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Abstract 

 

Alzheimer9s disease (AD) is marked by the spread of misfolded amyloid-³ and tau 

proteins throughout the brain. While it is commonly believed that amyloid-³ abnormality 

drives the cascade of AD pathogenesis, several in vivo and post mortem studies indicate that 

in some subjects localized tau-based neurofibrillary tangles precede amyloid-³ pathology. This 

suggests that there may be multiple distinct subtypes of protein aggregation pathways within 

AD, with potentially different demographic, cognitive and comorbidity profiles. We 

investigated this hypothesis, applying data-driven disease progression subtyping models to post 

mortem immunohistochemistry and in vivo positron emission tomography (PET) and 

cerebrospinal fluid (CSF) based measures of protein pathologies in two large observational 

cohorts. We consistently identified both amyloid-first and tau-first AD subtypes, where tau-

first subjects had higher levels of soluble TREM2 compared to amyloid-first subjects. Our 

work provides insight into AD progression that may be valuable for interventional trials 

targeting amyloid-³	and tau. 

  

 
* Data used in preparation of this article were obtained from the Alzheimer9s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and 

implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 

complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 
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Introduction 

 Alzheimer9s disease (AD) is a progressive neurodegenerative disease that is 

characterized at the molecular level by the accumulation of two specific protein-based 

pathologies within the brain: amyloid plaques, composed of extracellular amyloid-³ (A³) 

peptide, and intracellular neurofibrillary tangles (NFTs), composed of abnormally 

hyperphosphorylated tau protein. These pathologies combine to create a toxic environment that 

drives neurodegeneration via neuronal and synaptic loss, leading to cognitive impairment1. 

While these protein pathologies have been recognized as the primary signature of AD since 

Alois Alzheimer first observed them over a hundred years ago2, the causal relationship between 

these pathologies is not fully understood. The prevailing view set forth by the amyloid cascade 

hypothesis is that the accumulation of A³ peptides is the main causative event within the 

pathogenesis of AD, with tau-based NFTs, neurodegeneration and cognitive impairment 

following as a result3,4.  

 The 8amyloid-first9 view has strong empirical support in familial AD, where gene 

mutations (APP, PSEN1, PSEN2) associated with abnormal A³ peptide production have been 

shown to cause autosomal dominant forms of the disease5,6. In contrast, sporadic AD, which 

accounts for the vast majority of cases, is believed to be caused by a complex combination of 

genetic and environmental factors7. Despite this important difference, the amyloid cascade 

hypothesis has strongly influenced the view of sporadic AD progression, due to the observation 

that late-stage pathology is identical across familial and sporadic AD8. Following this view, 

the <ATN= framework has been recently proposed, aiming to shift AD from a symptom-based 

to a biomarker-based diagnostic entity. This research framework codifies AD progression via 

a specific set of biomarkers than can measure AD-related pathologies in vivo9,10. The set 

consists of amyloid-based markers (e.g. amyloid PET or CSF-based A³; the 8A9 component), 

tau-based markers (e.g. tau PET or CSF-based tau; 8T9) and markers of neurodegeneration or 

neuronal injury (e.g. MRI or FDG-PET; 8N9).  

Consistent with the amyloid cascade view, the ATN framework requires the presence 

of amyloid pathology for an individual to enter the AD continuum and therefore progress to 

subsequent stages of the disease. Any other pattern of biomarker abnormalities is incompatible 

with its view. However, both neuropathologic and in vivo studies have challenged the notion 

that amyloid pathology precedes tau pathology within AD. Neuropathology studies show that 

tau pathology (localized primarily within the entorhinal cortex) is present in roughly thirty 

percent of older subjects with no amyloid pathology11. Similarly, a recent amyloid and tau PET 

based biomarker study found that 45% of non-demented subjects were tau positive in 

entorhinal/hippocampal regions while being amyloid negative12. As a consequence, there is 

ongoing debate around what this focalized tau-based abnormality represents. While some 

suggest it relates to normal aging, a condition termed primary age-related tauopathy (PART13), 

or due to another proteinopathy (e.g. TDP-43), there is a possibility that this focalized tau 

abnormality consists of an alternative, 8tau-first9 pathway towards AD dementia14,15. In fact, 

neuropathological studies have noted that the tau-based NFTs observed in PART are 

biochemically identical to those in AD16,17.  

