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Abstract

Alzheimer’s disease (AD) is marked by the spread of misfolded amyloid-$ and tau
proteins throughout the brain. While it is commonly believed that amyloid-f abnormality
drives the cascade of AD pathogenesis, several in vivo and post mortem studies indicate that
in some subjects localized tau-based neurofibrillary tangles precede amyloid-f pathology. This
suggests that there may be multiple distinct subtypes of protein aggregation pathways within
AD, with potentially different demographic, cognitive and comorbidity profiles. We
investigated this hypothesis, applying data-driven disease progression subtyping models to post
mortem immunohistochemistry and in vivo positron emission tomography (PET) and
cerebrospinal fluid (CSF) based measures of protein pathologies in two large observational
cohorts. We consistently identified both amyloid-first and tau-first AD subtypes, where tau-
first subjects had higher levels of soluble TREM2 compared to amyloid-first subjects. Our
work provides insight into AD progression that may be valuable for interventional trials
targeting amyloid-f3 and tau.

* Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A
complete  listing of ADNI investigators can be found at:  http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI Acknowledgement List.pdf
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is
characterized at the molecular level by the accumulation of two specific protein-based
pathologies within the brain: amyloid plaques, composed of extracellular amyloid-B (Af)
peptide, and intracellular neurofibrillary tangles (NFTs), composed of abnormally
hyperphosphorylated tau protein. These pathologies combine to create a toxic environment that
drives neurodegeneration via neuronal and synaptic loss, leading to cognitive impairment!.
While these protein pathologies have been recognized as the primary signature of AD since
Alois Alzheimer first observed them over a hundred years ago?, the causal relationship between
these pathologies is not fully understood. The prevailing view set forth by the amyloid cascade
hypothesis is that the accumulation of A} peptides is the main causative event within the
pathogenesis of AD, with tau-based NFTs, neurodegeneration and cognitive impairment
following as a result®*.

The ‘amyloid-first’ view has strong empirical support in familial AD, where gene
mutations (4PP, PSENI, PSEN2) associated with abnormal Af3 peptide production have been
shown to cause autosomal dominant forms of the disease®. In contrast, sporadic AD, which
accounts for the vast majority of cases, is believed to be caused by a complex combination of
genetic and environmental factors’. Despite this important difference, the amyloid cascade
hypothesis has strongly influenced the view of sporadic AD progression, due to the observation
that late-stage pathology is identical across familial and sporadic AD®. Following this view,
the “ATN” framework has been recently proposed, aiming to shift AD from a symptom-based
to a biomarker-based diagnostic entity. This research framework codifies AD progression via
a specific set of biomarkers than can measure AD-related pathologies in vivo>!'?. The set
consists of amyloid-based markers (e.g. amyloid PET or CSF-based Af3; the ‘A’ component),
tau-based markers (e.g. tau PET or CSF-based tau; ‘T’) and markers of neurodegeneration or
neuronal injury (e.g. MRI or FDG-PET; ‘N’).

Consistent with the amyloid cascade view, the ATN framework requires the presence
of amyloid pathology for an individual to enter the AD continuum and therefore progress to
subsequent stages of the disease. Any other pattern of biomarker abnormalities is incompatible
with its view. However, both neuropathologic and in vivo studies have challenged the notion
that amyloid pathology precedes tau pathology within AD. Neuropathology studies show that
tau pathology (localized primarily within the entorhinal cortex) is present in roughly thirty
percent of older subjects with no amyloid pathology!!. Similarly, a recent amyloid and tau PET
based biomarker study found that 45% of non-demented subjects were tau positive in
entorhinal/hippocampal regions while being amyloid negative'?. As a consequence, there is
ongoing debate around what this focalized tau-based abnormality represents. While some
suggest it relates to normal aging, a condition termed primary age-related tauopathy (PART!?),
or due to another proteinopathy (e.g. TDP-43), there is a possibility that this focalized tau
abnormality consists of an alternative, ‘tau-first’ pathway towards AD dementia!*!>. In fact,
neuropathological studies have noted that the tau-based NFTs observed in PART are
biochemically identical to those in AD!'®!7,

Taken together, these prior studies suggest that there may be two basic subtypes of
pathology progression within AD: an amyloid-first subtype, embodying the amyloid cascade
in which subjects develop A3 plaques prior to NFTs, and a tau-first subtype, in which focalized
NFT pathology precedes the appearance of plaques. To date, however, no study has identified
and characterized these patterns across both post mortem and in vivo measures with the aim of
understanding how these possible pathological pathways may be related to distinct concurrent
cognitive and CSF-based abnormalities. Here, we address this knowledge gap using in vivo
PET, CSF and cognitive measures from the Alzheimer’s Disease Neuroimaging Initiative
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(ADNI) and postmortem neuropathologic measures from the Religious Orders Study and Rush
Memory and Aging Project studies (ROSMAP). We follow a data-driven paradigm to identify
disease subtypes using the SuStaln (Subtype and Stage Inference) algorithm!8, which identifies
groups of subjects with common patterns of disease progression from multi-modal cross-
sectional data. SuStaln is thus well-suited to inferring disease subtypes from both post mortem
and in vivo measures. We consistently identify both amyloid-first and tau-first subtypes,
supporting the dual-pathway hypothesis of AD progression. We find higher soluble TREM2
(STREM2) measures in tau-first subjects’ CSF, suggesting increased microglial activation
within this subtype. Our findings add to the understanding of AD progression and offer a
precision tool for screening and stratifying patients in clinical settings.

