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ABSTRACT 47 

  48 

Individuals with systemic symptoms long after COVID-19 has cleared represent 49 

approximately ~10% of all COVID-19 infected individuals.  Here we present a 50 

bioinformatics approach to predict and model the phases of COVID so that effective 51 

treatment strategies can be devised and monitored. We investigated 144 individuals 52 

including normal individuals and patients spanning the COVID-19 disease continuum. 53 

We collected plasma and isolated PBMCs from 29 normal individuals, 26 individuals 54 

with mild-moderate COVID-19, 25 individuals with severe COVID-19, and 64 individuals 55 

with Chronic COVID-19 symptoms. Immune subset profiling and a 14-plex cytokine 56 

panel were run on all patients. Data was analyzed using machine learning methods to 57 

predict and distinguish the groups from each other.Using a multi-class deep neural 58 

network classifier to better fit our prediction model, we recapitulated a 100% precision, 59 

100% recall and F1 score of 1 on the test set. Moreover,  a first score specific for the 60 

chronic COVID-19 patients was defined as S1 = (IFN-γ + IL-2 )/ CCL4-MIP-1β. Second, 61 

a score specific for the severe COVID-19 patients was defined as S2 = (10*IL-10 + IL-6) 62 

– (IL-2 + IL-8). Severe cases are characterized by excessive inflammation and 63 

dysregulated T cell activation, recruitment, and counteracting activities. While chronic 64 

patients are characterized by a profile able to induce the activation of effector T cells 65 

with pro-inflammatory properties and the capacity of generating an effective immune 66 

response to eliminate the virus but without the proper recruitment signals to attract 67 

activated T cells.  68 

 69 
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INTRODUCTION 90 

 91 

Chronic COVID-19 is a group of previously infected individuals, so called “Long 92 

Haulers”, who experience a multitude of symptoms from several weeks to months after 93 

recovering from their acute illness and presumably months after viral clearance. These 94 

symptoms include joint pain, muscle aches, fatigue, “brain fog” and others. These 95 

symptoms can commonly resemble rheumatic diseases such as rheumatoid arthritis, 96 

autoimmune disorders, and others such as fibromyalgia and chronic fatigue syndrome 97 

(1). Many of these common disorders are caused by inflammation, hyper- and/or auto-98 

immunity and some such as chronic fatigue are associated with viral persistence after 99 

an acute infection with pathogens such as Epstein Barr and Cytomegalovirus (2). 100 

Recent studies including those from our laboratory have suggested that (CC) may be 101 

caused by persistent COVID itself (3). Here, we sought to identify possible immunologic 102 

signatures of COVID-19 severity and to determine whether Chronic COVID-19 might 103 

represent a distinct immunologic entity compared to mild to moderate (MM) or 104 

severe/critical COVID-19. Further, we addressed the question whether the immunologic 105 

profile represents an immune response indicative of prolonged or chronic antigenic 106 

exposure. Using machine learning, we identified algorithms that allowed for accurate 107 

determination of chronic COVID and severe COVID immunotypes. Further, we present 108 

a quantitative immunologic score that could be used to stratify patients to therapy and/or 109 

non-subjectively measure response to therapy.  110 

 111 

 112 

 113 
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RESULTS 114 

Immune Profiling 115 

To determine if immunologic abnormalities remain in Long Haulers, we performed high 116 

parameter immune cell quantification and characterization in a subset of individuals with 117 

preserved peripheral blood mononuclear cells. We determined B-cells, T-cells, and 118 

monocytes including subsets and including CD4/CD8 activation and exhaustion. Unlike 119 

active COVID-19, the CD4 and CD8 T-cell populations were within normal limits and 120 

there was no evidence of T-cell exhaustion (co-expression of PD-1, LAG3, and or 121 

CTLA-4). B-cells were significantly elevated compared to normal individuals (P<0.001) 122 

as was the CD14+, CD16+ monocytic subset (P<0.001) (Table 1).  Interestingly, these 123 

two immune cell populations have been shown to be chronically infected by different 124 

viruses. B-cells are infected by Epstein-Barr and the CD14+, CD16+ monocytic subset 125 

by HIV-1 and by HCV (4).  126 

To further characterize the immune response in Long Haulers, we performed 127 

quantitative, multiplex cytokine/chemokine panel on 30 normal individuals to establish 128 

the normal range of the assay. We then analyzed 64 long haulers and compared the 129 

cytokine/chemokine profile (Table 1). IL-2, IL-4, CCL3, IL-6, IL-10, IFN-γ, and VEGF 130 

were all significantly elevated compared to normal control (all P<0.001). Conversely 131 

