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ABSTRACT

Individuals with systemic symptoms long after COVID-19 has cleared represent
approximately ~10% of all COVID-19 infected individuals. Here we present a
bioinformatics approach to predict and model the phases of COVID so that effective
treatment strategies can be devised and monitored. We investigated 144 individuals
including normal individuals and patients spanning the COVID-19 disease continuum.
We collected plasma and isolated PBMCs from 29 normal individuals, 26 individuals
with mild-moderate COVID-19, 25 individuals with severe COVID-19, and 64 individuals
with Chronic COVID-19 symptoms. Immune subset profiling and a 14-plex cytokine
panel were run on all patients. Data was analyzed using machine learning methods to
predict and distinguish the groups from each other.Using a multi-class deep neural
network classifier to better fit our prediction model, we recapitulated a 100% precision,
100% recall and F1 score of 1 on the test set. Moreover, a first score specific for the
chronic COVID-19 patients was defined as S1 = (IFN-y + IL-2 )/ CCL4-MIP-18. Second,
a score specific for the severe COVID-19 patients was defined as S2 = (10*IL-10 + IL-6)
— (IL-2 + IL-8). Severe cases are characterized by excessive inflammation and
dysregulated T cell activation, recruitment, and counteracting activities. While chronic
patients are characterized by a profile able to induce the activation of effector T cells
with pro-inflammatory properties and the capacity of generating an effective immune
response to eliminate the virus but without the proper recruitment signals to attract
activated T cells.


https://doi.org/10.1101/2020.12.16.423122
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423122; this version posted December 22, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Chronic COVID-19 is a group of previously infected individuals, so called “Long
Haulers”, who experience a multitude of symptoms from several weeks to months after
recovering from their acute illness and presumably months after viral clearance. These
symptoms include joint pain, muscle aches, fatigue, “brain fog” and others. These
symptoms can commonly resemble rheumatic diseases such as rheumatoid arthritis,
autoimmune disorders, and others such as fibromyalgia and chronic fatigue syndrome
(1). Many of these common disorders are caused by inflammation, hyper- and/or auto-
immunity and some such as chronic fatigue are associated with viral persistence after
an acute infection with pathogens such as Epstein Barr and Cytomegalovirus (2).
Recent studies including those from our laboratory have suggested that (CC) may be
caused by persistent COVID itself (3). Here, we sought to identify possible immunologic
signatures of COVID-19 severity and to determine whether Chronic COVID-19 might
represent a distinct immunologic entity compared to mild to moderate (MM) or
severe/critical COVID-19. Further, we addressed the question whether the immunologic
profile represents an immune response indicative of prolonged or chronic antigenic
exposure. Using machine learning, we identified algorithms that allowed for accurate
determination of chronic COVID and severe COVID immunotypes. Further, we present
a quantitative immunologic score that could be used to stratify patients to therapy and/or

non-subjectively measure response to therapy.
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114 RESULTS

115 Immune Profiling

116  To determine if immunologic abnormalities remain in Long Haulers, we performed high
117  parameter immune cell quantification and characterization in a subset of individuals with
118  preserved peripheral blood mononuclear cells. We determined B-cells, T-cells, and

119  monocytes including subsets and including CD4/CD8 activation and exhaustion. Unlike
120  active COVID-19, the CD4 and CD8 T-cell populations were within normal limits and

121  there was no evidence of T-cell exhaustion (co-expression of PD-1, LAG3, and or

122 CTLA-4). B-cells were significantly elevated compared to normal individuals (P<0.001)
123  as was the CD14+, CD16+ monocytic subset (P<0.001) (Table 1). Interestingly, these
124 two immune cell populations have been shown to be chronically infected by different
125  viruses. B-cells are infected by Epstein-Barr and the CD14+, CD16+ monocytic subset

126 by HIV-1 and by HCV (4).