Results

Tau-first subtype identified using post mortem measures The ROSMAP study is an
ongoing observational study of older adults that have agreed to annual clinical evaluation and
cognitive testing as well as brain donation after death. Through December 31%, 2017 there were
3,414 subjects enrolled, with 1,717 deaths and 1,506 brain autopsies. We applied SuStaln'8, an
unsupervised machine learning algorithm, to 1,211 ROSMAP study subjects’ post mortem
immunohistochemistry measures of amyloid and tau pathologies in the eight available brain
regions (hippocampus, entorhinal cortex, midfrontal cortex, inferior temporal, angular gyrus,
calcarine cortex, anterior cingulate cortex, superior frontal cortex). These subjects had a
complete set of measurements in all regions as well as a neuropathologically confirmed
diagnosis of either normal aging or AD and an ante-mortem exclusion of other dementias.

As a preliminary step we estimated the number of subtypes that best explain the
available observations. We allowed SuStaln to infer one, two or three-subtype models and in
each case evaluated the out-of-sample log likelihoods of held-out samples under ten-fold cross-
validation. The two-subtype model improved upon the one-subtype model (14% median
improvement, p = 1.95 x 10~ via Wilcoxon signed-rank test) and there was a marginal further
improvement with a the three-subtype model (3%; Figure 1a). Thus, we used the two-subtype
model in subsequent analyses on the ROSMAP data.
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Figure 1 Out-of-sample data likelihood for each of ten cross-validation folds for one, two and three subtype
models for a ROSMAP neuropathology-based analysis; b ADNI all-PET-based analysis; and ¢ ADNI PET-
and-CSF-based analysis.

Figure 2 depicts positional variance diagrams (PVDs) estimated by SuStaln for the two
subtypes identified in ROSMAP. PVDs visualize event sequence uncertainties as a matrix;
each row is a histogram of the fraction of times an event occurs at a given position across a set
of Markov-chain Monte Carlo (MCMC) event-sequence samples. Here we have 16 events
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(amyloid and tau across eight brain regions) and hence as many distinct stages of progression
within each subtype. Within the two-subtype model, cognitively normal subjects had a median
stage of four in the first subtype and three in the second; AD subjects had a median stage of 11
in the first subtype and 12 in the second (Supplementary Figure 2a, 2d).

We estimated the prevalence of each subtype using subjects most representative of their
subtype. As SuStaln is a probabilistic algorithm that assigns a non-zero probability of
belonging to each subtype and stage for every subject we chose to retain only those with a
relatively high probability of most likely subtype. In general, these are subjects who are in
middle stages of progression; those at the extremes have either no pathology (very early stages)
or abnormality across all markers (very late stages) and thus the notion of being in a particular
subtype is not meaningful for them. We therefore removed 81 subjects at stage zero and 124
subjects at stage 16. We also removed 163 subjects at stage 11 as the model indicates that at
these stages the two subtypes are also not distinguishable (Figure 2d). Thus, we retained 843
out of 1,211 subjects for further analysis of subtypes.

SuStaln found an amyloid-first subtype (68%, 576 of 843 subjects) in which amyloid
pathology begins in the midfrontal, angular gyrus and calcarine regions of the cortex. Once
amyloid has spread throughout the cortex, tau pathology manifests, beginning in the entorhinal,
hippocampus and inferior temporal regions and then spreading throughout the remaining
cortex. The second identified subtype is a tau-first subtype (32%, 267 of 843 subjects) in which
neurofibrillary tau tangle pathology similarly begins in the entorhinal, hippocampus and
inferior temporal regions and is followed by a sequence of amyloid pathology progression that
closely resembles that of the amyloid-first subtype. After the amyloid stages, tangle formation
then expands to the remaining cortex (calcarine, angular gyrus, superior frontal, midfrontal,
and cingulate regions; Figure 2a).

We used cross-validation to get a more robust estimate of event sequence uncertainties
as MCMC tends to underestimate the uncertainty of events within each subtype!®. We find
similar subtypes with greater uncertainty in the ordering of amyloid pathology in both subtypes
and higher uncertainty in late-stage tau pathology in the second subtype (Figure 2b).

