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s Abstract

16 In diploid species, many multi-parental populations have been developed to increase genetic
17 diversity and quantitative trait loci (QTL) mapping resolution. In these populations, haplotype
18 reconstruction has been used as a standard practice to increase QTL detection power in compar-
19 ison with the marker-based association analysis. To realize similar benefits in tetraploid species
20 (and eventually higher ploidy levels), a statistical framework for haplotype reconstruction has
21 been developed and implemented in the software PolyOrigin for connected tetraploid F1 pop-
22 ulations with shared parents. Haplotype reconstruction proceeds in two steps: first, parental
23 genotypes are phased based on multi-locus linkage analysis; second, genotype probabilities for
2« the parental alleles are inferred in the progeny. PolyOrigin can utilize genetic marker data from
25 single nucleotide polymorphism (SNP) arrays or from sequence-based genotyping; in the lat-
26 ter case, bi-allelic read counts can be used (and are preferred) as input data to minimize the
27 influence of genotype call errors at low depth. To account for errors in the input map, PolyO-
2s rigin includes functionality for filtering markers, inferring inter-marker distances, and refining
29 local marker ordering. Simulation studies were used to investigate the effect of several vari-
s ables on the accuracy of haplotype reconstruction, including the mating design, the number
a1 of parents, population size, and sequencing depth. PolyOrigin was further evaluated using an
22 autotetraploid potato dataset with a 3x3 half-diallel mating design. In conclusion, PolyOrigin

33 opens up exciting new possibilities for haplotype analysis in tetraploid breeding populations.
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Introduction

Polyploid species have more than two sets of chromosomes, and are especially common in flow-
ering plants. Unveiling the genetic architecture of complex traits is fundamental in plant genet-
ics and breeding, including for economically important tetraploid crops such as alfalfa, potato,
and blueberry. Several methods have been developed for haplotype reconstruction in a poly-
ploid bi-parental population derived from non-inbred parents (hereafter F1 population). Condi-
tional on parental phases, XIE and XU (2000) developed a hidden Markov model (HMM) for
ancestral inference, although the model does not represent biological processes in a tetraploid
F1 (HACKETT 2001). LUO et al. (2001) developed a heuristic algorithm for parental phasing
in a tetraploid F1, based on two-point linkage analyses. HACKETT et al. (2003) modified the
phasing algorithm (LUO et al. 2001) for analyzing SNP dosage data, and developed a HMM
for ancestral inference by assuming only bivalent chromosome pairings. ZHENG et al. (2016)
developed the integrated HMM framework TetraOrigin for parental phasing and ancestral in-
ference, accounting for both bivalent and quadrivalent formations in meiosis. The MAPpoly
software (MOLLINARI and GARCIA 2019; MOLLINARI et al. 2020) uses two-point procedures
and HMMs for parental phasing and ancestral inference in polyploids up to 8, assuming only
bivalents.

One disadvantage of biparental populations is their limited genetic diversity, such that the
discovered QTL may lose their predictive ability in a broader set of germplasm. To overcome
this, many diploid multiparental populations have been recently produced, especially in crops
(see review by HUANG et al. 2015). Several software tools are available for haplotype recon-
struction in diploid multiparental populations (MOTT et al. 2000; BROMAN et al. 2003; ZHENG
etal. 2015; BROMAN et al. 2019), whereas there is no such tool for polyploid multiparental pop-
ulations. The primary aim of this work is to build an HMM framework called PolyOrigin for
tetraploid (extendable to higher ploidy levels) multiparental populations, extending the previ-
ous framework TetraOrigin from a bi-parental F1 to multiple F1 populations that may share
parents. Similar to TetraOrigin, PolyOrigin allows preferential bivalent chromosome pairing
and quadrivalent formation, so that we do not make a strict distinction between allopolyploids

and autopolyploids. In addition to the basic algorithm of TetraOrigin, PolyOrigin includes extra
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procedures to increases the robustness to the various errors in the input data.

One source of error may be the uncertainty when calling dosage from intensity signals of a
SNP array or allele counts of next generation sequencing (NGS) data. We account for parental
errors by a correction procedure during ancestral inference, whereas TetraOrigin introduced a
parental error parameter (ZHENG et al. 2016). In addition, we include a procedure for marker
deletion during parental phasing, and the markers with parental errors are likely to be removed.
On the other hand, since it has been shown that read depths of 60-80 are required for accu-
rately inferring dosage in autotetraploids (UITDEWILLIGEN et al. 2013; MATIAS et al. 2019),
PolyOrigin can account for the dosage uncertainties by using NGS read count data directly.

Another source of errors is the input marker map. The marker deletion procedure during
parental phasing can also remove those markers that are misgrouped or long-range misordered,
in addition to parental errors. The map construction packages such as MAPpoly (MOLLI-
NARI and GARCIA 2019; MOLLINARI et al. 2020) and polyMapR (BOURKE et al. 2018) order
markers by the multidimensional scaling algorithm (PREEDY and HACKETT 2016), based on
two-point linkage analyses. Such input genetic maps can be improved by an extra step of map
refinement using a multi-locus HMM approach. The map refinement consists of local marker
reordering and inferring inter-marker genetic distance—the latter becoming necessary when the
input marker map is a physical map.

We evaluate PolyOrigin by extensive simulation studies and with a real tetraploid potato
dataset. For the simulation studies, we compare PolyOrigin with TetraOrigin and MAPpoly and
investigate the effect of mating design such as the number of parents. We also investigate the

robustness to low depth sequencing and errors in the input dosage data and marker map.

Methods

Figure 1 shows an overview of PolyOrigin. Suppose that we have a collection of tetraploid F1
populations. Each F1 population can be either a cross between two parents or a self-fertilization
population from a single parent. The set of populations can be represented by an un-directed
graph (e.g. Figure 1A), with nodes representing parents and edges representing the crosses

or selfings. This is called a connected F1 since two populations can be connected by parent

4
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sharing. PolyOrigin requires two inputs: (1) a mating design describing the parents of each F1
offspring, and (2) a genotypic data matrix for all parents and offspring at a set of SNP markers.
Genotypic data include a genetic map or physical map of the markers. We assumed that all
markers are bi-allelic, and denote the two alleles by 1 and 2 and define a genetic dosage as the
count of allele 2. We model marker data independently across linkage groups, and thus describe
the model for only one linkage group.

Notations for the PolyOrigin model will be introduced in the following description and are
summarized in Table 1. We use ¢ to index a marker, p for a parent, ¢ for an F1 population, and j
for an individual in a given F1 population. Denote by 3} the observed genotypic data for parent
p=1,...,Latmarkert =1,..., M, and yij the genotypic data for individual j of F1 population
¢ at marker ¢. Figure 1B shows that the PolyOrigin model has three kinds of hidden variables:
hY denotes phased genotype for parent p at locus ¢, xij denotes phased origin-genotype for
offspring (7, j) at marker ¢, and v/ denotes valent formation for producing offspring (i, j) from
their parents. Here the term origin-genoype denotes a combination of parental origins, referring
to each parental homolog as a distinct allele.