GM-CSF and CCL4 were significantly lower than normal controls. Further exacerbating 132 

this hyper-immunity was the significant decrease in T regulatory cells compared to 133 

normal individuals (P<0.001). 134 

 135 
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Random Forest Binary and Multi-Class Models for Feature Selection and Prediction 136 

We separated the dataset into a training and test split of 90% training and 10% test. 137 

This proportion was used because of the reduced number of instances in the dataset. 138 

Also, to ensure reproducible results we set the same random seed for all the models. 139 

The first model we constructed was the multi-class predictor. This model attempted to 140 

separate the severe, long hauler and non-severe-non-long hauler class. This classifier 141 

achieved 97% precision, 97% recall and a F1 score of 0.97 in the training partition. In 142 

the test split, it performed slightly better, with a precision of 100%, a recall of 100% and 143 

thus and F1 score of 1.00 (Table 2). This model was then analyzed to identify the most 144 

relevant or informative features. This resulted in the identification of 6 features with an 145 

importance score above the importance median (0.063895) and average (0.07143). The 146 

identified features were: IFN-γ, IL-2, IL-6, IL-10, IL-8, CCL4-MIP-1β, in importance 147 

order. The full list of ranked features can be seen in figure 2. 148 

Regarding the long hauler and non-long hauler binary classifier, our results were 149 

consistent between the training and the test set. In both partitions the precision and the 150 

recall were 100% (1.00) and thus the F1 score equaled 1.00. The observation that the 151 

model had good metrics in the test split when compared to the train set is a valuable 152 

indicator that the model is not overfitting, and that it is capable of generalizing the 153 

patters identified in the training data. The overview of the precision, recall and F1 score 154 

for the binary long hauler model can be seen in table 2. Feature importance analysis of 155 

the binary model, revealed that the features identified as important for this model were 156 

the same features identified as important for the multi-class predictor. This finding 157 
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suggests there is an important group of characteristics or variables that are influential in 158 

the identification of long hauler data points from other instances. These features can be 159 

seen in figure 2.  160 

The severe binary model, which classified instances between non-severe and severe 161 

resulted in high performance metrics for both the training and test splits. As shown in 162 

table 2, the performance of this model was an indicator of no potential overfitting. This 163 

model is of special interest given the small number of instances in the severe class. 164 

Furthermore, the feature importance analysis of this model revealed that the relevant 165 

features were also the same as with the multi-class model and with the long hauler 166 

binary classifier (Figure 2). This finding reinforces our notion that these group of 167 

relevant features could impact classification, or that could have some biological 168 

significance worth exploring by means of other analysis like a separation heuristic.    169 

 170 

Deep Neural Network Binary Classifiers using the Full Feature Set 171 

The deep neural network (DNN) classifier was constructed layers of neurons. Each 172 

layer transformed the inputs inputs using the rectified linear activation function or ReLU. 173 

The DNN model was constructed to have 1 input layer, 3 hidden layers with 10 neurons 174 

each, followed by layer with 6 neurons. Finally, the output layer consists of 3 neuros, for 175 

the outputs (classes) and the softmax (multi-class) or sigmoid (binary) function. This 176 

architecture was used for the multi-class model and the binary models. 177 

 178 
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The results of the long hauler binary models, revealed differences of ~5% between the 179 

metrics of the training and the test set (Table 3). Such difference is not significant to 180 

attribute overfitting to the training set. In contrast, the severe binary model had 181 

significant differences between the performance metrics of the training and the test set 182 

(Table 3). This is evident in the precision score, with 98% in the training set and 75% on 183 

the test set, and thus the F1 score with a difference of 20% (0.99 on the training set and 184 

0.79 on the test set). A potential explanation could be that the severe class has a limited 185 

number of data points, but our random forest classifier for the severe class perfumed 186 

well. These results suggest that the best approach is a multi-class predictor. 187 

 188 

Multi-class Deep Neural Network Classifiers using the Full Feature Set 189 

The multi-class DNN implemented using the full feature set had good metrics (Table 3). 190 