No differences in demographic factors or comorbid pathologies between subtypes We
investigated basic demographic differences between subtypes (depicted in Figure 2¢) while
controlling for the effect of subjects’ stage. We found no statistical differences related to age
at death, years of education or sex between subjects in subtype one (amyloid-first) compared
to subtype two (tau-first). We also tested for differences in comorbid pathologies, finding no
differences in TDP-43, cerebral amyloid angiopathy (CAA), cerebral atherosclerosis or
arteriolosclerosis and no difference in the presence of hippocampal sclerosis (Supplementary
Table 3).
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Figure 2 Inferred subtypes and stages in the ROSMAP neuropathology-based analysis

a positional variance diagrams (PVDs) for two-subtype SuStaln model of regional amyloid beta and tau-based
neurofibrillary tangle pathology spread; b PVDs from ten fold cross-validated version of the same model,
providing an estimate of event uncertainty within both subtypes; ¢ demographic breakdown of subtypes by age,
percentage of each sex and education years; d boxplots of subtype probability at each stage, with number of
subjects at each stage shown in parentheses on the x-axis; and e histograms of fraction of subjects at each stage
per subtype with the 163 subjects at stage 11 and the 124 subjects at stage 16 removed due to high uncertainty in
their most likely subtype (see d).

In vivo PET and CSF based subtyping models are consistent with neuropathology We
used in vivo measures from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a long-
running observational study tracking healthy, cognitively impaired and AD-diagnosed older
adults. We performed two separate SuStaln-based analyses using ADNI study measures. The
first (the ‘all-PET-based analysis’) was an in vivo analog to the ROSMAP neuropathologic
analysis. We used all subjects who had concurrent amyloid PET and tau PET images (n = 445),
showing that, as in the ROSMAP analysis, a two-subtype model of pathology spread improved
upon a one-subtype model (12% median improvement in out-of-sample log likelihood, p=3.91
x 107 via Wilcoxon signed-rank test) and there was no further improvement with a three-
subtype mode (0%; Figure 1b). The in vivo data therefore confirmed the appropriateness of a
two-subtype model. Cognitively normal subjects had a median stage of zero (out of a total of
21 stages; see Figure 3) in the first subtype and were not staged in the second, MCI subjects
had a median stage of one in the first subtype and two in the second and AD subjects had a
median stage of 14 in the first subtype and 15 in the second (Supplementary Figure 2b, 2¢).
As in the neuropathologic analysis, we estimated the prevalence of each subtype by
first removing 235 subjects at stage zero and 12 subjects at stage 21, leaving 198 subjects. We
found an amyloid-first subtype (83%, 164 of 198 subjects) in which amyloid pathology begins
in the precuneus, cingulate, and frontal (inferior, middle, superior) cortical regions, and a tau-
first subtype (17%, 34 of 198 subjects) in which tau pathology begins in the amygdala,
entorhinal, and temporal (medial and lateral) regions (Figure 3a). As in the neuropathologic
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analysis, in both in vivo subtypes we found that tau spreads beyond the hippocampus, amygdala
and temporal lobe only after amyloid has spread throughout the cortex. Under cross-validation
we inferred similar progression patterns: an amyloid-first subtype and a tau-first subtype with
greater uncertainty in the event orderings within each subtype, particularly within the tau-first
subtype (Figure 3b).

The small number of subjects falling into the tau-first subtype (n = 34) limits the ability
to precisely estimate the event ordering within this subtype. This also limited our ability to
detect demographic, cognitive and CSF-based differences between subtypes. Therefore, our
second ADNI-based analysis (‘PET-and-CSF-based analysis’) addressed this by increasing the
number of subjects using CSF-based regional tau prediction as a proxy for tau PET. In this case
we used the available 999 subjects who had both amyloid PET and CSF-based (total and
phosphorylated) tau measures at a single visit. We selected the two-subtype model as in the
previous analyses (Figure 1c¢). Cognitively normal subjects had a median stage of zero in the
first subtype and stage three in the second, MCI subjects had a median stage of four in first
subtype and three in the second and AD subjects had a median stage of 12 in the first subtype
and four in the second (Supplementary Figure 2c, 2f).

To estimate the prevalence of each subtype, we excluded 459 subjects at stage zero and
279 subjects at stage 12 (Figure 4d), leaving 261 subjects for further analysis. We similarly
found an amyloid-first subtype (62%, 162 of 261 subjects) in which amyloid pathology
(measured via amyloid PET) begins in the frontal (inferior, middle, superior), cingulate and
precuneus regions, and a tau-first subtype (38%, 99 of 261 subjects) in which tau pathology
(estimated from CSF and demographic information) begins in Braak I/II, III/IV and V/VI
regions (Figure 4a, 4b).

CSF based tau, amyloid beta and sSTREM2 differences between subtypes We leveraged
the deep phenotyping data available in ADNI and performed logistic regression-based analyses
to test for group differences between our data-driven in vivo subtypes. For this we used the
PET-and-CSF-based analysis due to its higher sample size and overall similarity to the PET-
based analysis cohort along most demographic and diagnostic measures (Supplementary Table
2). There was one important difference between cohorts: subjects in the all-PET-based analyses
were on average 3.3 years older, 95% CI = [1.9, 4.6], p = 3.42 x 10, and measured 3.6 years
further out from baseline, 95% CI = [3.2, 4.1], p < 1 x 10, than those in the PET-and-CSF-
based analysis. This is due to tau PET being introduced in a later stage of the ADNI study
(ADNI-3%).