 Taken together, these prior studies suggest that there may be two basic subtypes of 

pathology progression within AD: an amyloid-first subtype, embodying the amyloid cascade 

in which subjects develop A³ plaques prior to NFTs, and a tau-first subtype, in which focalized 

NFT pathology precedes the appearance of plaques. To date, however, no study has identified 

and characterized these patterns across both post mortem and in vivo measures with the aim of  

understanding how these possible pathological pathways may be related to distinct concurrent 

cognitive and CSF-based abnormalities. Here, we address this knowledge gap using in vivo 

PET, CSF and cognitive measures from the Alzheimer9s Disease Neuroimaging Initiative 
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(ADNI) and postmortem neuropathologic measures from the Religious Orders Study and Rush 

Memory and Aging Project studies (ROSMAP). We follow a data-driven paradigm to identify 

disease subtypes using the SuStaIn (Subtype and Stage Inference) algorithm18, which identifies 

groups of subjects with common patterns of disease progression from multi-modal cross-

sectional data. SuStaIn is thus well-suited to inferring disease subtypes from both post mortem 

and in vivo measures. We consistently identify both amyloid-first and tau-first subtypes, 

supporting the dual-pathway hypothesis of AD progression. We find higher soluble TREM2 

(sTREM2) measures in tau-first subjects9 CSF, suggesting increased microglial activation 

within this subtype. Our findings add to the understanding of AD progression and offer a 

precision tool for screening and stratifying patients in clinical settings. 

Results 

Tau-first subtype identified using post mortem measures The ROSMAP study is an 

ongoing observational study of older adults that have agreed to annual clinical evaluation and 

cognitive testing as well as brain donation after death. Through December 31st, 2017 there were 

3,414 subjects enrolled, with 1,717 deaths and 1,506 brain autopsies. We applied SuStaIn18, an 

unsupervised machine learning algorithm, to 1,211 ROSMAP study subjects9 post mortem 

immunohistochemistry measures of amyloid and tau pathologies in the eight available brain 

regions (hippocampus, entorhinal cortex, midfrontal cortex, inferior temporal, angular gyrus, 

calcarine cortex, anterior cingulate cortex, superior frontal cortex). These subjects had a 

complete set of measurements in all regions as well as a neuropathologically confirmed 

diagnosis of either normal aging or AD and an ante-mortem exclusion of other dementias.  

As a preliminary step we estimated the number of subtypes that best explain the 

available observations. We allowed SuStaIn to infer one, two or three-subtype models and in 

each case evaluated the out-of-sample log likelihoods of held-out samples under ten-fold cross-

validation. The two-subtype model improved upon the one-subtype model (14% median 

improvement, p = 1.95 × 10-3 via Wilcoxon signed-rank test) and there was a marginal further 

improvement with a the three-subtype model (3%; Figure 1a). Thus, we used the two-subtype 

model in subsequent analyses on the ROSMAP data. 

 

 
 

Figure 2 depicts positional variance diagrams (PVDs) estimated by SuStaIn for the two 

subtypes identified in ROSMAP. PVDs visualize event sequence uncertainties as a matrix; 

each row is a histogram of the fraction of times an event occurs at a given position across a set 

of Markov-chain Monte Carlo (MCMC) event-sequence samples. Here we have 16 events 
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(amyloid and tau across eight brain regions) and hence as many distinct stages of progression 

within each subtype. Within the two-subtype model, cognitively normal subjects had a median 

stage of four in the first subtype and three in the second; AD subjects had a median stage of 11 

in the first subtype and 12 in the second (Supplementary Figure 2a, 2d).  

We estimated the prevalence of each subtype using subjects most representative of their 

subtype. As SuStaIn is a probabilistic algorithm that assigns a non-zero probability of 

belonging to each subtype and stage for every subject we chose to retain only those with a 

relatively high probability of most likely subtype. In general, these are subjects who are in 

middle stages of progression; those at the extremes have either no pathology (very early stages) 

or abnormality across all markers (very late stages) and thus the notion of being in a particular 

subtype is not meaningful for them. We therefore removed 81 subjects at stage zero and 124 

subjects at stage 16. We also removed 163 subjects at stage 11 as the model indicates that at 

these stages the two subtypes are also not distinguishable (Figure 2d). Thus, we retained 843 

out of 1,211 subjects for further analysis of subtypes. 

SuStaIn found an amyloid-first subtype (68%, 576 of 843 subjects) in which amyloid 

pathology begins in the midfrontal, angular gyrus and calcarine regions of the cortex. Once 

amyloid has spread throughout the cortex, tau pathology manifests, beginning in the entorhinal, 

hippocampus and inferior temporal regions and then spreading throughout the remaining 

cortex. The second identified subtype is a tau-first subtype (32%, 267 of 843 subjects) in which 

neurofibrillary tau tangle pathology similarly begins in the entorhinal, hippocampus and 

inferior temporal regions and is followed by a sequence of amyloid pathology progression that 

closely resembles that of the amyloid-first subtype. After the amyloid stages, tangle formation 

then expands to the remaining cortex (calcarine, angular gyrus, superior frontal, midfrontal, 

and cingulate regions; Figure 2a).  