The precision, recall and F1 score of 100%, 100% and 1.00 in the test split. This 191 

indicates that the model is not overfitting, and validating our notion that this would 192 

generalize better than the binary models. The model’s performance is supported by its 193 

confusion matrix (true class vs predicted) where it is possible to determine how well it 194 

can predict the three classes (Figure 3). 195 

The potential of a DNN classifier is that it adjusts multiple parameters transform the 196 

inputs into outputs. This is very important because the vast number of parameters 197 

allows for the model to better identify hidden signals in the data. Also, DNN require 198 

hyperparameter tuning, such as learning rate, number of hidden layers and neurons per 199 

hidden layer, as well as the optimizer and activation function, which affect the 200 
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performance of the model. By adjusting these hyperparameters and castrating a model 201 

capable of finding the hidden relationships in the data we were able to achieve such 202 

high results and construct a predictive multi-class system.    203 

Reduced Feature Multi-class Deep Neural Network Classifiers 204 

The results of the DNN indicated that the multi-class had the highest performance. 205 

Based on this, we constructed a DNN using the 6 most important features identified by 206 

the random forest variable importance. This model was known as minimal DNN or 207 

mDNN. This model was constructed using the same architecture as the full feature set 208 

DNN. This model’s performance in the training set and the test set (Table 4), revealed a 209 

significant difference in both precision and recall, such difference could indicate that 210 

although the 6 features were identified as the most relevant, it could be possible that all 211 

variables contribute to the hidden pattern that makes up the classification of the 212 

instances. This idea is supported by the differences in performance between the mDNN 213 

and the full feature classifier in both training and test splits (Tables 3 & 4). This is further 214 

supported by the comparison of the confusion matrices, where mDNN (figure 4A) 215 

misclassifies more instances than the full feature multi-class DNN (Figure 3). 216 

Moreover, we simplified our prediction model by feature engineering of two classification 217 

scores based on the top informative features. First, a “Long Hauler Score” was defined 218 

as S1 = (IFN-γ + IL-2 ) / CCL4-MIP-1β. Second, “Severe Score” was defined as S2 = 219 

(10*IL-10 + IL-6) – (IL-2 + IL8). Using a combined heuristic to first classify the Long 220 

Haulers (S1>0.4) and second the severe COVID-19 patients (S2>0), we obtained a 221 
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sensitivity of 97% for Long Haulers with a 100% specificity and a sensitivity of 88% for 222 

severe patients with a specificity of 96% (Figure 4B).  223 

 224 

DISCUSSION 225 

 226 

Individuals infected with SARS-Cov2 exert distinct severity patterns which have been 227 

associated with different immune activation profiles. Interestingly, in some cases longer 228 

times are required to experience full recovery, representing a particular pathological 229 

type recently described as long-COVID or long haulers (LH). The scientific evidence 230 

generated during the last months strongly supports that the different outcomes on 231 

COVID-19 patients are determined by the immune mechanisms activated in response to 232 

the viral infection.  233 

The immune response to SARS-Cov2 induces a release of different molecules with 234 

inflammatory properties such as cytokines and chemokines. This event, known as 235 

cytokine storm, is an immunopathological feature of COVID-19 and it has been 236 

associated with the severity of the disease. The increase in blood concentrations of 237 

different cytokines and chemokines such as IL-6, IL-8, IL-10, TNF-α, IL-1β, IL-2, IP-10, 238 

MCP-1, CCL3, CCL4, and CCL5 has been described for COVID-19 patients (5). Some 239 

of these molecules have been proposed as biomarkers to monitor the clinical evolution 240 

and to determine treatment selection for COVID-19 patients. Nevertheless, it is 241 

important to consider that some of these molecules function in a context dependent 242 

manner, therefore the clinical relevance of analyzing single cytokine changes is limited.   243 
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One of the most important challenges during the pandemics is to avoid the saturation of 244 

the health systems, therefore the determination of predictive biomarkers that allow a 245 

better stratification of the patients is paramount. Even though cytokines such as IL-6 246 

and IL-8 have been proposed as indicators of the disease severity, and in some studies 247 

they were strong and independent predictors of patient survival (6), their predictive 248 

value when analyzed alone is debatable (7). The generation of scores considering blood 249 

levels of cytokines and chemokines with different immunological functions incorporates 250 

the importance of the context-dependent function of these molecules.  251 

In order to predict severe cases, a score was generated considering IL-10, IL-6, IL-2, 252 

and IL-8 blood concentrations. In this classification, severe cases are characterized by 253 

high IL-6 and IL-10 levels, both cytokines previously attributed to increase the 254 

immunopathogenesis of COVID-19 and predictive value in severe cases (6, 8). In 255 

different settings, IL-6 has been associated with oxidative stress, inflammation, 256 

endothelial dysfunction, and thrombogenesis (9-12) which are characteristic features of 257 

severe COVID-19 cases caused by excessive myeloid cell activation (13). Consistently, 258 

increased IL-10 levels interfere with appropriate T-cell responses, inducing T-cell 259 

exhaustion and regulatory T cell polarization leading to an evasion of the antiviral 260 

immune response (14). Furthermore, besides its anti-inflammatory function on T cells, in 261 

some settings IL-10 induces STAT1 activation and a pro-inflammatory response in type 262 