127  To further characterize the immune response in Long Haulers, we performed

128  quantitative, multiplex cytokine/chemokine panel on 30 normal individuals to establish
129  the normal range of the assay. We then analyzed 64 long haulers and compared the
130  cytokine/chemokine profile (Table 1). IL-2, IL-4, CCL3, IL-6, IL-10, IFN-y, and VEGF
131  were all significantly elevated compared to normal control (all P<0.001). Conversely
132 GM-CSF and CCL4 were significantly lower than normal controls. Further exacerbating
133 this hyper-immunity was the significant decrease in T regulatory cells compared to

134 normal individuals (P<0.001).

135
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136  Random Forest Binary and Multi-Class Models for Feature Selection and Prediction

137 We separated the dataset into a training and test split of 90% training and 10% test.
138  This proportion was used because of the reduced number of instances in the dataset.

139  Also, to ensure reproducible results we set the same random seed for all the models.

140  The first model we constructed was the multi-class predictor. This model attempted to
141 separate the severe, long hauler and non-severe-non-long hauler class. This classifier
142 achieved 97% precision, 97% recall and a F1 score of 0.97 in the training partition. In
143 the test split, it performed slightly better, with a precision of 100%, a recall of 100% and
144  thus and F1 score of 1.00 (Table 2). This model was then analyzed to identify the most
145  relevant or informative features. This resulted in the identification of 6 features with an
146  importance score above the importance median (0.063895) and average (0.07143). The
147 identified features were: IFN-y, IL-2, IL-6, IL-10, IL-8, CCL4-MIP-1p3, in importance

148  order. The full list of ranked features can be seen in figure 2.

149 Regarding the long hauler and non-long hauler binary classifier, our results were
150 consistent between the training and the test set. In both partitions the precision and the
151  recall were 100% (1.00) and thus the F1 score equaled 1.00. The observation that the
152  model had good metrics in the test split when compared to the train set is a valuable
153 indicator that the model is not overfitting, and that it is capable of generalizing the
154  patters identified in the training data. The overview of the precision, recall and F1 score
155  for the binary long hauler model can be seen in table 2. Feature importance analysis of
156  the binary model, revealed that the features identified as important for this model were

157 the same features identified as important for the multi-class predictor. This finding
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158  suggests there is an important group of characteristics or variables that are influential in
159 the identification of long hauler data points from other instances. These features can be

160  seenin figure 2.

161 The severe binary model, which classified instances between non-severe and severe
162  resulted in high performance metrics for both the training and test splits. As shown in
163  table 2, the performance of this model was an indicator of no potential overfitting. This
164  model is of special interest given the small number of instances in the severe class.
165  Furthermore, the feature importance analysis of this model revealed that the relevant
166 features were also the same as with the multi-class model and with the long hauler
167  binary classifier (Figure 2). This finding reinforces our notion that these group of
168 relevant features could impact classification, or that could have some biological

169  significance worth exploring by means of other analysis like a separation heuristic.

170

171  Deep Neural Network Binary Classifiers using the Full Feature Set

172 The deep neural network (DNN) classifier was constructed layers of neurons. Each
173 layer transformed the inputs inputs using the rectified linear activation function or ReLU.
174  The DNN model was constructed to have 1 input layer, 3 hidden layers with 10 neurons
175  each, followed by layer with 6 neurons. Finally, the output layer consists of 3 neuros, for
176  the outputs (classes) and the softmax (multi-class) or sigmoid (binary) function. This

177  architecture was used for the multi-class model and the binary models.

178
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179  The results of the long hauler binary models, revealed differences of ~5% between the
180  metrics of the training and the test set (Table 3). Such difference is not significant to
181  attribute overfitting to the training set. In contrast, the severe binary model had
182  significant differences between the performance metrics of the training and the test set
183  (Table 3). This is evident in the precision score, with 98% in the training set and 75% on
184  the test set, and thus the F1 score with a difference of 20% (0.99 on the training set and
185 0.79 on the test set). A potential explanation could be that the severe class has a limited
186  number of data points, but our random forest classifier for the severe class perfumed

187  well. These results suggest that the best approach is a multi-class predictor.

188

189  Muilti-class Deep Neural Network Classifiers using the Full Feature Set

190  The multi-class DNN implemented using the full feature set had good metrics (Table 3).
191 The precision, recall and F1 score of 100%, 100% and 1.00 in the test split. This
192  indicates that the model is not overfitting, and validating our notion that this would
193  generalize better than the binary models. The model's performance is supported by its
194  confusion matrix (true class vs predicted) where it is possible to determine how well it

195  can predict the three classes (Figure 3).