In the first subtype comparison, which included 259 of 261 subjects who had both CSF-
based tau and amyloid as well as cognition, we found a small difference in age between
subtypes (tau-first subjects 2.3 years younger, 95% CI = [0.5, 4.1], odds ratio 0.57, p = 0.02;
Figure 4c), no differences in memory or executive function (Supplementary Table 4; Figure
5a) but found, as anticipated, substantial differences in tau (tau-first subjects 115.1 pg/mL
higher, i.e. more abnormal, 95% CI = [94.0, 136.1], odds ratio 7.18, p < 1 x 10®) and amyloid
beta (tau-first subjects 689.8 pg/mL higher, i.e. less abnormal, 95% CI = [545.5, 834.2], odds
ratio 2.83, p = 7.53 x 10%; Figure 5b).

In the second subtype comparison, involving a subset of 190 of 261 subjects with CSF
based sSTREM?2 and progranulin, we found a small difference in age (tau-first subjects 3.0 years
younger, 95% CI = [-5.1, -1.0], odds ratio 0.58, p = 2.83 x 10) as well as a difference in
sTREM2 (tau-first subjects 1652.8 pg/mL higher, i.e. more abnormal, 95% CI = [1069.3,
2236.3], odds ratio 4.18, p = 2.92 x 107; Figure 5¢) but no difference in progranulin
(Supplementary Table 5; Figure 5d).

Across both comparison analyses we found no statistical differences in sex, number of
APOQOEA4 alleles, years of education, nor model stage (Figure 4c, 4e).
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Figure 3 Inferred subtypes and stages in the ADNI all-PET-based analysis

a positional variance diagrams (PVDs) for two-subtype SuStaln model, showing the most likelihood sequence of
amyloid PET and tau PET based pathology spread; b PVDs from ten fold cross-validated version of the same
model, providing an estimate of event uncertainty within both subtypes; ¢ demographic breakdown of subtypes
by age, percentage of each sex, education years and percentage of APOE4 alleles; d boxplots of maximum
likelihood subtype probability at each stage, with number of subjects at each stage shown in parentheses on the
x-axis; and e histograms of fraction of subjects at each stage per subtype with 12 subjects at stage 21 removed
due to high uncertainty in their most likely subtype (see d).
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Figure 4 Inferred subtypes and stages in the ADNI PET-and-CSF-based analysis

a positional variance diagrams (PVDs) for two-subtype SuStaln model, showing the most likelihood sequence of
amyloid PET based and CSF tau based pathology spread; b PVDs from ten fold cross-validated version of the
same model, providing an estimate of event uncertainty within both subtypes; ¢ demographic breakdown of
subtypes by age, percentage of each sex, education years and percentage of APOE4 alleles; and d boxplots of
subtype probability at each stage, with number of subjects at each stage shown in parentheses on the x-axis; and
e histograms of fraction of subjects at each stage per subtype with 279 subjects at stage 12 removed due to high
uncertainty in their most likely subtype (see d).
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Figure S Subtype differences in the ADNI PET-and-CSF-based analysis

a scatter plot of memory and executive function measures for subtype one (amyloid-first) and subtype two (tau-first)
subjects, showing no apparent differences in cognition between subtypes; b scatter plots for CSF amyloid and tau
measures, showing that subtype one (amyloid-first) subjects’ CSF amyloid measures are generally lower (more
abnormal) while subtype two (tau-first) subjects’ CSF tau measures are generally higher (more abnormal); ¢ boxplots of
differences in STREM2 across subtypes and d same for progranulin. Arrows in a, b show direction of increasing
abnormality for each measure.
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Figure 6 Phases of amyloid and tau pathology spread within the two identified subtypes in the ADNI all-PET-based
analysis, depicted in Figure 3a. Within the amyloid-first subtype, amyloid pathology spreads throughout the cortex beginning in
the precuneus, cingulate and frontal lobe (phase I, top). Tau then spreads from the amygdala (not shown), entorhinal and medial
and lateral temporal lobe to remaining cortex (phase II, top). Within the tau-first subtype, tau pathology in the amygdala,
entorhinal cortex, and medial and lateral temporal lobe precedes amyloid pathology (phase I, bottom). Amyloid subsequently
spreads throughout the cortex (shown in an intermediate blue color due to high uncertainty in the pattern of progression; phase II,
bottom). Tau then spreads throughout the remaining cortical regions (shown in intermediate magenta due to high uncertainty;
phase III, bottom). Regions in grey are not included in the model. Drawn using BrainPainter.


https://doi.org/10.1101/2020.12.18.418004
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.418004; this version posted December 19, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

AB pathology Tau NFTs
throughout ‘ throughout

cortex cortex
cseap A

AP pathology Tau NFTs
Focalized Tau NFTs - throughout ‘ throughout

cortex cortex

CSF Tau t CSF sTREM2 t

Figure 7 Characterization of identified subtypes

Data-driven models consistently identify two subtypes of amyloid and tau pathology progression across both
post mortem and in vivo measures. This first, depicted in panel a, is an amyloid-first subtype, in which AB-
based pathology spreads throughout the cortex prior to the spread of tau-based neurofibrillary tangles (NFTs).
Within this subtype CSF-based AB is more abnormal relative to tau-first subtype subjects. The second,
depicted in panel b, is a tau-first subtype in which focalized tau-based NFTs within Braak I-III/IV regions
precede the spread of Af pathology throughout the cortex, which is followed by the spread of tau-based NFTs
into the remaining cortex (Braak IV-VI regions). CSF-based tau and STREM2 are more abnormal within this
subtype relative to those in the amyloid-first subtype.

