

1 Full title: Mycobacterial infection-induced miR-206 inhibits protective neutrophil recruitment
2 via the CXCL12/CXCR4 signalling axis

3

4 Short title: Infection-induced miR-206 expression is immunosuppressive

5

6 Kathryn Wright^{1,2}, Kumudika de Silva², Karren M. Plain², Auriol C. Purdie², Tamika A
7 Blair³, Iain G Duggin³, Warwick J. Britton^{1,4}, Stefan H. Oehlers^{1,5*}

8 ¹Tuberculosis Research Program at the Centenary Institute, The University of Sydney,
9 Camperdown NSW Australia

10 ²The University of Sydney, Faculty of Science, Sydney School of Veterinary Science,
11 Sydney NSW, Australia

12 ³iitree Institute, University of Technology Sydney, Ultimo, NSW, Australia

13 ⁴Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW,
14 Australia

15 ⁵The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute,
16 Camperdown NSW Australia

17 * Corresponding author: Stefan Oehlers, stefan.oehlers@sydney.edu.au, Tuberculosis
18 Research Program at the Centenary Institute, The University of Sydney, Camperdown NSW
19 2050 Australia

20

21 **Abstract**

22 Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways
23 during infection to drive the formation of permissive granuloma microenvironments. Dynamic
24 regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial
25 infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish
26 model of *Mycobacterium marinum* infection, which allows investigation of the early stages of
27 granuloma formation. We find miR-206 is upregulated following infection by pathogenic *M.*
28 *marinum* and that antagonir-mediated knockdown of miR-206 is protective against infection.
29 We observed striking upregulation of *cxcl12a* and *cxcr4b* in infected miR-206 knockdown

30 zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of
31 infection. We used Crispr/Cas9-mediated knockdown of *cxcl12a* and *cxcr4b* expression and
32 AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced
33 bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4
34 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria
35 induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective
36 neutrophil recruitment to granulomas.

37

38 **Author summary**

39 Mycobacterial infections cause significant disease burden to humans and animals, the most
40 widely known example being tuberculosis which has killed more humans than any other
41 infectious disease throughout history. Infectious mycobacteria are highly evolved to hijack host
42 processes, including the very immune cells tasked with destroying them. microRNAs are host
43 molecules that control wide-ranging programs of host gene expression and are important in the
44 immune response to infections. Here we use the zebrafish model of mycobacterial infection to
45 determine the role of the infection-induced microRNA miR-206 in the host response to
46 infection. We found pathogenic mycobacteria trigger the host to produce more miR-206 in
47 order to suppress the otherwise protective recruitment of neutrophils to sites of infection via
48 the host Cxcl12/Cxcr4 signalling pathway. Our study provides new insight into the role of
49 mycobacterial infection-induced miR-206 function in the context of a whole host.

50

51 **Introduction**

52 Pathogenic mycobacteria, including the causative agents of tuberculosis and leprosy, are
53 capable of appropriating host signalling and immune pathways to increase their survival and
54 establish chronic infection in cell-rich granulomas, which support mycobacterial growth and
55 latent survival (1, 2).

56 microRNA (miRNA) are short, non-coding RNA of approximately 22 nucleotides that
57 can post-transcriptionally regulate gene expression and transcript abundance through “gene
58 silencing”. miRNA bind to the untranslated region (UTR) of mRNA to regulate the stability of
59 target genes through degradation or suppression, reducing protein translation (3). Expression
60 of miRNA is dynamically regulated in mycobacterial infection, suggesting a key role in the

61 host response to infection by the modulation of downstream genes and protein expression (4-
62 6).

63 miR-206 is a member of the muscle-associated myomiR family and is characteristically
64 associated with myoblast differentiation and muscle development (7-10). However, miR-206
65 has been recently found to be differentially regulated in mycobacterial infection of THP-1
66 leukocytic cells (11). Infection of THP-1 cells with *Mycobacterium tuberculosis* revealed a role
67 for miR-206 in the regulation of proinflammatory cytokine responses through reducing TIMP3
68 expression (11). miR-206 has also been implicated in viral pathogenesis, reducing replication
69 of influenza virus, and in neuroinflammation (12, 13). While miR-206 clearly has a diverse
70 range of biological functions, the *in vivo* role of miR-206 during mycobacterial infection
71 remains undetermined.