We used cross-validation to get a more robust estimate of event sequence uncertainties 

as MCMC tends to underestimate the uncertainty of events within each subtype19. We find 

similar subtypes with greater uncertainty in the ordering of amyloid pathology in both subtypes 

and higher uncertainty in late-stage tau pathology in the second subtype (Figure 2b).  

 

No differences in demographic factors or comorbid pathologies between subtypes We 

investigated basic demographic differences between subtypes (depicted in Figure 2c) while 

controlling for the effect of subjects9 stage. We found no statistical differences related to age 

at death, years of education or sex between subjects in subtype one (amyloid-first) compared 

to subtype two (tau-first). We also tested for differences in comorbid pathologies, finding no 

differences in TDP-43, cerebral amyloid angiopathy (CAA), cerebral atherosclerosis or 

arteriolosclerosis and no difference in the presence of hippocampal sclerosis (Supplementary 

Table 3). 
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In vivo PET and CSF based subtyping models are consistent with neuropathology We 

used in vivo measures from the Alzheimer9s Disease Neuroimaging Initiative (ADNI), a long-

running observational study tracking healthy, cognitively impaired and AD-diagnosed older 

adults. We performed two separate SuStaIn-based analyses using ADNI study measures. The 

first (the 8all-PET-based analysis9) was an in vivo analog to the ROSMAP neuropathologic 

analysis. We used all subjects who had concurrent amyloid PET and tau PET images (n = 445), 

showing that, as in the ROSMAP analysis, a two-subtype model of pathology spread improved 

upon a one-subtype model (12% median improvement in out-of-sample log likelihood, p = 3.91 

× 10-3 via Wilcoxon signed-rank test) and there was no further improvement with a three-

subtype mode (0%; Figure 1b). The in vivo data therefore confirmed the appropriateness of a 

two-subtype model. Cognitively normal subjects had a median stage of zero (out of a total of 

21 stages; see Figure 3) in the first subtype and were not staged in the second, MCI subjects 

had a median stage of one in the first subtype and two in the second and AD subjects had a 

median stage of 14 in the first subtype and 15 in the second (Supplementary Figure 2b, 2e).  

As in the neuropathologic analysis, we estimated the prevalence of each subtype by 

first removing 235 subjects at stage zero and 12 subjects at stage 21, leaving 198 subjects. We 

found an amyloid-first subtype (83%, 164 of 198 subjects) in which amyloid pathology begins 

in the precuneus, cingulate, and frontal (inferior, middle, superior) cortical regions, and a tau-

first subtype (17%, 34 of 198 subjects) in which tau pathology begins in the amygdala, 

entorhinal, and temporal (medial and lateral) regions (Figure 3a). As in the neuropathologic 
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analysis, in both in vivo subtypes we found that tau spreads beyond the hippocampus, amygdala 

and temporal lobe only after amyloid has spread throughout the cortex. Under cross-validation 

we inferred similar progression patterns: an amyloid-first subtype and a tau-first subtype with 

greater uncertainty in the event orderings within each subtype, particularly within the tau-first 

subtype (Figure 3b).  

 The small number of subjects falling into the tau-first subtype (n = 34) limits the ability 

to precisely estimate the event ordering within this subtype. This also limited our ability to 

detect demographic, cognitive and CSF-based differences between subtypes. Therefore, our 

second ADNI-based analysis (8PET-and-CSF-based analysis9) addressed this by increasing the 

number of subjects using CSF-based regional tau prediction as a proxy for tau PET. In this case 

we used the available 999 subjects who had both amyloid PET and CSF-based (total and 

phosphorylated) tau measures at a single visit. We selected the two-subtype model as in the 

previous analyses (Figure 1c). Cognitively normal subjects had a median stage of zero in the 

first subtype and stage three in the second, MCI subjects had a median stage of four in first 

subtype and three in the second and AD subjects had a median stage of 12 in the first subtype 

and four in the second (Supplementary Figure 2c, 2f). 

To estimate the prevalence of each subtype, we excluded 459 subjects at stage zero and 

279 subjects at stage 12 (Figure 4d), leaving 261 subjects for further analysis. We similarly 

found an amyloid-first subtype (62%, 162 of 261 subjects) in which amyloid pathology 

(measured via amyloid PET) begins in the frontal (inferior, middle, superior), cingulate and 

precuneus regions, and a tau-first subtype (38%, 99 of 261 subjects) in which tau pathology 

(estimated from CSF and demographic information) begins in Braak I/II, III/IV and V/VI 

regions (Figure 4a, 4b). 