The workflow of PolyOrigin consists of three steps: parental phasing, map refinement, and
ancestral inference (Figure 1C). In the third step, HMM decoding and parental error correction
are iterated until no errors can be detected, which are also performed prior to map refinement.
The parental phasing corresponds to the maximum likelihood estimation of 2?. And the HMM
decoding corresponds to the estimation of xi] , averaging over all possible v*/ values. In the

following, we will describe the basic HMM and the three steps.

HMM

Conditional on phased parental genotypes, offspring are independent of each other. For a given
offspring (7, j) and its valent formation v/, genotypic data y/ = {y,’ }i\il can be modeled by
a HMM, which can be described by a genotype model specifying the probability of yzj given
hidden xij , conditionally independent among markers, and a parental origin process specifying
the joint prior probability of 2%/ = {xij }tj\il

Genotype model: At a locus ¢, the genotype likelihood I;7 = P(y;”|z%’) depends implicitly
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119 on parental phases via the unknown true dosage di’j =f (az:iJ , h9)) | a deterministic function
120 of hidden origin-genotype xi” and phased genotypes h‘*7) for the parents (7, j) of offspring
121 (4, 7). We consider three possible representations of genotypic data yzj . First, y;] is represented
122 by a dosage. The dosage likelihood is given by

7 (er) = (1 —e)I(y” =d?) + ?t](ytﬂ # dy?) (1)

123 where ploidy level K = 4, indicator function /(s) equals 1 if statement s is true and O otherwise,
12« and &, denotes the dose error probability at marker ¢. If a dosage error occurs, the resulting
125 dosage is randomly drawn from the other K dosages.

126 Second, yz" is represented by a pair of read counts. Let r; and 7, be the counts of sequence
127 reads for alleles 1 and 2, respectively, at marker ¢ for offspring (i, j). Assume that the read
128 counts 7y and 7o are generated by an unknown dosage d’ that is different from di’j with error
129 probability €,, for example, because of the misalignment of reads to the reference genome. We

130 integrate out d’ to obtain the read count likelihood
7(e)) =Y Py |d)P(dd? &) )
dl

151 where P(d'|d}” ;) can be obtained from equation (1) by replacing y;” with d’, and P(y;”|d')

132 can be obtained from the following binomial model

Py;? = (r1,12)|d) = (Tl Z T2) ¢ (1—q)> 3)
& d
q:O—R>O—Q+K€ )

133 where ¢ denotes the probability of a sampled read being allele 1, d’/ K denotes the probability of
13« allele 2 being sampled, and e denotes the sequencing error probability of observing the incorrect
135 allele. By default, we set ¢ = 0.001, and the dependence of likelihood on € is not shown in
136 equation (3).

137 Third, 37 is represented by the vector of probabilities {P (yi|d) }5:0’ a generalization of
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the first and second representations, and the data likelihood is given by

7 (20) = (1 —2) Py,

A7) + 3 [S = P |d)] )
according to equations (1) and (2), where S = Zf;:o P(y}”?|d'). The probability vector can be
calculated from equations (3) and (4) for the NGS read counts.

For example, suppose that h7? = 1121 and h!? = 2112 for the two parents (i, j) =

(P1, P2) of offspring (i, j), and 2’ = (1,2, 6, 8) denotes that the offspring is descended from
homologs 1 and 2 of parent P1 and homologs 6 and 8 of parent P2; we denote the four homol-
ogous chromosomes of the first parent P1 by 1 — 4, and 5 — 8 for the second parent P2. Thus
the true phased genotype is 1112 and the true dosage is 1. If dosage yz’j =1, li’j (1) =1—¢y.
If read count ;7 = (3, 1), the probability vector is (0.0040,0.4219,0.25,0.0471,0.0000) for
e = 0.001, and thus I!”7 (g,) = 0.4219 — 0.3466¢,. If probability vector y;” = (0.2,0.5,0.3,0,0),
177 (4) = 0.5 — 0.375¢;. If "/ is a missing value, [” () = 1.
Parental origin process: ZHENG et al. (2016) have described a discrete time Markov chain
model for the parental origin process along four homologs of an offspring in a F1 population.
The same model can be used for an offspring resulting from selfing, except that the state space is
different. A discrete time Markov chain model consists of two components: a discrete distribu-
tion P(z;) of the states at the first marker ¢ = 1, and a transition probability matrix P(x;,1|x;)
describing how the states change from marker ¢ to the next ¢t + 1 for¢t = 1,..., M — 1, so that
the joint prior distribution is given by P (1) Hﬁ 1" P(x41|2), because of the Markov approx-
imation. Here we summarize the two components.

The two gametes in an offspring are assumed to be produced independently. The initial
distribution for a zygote can be obtained by the Kronecker product between the two initial
distributions, one for each of the two gametes. Similarly, the transition probability matrix for
a zygote can be obtained by the Kronecker product between the transition probability matrices
for the two gametes. Denote by v"7 = (v1, v,) the valent formation vy (v5) for the first (second)
gamete in an offspring (¢, 7). We describe the parental origin process in a gamete, for example,
the first gamete, conditional on a given value of v;.

Denoting the four homologs of the gamete parent by 1 — 4, v; can take four possible values:
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[1,2][3,4], [1,3][2,4], [1,4][2,3], and [1, 2, 3,4], where the first three values denote bivalent
formations, and the last value denotes quadrivalent formation. For example v; = [1, 2][3, 4], the
initial distribution is assumed to be discrete uniform among gamete states (1, 3), (1,4), (2, 3),

and (2,4), The transition probability matrix is given by the Kronecker product P,; ® P,;, where

describes the transition between origins 1 and 2 along the homolog produced by the parental
homolog pair [1, 2], and it refers to the transition between origins 3 and 4 for the homolog pair
[3,4]. Here r; denotes the inter-marker recombination fraction assuming bivalent formation.
For quadrivalent formation v; = [1,2,3,4], the initial distribution is assumed to be discrete
uniform among the 16 possible pairs of origins 1-4, and the transition probability matrix is

given by Pyyaa ® Pyuad, Where

1— Tquad Tquad/g Tquad/?’ Tquad/3
Tquad/?) 1— Tquad Tquad/?) rquad/g
Pquad =
rquad/g Tquad/g 1— Tquad Tquad/?)
L Tquad/g Tquad/?) Tquad/?) 11— Tquad_

describes the transition among origins 1-4 along each homolog produced by quadrivalent for-
mation. Here r4,qq denotes the inter-marker recombination fraction assuming quadrivalent for-
mation. We assume that there is no genetic interference, and use the Haldane’s map function

(HALDANE 1919; LUO et al. 2006),

where d is the inter-marker genetic distance in Morgan.
If an offspring is produced by crossing between two different parents, the bivalent pairing

vy takes possible values: [5,6][7,8], [5,7][6,8], [5,8][6,7], and [5,6,7,8]. If the offspring is
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self-fertilized, v, takes the same set of values as those of v;. The HMM state space for a selfing
offspring is thus different from that of a cross-fertilized offspring, but the size of the state space

and the transition probability matrix are the same.