Discussion

While amyloid- and tau-based pathologies have long been established as the main
pathological hallmarks of AD, the heterogeneity within the spatiotemporal progression of these
pathologies has yet to be fully characterized. Here, for the first time, we used a fully data-driven
model on two large cohorts with complementary in vivo and post mortem measures, to show
the presence of two subtypes of amyloid and tau pathology progression within sporadic AD.
We consistently found ‘amyloid-first’ and ‘tau-first” subtypes (Figure 1). In the ‘amyloid-first’
subtype, extensive cortical amyloid pathology precedes tau pathology. In the ‘tau-first’
subtype, localized tau pathology precedes the spread of amyloid. In both datasets, the majority
of subjects aligned with the amyloid-first subtype (68% of subjects based on
immunohistochemistry, 83% based on PET, 62% based on CSF and PET) while a non-
negligible minority of subjects fell into the tau-first subtype (32% immunohistochemistry, 17%
PET, 38% CSF and PET). Importantly, we found that early tau pathology in the tau-first
subtype is localized within the temporal lobe, hippocampus and amygdala (Figures 2a, 2b, 3a,
3b) and that in both subtypes amyloid pathology spreads throughout the cortex before tau
pathology spreads beyond the temporal lobe to other parts of the cortex (Figure 6°!). This
finding is consistent with neuropathologic studies showing that while the initial formation of
tau and amyloid pathologies may be independent of each other, widespread amyloid pathology
precedes and likely facilitates the spread of tau pathology beyond the medial temporal lobe
(MTL) and limbic areas!'!-?,
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Previous studies of the spread of amyloid pathology in AD have used both post mortem
and in vivo measures. Braak and Braak, using silver staining of post mortem brains, observed
that amyloid pathology is first found in the basal frontal, temporal and occipital lobes before
spreading throughout the cortex, with sensorimotor regions and subcortical structures such as
the hippocampus becoming gradually involved?*. Thal et al., using both silver staining and
immunohistochemistry, found a similar pattern®*. Fantoni et al. summarized a number of recent
in vivo amyloid PET based studies, noting that the first regions with detectable abnormality
are the medial frontal and cingulate regions, followed by a general spreading throughout the
cortex, the striatum, hippocampus, other subcortical regions and ultimately the
cerebellum?>-26-27:28:29.3031.32 " The pattern of amyloid accumulation that we inferred was
consistent with these studies. In our analysis of post mortem immunohistochemistry data, we
found two data-driven subtypes, each having similar patterns of amyloid spread. The earliest
abnormalities were in the midfrontal cortex followed by the angular gyrus, calcarine, inferior
temporal, superior frontal and other cortical regions, with hippocampus as the latest event.
Cross-validation suggests less certainty in the ordering (Figures 2a, 2b). In our analysis of in
vivo amyloid PET data, we inferred a pattern of spread from the precuneus and cingulate to the
frontal, parietal and temporal lobes of the cortex, with cross-validation again suggesting less
certainty in the ordering of the sequence (Figures 3a, 3b). Our inferences of the ordering of in
vivo amyloid progression within the tau-first subtype were limited by the number of subjects
in this group.

Previous studies have similarly used both post mortem and in vivo measures to
characterize the spread of tau pathology in AD. Braak and Braak developed the standard six-
stage system used to describe NFT spread based on neuropathologic examination: at stages I
and II NFTs initially form within the transentorhinal cortex, at stages III and IV NFTs spread
to the entorhinal cortex, hippocampus and amygdala and by stages V and VI pathology has
spread throughout the frontal, parietal and occipital cortex, mostly sparing the sensorimotor
region®. Several studies have shown that these Braak stages are detectable in vivo using tau
PET?33427 In our analysis of post mortem immunohistochemistry data, we found NFT
pathology beginning in the entorhinal, hippocampus and inferior temporal regions
(corresponding to Braak I-III/IV regions) before spreading throughout the remaining cortex
(Braak IV-VIregions). While both of our data-driven post mortem subtypes broadly conformed
to this pattern, our results suggest that the tau-first subtype deviates from the expected Braak
progression after the initial accumulation of tau and the spread of amyloid. Within this subtype
NFTs unexpectedly appear in the calcarine cortex (within the occipital lobe, Braak stage VI)
prior to? NFTs in the frontal, parietal and cingulate regions, corresponding to stages IV and V
(Figures 2a, 2b). Our analysis of in vivo PET data was in concordance with our analysis of post
mortem data: amygdala, entorhinal and both medial and lateral temporal regions appear early,
followed by other cortical areas. There is a similar subtype-specific pattern: tau spreading
within the amyloid-first subtype closely conforms to Braak staging, while tau pathology in the
tau-first subtype deviates from Braak staging, with pathology in the occipital lobe appearing
prior to frontal, parietal, and cingulate regions (Figures 3a, 3b). Together, these findings point
to a subtype-specific pattern of tau spread throughout the cortex, with variability in later-stage
progression.