196 The potential of a DNN classifier is that it adjusts multiple parameters transform the
197 inputs into outputs. This is very important because the vast number of parameters
198 allows for the model to better identify hidden signals in the data. Also, DNN require
199  hyperparameter tuning, such as learning rate, number of hidden layers and neurons per

200 hidden layer, as well as the optimizer and activation function, which affect the
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201  performance of the model. By adjusting these hyperparameters and castrating a model
202 capable of finding the hidden relationships in the data we were able to achieve such

203  high results and construct a predictive multi-class system.

204  Reduced Feature Multi-class Deep Neural Network Classifiers

205 The results of the DNN indicated that the multi-class had the highest performance.
206 Based on this, we constructed a DNN using the 6 most important features identified by
207 the random forest variable importance. This model was known as minimal DNN or
208 mDNN. This model was constructed using the same architecture as the full feature set
209  DNN. This model’s performance in the training set and the test set (Table 4), revealed a
210  significant difference in both precision and recall, such difference could indicate that
211  although the 6 features were identified as the most relevant, it could be possible that all
212 variables contribute to the hidden pattern that makes up the classification of the
213  instances. This idea is supported by the differences in performance between the mDNN
214 and the full feature classifier in both training and test splits (Tables 3 & 4). This is further
215 supported by the comparison of the confusion matrices, where mDNN (figure 4A)

216  misclassifies more instances than the full feature multi-class DNN (Figure 3).

217  Moreover, we simplified our prediction model by feature engineering of two classification
218 scores based on the top informative features. First, a “Long Hauler Score” was defined
219 as S1 = (IFN-y + IL-2 ) / CCL4-MIP-1B. Second, “Severe Score” was defined as S2 =
220  (10*IL-10 + IL-6) — (IL-2 + IL8). Using a combined heuristic to first classify the Long

221 Haulers (S1>0.4) and second the severe COVID-19 patients (S2>0), we obtained a
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sensitivity of 97% for Long Haulers with a 100% specificity and a sensitivity of 88% for

severe patients with a specificity of 96% (Figure 4B).

DISCUSSION

Individuals infected with SARS-Cov2 exert distinct severity patterns which have been
associated with different immune activation profiles. Interestingly, in some cases longer
times are required to experience full recovery, representing a particular pathological
type recently described as long-COVID or long haulers (LH). The scientific evidence
generated during the last months strongly supports that the different outcomes on
COVID-19 patients are determined by the immune mechanisms activated in response to

the viral infection.

The immune response to SARS-Cov2 induces a release of different molecules with
inflammatory properties such as cytokines and chemokines. This event, known as
cytokine storm, is an immunopathological feature of COVID-19 and it has been
associated with the severity of the disease. The increase in blood concentrations of
different cytokines and chemokines such as IL-6, IL-8, IL-10, TNF-q, IL-1j3, IL-2, IP-10,
MCP-1, CCL3, CCL4, and CCL5 has been described for COVID-19 patients (5). Some
of these molecules have been proposed as biomarkers to monitor the clinical evolution
and to determine treatment selection for COVID-19 patients. Nevertheless, it is
important to consider that some of these molecules function in a context dependent

manner, therefore the clinical relevance of analyzing single cytokine changes is limited.
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244  One of the most important challenges during the pandemics is to avoid the saturation of
245  the health systems, therefore the determination of predictive biomarkers that allow a
246  Dbetter stratification of the patients is paramount. Even though cytokines such as IL-6
247  and IL-8 have been proposed as indicators of the disease severity, and in some studies
248 they were strong and independent predictors of patient survival (6), their predictive

249  value when analyzed alone is debatable (7). The generation of scores considering blood
250 levels of cytokines and chemokines with different immunological functions incorporates

251 the importance of the context-dependent function of these molecules.