Parental phasing

We extend the phasing algorithm of ZHENG et al. (2016) from a single bi-parental F1 cross
to connected F1 populations. The phasing algorithm is to optimize the log-likelihood logl =
>, logl™?, where the individual log-likelihood logl™/ = log [P(y"I|h?(9), v*7 ¢)]. Here & =
{Et}t]\i , for genotyping error probabilities at all markers, h? = {h? }i\il for the hidden phased
genotypes of parent p at all markers, while the hidden origin-genotypes z%/ = {mf }Z\il are
integrated out in logl*. Note that logl depends implicitly on the marker ordering and inter-
marker distances.

The phasing algorithm starts with the initialization of 4% for all parents by randomly drawing
hY from its prior distribution p(hY |y} ). For example, if dosage y; = 1, hY follows a prior uniform
discrete distribution among the four possible phased genotypes: 1112, 1121, 1211, and 2111.
If probability vector 7 = (0.2,0.5,0.3,0,0), hY takes 1111 with probability 0.2, takes one of
the four phased genotypes: 1112, 1121, 1211, and 2111 with equal probability 0.125, and takes
one of the six phased genotypes 1122, 1212, 1221, 2112, 2121, and 2211 with equal probability
0.05. If ¢ is a pair of read counts, it can be firstly transformed into a probability vector. If 32 is
a missing value, h} takes one of the 2 = 16 phased genotypes with equal probability 1/16.

After initialization, each phasing iteration performs alternative maximization among valent
formations and phased parental genotypes. First, independently for each offspring, the valent
formation v*/ is given by maximizing the individual log-likelihood logl®’ with respect to v*7,
conditional on the phased parental genotypes h*(»7). For the sake of computational efficiency,
we consider only bivalent formation. We calculate the individual log-likelihood logl*? for a
given v/ by the forward algorithm for HMM (RABINER 1989). Second, sequentially for each
parent p = 1,...,n,, we obtain the maximum possible /”, conditional on valent formations
{v™7} ; ; for all offspring and phased genotypes {hp/ }p, 4p for all the other parents. Specifically,

we calculate a proposed phase h” that approximates the maximum possible phase, accept it if
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the target function [ogl is increased, and otherwise reject it and keep the current phase. We
obtain proposed h” in a forward-backward procedure, which can be adapted from the detailed
description for a single F1 population (ZHENG et al. 2016).

When phasing iteration gets stuck such that the proposed parental phase for every parent
is rejected, we delete markers that do not fit into the marker sequence. Because the number
of markers deleted is negatively correlated with genotyping error probability, we estimate € by
maximizing the target function logl, prior to marker deletion, assuming that € does not vary
with markers. We perform the estimation of € and marker deletion only once for the sake of
computational efficiency. We delete markers using the Vuong’s closeness test, a likelihood-
ratio-based test that can be used for comparing two non-nested models (VUONG 1989). We
calculate the Vuong test statistic for all markers simultaneously and delete those markers with
p-values significant at 0.05.

A single phasing run stops if the parental phases do not change for 5 consecutive iterations,
or the number of iterations reaches 30. To find the global maximum, we perform multiple
phasing runs independently and select the one with the largest logl. We repeat phasing runs
until the so-far maximum phases have been obtained 3 times or the number of runs reaches 10.
In comparison with the TetraOrigin algorithm (ZHENG et al. 2016), we decrease some default
values such as the maximum number of phasing runs, because the differences among phasing
runs may be caused by the parental errors, and the PolyOrigin algorithm has additional error

correction in the ancestral inference.

Map refinement

Prior to map refinement, ancestral inference with parental error correction is performed to cor-
rect parental phase errors and exclude outlier offspring. Conditional on the phased parental
genotypes, map refinement iteratively updates local marker ordering, inter-marker genetic dis-
tance, valent formation v*/, and marker-specific error probability ¢,. The estimation of v*/ is
the same as that in the parental phasing, except that quadrivalent formation is allowed. To de-
crease the effect of offspring genotyping errors, ¢; is estimated by maximizing logl using the

local Brent method (BRENT 1973), sequentially for marker ¢ = 1, ..., M, and markers with

10
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g¢ > 0.5 are deleted. Similarly, inter-marker distance is estimated by maximizing [ogl using the
local Brent method (BRENT 1973).

In each iteration, the local marker ordering is refined by sliding a window along chromo-
some at a step of one marker, and the ordering refinement starts with window size 2 and in-
creases until no proposed reversion at the given window size is accepted during a scan along
chromosome. The ordering of markers within a sliding window is reversed with probability

eSlegl/T) where Alogl is the increase of logl due to reversion and 7 is temperature in

min(1,
the simulated annealing (KIRKPATRICK et al. 1983). The temperature 7' is set to 4 in the first
iteration, and decreases by half after each iteration.

The map refinement can be divided into three stages with decreasing number of updat-
ing variables. The first stage updates local ordering, inter-marker distance, v*/, and &, and it
changes into the second stage when 7' < 0.5 and the maximum sliding window size equals
2. The second stage consists of two iterations: it updates only inter-marker distance and strips
markers at a chromosome end if there exists a distance jump greater than 20 cM and the frac-
tion of markers deleted is less than 5%. The third stage estimates inter-marker distances for
selected skeleton markers in five iterations. The chromosome is divided into 50 segments, and

the marker with smallest ¢, is selected in each segment. The inter-marker distances in the final

map are re-scaled piece-wisely, based on the estimated skeleton marker map.

Ancestral inference

Conditional on phased parental genotypes and the refined genetic map, each offspring is an-
alyzed independently with a HMM. The step of ancestral inference performs iteratively the
estimation of marker specific ;,, HMM decoding, and parental error correction, until there are
no error corrections. The estimation of ¢ = {&,}," is conditional on valent formations {v’~} i
for all offspring, and the estimations of € and v*/ are the same as those in map refinement.
In the HMM decoding, the posterior probability P (x|, v/, ¢) and the individual marginal

likelihood P(y“I|v"I ¢) are calculated by the forward-backward algorithm for HMM (RA-
BINER 1989), conditional on each of the 16 possible values of v%7, allowing for quadrivalent

formation. Assuming a discrete uniform prior distribution of v/, we can obtain the posterior

11
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distribution P (v’ |y’ ¢) from the individual marginal likelihood according to the Bayesian

theorem (GELMAN et al. 2013). Finally, we can obtain phased origin-genotype probability

P(aily.e) = 3 Py, v, )P0y <) ©)
visd
where the summation is over the 16 possible values of v/, and the dependencies on phased
genotypes h**("7) for the parents of offspring (i, j) are not shown.