72 Here we use the zebrafish-*Mycobacterium marinum* model to investigate the *in vivo*
73 function of dre-miR-206-3p (miR-206) in mycobacterial infection, and the impact on host gene
74 expression and neutrophil recruitment. Zebrafish are an established model for the investigation
75 of host-mycobacteria interactions, and to evaluate host gene function, including the role of
76 chemokine signalling (14-16). Regulation of neutrophil based inflammation and motility by
77 miRNA has also been investigated using a zebrafish model (17-21), highlighting the
78 applicability of the zebrafish model to study conserved miRNA functions within host-pathogen
79 interactions.

80

81 **Results**

82 **Zebrafish miR-206 expression is responsive to *M. marinum* infection**

83 To determine if miR-206 is responsive to *M. marinum* infection in zebrafish, embryos were
84 infected with *M. marinum* via caudal vein injection and miR-206 expression was measured by
85 quantitative (q)PCR at 1, 3, and 5 days post infection (dpi). Infection with *M. marinum*
86 increased miR-206 expression at 1 and 3 dpi, but decreased miR-206 expression at 5 dpi
87 compared to uninfected controls (Fig 1A).

88

89 **AntagomiR abrogates infection-induced miR-206 expression**

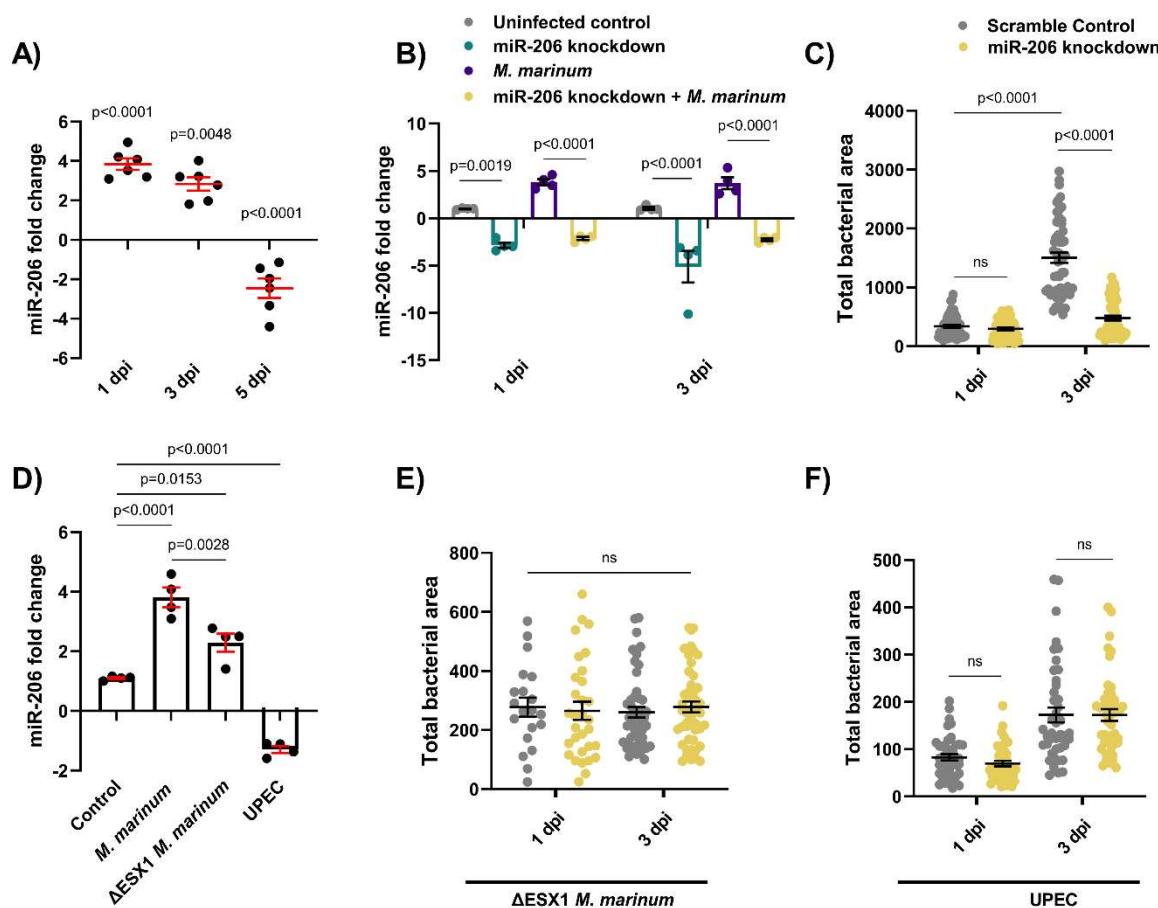
90 To determine the efficacy of antagomiR-mediated miRNA knockdown during *M. marinum*
91 infection, embryos were injected with miR-206 antagomiR at the single-cell stage and infected
92 at 1.5 days post fertilisation (dpf). miR-206 expression levels were analysed at both 1- and 3-
93 days post infection (dpi) and were increased in *M. marinum* infected embryos compared to
94 control uninfected (p=0.027 and p=0.039 respectively). AntagomiR knockdown effectively
95 reduced the miR-206 level relative to infected embryos at both timepoints, demonstrating
96 effective knockdown of infection-induced miR-206 expression by antagomiRs (Fig 1B).