I IFN-primed myeloid cells (15,16). Therefore, elevated levels of IL-6 and IL-10 promote 263 

myeloid cell activation, oxidative stress, endothelial damage, and dampens adequate T 264 

cell activation. Additionally, to strengthen the classification, the score presented here, 265 
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differentiates the severe cases by the subtraction of IL-2 and IL-8, which are cytokines 266 

related to proper T cell activation (IL-2) and recruitment (IL-8).    267 

According to the score generated for distinguishing LH, these patients are characterized 268 

by an increased IFN-γ and IL-2 and a reduced CCL4 production. In the context of a viral 269 

infection, the combination of IFN-γ and IL-2 would induce the activation of effector T 270 

cells with pro-inflammatory properties and the capacity of generating an effective 271 

immune response to eliminate the virus. However, LH are characterized by longer 272 

periods of time with clinical signs and symptoms such as fatigue and lung damage. This 273 

suggests that the inflammatory context created by these cytokines to induce T cell 274 

activation is not enough to generate an adequate anti-viral response without the proper 275 

recruitment signals to attract activated T cells. CCL4 signals through the receptor CCR5 276 

to attract T cells to the site of inflammation and depending on the immune context, this 277 

molecule recruits differently activated T cells (17,18). Moreover, it was recently shown 278 

by single cell analysis a down regulation of CCL4 expression in peripheral myeloid cell 279 

compartments in patients with mild and severe COVID-19 (19). In LH, IFN-γ and IL-2 280 

would create an immune context to induce Th1 polarization, but the low levels of CCL4 281 

affect the recruitment of these cells impairing the antiviral response. The effect of 282 

increased IFN-γ and IL-2 on T cell activation is evident in the reduction of the 283 

percentage of exhausted (CD4+PD1+/ CD8+PD1+) and regulatory T cells (FoxP3+) 284 

compared to healthy donors. Interestingly, there is an increase in the percentage of 285 

circulating CD4+ and CD8+ T cells expressing CTLA-4 in the LH group compared to 286 

healthy donors, which is a molecule that affects antigen presentation in secondary 287 

lymphoid organs, but its presence in circulating T cells may reflect a compensatory 288 
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mechanisms to the low CCL4 levels in the LH group. CTLA-4 induced signaling in T 289 

cells upregulates the expression of the CCL4 receptor CCR5 (20, 21), in the LH group 290 

CTLA-4 upregulation suggests a failed attempt to increase the sensitivity of IFN-γ/IL-2 291 

activated T cells to CCL4. Therefore, proper T cell activation (high IFN-γ+IL-2) but 292 

ineffective T cell recruitment (low CCL4) are characteristic features of the failed anti-293 

viral response observed in the LH group supporting virus persistence.  Additionally, 294 

increased IFN-γ promotes myeloid cell activation which is observed in the augmented 295 

percentage of inflammatory CD14+CD16+ monocytes in the LH group compared to 296 

healthy donors, supporting lymphopenia and virus persistence in these patients. This is 297 

supported by recent findings describing an increased gene expression in response to 298 

IFN-γ in mild and severe COVID-19 patients in peripheral myeloid cells (19) and the 299 

dysregulation in the balance of monocyte populations by the expansion of the monocyte 300 

subsets described in COVID-19 patients (22). Finally, we propose that long-lasting 301 

pulmonary damage observed in LH, is caused by a combination of factors including 1) 302 

longer virus persistence influenced by LH immune profile characterized by high IFN-γ 303 

and IL-2 levels inducing Th1 polarization which is ineffective with low CCL4-induced T 304 

cell recruitment, leading to an inflammatory myeloid cell activation; and 2) the 305 

immunopathological pulmonary effects consequence of this LH immune profile. 306 

Regarding the immunopathological effects of LH immune profile, using murine models it 307 

has been shown that high IFN-γ levels could affect the kinetics of the resolution of 308 

inflammation-induced lung injury as well as thrombus resolution (23, 24), which could be 309 

related to long-lasting symptoms of LH associated to pulmonary coagulopathy and 310 

immune-mediated tissue damage.  311 
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Interestingly, COVID-19 individuals (including LH, mild, severe) show high levels of 312 

