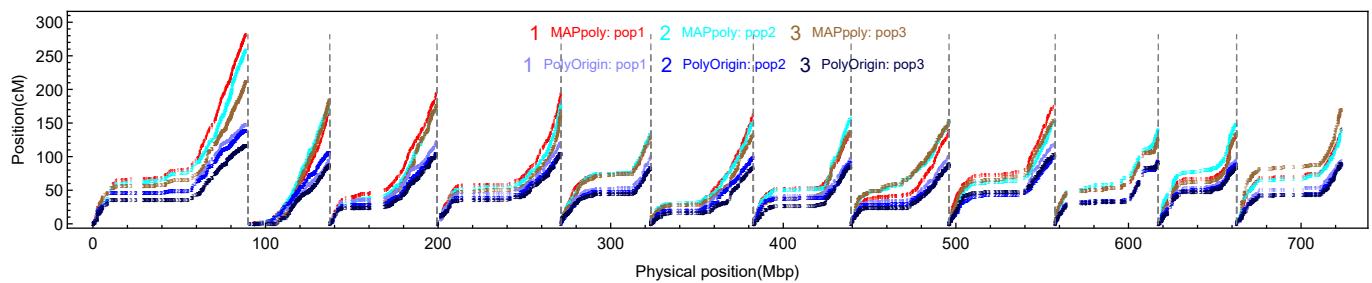


Figure S6: Comparison of PolyOrigin with MAPpoly for each of the three F1 populations in the real 3x3 potato diallel population.

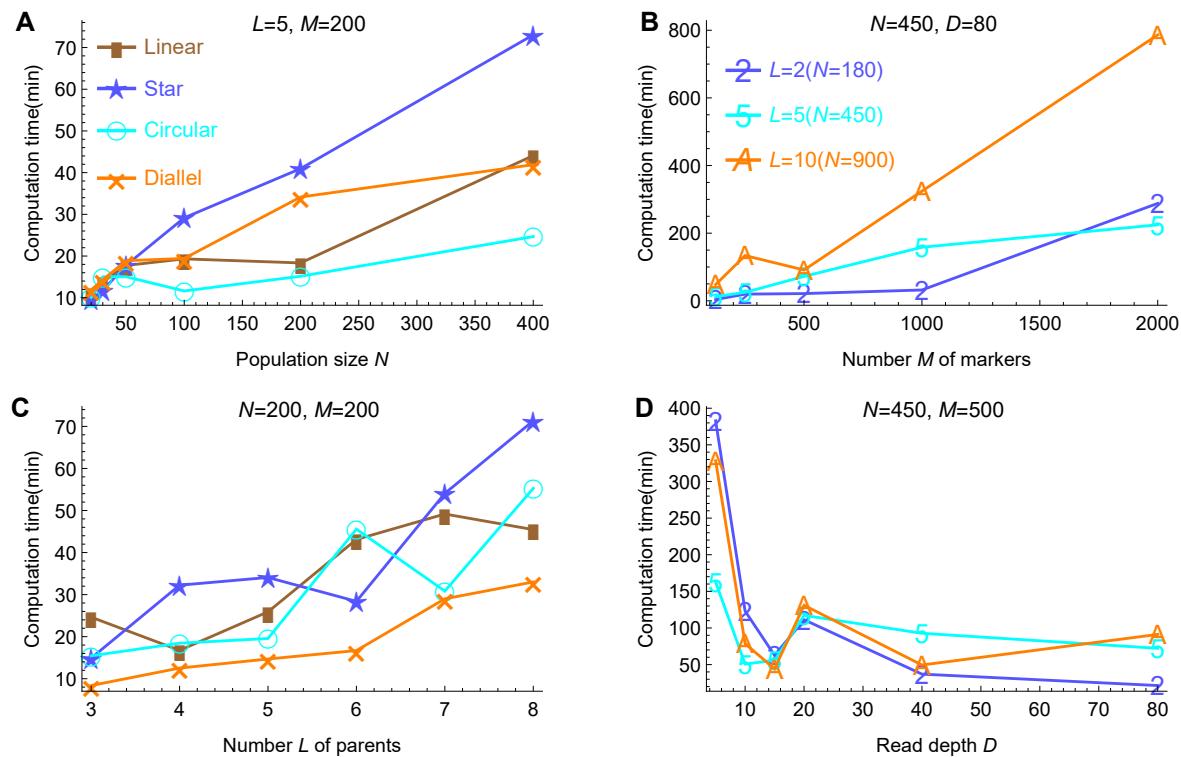


Figure S7: Effect of population design and genotyping design on computational time (in minutes). (A&C) Computational time used in analyzing the simulated SNP array data in the four mating designs. (B&D) Computational time used in analyzing the simulated GBS data in the diallel design with $L = 2, 5$, and 10 parents, respectively.