97

98 **miR-206 knockdown reduces *M. marinum* burden**

99 As miR-206 was modulated during infection, its effect on disease was assessed through
100 assessing the bacterial burden following antagomiR knockdown. There was no difference in
101 bacterial burdens between miR-206 knockdown and control embryos at 1 dpi, however by 3
102 dpi, knockdown embryos had a significantly lower burden than control embryos. (Fig 1C).

103

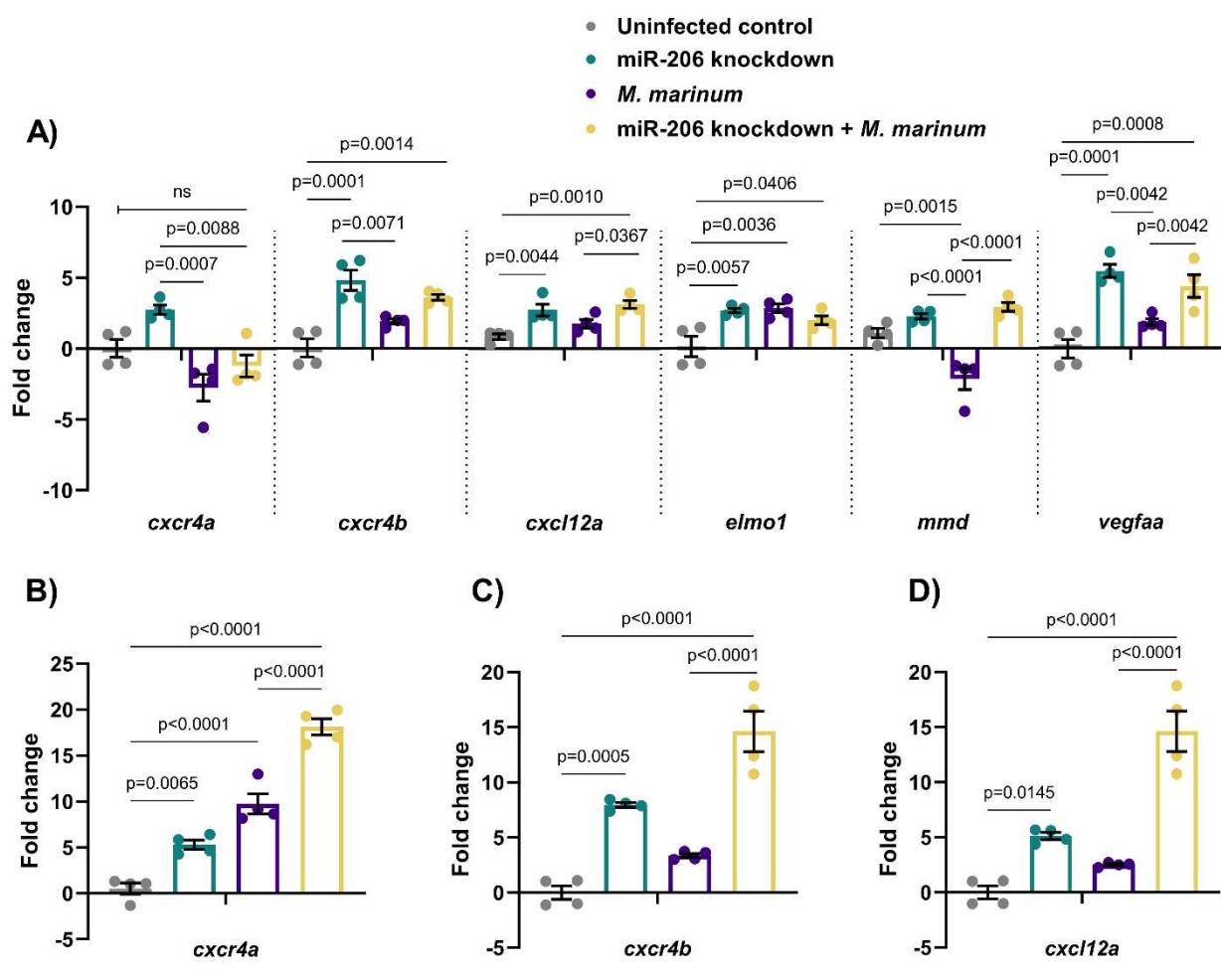

104 **Infection-induced miR-206 upregulation is driven by mycobacterial virulence factors**

105 To investigate whether the decreased bacterial burden in miR-206 knockdown embryos was a
106 general response to foreign pathogens or a more directed response, embryos were infected with
107 either Δ ESX1 *M. marinum* or uropathogenic *Escherichia coli* (UPEC). Δ ESX1 *M. marinum*
108 lack the key type VII secretion system and are far less virulent as they are unable to lyse host
109 cell membranes to escape the phagosome (22). In comparison to mycobacteria, UPEC cause
110 an acute sepsis infection and are an example an extracellular bacterium.

111 Expression of miR-206 was analysed by qPCR in embryos infected with WT *M. marinum*,
112 Δ ESX1 *M. marinum*, or UPEC at 1 dpi (Fig 1D). Infection with Δ ESX1 *M. marinum*
113 increased miR-206 expression, however this response was less than the level induced by
114 infection with virulent WT *M. marinum*. Conversely, miR-206 was decreased in embryos