CCL5, a chemoattractant that like CCL4 signals through CCR5. Indeed, the disruption 313 

of the CCL5-CCR5 pathway restores immune balance in critical COVID-19 patients (4). 314 

In the specific case of LH, despite the high concentrations of CCL5 a reduction on the 315 

CCL4-mediated recruitment of activated T cells is proposed. This could be related to 316 

different factors: 317 

(1) Reduction of total recruitment signals in LH with low CCL4 concentrations. 318 

(2) Different functional responses of CCL4 and CCL5 to polymorphic variants of the 319 

CCR5. Distinct functional features have been reported to CCR5 variants regarding 320 

binding avidity, receptor internalization, Ca++ influx and chemotactic activity (25). Even 321 

though, clear mechanistic differences between CCL4 and CCL5 interaction with CCR5 322 

are missing, it has been suggested that is important to consider the knowledge gained 323 

on CCR5 polymorphisms in HIV/AIDS context (26).  324 

(3) Signaling through alternative receptors for CCL5. Besides CCR5, CCL5 can signal 325 

through the receptors CCR1 and CCR3 (27) whereas CCL4 effects are restricted to 326 

CCL5. It has been shown that CCL4 can bind to CCR1 but is not able to induce the 327 

intracellular pathway necessary for activating the chemoattractant stimulus (27,28) . 328 

Therefore, CCL4 has been proposed as an antagonist of CCR1 (28), however further 329 

analysis of this needs to be performed. Interestingly, CCR1 is expressed on blood 330 

myeloid cells such as monocytes and neutrophils (27), and it is upregulated on COVID-331 

19 patients (29). Additionally, high levels of IFN-γ (feature of LH) have been associated 332 

with an increase CCR1 expression on human neutrophils (30). Therefore, in LH, high 333 
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levels of CCL5 (combined with low levels of potential CCR1-antagonist CCL4) leads to 334 

a higher recruitment of myeloid cells expressing CCR1.  335 

 336 

MATERIAL/METHODS 337 

Patients 338 

Following informed consent, whole blood was collected in a 10 mL EDTA tube and a 10 339 

mL plasma preparation tube (PPT). A total of 144 individuals were enrolled in the study 340 

consisting of 29 normal individuals, 26 mild-moderate COVID-19 patients, 25 severe 341 

COVID-19 patients and 64 chronic COVID (long hauler-LH) individuals. Long Haulers 342 

symptoms are listed in Figure 1. Study subjects were stratified according to the 343 

following criteria. 344 

Mild 345 

1. Fever, cough, sore throat, malaise, headache, myalgia, nausea, diarrhea, loss of 346 

taste and small 347 

2. No sign of pneumonia on chest imaging (CXR or CT Chest) 348 

3. No shortness of breath or dyspnea 349 

Moderate: 350 

1. Radiological findings of pneumonia fever and respiratory symptoms 351 

2. Saturation of oxygen (SpO2) ≥ 94% on room air at sea level 352 

Severe  353 

1. Saturation of oxygen (SpO2) < 94% on room air at sea level 354 
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2. Arterial partial pressure of oxygen (PaO2)/ fraction of inspired oxygen (FiO2) < 355 

300mmHG 356 

3. Lung infiltrate > 50% within 24 to 48 hours 357 

4. HR ≥ 125 bpm 358 

5. Respiratory rate ≥ 30 breaths per minute 359 

Critical 360 

1. Respiratory failure and requiring mechanical ventilation, ECMO, high-flow nasal 361 

cannula oxygen supplementation, noninvasive positive pressure ventilation 362 

(BiPAP, CPAP) 363 

2. Septic Shock- Systolic blood pressure < 90mmHg or Diastolic blood pressure < 364 

60 mmHg or requiring vasopressors (levophed, vasopressin, epinephrine 365 

3. Multiple organ dysfunction (cardiac, hepatic, renal, CNS, thrombotic disease) 366 

 367 

Post-acute COVID-19 (Long COVID) 368 

1.  Extending beyond 3 weeks from the initial onset of first symptoms 369 

Chronic COVID-19 370 

1. Extending beyond 12 weeks from the initial onset of first symptoms (Table 1) 371 

 372 

High Parameter Immune Profiling/Flow Cytometry 373 

Peripheral blood mononuclear cells were isolated from peripheral blood using 374 

Lymphoprep density gradient (STEMCELL Technologies, Vancouver, Canada). Aliquots 375 
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200 of cells were frozen in media that contained 90% fetal bovine serum (HyClone, 376 