In the parental error correction, we first perform dosage calling based on the HMM decod-
ing. Specifically, we calculate the dosage posterior probability P(di’j ly*7, €) by summing the
condition probability P(z}”|y"/, ) in equation (6) over z}” such that d;” = f(x}?, h*@9). The
dosage is called to be the maximum possible one if its posterior probability is larger than 0.5,
and otherwise it is set to missing. Secondly, we detect suspicious markers at which the fraction
of mismatches between called genotypes and observed offspring genotypes is larger than 0.15.
Here mismatch refers to the input dosage being different from the called dosage, or the input
probability of the called dosage being less than 0.01. Lastly, at each suspicious marker ¢ and
for each parent p, we replace the current value of h? by the one with minimum mismatches
in offspring dosages, among all the 16 possible values of i}, if the number of mismatches is
decreased by at least 3.

The final output of ancestral inference is given by unphased origin-genotype probability
P (zZ” |y €) for all offspring at all markers by summarizing the corresponding phased origin-
genotype probabilities P(x}” |/, ), where 2, is given by the sorted value of z}’. For example,
unphased origin-genotype z’ = (1,3,6,7) for cross-fertilized offspring (i, j) corresponds to
four phased origin-genotypes =/’ = (1,3,6,7), (1,3,7,6), (3,1,6,7), and (3,1,7,6).

In addition, we detect outlier offspring according to the estimated distribution of the number
of recombination breakpoints. Specifically, for each offspring at each marker, the unphased
origin-genotype is called to be the maximum possible one if its posterior probability is larger
than 0.6, and otherwise it is set to missing. For an offspring, we count the number of changes in
origin-genotype along the four homologs of a linkage group after skipping the missing genotype
calls, and obtain the number of recombination breakpoints by summing the number of changes

over all linkage groups. An offspring is labeled as outlier if A > Q3 + fence x (Q3 — Q1),
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where the Anscombe transform A = 24/b + 3/8 with b being the number of breakpoints in the
offspring (ANSCOMBE 1948), the Tukey’s fence is set to 3 (TUKEY 1977), and (), and ()3 are

the lower and upper quartiles of the transformed values.

Algorithm evaluation

We evaluated the performance and robustness of PolyOrigin by extensive simulations using
PedigreeSim (VOORRIPS and MALIEPAARD 2012) and updog (GERARD et al. 2018) with
a custom-made R package wrap-up called PedigreeSimR available at https://github.
com/rramadeu/PedigreeSimR. We quantified parental phasing error as the fraction of
estimated parental phases different from the true phases, and ancestral inference error was de-
fined as 1 minus the posterior probability of the true unphased origin-genotype, averaged over
offspring and markers.

We first set up default parameter values as a baseline and then simulated four scenarios,
where a few parameters varied while keeping the others at the baseline. For a given set of
parameter values, we simulated three replicates and obtained results by averaging over them.
Baseline setup: We simulated only one linkage group and first specified the true parental
haplotypes. In the scenarios with fixed number of markers, the true parental haplotypes were
given by the 32 real potato haplotypes; see the description in Real Potato datasets. The genetic
length is 149 cM, with the number of polymorphic markers varying from M = 201 in the
first two parents (L = 2) to M = 258 for L = 8. In the scenarios with varying number
of markers, the true parental haplotypes were obtained by first simulating a genetic map and
then phased parental genotypes at each marker. The inter-marker distances were first simulated
from a Poisson distribution and then re-scaled to obtain the total genetic length of 100 cM,
and the four homologous haplotypes of a parent were simulated by first randomly sampling a
dosage and then randomly sampling a phased genotype compatible with the sampled dosage,
independently at each marker.

We simulated two kinds of polysomic inheritance: (1) both preferential bivalent pairing and
quadrivalent formation were allowed, pref Pairing = 0.5 and quadrivalents = 0.5, so that

double reduction is possible; (2) only random bivalent pairing was allowed, pre f Pairing = 0
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and quadrivalents = 0, so that double reduction is not possible.

The true offspring genotypes were obtained by combining true founder haplotypes and sim-
ulated inheritance, from which observed genotypic data were obtained by applying an error
model and a missing pattern. For SNP array dosage data, an error occurred in each parental or
offspring dosage with probability ¢ = 0.01, and the resulting dosage was set to one of the other
dosages with equal probability. Each parental or offspring dosage was missing with probability
0.1. NGS data were simulated with average depth D = 5, 10, ..., 80, sequencing error rate
0.005, allelic bias 0.7, and over-dispersion 0.005 (GERARD et al. 2018). A read depth equaled
zero (i.e. missing data) with probability 0.1 and otherwise followed a Poisson distribution with
mean D/0.9.

The default mating design was a half-diallel design with L. = 5 parents, where all 10 pos-
sible combinations of parents were crossed, and each cross produced an equal number of off-
spring.

Simulation scenarios: We divided simulated scenarios into four groups according to their study
purposes: (1) comparisons with previous methods, (2) effect of population design, (3) effect of
genotyping design, and (4) robustness to errors in the marker map.

To compare with MAPpoly (MOLLINARI and GARCIA 2019; MOLLINARI et al. 2020) and
TetraOrigin (ZHENG et al. 2016), we simulated bi-parental F1 populations. Missing dosages in
parents were not allowed, which is required by MAPpoly. We simulated SNP array data with
population size varying from N = 10 to N = 200 and two kinds of polysomic inheritance: one
with double reduction and the other without double reduction.

To study the effect of population design, we simulated SNP array data for four mating de-
signs: linear design where each parent was crossed with the next, circular design differing from
the linear design by an extra cross between the first and the last parents, star design where the
first parent is crossed with each of the other parents, and diallel design where all pairs of parents
were crossed. The naming of mating design is based on the un-directed graph representation
of the connected F1 populations. We varied three parameters: the number L of parents, the
number S of selfing populations, and the total population size /V, one at a time, while keeping

all other parameter values at the baseline. When increasing S from 1 to 5, the selfing population
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was created in order from parents 1 to 5.

To study the effect of genotyping design, we simulated genotyping by SNP array and NGS
data in the diallel designs with no selfings (S = 0), using simulated true parental haplotypes
with various marker densities. The SNP array design aimed to study the robustness to geno-
typing error probability ¢ for two population sizes N = 50 and 200, with L = 5 parents. The
sequencing design aimed to study the effect of read depth D and the number M of markers for
three diallel designs with L = 2, 5, and 10 parents, the number of offspring per parent being
fixed to 90 so that N = 180, 450, and 900, respectively.