115 infected with UPEC.

116 Δ ESX1 *M. marinum* infection burdens were unaffected by miR-206 knockdown at
117 either 1 or 3 dpi (Fig 1E). Similarly, there was also no difference in UPEC burden levels in
118 miR-206 knockdown embryos at either 6 hours post infection (hpi) or 1 dpi despite an increase

119 in infection between timepoints (Fig 1F). These results indicate that the impact on bacterial
120 burden in miR-206 knockdown embryos is driven by *M. marinum* virulence factors.


121
122 **Fig 1. Infection-induced miR-206 expression alters bacterial burden.** (A) Expression of
123 miR-206 analysed by qPCR at 1, 3, and 5 dpi. (B) Expression of miR-206 in uninfected and
124 infected antagonir-injected embryos (miR-206 knockdown). (C) *M. marinum* burden in miR-
125 206 knockdown embryos at 1 and 3 dpi. (D) Expression of miR-206 at 1 dpi following infection
126 with either wild-type (WT) *M. marinum*, ΔESX1 *M. marinum*, or UPEC. (E) ΔESX1 *M.*
127 *marinum* burden in miR-206 knockdown embryos at 1 and 3 dpi. (F) UPEC burden in
128 antagonir-injected embryos at 6 hpi and 1 dpi. Each data point represents a single
129 measurement, with the mean and SEM shown. For qPCR analysis, each data point represents
130 10 embryos, and contains 2 biological replicates. Bacterial burden analysis data points (WT *M.*
131 *marinum*, ΔESX1 *M. marinum*, and UPEC) represent individual embryos (n=40-50 embryos
132 per group) and are representative of 2 biological replicates.