Logan, UT) and 10% dimethyl sulfoxide (Sigma-Aldrich, St. Louis, MO) and stored at -377 

70°C. Cells were stained and analyzed as previously described (4) (Patterson) using a 378 

17-color antibody cocktail.  379 

 380 

Multiplex Cytokine Quantification 381 

Fresh plasma was used for cytokine quantification using a customized 14-plex bead 382 

based flow cytometric assay (IncellKINE, IncellDx, Inc) on a CytoFlex flow cytometer as 383 

previously described using the following analytes: 'TNF-α', 'IL-4', 'IL-13','IL-2',  'GM-384 

CSF',  'sCD40L', 'CCL5 (RANTES)',  'CCL3 (MIP-1α)','IL-6', 'IL-10', 'IFN-γ', 'VEGF',  'IL-385 

8', and  'CCL4 (MIP-1β) (4). For each patient sample, 25 µL of plasma was used in each 386 

well of a 96-well plate. Standard curves with serial 6 point dilutions of antigen were run 387 

on each plate for each cytokine. Raw data was analyzed using LegendPlex software 388 

(Biolegend, Inc San Diego CA). Samples were run in duplicate. 389 

 390 

Data Processing 391 

Data was imported and processed using Python 2.7, using the pandas library (version 392 

1.1.0). and the numeric python module, numpy version 1.18.5. Our data consisted of 393 

144 instances representing 4 classes (Normal-n=29, Mild-Moderate-n=26, Severe-n=25, 394 

Long Hauler-n=64). Each class had 14 columns, representing the different 395 

cytokine/chemokine analytes. Each analyte had different measurements which required 396 

a normalization process to reduce outlier effect and to facilitate algorithm convergence. 397 
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Normalization was done using Min-Max and based on a linear transformation of the 398 

original data. Min-Max maintains the original relationship between the data, while fitting 399 

it within a pre-defined boundary. The Python implementation of min-max calculates the 400 

range in such a manner that the range of the features will be defined between 0 and 1. 401 

For this reason, min-max normalization is also referred to as 0-1 normalization (or 402 

scaling). The typical min-max transformation is given in equation 1:  403 

 404 

끫殖 = (끫殖−끫殖끫殖끫殖끫殖)끫殖끫殖끫殖끫殖−끫殖끫殖끫殖끫殖   [1] 405 

 406 

 407 

Target Variable Processing 408 

Since Min-max normalization, can only be applied to numeric variables a new variable 409 

defined as targets was created.The variable targets represent the different classes 410 

(Long Hauler, Severe, Mild-Moderate, and Normal) for the instances in the dataset. The 411 

resulting array has 4 classes for each state. The goal of our analysis is to properly 412 

identify/discriminate the instances that belong to the Severe state or the Long-Hauler 413 

state compared to other states. This goal can be achieved by building either binary 414 

classifiers for the Severe class and for the Long Hauler class, a multi-class predictor. 415 

For the construction of both models, t is required to separate the targets to reflect the 416 

dosing question: can a predictor discriminate between the Severe, Long Hauler and 417 

Other Sates. 418 
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To build the models that answer this question, we grouped the M-M and Normal labels 419 

in a new class which was distinct form the Severe and Long-Hauler states. We then 420 

proceeded to apply filters based on the task (binary or multi-class classification). For the 421 

Severe binary predictor, we conditioned the targets to be exactly Severe or else they 422 

were assigned to Not-Severe. This same task was done for Long-Haulers, were either 423 

an instance label was exactly labelled Long-Hauler or else it would be assigned to the 424 

Non-Long Hauler class. The multi-class predictor processing only requires to define 425 

three classes: Severe, Long-Hauler and Non-Severe-Non-Long-Hauler which was 426 

composed of the Normal and Mild-Moderate cases. 427 

 428 

One-hot Encoding of Targets 429 

The implementation of one-hot encoding on the target variable, is based on the notion 430 

that multiple machine learning algorithms are unable to properly process categorical 431 

data. It is possible to use numeric replacements, such as integer values, but this can 432 

only be useful if there is an ordinal relationship within the variable. Such use would 433 

imply that there exists a vectorial relationship between the labels, for example, in our 434 

classes we have Normal, Mild-Moderate, Severe and Long-Haulers. If we assigned a 435 

vector of integers from 0 to 4 in their corresponding orders to the classes, it would 436 

assume the presence of a vectorial distance between Normal and Long Hauler or V0 -> 437 