 

CSF based tau, amyloid beta and sTREM2 differences between subtypes We leveraged 

the deep phenotyping data available in ADNI and performed logistic regression-based analyses 

to test for group differences between our data-driven in vivo subtypes. For this we used the 

PET-and-CSF-based analysis due to its higher sample size and overall similarity to the PET-

based analysis cohort along most demographic and diagnostic measures (Supplementary Table 

2). There was one important difference between cohorts: subjects in the all-PET-based analyses 

were on average 3.3 years older, 95% CI = [1.9, 4.6], p = 3.42 × 10-6, and measured 3.6 years 

further out from baseline, 95% CI = [3.2, 4.1], p < 1 × 10-6, than those in the PET-and-CSF-

based analysis. This is due to tau PET being introduced in a later stage of the ADNI study 

(ADNI-320).  

In the first subtype comparison, which included 259 of 261 subjects who had both CSF-

based tau and amyloid as well as cognition, we found a small difference in age between 

subtypes (tau-first subjects 2.3 years younger, 95% CI = [0.5, 4.1], odds ratio 0.57, p = 0.02; 

Figure 4c), no differences in memory or executive function (Supplementary Table 4; Figure 

5a) but found, as anticipated, substantial differences in tau (tau-first subjects 115.1 pg/mL 

higher, i.e. more abnormal, 95% CI = [94.0, 136.1], odds ratio 7.18, p < 1 × 10-6) and amyloid 

beta (tau-first subjects 689.8 pg/mL higher, i.e. less abnormal, 95% CI = [545.5, 834.2], odds 

ratio 2.83, p = 7.53 × 10-4; Figure 5b).  

In the second subtype comparison, involving a subset of 190 of 261 subjects with CSF 

based sTREM2 and progranulin, we found a small difference in age (tau-first subjects 3.0 years 

younger, 95% CI = [-5.1, -1.0], odds ratio 0.58, p = 2.83 × 10-3) as well as a difference in 

sTREM2 (tau-first subjects 1652.8 pg/mL higher, i.e. more abnormal, 95% CI = [1069.3, 

2236.3], odds ratio 4.18, p = 2.92 × 10-5; Figure 5c) but no difference in progranulin 

(Supplementary Table 5; Figure 5d).  

Across both comparison analyses we found no statistical differences in sex, number of 

APOE4 alleles, years of education, nor model stage (Figure 4c, 4e). 
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Discussion 
While amyloid- and tau-based pathologies have long been established as the main 

pathological hallmarks of AD, the heterogeneity within the spatiotemporal progression of these 

pathologies has yet to be fully characterized. Here, for the first time, we used a fully data-driven 

model on two large cohorts with complementary in vivo and post mortem measures, to show 

the presence of two subtypes of amyloid and tau pathology progression within sporadic AD. 

We consistently found 8amyloid-first9 and 8tau-first9 subtypes (Figure 1). In the 8amyloid-first9 

subtype, extensive cortical amyloid pathology precedes tau pathology. In the 8tau-first9 

subtype, localized tau pathology precedes the spread of amyloid. In both datasets, the majority 

of subjects aligned with the amyloid-first subtype (68% of subjects based on 

immunohistochemistry, 83% based on PET, 62% based on CSF and PET) while a non-

negligible minority of subjects fell into the tau-first subtype (32% immunohistochemistry, 17% 

PET, 38% CSF and PET). Importantly, we found that early tau pathology in the tau-first 

subtype is localized within the temporal lobe, hippocampus and amygdala (Figures 2a, 2b, 3a, 

3b) and that in both subtypes amyloid pathology spreads throughout the cortex before tau 

pathology spreads beyond the temporal lobe to other parts of the cortex (Figure 621). This 

finding is consistent with neuropathologic studies showing that while the initial formation of 

tau and amyloid pathologies may be independent of each other, widespread amyloid pathology 

precedes and likely facilitates the spread of tau pathology beyond the medial temporal lobe 

(MTL) and limbic areas11,22.  

 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.418004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.418004
http://creativecommons.org/licenses/by-nd/4.0/


Previous studies of the spread of amyloid pathology in AD have used both post mortem 

and in vivo measures. Braak and Braak, using silver staining of post mortem brains, observed 

that amyloid pathology is first found in the basal frontal, temporal and occipital lobes before 

spreading throughout the cortex, with sensorimotor regions and subcortical structures such as 

the hippocampus becoming gradually involved23. Thal et al., using both silver staining and 

immunohistochemistry, found a similar pattern24. Fantoni et al. summarized a number of recent 

in vivo amyloid PET based studies, noting that the first regions with detectable abnormality 

are the medial frontal and cingulate regions, followed by a general spreading throughout the 

cortex, the striatum, hippocampus, other subcortical regions and ultimately the 

cerebellum25,26,27,28,29,30,31,32. The pattern of amyloid accumulation that we inferred was 

consistent with these studies. In our analysis of post mortem immunohistochemistry data, we 

found two data-driven subtypes, each having similar patterns of amyloid spread. The earliest 

abnormalities were in the midfrontal cortex followed by the angular gyrus, calcarine, inferior 

temporal, superior frontal and other cortical regions, with hippocampus as the latest event. 