252 In order to predict severe cases, a score was generated considering IL-10, IL-6, IL-2,
253 and IL-8 blood concentrations. In this classification, severe cases are characterized by
254 high IL-6 and IL-10 levels, both cytokines previously attributed to increase the

255  immunopathogenesis of COVID-19 and predictive value in severe cases (6, 8). In

256  different settings, IL-6 has been associated with oxidative stress, inflammation,

257  endothelial dysfunction, and thrombogenesis (9-12) which are characteristic features of
258 severe COVID-19 cases caused by excessive myeloid cell activation (13). Consistently,
259 increased IL-10 levels interfere with appropriate T-cell responses, inducing T-cell

260 exhaustion and regulatory T cell polarization leading to an evasion of the antiviral

261 immune response (14). Furthermore, besides its anti-inflammatory function on T cells, in
262  some settings IL-10 induces STAT1 activation and a pro-inflammatory response in type
263 | IFN-primed myeloid cells (15,16). Therefore, elevated levels of IL-6 and IL-10 promote
264  myeloid cell activation, oxidative stress, endothelial damage, and dampens adequate T

265  cell activation. Additionally, to strengthen the classification, the score presented here,
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266 differentiates the severe cases by the subtraction of IL-2 and IL-8, which are cytokines

267  related to proper T cell activation (IL-2) and recruitment (IL-8).

268  According to the score generated for distinguishing LH, these patients are characterized
269 by anincreased IFN-y and IL-2 and a reduced CCL4 production. In the context of a viral
270 infection, the combination of IFN-y and IL-2 would induce the activation of effector T

271  cells with pro-inflammatory properties and the capacity of generating an effective

272  immune response to eliminate the virus. However, LH are characterized by longer

273  periods of time with clinical signs and symptoms such as fatigue and lung damage. This
274  suggests that the inflammatory context created by these cytokines to induce T cell

275  activation is not enough to generate an adequate anti-viral response without the proper
276  recruitment signals to attract activated T cells. CCL4 signals through the receptor CCR5
277 to attract T cells to the site of inflammation and depending on the immune context, this
278  molecule recruits differently activated T cells (17,18). Moreover, it was recently shown
279 Dby single cell analysis a down regulation of CCL4 expression in peripheral myeloid cell
280  compartments in patients with mild and severe COVID-19 (19). In LH, IFN-y and IL-2
281  would create an immune context to induce Th1 polarization, but the low levels of CCL4
282  affect the recruitment of these cells impairing the antiviral response. The effect of

283 increased IFN-y and IL-2 on T cell activation is evident in the reduction of the

284  percentage of exhausted (CD4+PD1+/ CD8+PD1+) and regulatory T cells (FoxP3+)

285 compared to healthy donors. Interestingly, there is an increase in the percentage of

286  circulating CD4+ and CD8+ T cells expressing CTLA-4 in the LH group compared to
287  healthy donors, which is a molecule that affects antigen presentation in secondary

288  lymphoid organs, but its presence in circulating T cells may reflect a compensatory
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289  mechanisms to the low CCL4 levels in the LH group. CTLA-4 induced signaling in T
290  cells upregulates the expression of the CCL4 receptor CCR5 (20, 21), in the LH group
291  CTLA-4 upregulation suggests a failed attempt to increase the sensitivity of IFN-y/IL-2
292  activated T cells to CCL4. Therefore, proper T cell activation (high IFN-y+IL-2) but

293 ineffective T cell recruitment (low CCL4) are characteristic features of the failed anti-
294  viral response observed in the LH group supporting virus persistence. Additionally,

295 increased IFN-y promotes myeloid cell activation which is observed in the augmented
296 percentage of inflammatory CD14+CD16+ monocytes in the LH group compared to

297  healthy donors, supporting lymphopenia and virus persistence in these patients. This is
298  supported by recent findings describing an increased gene expression in response to
299  IFN-y in mild and severe COVID-19 patients in peripheral myeloid cells (19) and the
300 dysregulation in the balance of monocyte populations by the expansion of the monocyte
301 subsets described in COVID-19 patients (22). Finally, we propose that long-lasting

302 pulmonary damage observed in LH, is caused by a combination of factors including 1)
303 longer virus persistence influenced by LH immune profile characterized by high IFN-y
304 and IL-2 levels inducing Th1 polarization which is ineffective with low CCL4-induced T
305 cell recruitment, leading to an inflammatory myeloid cell activation; and 2) the

306 immunopathological pulmonary effects consequence of this LH immune profile.