V4.  438 

To properly design an experiment that reflects this, we use one-hot encoding After 439 

applying one-hot encoding the labels are substituted with 1 and 0, where 1 represents 440 
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the presence of the class and 0 the absence. The use of one-jot encoding corrects for 441 

the vector-distance assumption of integer or categorical classes, where higher or larger 442 

values could be interpreted as better. 443 

 444 

Definition of precision, recall and F1 score 445 

The precision (equation 2) is a measure of the percentage of the results that are 446 

relevant. The metric Recall measures the percentage of the total relevant results that 447 

are correctly classified by the predictor (equation 3). The harmonic mean between these 448 

two measures is known as the F1 score and ranges from 0 to 1, the closer to is to 1, the 449 

better the model performs (equation 4). The F1 score for both false positives (FP) and 450 

false negatives (FN) as well as for true positives (TP). 451 

끫殆끫殆끫殆끫殆끫殆끫殆끫殆끫殆끫殆 = 끫殎끫殎끫殎끫殎끫殎끫殎끫殎끫殖끫殎끫殖끫殎끫殎끫殎끫殎끫殎끫殎끫殎끫殎끫殎끫殖끫殎끫殖끫殎끫殎+끫歲끫殖끫歲끫殎끫殎끫殎끫殎끫殎끫殖끫殎끫殖끫殎끫殎   [2] 452 

끫殊끫殆끫殆끫殊끫殊끫殊 = 끫殎끫殎끫殎끫殎끫殎끫殎끫殎끫殖끫殎끫殖끫殎끫殎끫殎끫殎끫殎끫殎끫殎끫殎끫殎끫殖끫殎끫殖끫殎끫殎+끫歲끫殖끫歲끫殎끫殎끫歲끫殎끫歲끫殖끫殎끫殖끫殎끫殎   [3] 453 

끫歲1 = 2∗끫殎끫殎끫殎끫殆끫殖끫殎끫殖끫殎끫殖∗끫殊끫殎끫殆끫殖끫歲끫歲끫殎끫殎끫殎끫殆끫殖끫殎끫殖끫殎끫殖+끫殊끫殎끫殆끫殖끫歲끫歲 = 끫殎끫殎끫殎끫殎+1 2⁄ (끫歲끫殎+끫歲끫歲)  [4] 454 

 455 

Feature Selection and Classification using Random Forest 456 

Data pre-processing, target variable processing and the encoding of targets were 457 

performed before classification as above. Feature selection is the process of reducing 458 
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dimensionality of the dataset by selecting those features or variables that are more 459 

informative than those that are not.  460 

To perform feature selection, we implemented the RandomForestClassifier method from 461 

Sci-kit Learn. Random Forest allows for identification of features that better separate the 462 

classes by determining what percentage of the nodes that use those features have a 463 

reduction in entropy or impurity (which are measures of how well separated the 464 

instances are using a feature).     465 

The binary classifier was constructed using the data points and their features with the 466 

one-hot encoded target corresponding to: 1) the severe and non-severe model, 2) the 467 

long hauler and non-long hauler model and 3) the multiclass model. The model was 468 

built with the RandomForestClassifier method from Sci-kit Learn, with the number of 469 

trees constructed set to 750, the number of features set as the square root of the 470 

feature space, and the node depth equal to 4 to avoid overfitting. These parameters 471 

were set for binary and multi-class predictors. Model performance was measured using: 472 

precision, recall and the F1 score (see supplementary information).  473 

 474 

Predictor Construction Using Deep Neural Networks 475 

The deep neural network (DNN) binary and multiclass classifiers were constructed with  476 

a basic DNN architecture built on stacks of perceptrons, where each subsequent layer 477 

is connected to the previous one. Each layer transformed the inputs inputs using the 478 

rectified linear activation function or ReLU. The DNN models were constructed to have 479 
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1 input layer, 3 hidden layers with 10 neurons each, followed by layer with 6 neurons. 480 

Finally, the output layer consists of 3 neurons, for the outputs (classes) and the softmax 481 

(multi-class) or sigmoid (binary) function.  482 

In order for a DNN to generate the best possible predictions, we minimized the loss 483 

function or error of the model using the ADAM optimizer to search for the optimal 484 

combination of hyperparameters. When setting the optimizer, we defined the learning 485 

rate to 1e-3. The loss function was set to categorical cross entropy because the targets 486 

are one-hot encoded. 487 

 488 

 489 
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TABLES and FIGURES 676 

 677 

Figure 1. Symptoms reported by long hauler patients enrolled in the study. 678 

 679 

 680 
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 687 

Table 1.  Immunologic parameters of study participants 688 

 689 

 690 

 691 

 692 

 693 

Table 2. Performance Metrics for the Random Forest Classifiers in the test split. 694 