When using CSF-based predictions of regional tau pathology, we found that late-stage
tau pathology (within Braak V/VI regions) precedes amyloid pathology in the tau-first subtype,
which is inconsistent with our post mortem and PET models (compare Figures 4a, 4b with
Figures 2 and 3). Mattson et al.>* noted that CSF-based tau measures become abnormal during
preclinical AD stages but do not track AD progression into later stages, while tau PET based
measures are more closely associated with the neurodegeneration and cognitive decline seen
in clinical AD stages. This is consistent with our observation that the regression models trained
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to predict regional tau PET SUVRs from CSF-based tau and demographics tend to plateau at
higher values and have difficulty resolving between middle and late stage Braak pathology (see
Supplementary Figure 1). Comparing this model to the immunohistochemistry and PET-only
models, we see that this limited the ability of the CSF-based model to detect late-stage tau
pathology in the tau-first subtype.

One of the strengths of our study was in the use of complementary information from
post mortem and in vivo measures to infer subtypes. We found robust amyloid-first and tau-
first subtypes across these measures which enabled, for the first time, comparison of subtypes
across a variety of demographic, cognitive, and comorbid pathology measures while control
for subjects’ stage of progression within their respective subtype. We found no differences
between subtypes in demographic factors or genetic risk (sex, years of education, APOE4
alleles) and only a small difference in age (amyloid-first subjects several years older on
average) in the PET-and-CSF-based model (Supplementary Tables 3, 4, and 5). We also found
no differences in comorbid pathologies related to cerebrovascular function, TDP-43 and
hippocampal sclerosis, implying that these pathologies may develop in similar ways in both
subtypes (Supplementary Table 3).

Our findings suggest that a substantial number of “PART-like” subjects are actually in
the early stages of the tau-first AD subtype that we have identified. We found no statistical
differences in memory or executive function between our amyloid-first and tau-first subtypes,
implying that tau-first subjects develop cognitive impairment as they progress to later stages
just as amyloid-first subjects do (Figure 5a, Supplementary Table 4). Similarly, a recent PET
based study found that tau-first subjects show signs of early cognitive impairment, supporting
the notion that PART (i.e. MTL-localized tau pathology with no detectable amyloid pathology)
is within the AD continuum. Further to this, our post mortem immunohistochemistry model
shows that while many tau-first subjects may not progress beyond localized tau pathology (i.e.
up to stage four within their subtype), others will go on to develop amyloid pathology (i.e.
stages five and above; Figures 2a, 2e, 3a, 3e). Future work includes understanding how
amyloid-first and tau-first subtypes are related to the three subtypes of AD-related
neurodegeneration that have been consistently identified across post mortem and in vivo
studies363738.18.

The amyloid-cascade hypothesis maintains that amyloid pathology, driven by cellular
processes related to lipid metabolism, microglial activation and endocytosis, initiates
downstream tau and neurodegeneration. In contrast, the dual-pathway hypothesis proposes
instead that these cellular processes may drive amyloid and tau pathologies along independent
pathways!'#!5, Our data-driven models, based on both in vivo and post mortem measures, lend
support to the dual-pathway hypothesis (Figure 7). We note however, that amyloid pathology
may have a similar catalyzing role in both subtypes: facilitating the spread of tau pathology
beyond the MTL and limbic areas. Our finding that CSF-based soluble TREM2, thought to be
a maker of microglia function, is increased in tau-first subjects (consistent with previous
findings®), provides a first step in directly relating these subtypes to upstream cellular
processes (Supplementary Table 5). Further work is needed using measures of lipid
metabolism, microglia and endocytosis as well as genome-wide association studies (GWAS)
to better understand how these subtypes differ in terms of cellular processes and their upstream
genetic risk factors.

In summary, we have identified a tau-first subtype of sporadic AD progression using
data-driven disease subtyping models trained on both in vivo and post mortem measures. These
findings have important implications for interventional trials targeting amyloid-f and tau
pathologies.
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Methods
ADNI dataset

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org.

We downloaded regional amyloid PET (AV-45) standardized update value ratios
(SUVRs), partial volume corrected regional tau PET (AV-1451) SUVRs and cerebrospinal
fluid (CSF) based measures of amyloid (AB1—42), total tau and phosphorylated tau (pTau) from
the ADNI database***. We also downloaded the ADNIMERGE table, containing demographic
information (age, sex, years of education, number of APOE4 alleles), and diagnostic labels
(cognitively normal/MCI/AD). We downloaded composite measures of memory (ADNI-
MEM%*?) and executive function (ADNI-EF#). Finally, we downloaded CSF based measures
of sSTREM2 and progranulin, using the measurements made via the MSD ELISA platform that
were subsequently corrected by plate-specific factors**. The ADNI database was last accessed
on February 6%, 2020.