Cross-validation suggests less certainty in the ordering (Figures 2a, 2b). In our analysis of in 

vivo amyloid PET data, we inferred a pattern of spread from the precuneus and cingulate to the 

frontal, parietal and temporal lobes of the cortex, with cross-validation again suggesting less 

certainty in the ordering of the sequence (Figures 3a, 3b). Our inferences of the ordering of in 

vivo amyloid progression within the tau-first subtype were limited by the number of subjects 

in this group. 

Previous studies have similarly used both post mortem and in vivo measures to 

characterize the spread of tau pathology in AD. Braak and Braak developed the standard six-

stage system used to describe NFT spread based on neuropathologic examination: at stages I 

and II NFTs initially form within the transentorhinal cortex, at stages III and IV NFTs spread 

to the entorhinal cortex, hippocampus and amygdala and by stages V and VI pathology has 

spread throughout the frontal, parietal and occipital cortex, mostly sparing the sensorimotor 

region23. Several studies have shown that these Braak stages are detectable in vivo using tau 

PET33,34,27. In our analysis of post mortem immunohistochemistry data, we found NFT 

pathology beginning in the entorhinal, hippocampus and inferior temporal regions 

(corresponding to Braak I-III/IV regions) before spreading throughout the remaining cortex 

(Braak IV-VI regions). While both of our data-driven post mortem subtypes broadly conformed 

to this pattern, our results suggest that the tau-first subtype deviates from the expected Braak 

progression after the initial accumulation of tau and the spread of amyloid. Within this subtype 

NFTs unexpectedly appear in the calcarine cortex (within the occipital lobe, Braak stage VI) 

prior to? NFTs in the frontal, parietal and cingulate regions, corresponding to stages IV and V 

(Figures 2a, 2b). Our analysis of in vivo PET data was in concordance with our analysis of post 

mortem data: amygdala, entorhinal and both medial and lateral temporal regions appear early, 

followed by other cortical areas. There is a similar subtype-specific pattern: tau spreading 

within the amyloid-first subtype closely conforms to Braak staging, while tau pathology in the 

tau-first subtype deviates from Braak staging, with pathology in the occipital lobe appearing 

prior to frontal, parietal, and cingulate regions (Figures 3a, 3b). Together, these findings point 

to a subtype-specific pattern of tau spread throughout the cortex, with variability in later-stage 

progression. 

When using CSF-based predictions of regional tau pathology, we found that late-stage 

tau pathology (within Braak V/VI regions) precedes amyloid pathology in the tau-first subtype, 

which is inconsistent with our post mortem and PET models (compare Figures 4a, 4b with 

Figures 2 and 3). Mattson et al.35 noted that CSF-based tau measures become abnormal during 

preclinical AD stages but do not track AD progression into later stages, while tau PET based 

measures are more closely associated with the neurodegeneration and cognitive decline seen 

in clinical AD stages. This is consistent with our observation that the regression models trained 
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to predict regional tau PET SUVRs from CSF-based tau and demographics tend to plateau at 

higher values and have difficulty resolving between middle and late stage Braak pathology (see 

Supplementary Figure 1). Comparing this model to the immunohistochemistry and PET-only 

models, we see that this limited the ability of the CSF-based model to detect late-stage tau 

pathology in the tau-first subtype. 

One of the strengths of our study was in the use of complementary information from 

post mortem and in vivo measures to infer subtypes. We found robust amyloid-first and tau-

first subtypes across these measures which enabled, for the first time, comparison of subtypes 

across a variety of demographic, cognitive, and comorbid pathology measures while control 

for subjects9 stage of progression within their respective subtype. We found no differences 

between subtypes in demographic factors or genetic risk (sex, years of education, APOE4 

alleles) and only a small difference in age (amyloid-first subjects several years older on 

average) in the PET-and-CSF-based model (Supplementary Tables 3, 4, and 5). We also found 

no differences in comorbid pathologies related to cerebrovascular function, TDP-43 and 

hippocampal sclerosis, implying that these pathologies may develop in similar ways in both 

subtypes (Supplementary Table 3). 