307 Regarding the immunopathological effects of LH immune profile, using murine models it
308 has been shown that high IFN-y levels could affect the kinetics of the resolution of

309 inflammation-induced lung injury as well as thrombus resolution (23, 24), which could be
310 related to long-lasting symptoms of LH associated to pulmonary coagulopathy and

311  immune-mediated tissue damage.
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Interestingly, COVID-19 individuals (including LH, mild, severe) show high levels of
CCL5, a chemoattractant that like CCL4 signals through CCRS5. Indeed, the disruption
of the CCL5-CCRS5 pathway restores immune balance in critical COVID-19 patients (4).
In the specific case of LH, despite the high concentrations of CCL5 a reduction on the
CCL4-mediated recruitment of activated T cells is proposed. This could be related to

different factors:

(1) Reduction of total recruitment signals in LH with low CCL4 concentrations.

(2) Different functional responses of CCL4 and CCLS5 to polymorphic variants of the
CCRS. Distinct functional features have been reported to CCRS5 variants regarding
binding avidity, receptor internalization, Ca++ influx and chemotactic activity (25). Even
though, clear mechanistic differences between CCL4 and CCLS5 interaction with CCR5
are missing, it has been suggested that is important to consider the knowledge gained

on CCRS5 polymorphisms in HIV/AIDS context (26).

(3) Signaling through alternative receptors for CCL5. Besides CCR5, CCL5 can signal
through the receptors CCR1 and CCR3 (27) whereas CCL4 effects are restricted to
CCLS. It has been shown that CCL4 can bind to CCR1 but is not able to induce the
intracellular pathway necessary for activating the chemoattractant stimulus (27,28) .
Therefore, CCL4 has been proposed as an antagonist of CCR1 (28), however further
analysis of this needs to be performed. Interestingly, CCR1 is expressed on blood
myeloid cells such as monocytes and neutrophils (27), and it is upregulated on COVID-
19 patients (29). Additionally, high levels of IFN-y (feature of LH) have been associated

with an increase CCR1 expression on human neutrophils (30). Therefore, in LH, high
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334  levels of CCL5 (combined with low levels of potential CCR1-antagonist CCL4) leads to

335  a higher recruitment of myeloid cells expressing CCR1.

336

337 MATERIAL/METHODS

338  Patients

339  Following informed consent, whole blood was collected in a 10 mL EDTA tube and a 10
340 mL plasma preparation tube (PPT). A total of 144 individuals were enrolled in the study
341  consisting of 29 normal individuals, 26 mild-moderate COVID-19 patients, 25 severe
342 COVID-19 patients and 64 chronic COVID (long hauler-LH) individuals. Long Haulers
343  symptoms are listed in Figure 1. Study subjects were stratified according to the

344  following criteria.

345  Mild

346 1. Fever, cough, sore throat, malaise, headache, myalgia, nausea, diarrhea, loss of
347 taste and small

348 2. No sign of pneumonia on chest imaging (CXR or CT Chest)

349 3. No shortness of breath or dyspnea

350 Moderate:

351 1. Radiological findings of pneumonia fever and respiratory symptoms
352 2. Saturation of oxygen (SpO2) = 94% on room air at sea level
353  Severe

354 1. Saturation of oxygen (SpO2) < 94% on room air at sea level
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355 2. Arterial partial pressure of oxygen (PaO2)/ fraction of inspired oxygen (FiO2) <
356 300mmHG

357 3. Lung infiltrate > 50% within 24 to 48 hours

358 4. HR =125 bpm

359 5. Respiratory rate = 30 breaths per minute

360  Critical

361 1. Respiratory failure and requiring mechanical ventilation, ECMO, high-flow nasal
362 cannula oxygen supplementation, noninvasive positive pressure ventilation

363 (BiPAP, CPAP)

364 2. Septic Shock- Systolic blood pressure < 90mmHg or Diastolic blood pressure <
365 60 mmHg or requiring vasopressors (levophed, vasopressin, epinephrine