ROSMAP dataset

We used post mortem neuropathology data from the Religious Orders Study (ROS) and
Rush Memory and Aging Project (MAP) studies, collectively referred to as ROSMAP, which
we obtained from the Rush Alzheimer’s Disease Center (RADC)*. We used molecularly-
specific immunohistochemistry based measures of amyloid beta protein and neuronal
neurofibrillary tangles (associated with abnormally phosphorylated tau protein) both measured
in eight brain regions (hippocampus, entorhinal cortex, midfrontal cortex, inferior temporal
cortex, angular gyrus, calcarine cortex, anterior cingulate cortex and superior frontal cortex)
along with demographic information (age at death, sex, education years), final (in vivo) clinical
diagnosis of AD (NINCDS-ARDRA*) and (post mortem) neuropathologic diagnosis of AD
(NIA-Reagan Criteria*’).

We also compared comorbid pathologies between subtypes, using RADC’s stagings of
TDP-43, cerebral amyloid angiopathy (CAA), cerebral atherosclerosis and arteriolosclerosis
based pathologies, each ranging zero (no pathology) to three (severe pathology), along with
the presence or absence of hippocampal sclerosis.

Disease progression modeling

We used Subtype and Stage Inference (SuStaln), a probabilistic machine learning based
method, to characterize the heterogeneity of amyloid and tau pathology progression in AD.
SuStaln infers multiple patterns of disease progression (i.e. subtypes) as well as individuals’
disease stages from cross-sectional data!8. The SuStaln model as introduced by Young et al.!®
uses a data likelihood based on how far a biomarker measurement deviates from normality,
with an associated set of z-score based events (e.g. one, two or three z-scores away from control
population mean) for each biomarker. Note that in biomarkers where controls have very little
abnormality (e.g. amyloid load in cognitively normal APOE4 negative subjects, as in our
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work), the resulting z-scores in patients can become large owing to the small amount of
variance in the control population. In such cases it is more sensible to use a separate distribution
to describe patients’ measurements and define an event as a biomarker going from normal to
abnormal (as in the event-based model; EBM*'%). Formally, we use P(x;|E;) and
P(xi i|—E i), the likelihoods of measurement x;; of subject j in the case where biomarker i has

or has not become abnormal (event i has occurred, E;, or event i has not occurred, —E;,
respectively) within the EBM-based data likelihood,

J I I
Pexiso = | [Z (P(k) ﬁp(xi,-wi) [ P(xl-j|—|El-)>
j=1 Lk=0 i=1 i=k+1

where S; is the sequence of events within a particular subtype ¢, X = {xi ili=1,..,Lj=

)

1,.., ]} is the set of measurements over I biomarkers and ] subjects and P(k) is the prior
likelihood of being at stage k, assumed to be uniform. The remainder of SuStaln’s model fitting
procedure is as described in detail in Young et al.!® It consists of an iterative procedure that
simultaneously optimizes subtype event sequences (finding event sequence S, for each subtype
c¢) and subtype membership (assigning a probability of being in subtype ¢ to every subject) for
a pre-selected number of subtypes C. For each subtype, a Markov chain Monte Carlo (MCMC)
based procedure is used to estimate the uncertainties of event orderings, which can be
visualized with a positional variance diagram (PVD)*. In our work we fit P(xl- lei) and
P (xi j|—|Ei) for each biomarker using the kernel density estimation based mixture modeling
approach described by Firth et al.*

We optimized the number of subtypes (C) in an iterative manner using ten-fold cross-
validation. For each fold we ran SuStaln on the training data and evaluated the average out-of-
sample log likelihood of the held-out testing data, so that we had ten measures for each model.
We could thus compare a C-subtype model to a (C + 1)-subtype model via the median relative
improvement in log likelihood across folds. We stopped iterating C when the (C + 1)-subtype
model no longer substantially improved upon the C-subtype model, making the C-subtype
model the more parsimonious choice.

We used the same ten-fold cross-validation procedure to generate cross-validated PVDs
in order to visualize the uncertainty in the inferred ordering of events within a subtype. To do
this, we compared each fold’s inferred subtypes to an overall model built on all samples,
finding the best one-to-one matching between the folds’ inferred sequences and the overall
model’s using Kendall’s tau as a similarity metric. Based on this mapping we concatenated
matching subtypes’ MCMC samples across folds and calculated PVDs. The code for this
procedure is available in our implementation of SuStaln (see Data Availability section).

ROSMAP based analysis

We performed a SuStaln-based analysis using ROSMAP’s amyloid beta and
neurofibrillary tangle measures in eight brain regions. Out of a total of 1,338 subjects who had
complete set of measures in all regions we retained 1,226 subjects with a last clinical diagnosis
of no cognitive impairment (CI) or either MCI or AD with no other cause of CI. The excluded
112 subjects had other dementia or cause of CI. We used subjects’ neuropathologic diagnosis
for the remaining analysis, defining controls as those with low likelihood or no AD by NIA-
Reagan pathology criteria and AD subjects as those with intermediate or high likelihood of AD
using the same criteria.
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We took the square root of each measure to improve normality and then corrected each
measure for the effect of normal aging and demographics by training a regression model on
control subjects’ values against age at death, sex and education years. We then regressed out
the effect of normal aging from both controls and AD subjects, excluding 15 subjects who had
at least one regional measure that was at least four standard deviations from the control or AD
distribution mean. We then performed both mixture modeling and SuStaln modeling using
1,211 subjects (418 controls/793 AD).