To study the robustness to errors in the input marker map, we first simulated SNP array

data in the diallel design with no selfings (S = 0) and L = 5 parents for two population sizes
N = 50 and 200, using the true parental haplotypes with M = 242 markers. To study the
effect of markers that are wrongly positioned in long range, we disturbed marker ordering by
randomly selecting fe,.,M /2 markers on one chromosome arm and f,., M /2 markers on the
other arm, and then exchanging them between two arms. To study the effect of erroneous local
marker ordering, we obtained a disturbed genetic map by ordering markers according to the
sum of true marker index ¢ and a normal distributed random variable with mean 0 and standard
deviation oy,.,;, While keeping the original marker locations.
Real Potato datasets: A set of 32 chromosome-length SNP haplotypes from potato were used
as the true parental haplotypes to simulate populations and evaluate algorithm performance; see
Supplementary Material, Table S1. The 32 haplotypes correspond to chromosome group 4 of
8 tetraploid potato clones, genotyped with version 2 of the potato SNP array, which had 12K
markers (HAMILTON et al. 2011; FELCHER et al. 2012). The eight clones were mated in pairs to
create four F1 populations (ENDELMAN et al. 2018), and the software MAPpoly (MOLLINARI
and GARCIA 2019; MOLLINARI et al. 2020) was used for parental phasing.

In addition, a 3x3 half-diallel population in potato was used for evaluation; see Table S2 for
the dosage data with physical map, and Table S3 for the mating design. Three parents (W6511-
IR, W9914-1R, and Villetta Rose) were mated in all three pairwise combinations to create a
total population of 434 clones (individual F1 population sizes of 162, 155, and 117). Clones

were genotyped with version 3 of the potato SNP array, which had an additional 9K markers
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from VOS et al. (2015) compared to version 2. Allele dosage was assigned using R package
fitPoly (VOORRIPS et al. 2011; ZYCH et al. 2019) and 5078 markers distributed across all 12
chromosome groups remained after curation. Physical positions for the input map were based
on the potato DMv4.03 reference genome (POTATO GENOME SEQUENCING CONSORTIUM
2011; SHARMA et al. 2013).

Parameter setup: For simulated data, local ordering and inter-marker distances were refined
only when studying the robustness to errors in the input genetic map. For real potato data,
PolyOrigin estimated the inter-marker distances, conditional on the input marker ordering. We
set up TetraOrigin to have the same option values as those of PolyOrigin. We set up MAPpoly
by following its online tutorial. See the Supplementary Materials for the detailed description of

the parameter setup for running PolyOrigin, TetraOrigin, and MAPpoly.

Data availability

PolyOrigin has been implemented in Julia 1.5.3, and is freely available under the GNU General
Public License 3.0 from the web site: https://github.com/chaoczhi/PolyOrigin.

j1. Real potato datasets in Tables S1-S3 are available at FigShare.

Results

Comparisons with previous methods

Figure 2 shows the comparisons of PolyOrigin with TetraOrigin and MAPpoly for a single
F1 population considering quadrivalent formation (double-reduction is possible). As shown in
Figure 2A, both PolyOrigin and MAPpoly have no phasing error when population size N >
100, but the MAPpoly software did not produce a solution for the smaller sizes, whereas the
phasing error for TetraOrigin was around 0.02 because of the parental dosage errors in the
simulated data (¢ = 0.01). PolyOrigin and MAPpoly deleted those markers with parental
dosage errors (Figure 2B), while TetraOrigin has no function of marker deletion. Note that
TetraOrigin may account for parental dosage errors by assuming a non-zero parental genotyping

error probability, but this leads to much longer computation time.
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Figure 2C shows that TetraOrigin has slightly worse performance in ancestral inference than
PolyOrigin, resulting from its higher parental phasing error (Figure 2A). On the other hand, the
worse performance of MAPpoly than TetraOrigin and PolyOrigin is mainly because MAPpoly
does not account for double reduction. Figure S1 shows that MAPpoly has a similar parental
phasing error and a lower ancestral inference error for the simulated data without double reduc-
tion.

Figure 2D shows that the computational time of TetraOrigin is around 6 times as long as that
of PolyOrigin for population size N = 200, although the algorithm of PolyOrigin is almost the
same as TetraOrigin for a single F1 population. In comparison, MAPpoly is around 10 times as
long as that of PolyOrigin for N = 200. For the smaller population sizes (N < 50), MAPpoly

collapsed for unknown reasons.

Effect of population design

Figure 3 shows the effect of population design on parental phasing, where the effect of the four
design parameters: mating design, population size N, number S of selfings, and number L of
parents, is summarized through the number of gametes contributed by each parent. Note that the
number of gametes is the same as the number of offspring produced by each parent in the case
of no selfings (S = 0). It is shown that the parental phasing error becomes very small (<0.01)
when the number of gametes from each parent is no less than 30. One exception out of 792 data
points in Figure 3A is the high phasing error 0.1 at the number 50 of gametes, corresponding
to the middle parent in one of three replicate datasets with linear design, . = 3, S = 0, and
N = 50. Further examination shows that the exceptional high error results from a single switch
error in the parental haplotypes.

Figure S2 shows the effect of the four design parameters on parental phasing, where the
phasing error is averaged over parents and replicates for a given combination of the four design
parameter values. It is not unexpected that the parental phasing error increases with the number
L of parents and decreases with the total population size N. For the small population size N <
50, the star mating design performed much worse than the linear, circular and diallel designs,

particularly at the medium number S of selfings, where the numbers of gametes contributed by
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parents are more unequal that at the two extreme values of S. Figure S2F shows that there are
no noticeable differences between a single F1 population of size N and the collection of two
independent selfing populations of size N/2; see also Figure 3D.

Figure S3 shows that the effect of population design on ancestral inference mainly results

from its effect on parental phasing.

Effect of genotyping design

SNP array design: Figure 4A, C, and E show the effect of dosage error probability € in the
diallel populations with population sizes N = 50 and 200. Figure 4A and C show that PolyO-
rigin is robust to €, except for small N = 50 and large € > 0.1, and Figure 4E shows that the
fraction of markers deleted increases gradually with ¢ but it is always smaller than ¢, indicating
that both marker deletion and parental error correction contribute to the robustness.

Figure 4B, D, and F show the effect of marker density. Figure 4B shows that parental

phasing is robust to marker density except for small N = 50 and low M < 100, and Figure 4D
shows that the ancestral inference error decreases rapidly with marker density. Figure 4F shows
that the fraction of markers deleted is independent of marker density and is always smaller than
€.
Sequencing design: Figure 5 shows the effect of read depth D (nunber of reads per marker per
individual) and the number M of markers for NGS data in the diallel populations with L = 2, 5,
and 10 parents, the total population size N being adjusted so that the number N/ L of offspring
per parent is fixed. Figure SA and C show that parental phasing is robust to read depth and
marker density, except for low D < 10 and small M < 250. As shown in Figure 5B and D,
the ancestral inference error decreases with M up to 2000 and with D up to 20, and it levels off
when D > 20.

Figure S5E and F show the effect of D and M, under the constraint that D x M = 10000,
where the product D x M denotes the total number of reads, or the NGS cost per individual.
Figure SF shows that the optimal strategy for decreasing ancestral inference error is to increase
M instead of D under the cost constraint, although parental phasing error increases with M but

it is still very small at M = 2000 or D = 5 (Figure SE).
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Figure 5C-F show that the number L of parents has little effect on parental phasing and
ancestral inference, if the population size NV is increased proportionally, although the parental

phasing error for L = 2 is slightly greater than that for L = 5 and 10.