Our findings suggest that a substantial number of <PART-like= subjects are actually in 

the early stages of the tau-first AD subtype that we have identified. We found no statistical 

differences in memory or executive function between our amyloid-first and tau-first subtypes, 

implying that tau-first subjects develop cognitive impairment as they progress to later stages 

just as amyloid-first subjects do (Figure 5a, Supplementary Table 4). Similarly, a recent PET 

based study found that tau-first subjects show signs of early cognitive impairment, supporting 

the notion that PART (i.e. MTL-localized tau pathology with no detectable amyloid pathology) 

is within the AD continuum. Further to this, our post mortem immunohistochemistry model 

shows that while many tau-first subjects may not progress beyond localized tau pathology (i.e. 

up to stage four within their subtype), others will go on to develop amyloid pathology (i.e. 

stages five and above; Figures 2a, 2e, 3a, 3e). Future work includes understanding how 

amyloid-first and tau-first subtypes are related to the three subtypes of AD-related 

neurodegeneration that have been consistently identified across post mortem and in vivo 

studies36,37,38,18. 

The amyloid-cascade hypothesis maintains that amyloid pathology, driven by cellular 

processes related to lipid metabolism, microglial activation and endocytosis, initiates 

downstream tau and neurodegeneration. In contrast, the dual-pathway hypothesis proposes 

instead that these cellular processes may drive amyloid and tau pathologies along independent 

pathways14,15. Our data-driven models, based on both in vivo and post mortem measures, lend 

support to the dual-pathway hypothesis (Figure 7). We note however, that amyloid pathology 

may have a similar catalyzing role in both subtypes: facilitating the spread of tau pathology 

beyond the MTL and limbic areas. Our finding that CSF-based soluble TREM2, thought to be 

a maker of microglia function, is increased in tau-first subjects (consistent with previous 

findings39), provides a first step in directly relating these subtypes to upstream cellular 

processes (Supplementary Table 5). Further work is needed using measures of lipid 

metabolism, microglia and endocytosis as well as genome-wide association studies (GWAS) 

to better understand how these subtypes differ in terms of cellular processes and their upstream 

genetic risk factors.  

In summary, we have identified a tau-first subtype of sporadic AD progression using 

data-driven disease subtyping models trained on both in vivo and post mortem measures. These 

findings have important implications for interventional trials targeting amyloid-³ and tau 

pathologies. 
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Methods 

ADNI dataset 

Data used in the preparation of this article were obtained from the Alzheimer9s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer9s disease (AD). For up-to-date information, see 

www.adni-info.org. 

We downloaded regional amyloid PET (AV-45) standardized update value ratios 

(SUVRs), partial volume corrected regional tau PET (AV-1451) SUVRs and cerebrospinal 

fluid (CSF) based measures of amyloid (A³1342), total tau and phosphorylated tau (pTau) from 

the ADNI database40,41. We also downloaded the ADNIMERGE table, containing demographic 

information (age, sex, years of education, number of APOE4 alleles), and diagnostic labels 

(cognitively normal/MCI/AD). We downloaded composite measures of memory (ADNI-

MEM42) and executive function (ADNI-EF43). Finally, we downloaded CSF based measures 

of sTREM2 and progranulin, using the measurements made via the MSD ELISA platform that 

were subsequently corrected by plate-specific factors44. The ADNI database was last accessed 

on February 6th, 2020.  

 

ROSMAP dataset 

 

We used post mortem neuropathology data from the Religious Orders Study (ROS) and 

Rush Memory and Aging Project (MAP) studies, collectively referred to as ROSMAP, which 

we obtained from the Rush Alzheimer9s Disease Center (RADC)45. We used molecularly-

specific immunohistochemistry based measures of amyloid beta protein and neuronal 

neurofibrillary tangles (associated with abnormally phosphorylated tau protein) both measured 

in eight brain regions (hippocampus, entorhinal cortex, midfrontal cortex, inferior temporal 

cortex, angular gyrus, calcarine cortex, anterior cingulate cortex and superior frontal cortex) 

along with demographic information (age at death, sex, education years), final (in vivo) clinical 

diagnosis of AD (NINCDS-ARDRA46) and (post mortem) neuropathologic diagnosis of AD 

(NIA-Reagan Criteria47).  

We also compared comorbid pathologies between subtypes, using RADC9s stagings of 

TDP-43, cerebral amyloid angiopathy (CAA), cerebral atherosclerosis and arteriolosclerosis 

based pathologies, each ranging zero (no pathology) to three (severe pathology), along with 

the presence or absence of hippocampal sclerosis. 

Disease progression modeling 

 

We used Subtype and Stage Inference (SuStaIn), a probabilistic machine learning based 

method, to characterize the heterogeneity of amyloid and tau pathology progression in AD. 