We investigated subtype differences using logistic regression with subtype (coded as
zero for amyloid-first subtype, one for tau-first) as the dependent variable and demographic
factors (age at death, sex, education years) and comorbidities (stages of TDP-43, cerebral
amyloid angiopathy (CAA), cerebral atherosclerosis and arteriolosclerosis pathologies as well
as presence of hippocampal sclerosis) as explanatory variables.

ADNI based analyses

We performed two separate SuStaln-based analyses using cross-sectional data from
ADNI. The first was an all-PET-based analysis, in which we used nine regional amyloid PET
(AV-45) SUVRs and twelve tau PET (AV-1451) SUVRs, many of which were volume-
weighted combinations of several Freesurfer-based SUVRs (see Supplementary Table 1)°%3!,
We excluded the hippocampal tau PET SUVR as this region is suspected to be contaminated
by off-target binding in the choroid plexus®’.. We reference normalized all SUVRs as
recommended: for amyloid PET we used a composite reference region made up of the whole
cerebellum, brainstem/pons and eroded subcortical white matter; for tau PET we used the
inferior cerebellar grey matter>>>*. We formed biomarkers for further analysis by log
transforming these normalized SUVRs to improve normality.

For each biomarker we removed the effect of normal aging and demographic factors by
training a regression model for each biomarker’s values against age, sex and education years
in a control population of cognitively normal, APOE4 negative, global amyloid SUVR negative
(whole cerebellum normalized summary SUVR < 1.11 cut-off) subjects. We then regressed out
the signal due to these factors from all subjects’ measurements. Out of a total of 1515 subjects
with amyloid PET or tau PET scans, we used 389 subjects to build mixture models of corrected
amyloid PET biomarkers. These were 205 controls (as define above) and 184 AD subjects. We
used 180 subjects for corrected tau PET mixture models: 116 CN, APOE4 negative, global
amyloid SUVR negative subjects and 64 AD subjects. For SuStaln modeling we used 445
subjects that had both amyloid and tau PET images at the same visit: 115 CN subjects, 290
with mild cognitive impairment (MCI) and 40 AD subjects. No outliers were removed in this
analysis.

The second analysis was a PET-and-CSF-based analysis, substituting CSF-based
prediction of tau PET SUVR in place of actual tau PET to give a larger dataset of 1001 subjects,
all of whom had both CSF and amyloid PET at the same visit. The purpose of this analysis was
to increase the sample size for comparing subtypes as many more subjects in ADNI have
concurrent amyloid PET and CSF than concurrent amyloid and tau PET. Rather than using
CSF total tau and pTau directly however, we approximated the first analysis by using the
demographic and CSF measures to predict composite tau PET regions, training a regression-
based prediction model using the 356 subjects with both tau PET and CSF measured at the
same visit. We trained three separate linear regression models with composite SUVRs (regions
related to I/IL, III/IV or V/VI Braak stages) as the dependent variable and age, sex, education
years, log CSF total tau and log CSF pTau as the explanatory variables. We used each model
to predict tau SUVRSs in the 645 subjects which did not have tau PET. Following this we formed
a set of 12 biomarkers using the same nine amyloid PET SUVRs as before along with these
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three CSF-based tau markers, all of which were corrected for aging and demographics as
before. We performed mixture modeling for each corrected biomarker using 193 CN, APOE4
negative, global amyloid SUVR negative subjects and 158 AD subjects. Prior to SuStaln
modeling we removed two outlying MCI subjects who had at least one biomarker that was at
least four absolute standard deviations from either the control or AD distribution mean, so that
we performed SuStaln modeling with 999 subjects (366 CN/475 MCI/158 AD).

We investigated differences in demographic factors (age, sex, education years), CSF
based amyloid beta and total tau, CSF-based soluble TREM2 (sTREM2) and progranulin
proteins and cognition (memory and executive function). As in the ROSMAP analysis, we used
a logistic regression with subtype (coded as before) as the dependent variable and demographic,
cognitive and CSF-based measures as the explanatory variables. As only a subset of subjects
had measures of sSTREM?2 and progranulin, we performed two separate regression analyses,
testing for: (i) differences in demographics, stage, cognition and CSF total tau and amyloid
beta in 259 subjects and (ii) demographics, stage, STREM2 and progranulin in 190 subjects.

Data availability

The post mortem immunohistochemistry data used in this study comes from the
Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP) studies, both of
which can be obtained from the Rush Alzheimer's Disease Center (RADC) by submitting a
data request via the https://www.radc.rush.edu website. The in vivo PET and CSF data used in
this study comes from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu).

Code availability

A python-based implementation of SuStaln (pySuStaln), supporting both z-score style
and mixture style data likelihoods, is available at https://github.com/ucl-pond/pySuStaln. The
kernel  density  estimation-based mixture modeling code is available at
https://github.com/noxtoby/kde_ebm_open.
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