133

134 **miR-206 target mRNA gene expression patterns are conserved during *M. marinum***
135 **infection of zebrafish**

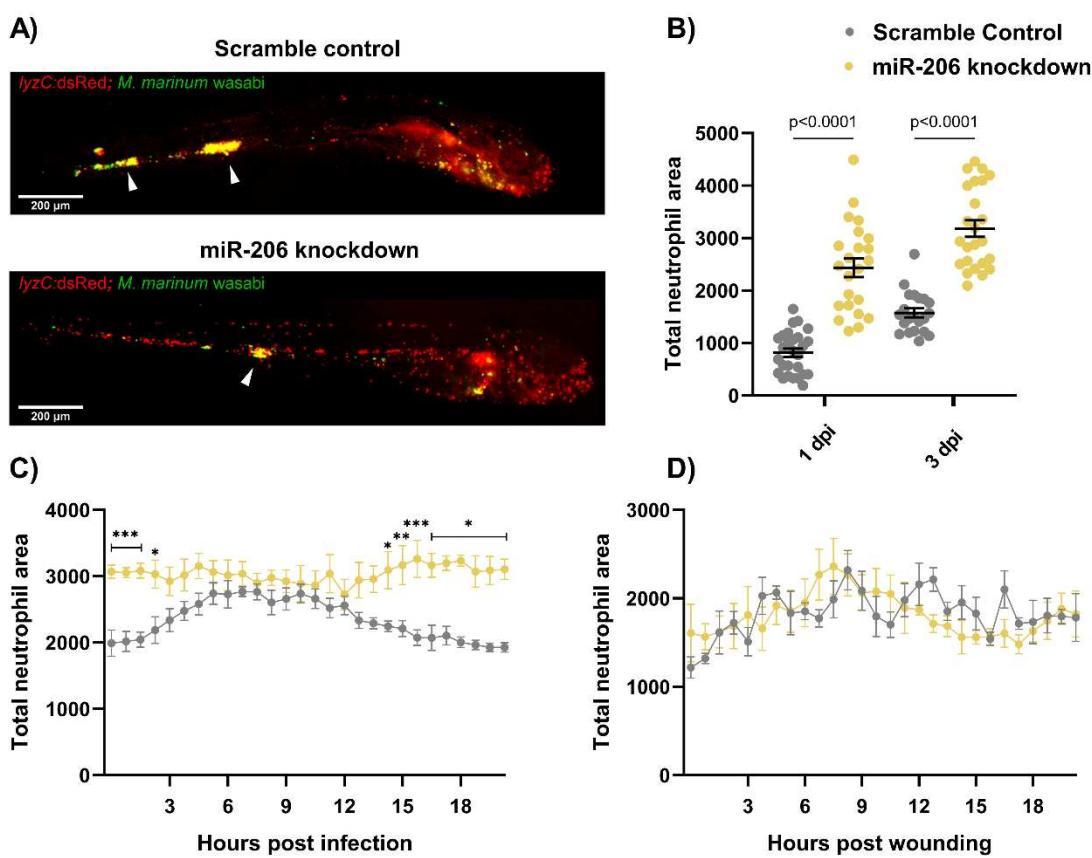
136 To further investigate the functional relevance of miR-206 in mycobacterial infection, a list of
137 potential mRNA target genes was compiled through published experimentally observed targets
138 and bioinformatic target prediction algorithms (23-26).