366 3. Multiple organ dysfunction (cardiac, hepatic, renal, CNS, thrombotic disease)
367

368 Post-acute COVID-19 (Long COVID)

369 1. Extending beyond 3 weeks from the initial onset of first symptoms

370  Chronic COVID-19

371 1. Extending beyond 12 weeks from the initial onset of first symptoms (Table 1)
372

373  High Parameter Immune Profiling/Flow Cytometry

374  Peripheral blood mononuclear cells were isolated from peripheral blood using

375  Lymphoprep density gradient (STEMCELL Technologies, Vancouver, Canada). Aliquots
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376 200 of cells were frozen in media that contained 90% fetal bovine serum (HyClone,

377 Logan, UT) and 10% dimethyl sulfoxide (Sigma-Aldrich, St. Louis, MO) and stored at -
378  70°C. Cells were stained and analyzed as previously described (4) (Patterson) using a
379  17-color antibody cocktail.

380

381  Multiplex Cytokine Quantification

382  Fresh plasma was used for cytokine quantification using a customized 14-plex bead
383  based flow cytometric assay (IncellKINE, IncellDx, Inc) on a CytoFlex flow cytometer as
384  previously described using the following analytes: 'TNF-a', 'lL-4', 'IL-13",'IL-2", 'GM-

385 CSF', 'sCD40L', 'CCL5 (RANTES)', 'CCL3 (MIP-1a),'IL-6', 'IL-10", 'IFN-y', 'VEGF', 'IL-
386 8',and 'CCL4 (MIP-1B) (4). For each patient sample, 25 pL of plasma was used in each
387  well of a 96-well plate. Standard curves with serial 6 point dilutions of antigen were run
388  on each plate for each cytokine. Raw data was analyzed using LegendPlex software
389 (Biolegend, Inc San Diego CA). Samples were run in duplicate.

390

391 Data Processing

392 Data was imported and processed using Python 2.7, using the pandas library (version
393  1.1.0). and the numeric python module, numpy version 1.18.5. Our data consisted of
394 144 instances representing 4 classes (Normal-n=29, Mild-Moderate-n=26, Severe-n=25,
395 Long Hauler-n=64). Each class had 14 columns, representing the different
396 cytokine/chemokine analytes. Each analyte had different measurements which required

397 anormalization process to reduce outlier effect and to facilitate algorithm convergence.
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398 Normalization was done using Min-Max and based on a linear transformation of the
399 original data. Min-Max maintains the original relationship between the data, while fitting
400 it within a pre-defined boundary. The Python implementation of min-max calculates the
401 range in such a manner that the range of the features will be defined between 0 and 1.
402  For this reason, min-max normalization is also referred to as 0-1 normalization (or

403  scaling). The typical min-max transformation is given in equation 1:

404
(X—Xmin)
405 ~ Xmax—Xmin [1]
406
407

408  Target Variable Processing

409  Since Min-max normalization, can only be applied to numeric variables a new variable
410 defined as targets was created.The variable targets represent the different classes
411  (Long Hauler, Severe, Mild-Moderate, and Normal) for the instances in the dataset. The
412  resulting array has 4 classes for each state. The goal of our analysis is to properly
413  identify/discriminate the instances that belong to the Severe state or the Long-Hauler
414  state compared to other states. This goal can be achieved by building either binary
415 classifiers for the Severe class and for the Long Hauler class, a multi-class predictor.
416  For the construction of both models, t is required to separate the targets to reflect the
417 dosing question: can a predictor discriminate between the Severe, Long Hauler and

418  Other Sates.
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419  To build the models that answer this question, we grouped the M-M and Normal labels
420 in a new class which was distinct form the Severe and Long-Hauler states. We then
421  proceeded to apply filters based on the task (binary or multi-class classification). For the
422  Severe binary predictor, we conditioned the targets to be exactly Severe or else they
423  were assigned to Not-Severe. This same task was done for Long-Haulers, were either
424  an instance label was exactly labelled Long-Hauler or else it would be assigned to the
425  Non-Long Hauler class. The multi-class predictor processing only requires to define
426 three classes: Severe, Long-Hauler and Non-Severe-Non-Long-Hauler which was

427  composed of the Normal and Mild-Moderate cases.