Robustness to errors in input map

Figure 6 shows map refinement in the presence of long-range or local disturbances in the input
genetic maps in the diallel populations with population sizes N = 50 and 200. Figure 6A-
B show that map improvement is more effective in the large populations (N = 200) than in
the small populations (N = 50), and that it is more effective in the presence of long-range
disturbances that in the presence of local disturbances. This is because most markers with long-
range disturbances have been deleted (Figure 7E), while few markers with local disturbances
have been deleted (Figure 7F). Figure 6C-D show that map length is slightly underestimated
and inflated under strong disturbances.

Figure 7 shows that both parental phasing and ancestral inference are robust to long-range
or local disturbances in the input marker maps, although the ancestral inference error slightly
increases with the disturbance strength. Figure 7A-D show that the robustness is stronger in
large populations (N = 200), partially because marker deletion and parental error correction

are less effective in small populations (N = 50).

Evaluation with real data

PolyOrigin was applied to a 33 half-diallel population of autotetraploid potato. The inferred
frequency of quadrivalents is 19% on average, ranging from 9% to 40% across the 12 chromo-
somes, and the frequencies of the three possible bivalent pairings for each parent were nearly
equal, as expected for a true autopolyploid (Figure S4). Of the 5078 markers, 32 were discarded
due to poor fit, and 11 genotype errors were detected in the parents, 10 of which involved an
allele dosage error of magnitude 1. Even though all 434 progeny had passed sensitive quality
control tests for parentage based on the genome-wide markers (ENDELMAN et al. 2017), Poly-
Origin flagged 19 outlier offspring due to an excessive number of haplotype breakpoints (Figure

S3).

19


https://doi.org/10.1101/2020.12.18.423519
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423519; this version posted December 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

488 Double reduction refers to the inheritance of both sister chromatids at a single locus in the
ss9 diploid gamete. Figure 8 A shows one such offspring, and the double reduction events are visible
a0 as dark blue segments in linkage groups 2, 5, and 6. The predicted haplotypes from MAPpoly
s01  (Figure 8B) are similar to PolyOrigin except in regions of double reduction, where the MAPpoly
92 solution tends to shows a large number of haplotype breakpoints (Figure S5). Figure 8C shows
a93  that the fraction of gametes with double reduction obtained by PolyOrigin increases from almost
s04 0 at centromeres to the maximum 0.078 at telomeres. Note that the fraction would increase by
s95 a factor of about 2 if it had been calculated as the faction of zygotes with double reduction
495 (BOURKE et al. 2015).

497 Another notable difference between the PolyOrigin and MAPpoly solutions is the length
a8 Of the genetic map (Figure 8D). The MAPpoly map was 19.4 Morgans (M) compared to 12.1
a9 M for PolyOrigin, which is more similar to the estimates of 10-11 M published in biparental
s0 linkage mapping studies (MASSA et al. 2015; BOURKE et al. 2016; DA SILVA et al. 2017).
sot  One source of map inflation with MAPpoly appears to be elevated estimates of recombination
s frequency in the pericentromeric regions (Figure 8B). Even when the three F1 populations were
sos analyzed separately with PolyOrigin, more accurate map lengths were obtained (Figure S6)

504 Similar to the simulation studies, PolyOrigin was much faster than MAPpoly in analyzing
so5 the real potato data (N = 434 and M = 5078). The computational times were 230 hours for
soe  MAPpoly, 10 hours for PolyOrigin analyzing the three F1 populations jointly, and 4.9 hours for
so7  PolyOrigin analyzing the data separately. We did not use parallel computation in the analysis,
sos although both PolyOrigin and MAPpoly can perform parallel computation at the chromosome

s00  level.

s Discussion

st We have developed a new method, implemented in PolyOrigin, for haplotype reconstruction in
sz connected tetraploid F1 populations, each F1 population being produced by cross-fertilization
s13  between two parents or self-fertilization from a single parent. PolyOrigin extends the previous
s« HMM framework TetraOrigin (ZHENG et al. 2016) from a F1 cross to multiple F1 crosses. Both

55 PolyOrigin and TetraOrigin use a forward-backward procedure for parental phasing, whereas
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st MAPpoly (MOLLINARI and GARCIA 2019; MOLLINARI et al. 2020) uses only a forward proce-
st7  dure for parental phasing in a F1 cross. This algorithmic difference may explain why MAPpoly
sis did not work for small population sizes.

519 In comparison to the basic steps of parental phasing and ancestral inference in TetraOrigin,
s20 PolyOrigin has added a procedure of marker deletion in the step of parental phasing. The marker
s21deletion is based on the Vuong’s closeness test (VUONG 1989) with the default significant level
s22 0.05, which has been shown to be very effective to remove long-range misplaced markers and
s2s  some markers with parental errors. In the parental phasing by sequentially adding markers,
s2a  MAPpoly uses two limit parameters controlling marker deletion: one for the maximum increase
s2s  of map length, and one for the maximum number of linkage phase configurations to be tested.
s26 It is not obvious how to set these parameter values, and too many testing phase configurations
s27 will considerably increase computation time.

528 PolyOrigin has also added a procedure of parental error correction in the step of ances-
s20 tral inference. The procedure corrects parental dosages and phases by minimizing the num-
s0  ber of mismatches between the observed and estimated genotypes in offspring, conditional on
ss1 phased parent genotypes, which is computationally more efficient than TetraOrigin introduc-
s ing a parental dosage error parameter. Not surprisingly, the error correction procedure is not
ss3  effective in small populations, particularly, with low depth NGS data.

534 Another quality-control feature implemented in PolyOrigin is the automated outlier detec-
sss  tion of progeny with an excessive number of haplotype switches. In the simulated datasets, very
s  few outliers were ever detected, which suggests a very small false discovery rate. However, we
se7 - are unable to explain why 19 of the 434 potato progeny were outliers. The potato SNP array has
ss  been shown to be a powerful tool for detecting pedigree errors (ENDELMAN et al. 2017), and all
ss39 434 progeny passed these quality control measures. Perhaps some of the complex chromoso-
ss¢0 mal behavior possible in meiosis I is poorly captured by the genetic model in PolyOrigin. The
sa1 average frequency of 27% quadrivalents in the potato population, with some variation between
s¢2  parents and chromosomes, is consistent with previous studies based on marker data (BOURKE
ss et al. 2015) and cytological techniques (CHOUDHARY et al. 2020).

544 To increase the robustness to dosage uncertainties in low depth NGS data, PolyOrigin has
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integrated a dosage calling procedure by analyzing read counts directly, where the probabilities
of read counts givens all possible dosages are calculated. These probabilities can also be pro-
vided by posterior dosage probabilities exported by the softwares such as polyRAD (CLARK
et al. 2019) for NGS data and fitPoly (VOORRIPS et al. 2011; ZYCH et al. 2019) for SNP array
data. In comparison, TetraOrigin can analyze only dosage data, and MAPpoly cannot analyze
read counts directly, relying instead on an input file with genotype probabilities.