SuStaIn infers multiple patterns of disease progression (i.e. subtypes) as well as individuals9 

disease stages from cross-sectional data18. The SuStaIn model as introduced by Young et al.18 

uses a data likelihood based on how far a biomarker measurement deviates from normality, 

with an associated set of z-score based events (e.g. one, two or three z-scores away from control 

population mean) for each biomarker. Note that in biomarkers where controls have very little 

abnormality (e.g. amyloid load in cognitively normal APOE4 negative subjects, as in our 
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work), the resulting z-scores in patients can become large owing to the small amount of 

variance in the control population. In such cases it is more sensible to use a separate distribution 

to describe patients9 measurements and define an event as a biomarker going from normal to 

abnormal (as in the event-based model; EBM48,19). Formally, we use �$�!"|�!( and �$�!"|¬�!(, the likelihoods of measurement �!" of subject � in the case where biomarker � has 

or has not become abnormal (event � has occurred, �!, or event � has not occurred, ¬�!, 
respectively) within the EBM-based data likelihood, 

 

�(�|�#) = 1234�(�)1�$�!"|�!(
$

!%&

1 �$�!"|¬�!(
'

!%$(&
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$%)

7
*
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where �# is the sequence of events within a particular subtype �, � = :�!"|� = 1,& , �; � =1,& , �@ is the set of measurements over � biomarkers and � subjects and �(�) is the prior 

likelihood of being at stage �, assumed to be uniform. The remainder of SuStaIn9s model fitting 

procedure is as described in detail in Young et al.18 It consists of an iterative procedure that 

simultaneously optimizes subtype event sequences (finding event sequence �# for each subtype �) and subtype membership (assigning a probability of being in subtype � to every subject) for 

a pre-selected number of subtypes �. For each subtype, a Markov chain Monte Carlo (MCMC) 

based procedure is used to estimate the uncertainties of event orderings, which can be 

visualized with a positional variance diagram (PVD)48. In our work we fit �$�!"|�!( and �$�!"|¬�!( for each biomarker using the kernel density estimation based mixture modeling 

approach described by Firth et al.49  

 We optimized the number of subtypes (�) in an iterative manner using ten-fold cross-

validation. For each fold we ran SuStaIn on the training data and evaluated the average out-of-

sample log likelihood of the held-out testing data, so that we had ten measures for each model. 

We could thus compare a �-subtype model to a (� + 1)-subtype model via the median relative 

improvement in log likelihood across folds. We stopped iterating � when the (� + 1)-subtype 

model no longer substantially improved upon the �-subtype model, making the	�-subtype 

model the more parsimonious choice.  

We used the same ten-fold cross-validation procedure to generate cross-validated PVDs 

in order to visualize the uncertainty in the inferred ordering of events within a subtype. To do 

this, we compared each fold9s inferred subtypes to an overall model built on all samples, 

finding the best one-to-one matching between the folds9 inferred sequences and the overall 

model9s using Kendall9s tau as a similarity metric. Based on this mapping we concatenated 

matching subtypes9 MCMC samples across folds and calculated PVDs. The code for this 

procedure is available in our implementation of SuStaIn (see Data Availability section).  

 

ROSMAP based analysis 

 

We performed a SuStaIn-based analysis using ROSMAP9s amyloid beta and 

neurofibrillary tangle measures in eight brain regions. Out of a total of 1,338 subjects who had 

complete set of measures in all regions we retained 1,226 subjects with a last clinical diagnosis 

of no cognitive impairment (CI) or either MCI or AD with no other cause of CI. The excluded 

112 subjects had other dementia or cause of CI. We used subjects9 neuropathologic diagnosis 

for the remaining analysis, defining controls as those with low likelihood or no AD by NIA-

Reagan pathology criteria and AD subjects as those with intermediate or high likelihood of AD 

using the same criteria.  
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We took the square root of each measure to improve normality and then corrected each 

measure for the effect of normal aging and demographics by training a regression model on 

control subjects9 values against age at death, sex and education years. We then regressed out 

the effect of normal aging from both controls and AD subjects, excluding 15 subjects who had 

at least one regional measure that was at least four standard deviations from the control or AD 

distribution mean. We then performed both mixture modeling and SuStaIn modeling using 

1,211 subjects (418 controls/793 AD). 

We investigated subtype differences using logistic regression with subtype (coded as 

zero for amyloid-first subtype, one for tau-first) as the dependent variable and demographic 

factors (age at death, sex, education years) and comorbidities (stages of TDP-43, cerebral 

amyloid angiopathy (CAA), cerebral atherosclerosis and arteriolosclerosis pathologies as well 

as presence of hippocampal sclerosis) as explanatory variables.  