139 Expression of selected potential target genes of miR-206 was analysed by qPCR at 2
140 dpf, with increased expression in knockdown samples expected to indicate targeting by miR-
141 206 (Fig 2A). From the expression profiling data, *cxcl12a* and *cxcr4b* were considered to be
142 likely targets of miR-206. Expression of these genes was increased by *M. marinum* infection
143 and in both knockdown treatments, suggesting they may be active during infection and
144 contributing to the decreased bacterial burden observed in miR-206 knockdown embryos.
145 These genes were also of particular interest as the Cxcl12/Cxcr4 pathway has been previously
146 implicated in zebrafish immunity (14, 15). Expression of *cxcr4a*, *cxcr4b*, *cxcl12a* was analysed
147 at 3 dpi, showing that knockdown of miR-206 significantly increased the transcript abundance
148 of *cxcr4b* and *cxcl12a* in infected embryos compared to *M. marinum* infection alone and
149 uninfected controls (Fig 2B-D).

150

151 **Fig 2. Expression profiles of potential mRNA targets of miR-206.** (A) Expression of
152 candidate target genes measured by qPCR at 1 dpi in miR-206 knockdown embryos. (B-D)
153 Expression of zebrafish CXCL12/CXCR4 pathway ortholog genes at 3 dpi. Each data point
154 represents a single measurement of 10 pooled embryos and 2 biological replicates, with the
155 mean and SEM shown.

156


157 **Knockdown of miR-206 increases neutrophil response to *M. marinum* infection**

158 As miR-206 knockdown increased the expression of *cxcl12a* and *cxcr4* genes, which are
159 involved in neutrophil migration and retention of cells at sites of infection and inflammation
160 (19, 27-29), the neutrophil response to *M. marinum* infection in miR-206 knockdown treated
161 embryos was assessed by live imaging of transgenic *Tg(lyzC:GFP)nz117* or *Tg(lyzC:DsRed2)nz50*
162 embryos, where neutrophils are fluorescently labelled.

163 First, static imaging was performed at 1 and 3 dpi to measure total neutrophil numbers
164 in infected embryos. At each timepoint, miR-206 knockdown embryos had a significantly
165 higher total number of neutrophils compared to control (Fig 3A-B). We noted strong overlap
166 of neutrophils with *M. marinum* but the location of granulomas around the caudal
167 haematopoietic tissue confounded quantification of granuloma-associated neutrophils.

168 To determine if miR-206 knockdown increased the number of infection-associated
169 neutrophils, embryos were injected with *M. marinum* into the trunk (away from the caudal
170 haematopoietic tissue) and subjected to time-lapse imaging (30). Knockdown embryos had
171 significantly more neutrophils at the site of infection for the first 2.5 hours of infection
172 compared to control infected embryos (Fig 3C). While neutrophil migration in control infected
173 embryos began to wane at approximately 12 hpi (S1 video), the response in the knockdown
174 embryos was sustained and higher numbers of neutrophils were maintained at the site of
175 infection (S2 video).