PolyOrigin allows flexibility in the mating and genotyping designs for linkage mapping
projects. Our results show that the parental phasing error is less than 0.01 when the number of
offspring per parent is over 30. This implies that incomplete diallel designs, such as linear or
star, can be used with similar performance to a complete diallel, which can be difficult to create
due to reproductive limitations of the parents. We also show that because PolyOrigin effectively
pools data across the entire chromosome, reliable genotype calls can be made in autotetraploids
with much less read depth per marker, such as 10 or 20X, compared with values of 60-80X when
genotype calls are made independently for each marker (UITDEWILLIGEN ef al. 2013; MATIAS
et al. 2019). For the design of sequence-based genotyping platforms with a fixed number of
markers (e.g., baits or amplicons) and reads per sample, we have shown that increasing the
number of markers leads to more accurate results even though the number of reads per marker
decreases.

Computationally, PolyOrigin is about one order of magnitude faster than TetraOrigin, mainly
because TetraOrigin is implemented in Mathematica (WOLFRAM RESEARCH 2016) while Poly-
Origin is implemented in Julia (BEZANSON et al. 2017). Although MAPpoly is implemented
in R (R CORE TEAM 2019) and C/C++, it is more than one order of magnitude slower than
PolyOrigin, probably because the phasing algorithm of MAPpoly requires two-point linkage
analyses. In addition, the computational time of PolyOrigin scales linearly with the number of
parents, population size, and the number of markers (Figure S7).

PolyOrigin has been implemented and tested for tetraploid, and most parts of the algorithm
can be extended easily to higher ploidy levels. However, a stochastic algorithm would be needed
to infer valent formations for hexaploids or higher, because the number of possible valent for-

mations increases rapidly with ploidy level and the current implementation of PolyOrigin con-
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siders all possible configurations. For example, there are 105 possible bivalent chromosome
pairings in octoploid and thus 105? combinations for biparental populations, not to mention the
demanding modeling and computational requirements for multivalent formation.

In conclusion, we have developed a novel method PolyOrigin for haplotype reconstruction
in connected tetraploid F1 populations, which opens up exciting new possibilities for haplotype-
based QTL mapping in such populations. Extensive evaluations have shown that PolyOrigin is
robust to various sources of errors in input genetic data and is around one order of magnitude

faster than the previous methods that works only for a single F1 population.
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Figure 1: Model and workflow of PolyOrigin. (A) Mating design of the three F1 populations
derived from three parents: P1, P2, and P3, where population 3 was derived by self-pollinating
P3. (B) The directed acyclic graph of the PolyOrigin model for the connected F1 populations
in (A). The symbol Offspring; ; denotes an offspring j of population 7. The squares denote the
input marker data, the circles denote random variables to be inferred, and the arrows denote
probabilistic relationships to be modeled. This panel is adapted from Figure 1 of ZHENG et al.
(2016). (C) Workflow consists of three steps. The purpose of ancestral inference in the optional

Step2 is to correct parental errors and exclude outlier offspring.
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Figure 2: Comparisons of PolyOrigin, TetraOrigin, and MAPpoly in a single F1 population
considering quadrivalent formation (double reduction is possible). (A&C) Errors in parental
phasing and ancestral inference, respectively. (B) Fraction of markers deleted. The input num-
ber of markers M = 201. TetraOrigin has no marker deletion. The dashed lines denote the
fraction of markers that are deleted and have no parental dosage errors. (D) Computational time

in minutes.

29


https://doi.org/10.1101/2020.12.18.423519
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423519; this version posted December 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

A N=508&200, S=0, vary L B N=508&200, L=5,vary S
0.4} * 04r
s g
o 2 03[y
@ 3 . N
< <
= So02r ¥
© [o]
= = *¥ * .
s g ¥ &
© © [ *
o a 0.1 . ® N | *
*¥ Nl
O Sy % ool AR FER T ctiomr e nadiag aekok »
5 10 20 30 50 100 200 5 10 20 30 50 100 200
Number of gametes from each parent Number of gametes from each parent
C ¥ L=5, S=0, vary N D + L=2,vary N
0.4F4 ? 0.4Ff O
E i o B Linear g . o Selfing
[0 (0]
g) 0.3 ’¥ X * Star g} 0.3r + + F1
8 4 8 .
202 ; i 2 02f +
*E t& i % Diallel %
o * * o O
& o4} t%I;:l * g o1} o
7 +
oobe ¥ Hed bt v xe w4 0ok
5 10 20 30 50 100 200 5 10 20 30 50 100 200
Number of gametes from each parent Number of gametes from each parent

Figure 3: Effect of population design on parental phasing. The x-axis denotes the number of
gametes contributed by each parent. The y-axis denotes the parental phasing error for each
parent in each of the three replicates given each combination of the design parameter values.
(A-C) Effect for the populations with varying number L of parents, number S of selfings, and
population size N, respectively, for each of the four mating designs. Panels A-B include the
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Figure 4: Effect of dosage error probability ¢ and marker density for SNP array dosage data
in the diallel populations with no selfing (S = 0) and L = 5 parents. (A, C & E) Effect of ¢
on parental phasing, ancestral inference, and marker deletion, respectively, with M = 200. (B,
D & F) Effect of marker density on parental phasing, ancestral inference, and marker deletion,
respectively, with € = 0.01. The dashed lines in (E & F) denote the fraction of markers that are

deleted and have no parental dosage errors.
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Figure 5: Effect of read depth D and the number M of markers for NGS data in the diallel
populations with no selfing (S = 0) and L. = 2, 5, and 10 parents. (A) Contour plot of the
parental phasing error as a function of the number M of markers and read depth D. (B) Contour
plot of the ancestral inference error as a function of M and D. (C&D) Effect of read depth D
on parental phasing and ancestral inference, respectively, with M = 500. (E&F) Effect of read

depth D on parental phasing and ancestral inference, respectively, with M x D = 10000.
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Figure 7: Effect of long-range or local disturbances in the input genetic maps in the diallel

populations with no selfings (S = 0) and L. = 5 parents. The left and right panels denote the

effect of long-range and local disturbances, respectively. (A&B) Effect on parental phasing.

(C&D) Effect on ancestral inference. (E&F) Fraction of markers deleted. The dashed line

denotes y = x.
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Figure 8: Comparison of PolyOrigin with MAPpoly for the 3x3 potato diallel population.
Dashed vertical lines denote chromosome boundaries. (A) Posterior probabilities obtained by
PolyOrigin for the example offspring (W15268-27R). The darker the color, the higher the prob-
ability. (B) Posterior probabilities obtained by MAPpoly for the same example offspring. (C)
Variation of double reduction along chromosome obtained by PolyOrigin. The y-axis denotes
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Table 1: List of symbols used in PolyOrigin and their brief descriptions

Z

<
3
>3
=3

Description

Subscript for a marker

Superscript for a parent

N.’U o+
.
~—

Superscript for an offspring, individual j of F1 population .