428

429  One-hot Encoding of Targets

430  The implementation of one-hot encoding on the target variable, is based on the notion
431  that multiple machine learning algorithms are unable to properly process categorical
432  data. It is possible to use numeric replacements, such as integer values, but this can
433 only be useful if there is an ordinal relationship within the variable. Such use would
434  imply that there exists a vectorial relationship between the labels, for example, in our
435 classes we have Normal, Mild-Moderate, Severe and Long-Haulers. If we assigned a
436  vector of integers from 0 to 4 in their corresponding orders to the classes, it would
437  assume the presence of a vectorial distance between Normal and Long Hauler or VO ->

438 V4.

439  To properly design an experiment that reflects this, we use one-hot encoding After

440  applying one-hot encoding the labels are substituted with 1 and 0, where 1 represents
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441 the presence of the class and 0 the absence. The use of one-jot encoding corrects for
442  the vector-distance assumption of integer or categorical classes, where higher or larger

443  values could be interpreted as better.

444

445  Definition of precision, recall and F1 score

446  The precision (equation 2) is a measure of the percentage of the results that are
447  relevant. The metric Recall measures the percentage of the total relevant results that
448  are correctly classified by the predictor (equation 3). The harmonic mean between these
449  two measures is known as the F1 score and ranges from 0 to 1, the closer to is to 1, the
450  better the model performs (equation 4). The F1 score for both false positives (FP) and

451 false negatives (FN) as well as for true positives (TP).

452 Precision = TruePositive 2

TruePositive+FalsePositive

TruePositive

453 Recall = [3]

TruePositive+FalseNegative

2xPrecision*Recall TP
454 F1 = 2 = [4]
Precision+Recall TP+1/2(FP+FN)

455

456  Feature Selection and Classification using Random Forest

457  Data pre-processing, target variable processing and the encoding of targets were

458  performed before classification as above. Feature selection is the process of reducing
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459  dimensionality of the dataset by selecting those features or variables that are more

460 informative than those that are not.

461  To perform feature selection, we implemented the RandomForestClassifier method from
462  Sci-kit Learn. Random Forest allows for identification of features that better separate the
463  classes by determining what percentage of the nodes that use those features have a
464  reduction in entropy or impurity (which are measures of how well separated the

465 instances are using a feature).

466  The binary classifier was constructed using the data points and their features with the
467  one-hot encoded target corresponding to: 1) the severe and non-severe model, 2) the
468 long hauler and non-long hauler model and 3) the multiclass model. The model was
469  built with the RandomForestClassifier method from Sci-kit Learn, with the number of
470  trees constructed set to 750, the number of features set as the square root of the

471  feature space, and the node depth equal to 4 to avoid overfitting. These parameters
472  were set for binary and multi-class predictors. Model performance was measured using:

473  precision, recall and the F1 score (see supplementary information).

474

475  Predictor Construction Using Deep Neural Networks

476  The deep neural network (DNN) binary and multiclass classifiers were constructed with
477  a basic DNN architecture built on stacks of perceptrons, where each subsequent layer
478 is connected to the previous one. Each layer transformed the inputs inputs using the

479  rectified linear activation function or ReLU. The DNN models were constructed to have
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480 1 input layer, 3 hidden layers with 10 neurons each, followed by layer with 6 neurons.
481  Finally, the output layer consists of 3 neurons, for the outputs (classes) and the softmax

482  (multi-class) or sigmoid (binary) function.

483  In order for a DNN to generate the best possible predictions, we minimized the loss
484  function or error of the model using the ADAM optimizer to search for the optimal

485  combination of hyperparameters. When setting the optimizer, we defined the learning
486 rate to 1e-3. The loss function was set to categorical cross entropy because the targets

487  are one-hot encoded.