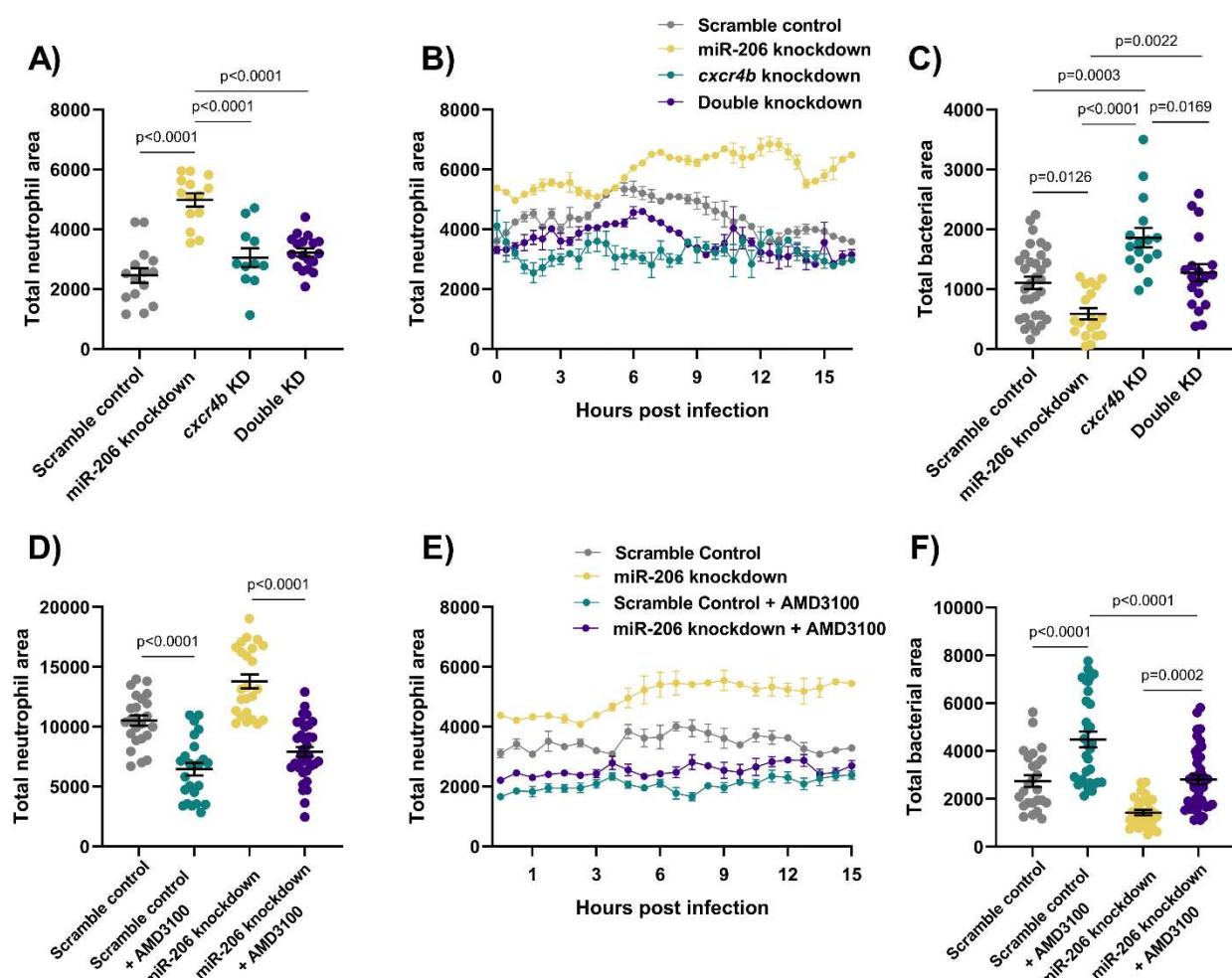
176 To examine if the increased mobilisation of neutrophils in the *M. marinum*-infected
177 miR-206 knockdown embryos was dependent on mycobacterial infection cues or an intrinsic
178 feature of neutrophils in miR-206-depleted animals, we assessed neutrophil migration to a
179 sterile tail fin wound as an example of a non-infectious inflammatory stimulus (Fig 3D). The
180 number of neutrophils at the wound site did not significantly differ between scramble control
181 (S3 video) and miR-206 knockdown embryos (S4 video), indicating the increased neutrophil
182 response observed in trunk infections is *M. marinum* infection-dependent.

183

184 **Fig 3. Infection-induced miR-206 expression alters the host neutrophil response.** (A)
185 Representative images of infection phenotype at 3 dpi in control and miR-206 knockdown
186 embryos. White arrows indicate bacterial foci. Neutrophils are red (*lyzC:dsred*) and *M.*
187 *marinum* is green (wasabi); co-localisation is indicated by yellow fluorescence. (B)
188 Measurement of whole-body neutrophil fluorescent area at 1 and 3 dpi in miR-206 knockdown
189 embryos. (C) Measurement of neutrophil levels following trunk infection with *M. marinum* in
190 miR-206 knockdown embryos. (D) Measurement of neutrophil recruitment to a sterile tail fin
191 wound in miR-206 knockdown embryos. Each data point represents a single measurement,
192 with the mean and SEM shown. For time-lapse imaging, each data point represents the mean
193 of 6 foci of infection from 6 separate embryos. Bacterial burden analysis was performed on 15-
194 20 embryos per treatment. Graphs are representative of 2 biological replicates. * P < 0.05, **
195 p < 0.01, *** p < 0.001