L Number of parents

N Total number of offsprings in connected F1

M Number of markers

D Average number of sequence reads for an individual at a marker.

S Number of selfing populations in a mating design

K Poidy level, K = 4 for tetraploid

P(z), P(y|z)  Probability of z, conditional probability of y given x

ur yP Observed genotypic data of parent p at marker ¢, y* = {y} }z]t\il

Yyl g Observed genotypic data of offspring (i, j) at marker ¢, y*/ = {y,’ }i\il
hy, h, Hidden phased genotype of parent p at marker ¢, h? = {hY }tj‘i .

x| i Hidden origin-genotype of offspring (i, j) at marker ¢, 2%/ = {z’ }i\il
v Hidden valent formation of offspring (¢, j)

Et, € Genotyping error probability at marker ¢, € = {5t}tj\i 1

€ Sequencing read error probability

REHET) {h"} e for the parents Q(i, j) of offspring (i, j)

dy? True dosage of offspring (i, j) at marker ¢, d;” = f(z}”, (7))

d Genetic distance in unit of Morgan

Tbi Recombination fraction for bivalent pairing, ry; = %(1 — e~ 24)

Tquad Recombination fraction for quadrivalent formation, 7,qq = %(1 — e 3)
I}’ Individual likelihood at marker ¢, [;” = P(y;” |z’ &)

logl Marginal log-likelihood, logl = 3, . log [Py R0 453 )]

T Temperature in the simulation annealing for refining local ordering

P(xi’|y™,€)

Posterior probability of phased origin-genotype x;”

P(z”]y",€)

Posterior probability of unphased origin-genotype z;”

fexch

Fraction of long-range disturbed markers

Olocal

Intensity of local disturbances in marker ordering
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Supplementary Materials

Parameter setups

PolyOrigin
For a simulated dataset, the Julia command line used for PolyOrigin is given by
polyOrigin (genofile, pedfile)

where genofile specifies input marker data, including genetic map, and genotypic data of
parents and offspring, and pedfile specifies the population mating design. The default set-
tings epsilon=0.01 and seqerr = 0.001 are used, specifying the initial value for the interal es-
timation of dosage error proability and the sequencing error probability in the case of read
count data. By default, the input marker map is genetic map and it will not be refined (is-
physmap=false), parental phasing assumes only bivalent formations (chrpairing_phase=22),
and both bivalent and quadrivalent formations are considered for ancestral inference and parental
error correction (chrpairing=44).

For the real potato dataset with physical map, the Julia command line is given by

polyOrigin (genofile, pedfile,
isphysmap=true, recomrate=1.25,

refinemap=true, refineorder=false)

where the keyword argument isphysmap specifies that input map is physical map with marker
positions in unit of base pair, and recomrate specified the global constant recombination rate
in unit of cM/Mbp. refinemap=true indicates the performance of map refinement, and refine-

order=false indicates the refinement of inter-marker distances but not marker ordering.

TetraOrigin

The Mathematica command line used for TetraOrigin is given by

inferTetraOrigin[genofile, epsO, epsF, ploidy, outstem,
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maxStuck -> 5, maxIteration -> 30, maxPhasingRun -> 10,

bivalentPhasing —> True, bivalentDecoding —-> False]

where genofile specifies the input genotypic data. epsF and epsO specify the dosage error
probability in parents and offspring, respectively. ploidy=4 for tetraploids, and outsem specifies
the string ID of output file. The options maxStuck, maxIteration, and maxPhasingRun for the
parental phasing algorithm are re-set to be consistent with PolyOrigin. And the default settings
for bivalentPhasing and bivalentDecoding are consistent with PolyOrigin.

For the simulated F1 datasets, we set epsO to the true value 0.01. Although the true parental
error probability is also 0.01, we set epsF=0 because a non-zero setting would result in much

longer computational time.

MAPpoly

We closely follow the online MAPpoly tutorial on building a genetic map using potato genotype

data. The R command lines used for MAPpoly are divided into the following steps

#stepl: read data

dat.dose.csv <- read_geno_csv(file.in = genofile, ploidy = 4)

#step2: marker filtering

pval.bonf <- 0.05/dat.dose.csvS$n.mrk

dat.chi.filt <- filter_segregation(dat.dose.csv,
chisg.pval.thres = pval.bonf, inter = FALSE)

dat.seqg <- make_seq mappoly(dat.chi.filt, "all")

#step3: two-point analysis
counts <- cache_counts_twopt (input.seq = dat.seq, get.from.web = TRUE)
all.rf.pairwise <- est_pairwise_rf (input.seq = dat.seq,

count.cache = counts, n.clusters = 1)

#step4d: parental phasing and marker spacing for a given marker ordering

2
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map <- est_rf_ hmm sequential (input.seqg = dat.seq,
start.set = 10,
thres.twopt = 10,
thres.hmm = 10,
extend.tail = NULL,
info.tail = TRUE,
twopt = all.rf.pairwise,
sub.map.size.diff.limit = 20,
phase.number.limit = 50,
reestimate.single.ph.configuration = TRUE,
tol = 10e-3,
tol.final = 10e-4)

map.error <- est_full _hmm with_global_error (input.map = map,

error = epsilon))

#step5: calculate genotype probability
genoprob <- calc_genoprob_error (input.map = map.error,

error = epsilon)

We skip the step of marker grouping and marker ordering by using the true genetic map or
the real physical map. The dosage error probability epsilon is set to the true value for simulating

data, and 0.02 for the real potato data, based on the estimation of PolyOrigin.
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Figure S1: Comparison of PolyOrigin, TetraOrigin, and MAPpoly for the simulated F1 popula-
tions without double reduction. The dashed lines in (C) denote the fraction of markers that are
deleted and have no parental dosage errors. For N = 50, MAPpoly deleted 23% markers and

took the computational time of 303 minutes.
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W6511-1R VillettaRose W9914-1R

W6511-1R VillettaRose W9914-1R

Figure S4: The proportion of valent configurations for the 12 chromosomes of potato in the 3x3
half-diallel with parents VillettaRose, W6511-1R, and W9914-1R. The proportion was calcu-
lated based on the maximum possible configurations for each offspring and each chromosome.
The configuration 1:2:3:4 refers to a quadrivalent, while the other three refer to bivalent pairs
(the colon separates paired homologs). Each bottom panel denotes the proportions among the
12 chromosomes starting from the inner, and the upper panels denote the averages over chro-

moSsomes
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Figure S5: Comparison of PolyOrigin with MAPpoly in terms of the number of haplotype
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Figure S6: Comparison of PolyOrigin with MAPpoly for each of the three F1 populations in

the real 3x3 potato diallel population.
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Figure S7: Effect of population design and genotyping design on computational time (in min-
utes). (A&C) Computational time used in analyzing the simulated SNP array data in the four
mating designs. (B&D) Computational time used in analyzing the simulated GBS data in the

diallel design with L = 2, 5, and 10 parents,respectively.
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