488
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TABLES and FIGURES

Figure 1. Symptoms reported by long hauler patients enrolled in the study.
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Table 1. Immunologic parameters of study participants

CD8% ‘ CD4+PD14% |CD4+LAGS+%

CD4+FoxP3+% ‘ CD8+PD1+ % ‘CD8+LAGS+%

CD19+% ‘ CD14+CD16-%

CD16+CD14-% |

Average | CD3+% | cDa% CD4+CTLA4+% CD8+CTLA%+% CD16+CD14+%
Normals 6445 5389  33.83 35.62 0.94 151 6.21 43.76 435 1.39 6.04 9.00 32.68
[owerci] 5430 [ 4321 [ 2720 [ 2836 | 049 | 0.75 [ 4.54 [ 3350 [ 271 | o074 | 504 | [ 460 ] 25.49 |
[upperci| 7450 | 6457 | 4046 | 4289 | 139 | 2.26 | 7.87 | sa01 | 599 [ 203 | 704 | [ 13a ] 39.86 |
Average | CD3+% ’ CD4% ‘ CD8% ‘ CDA4+PD1+% |CD4+LAG3+%| CD4+CTLA4+% ‘CD4+FoxP3+% CD8+PD1+% |CD8+LAG3+%| CD8+CTLAG+% | CD19+% ’co14+cn1e% |cn1e+cn14+% CD16+CD14-%
ongHauler 4898 5618 3536 17.78 0.72 4.06 2.58 31.99 071 311 13.14 29.30 33.86
Average GM- CCL5 CCL3 CCL4
(pg/ml) TNF-a IL-4 IL-13 IL-2 CSF sCD40L (RANTES) (MIP-1a) IL-6 IL-10 IFN-y VEGF IL-8 (MIP-1B)
Normals 9.09 4.18 3.94 6.17 51.27 7192.39 10781.84 22.82 2.21 0.67 1.94 9.32 16.87 76.84
Lower Cl 7.37 2.17 1.79 5.53 25.72 5148.85 9764.99 13.05 1.65 0.42 0.63 6.36 13.03 61.00
Upper CI 10.81 6.18 6.09 6.82 76.82 9235.92 | 11798.68 32.60 2.77 0.92 3.26 12.28 20.72 92.67
Long Haulers  7.72 17.03 4.21 16.16 12.46  18302.41 12505.06 97.81 20.47 12.23 86.60 41.03 35.98 35.10
Mild-Mod 6.82 2.33 2.40 5.90 56.13 10673.72 11627.70 18.75 8.74 0.63 1.15 17.39 17.37 94.40
Severe 5.39 2.39 2.26 5.43 20.31  12306.39 11581.47 16.54 144.15 3.10 2.06 25.52 10.87 64.84

Table 2. Performance Metrics for the Random Forest Classifiers in the test split.

Model Precision % Recall % F1 Score
Long Hauler-
Full Features 100 100 1.00
Severe- Full 100 100 1.00
Features
Multi-Class- 100 100 1.00

Full Features
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696 Figure 2. Feature importance for multi-class classifier using Random Forest predictor.
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705  Table 3. Performance Metrics of the DNN full feature model in the training and test splits

706

DNN Precision % Recall % F1 Score

Multi-Class -
Full Features 99 97 0.98
-Train

Long Hauler -
Full Features 100 100 1.00
-Train

Severe - Full
Features - 98 100 0.99
Train

Multi-Class -
Full Features 100 100 1.00
-Test

Long Hauler -
Full Features 94 94 0.93
-Test

Severe - Full
Features - 75 92 0.79
Test

707

708 Figure 3. Full-feature multi-class DNN model confusion matrix for the test split.
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Table 4. Performance metrics for the minimal deep neural network (mMDNN) on the

training and test splits.

Model Precision % Recall % F1 Score
MDNN- 98 96 0.97
Training
mDNN- Test 82 89 0.84
A B 250 | &
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Figure 4. Classification abilities of the minimal Deep Neural Network (mDNN) and the

discrimination heuristic generated using important variables. A) The confusion matrix for

the mDNN classifier denoting the presence of false positives for the severe and other

classes. B) Discrimination ability of the heuristic with reduced or most important features

identified using Random Forest classifier. The dots represent the data points, where

yellow are long haulers, green-severe, dark blue-mild/moderate and light blue-normal.
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