 

ADNI based analyses 

 

We performed two separate SuStaIn-based analyses using cross-sectional data from 

ADNI. The first was an all-PET-based analysis, in which we used nine regional amyloid PET 

(AV-45) SUVRs and twelve tau PET (AV-1451) SUVRs, many of which were volume-

weighted combinations of several Freesurfer-based SUVRs (see Supplementary Table 1)50,51. 

We excluded the hippocampal tau PET SUVR as this region is suspected to be contaminated 

by off-target binding in the choroid plexus52. We reference normalized all SUVRs as 

recommended: for amyloid PET we used a composite reference region made up of the whole 

cerebellum, brainstem/pons and eroded subcortical white matter; for tau PET we used the 

inferior cerebellar grey matter53,54. We formed biomarkers for further analysis by log 

transforming these normalized SUVRs to improve normality.  

For each biomarker we removed the effect of normal aging and demographic factors by 

training a regression model for each biomarker9s values against age, sex and education years 

in a control population of cognitively normal, APOE4 negative, global amyloid SUVR negative 

(whole cerebellum normalized summary SUVR < 1.11 cut-off) subjects. We then regressed out 

the signal due to these factors from all subjects9 measurements. Out of a total of 1515 subjects 

with amyloid PET or tau PET scans, we used 389 subjects to build mixture models of corrected 

amyloid PET biomarkers. These were 205 controls (as define above) and 184 AD subjects. We 

used 180 subjects for corrected tau PET mixture models: 116 CN, APOE4 negative, global 

amyloid SUVR negative subjects and 64 AD subjects. For SuStaIn modeling we used 445 

subjects that had both amyloid and tau PET images at the same visit: 115 CN subjects, 290 

with mild cognitive impairment (MCI) and 40 AD subjects. No outliers were removed in this 

analysis. 

The second analysis was a PET-and-CSF-based analysis, substituting CSF-based 

prediction of tau PET SUVR in place of actual tau PET to give a larger dataset of 1001 subjects, 

all of whom had both CSF and amyloid PET at the same visit. The purpose of this analysis was 

to increase the sample size for comparing subtypes as many more subjects in ADNI have 

concurrent amyloid PET and CSF than concurrent amyloid and tau PET. Rather than using 

CSF total tau and pTau directly however, we approximated the first analysis by using the 

demographic and CSF measures to predict composite tau PET regions, training a regression-

based prediction model using the 356 subjects with both tau PET and CSF measured at the 

same visit. We trained three separate linear regression models with composite SUVRs (regions 

related to I/II, III/IV or V/VI Braak stages) as the dependent variable and age, sex, education 

years, log CSF total tau and log CSF pTau as the explanatory variables. We used each model 

to predict tau SUVRs in the 645 subjects which did not have tau PET. Following this we formed 

a set of 12 biomarkers using the same nine amyloid PET SUVRs as before along with these 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.18.418004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.418004
http://creativecommons.org/licenses/by-nd/4.0/


three CSF-based tau markers, all of which were corrected for aging and demographics as 

before. We performed mixture modeling for each corrected biomarker using 193 CN, APOE4 

negative, global amyloid SUVR negative subjects and 158 AD subjects. Prior to SuStaIn 

modeling we removed two outlying MCI subjects who had at least one biomarker that was at 

least four absolute standard deviations from either the control or AD distribution mean, so that 

we performed SuStaIn modeling with 999 subjects (366 CN/475 MCI/158 AD). 

We investigated differences in demographic factors (age, sex, education years), CSF 

based amyloid beta and total tau, CSF-based soluble TREM2 (sTREM2) and progranulin 

proteins and cognition (memory and executive function). As in the ROSMAP analysis, we used 

a logistic regression with subtype (coded as before) as the dependent variable and demographic, 

cognitive and CSF-based measures as the explanatory variables. As only a subset of subjects 

had measures of sTREM2 and progranulin, we performed two separate regression analyses, 

testing for: (i) differences in demographics, stage, cognition and CSF total tau and amyloid 

beta in 259 subjects and (ii) demographics, stage, sTREM2 and progranulin in 190 subjects.   

 

Data availability 

 

The post mortem immunohistochemistry data used in this study comes from the 

Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP) studies, both of 

which can be obtained from the Rush Alzheimer's Disease Center (RADC) by submitting a 

data request via the https://www.radc.rush.edu website. The in vivo PET and CSF data used in 

this study comes from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). 

 

Code availability 

 

A python-based implementation of SuStaIn (pySuStaIn), supporting both z-score style 

and mixture style data likelihoods, is available at https://github.com/ucl-pond/pySuStaIn. The 

kernel density estimation-based mixture modeling code is available at 

https://github.com/noxtoby/kde_ebm_open.  
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