Model 

 

Precision % 

 

Recall % 

 

F1 Score 

 

Long Hauler- 
Full Features 

100 100 1.00 

Severe- Full 
Features 

100 100 1.00 

Multi-Class- 
Full Features 

100 100 1.00 

 695 

Average CD3+% CD4% CD8% CD4+PD1+% CD4+LAG3+% CD4+CTLA4+% CD4+FoxP3+% CD8+PD1+ % CD8+LAG3+ % CD8+CTLA4+% CD19+% CD14+CD16-% CD16+CD14+% CD16+CD14-%

Normals 64.45 53.89 33.83 35.62 0.94 1.51 6.21 43.76 4.35 1.39 6.04 42.79 9.00 32.68

Lower CI 54.39 43.21 27.20 28.36 0.49 0.75 4.54 33.50 2.71 0.74 5.04 34.41 4.60 25.49

Upper CI 74.50 64.57 40.46 42.89 1.39 2.26 7.87 54.01 5.99 2.03 7.04 51.16 13.41 39.86

Average CD3+% CD4% CD8% CD4+PD1+% CD4+LAG3+% CD4+CTLA4+% CD4+FoxP3+% CD8+PD1+ % CD8+LAG3+ % CD8+CTLA4+% CD19+% CD14+CD16-% CD16+CD14+% CD16+CD14-%

Long Hauler 48.98 56.18 35.36 17.78 0.72 4.06 2.58 31.99 0.71 3.11 13.14 19.07 29.30 33.86

Average 

(pg/ml) TNF-α IL-4 IL-13 IL-2

GM-

CSF sCD40L

CCL5 

(RANTES)

CCL3 

(MIP-1α) IL-6 IL-10 IFN-γ VEGF IL-8

CCL4 

(MIP-1β)
Normals 9.09 4.18 3.94 6.17 51.27 7192.39 10781.84 22.82 2.21 0.67 1.94 9.32 16.87 76.84

Lower CI 7.37 2.17 1.79 5.53 25.72 5148.85 9764.99 13.05 1.65 0.42 0.63 6.36 13.03 61.00

Upper CI 10.81 6.18 6.09 6.82 76.82 9235.92 11798.68 32.60 2.77 0.92 3.26 12.28 20.72 92.67

Long Haulers 7.72 17.03 4.21 16.16 12.46 18302.41 12505.06 97.81 20.47 12.23 86.60 41.03 35.98 35.10

Mild-Mod 6.82 2.33 2.40 5.90 56.13 10673.72 11627.70 18.75 8.74 0.63 1.15 17.39 17.37 94.40

Severe 5.39 2.39 2.26 5.43 20.31 12306.39 11581.47 16.54 144.15 3.10 2.06 25.52 10.87 64.84
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Figure 2. Feature importance for multi-class classifier using Random Forest predictor. 696 
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Table 3. Performance Metrics of the DNN full feature model in the training and test splits 705 

 706 

DNN 

 

Precision % 

 

Recall % 

 

F1 Score 

 

Multi-Class - 
Full Features 

-Train 
99 97 0.98 

Long Hauler - 
Full Features 

-Train 
100 100 1.00 

Severe - Full 
Features - 

Train 
98 100 0.99 

Multi-Class - 
Full Features 

-Test 
100 100 1.00 

Long Hauler - 
Full Features 

-Test 
94 94 0.93 

Severe - Full 
Features - 

Test 
75 92 0.79 

 707 

Figure 3. Full-feature multi-class DNN model confusion matrix for the test split. 708 

 709 
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Table 4. Performance metrics for the minimal deep neural network (mDNN) on the 710 

training and test splits. 711 

Model Precision % Recall % F1 Score 

mDNN- 
Training 

98 96 0.97 

mDNN- Test 82 89 0.84 

 712 

 713 

Figure 4. Classification abilities of the minimal Deep Neural Network (mDNN) and the 714 

discrimination heuristic generated using important variables. A) The confusion matrix for 715 

the mDNN classifier denoting the presence of false positives for the severe and other 716 

classes. B) Discrimination ability of the heuristic with reduced or most important features 717 

identified using Random Forest classifier. The dots represent the data points, where 718 

yellow are long haulers, green-severe, dark blue-mild/moderate and light blue-normal. 719 

 720 
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