196

197 **The Cxcr4/Cxcl12 signalling axis is downstream of miR-206 in *M. marinum* infection**

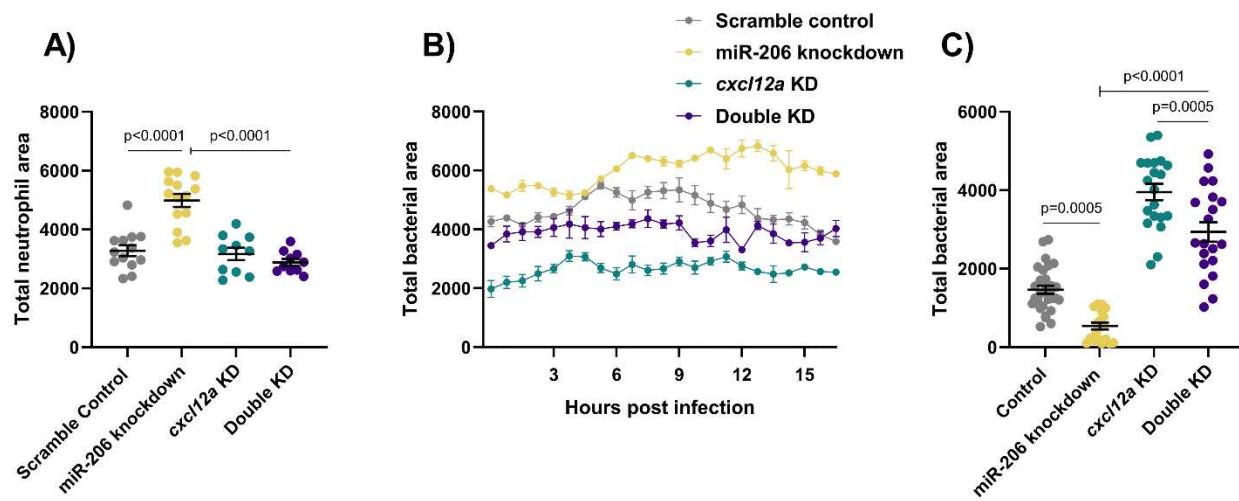

198 To confirm the hypothesised link between the observed increased transcription of *cxcr4b* and
199 *cxcl12a* and reduced bacterial burden through an increased neutrophil response early in

200 infection, both genes were targeted for knockdown by Crispr-Cas9. As both *cxcr4b* and *cxcl12*
201 are involved in neutrophil migration and haematopoiesis, a reduction in their expression was
202 expected to result in a reduced neutrophil response to infection and therefore an increased
203 bacterial burden, reducing the protective effect of miR-206 knockdown.

204 Static imaging at 3 dpi revealed that double knockdown of *cxcr4b* and miR-206 ablated
205 the increased neutrophil number associated with miR-206 knockdown (Fig 4A). Furthermore,
206 addition of *cxcr4b* knockdown to miR-206 knockdown dampened the miR-206 knockdown-
207 induced increase in neutrophil recruitment to a trunk infection and increased bacterial burden
208 back to control levels (Fig 4B-C). The effect observed in the double knockdown is consistent
209 with a reduction in Cxcr4 and therefore the neutrophil response in infection via haematopoiesis
210 and chemoattraction. This suggests the miR-206 associated increase in *cxcr4b* is contributing
211 to the enhanced neutrophil migration and reduced bacterial burden.

212 To further confirm involvement of Cxcr4 downstream of miR-206, the CXCR4
213 antagonist AMD3100 was used to pharmacologically block Cxcr4 signalling. AMD3100
214 treatment reduced the total neutrophil numbers in all treatment groups, and as expected, whole-
215 body neutrophil counts were reduced in miR-206 knockdown embryos that were also treated
216 with AMD3100 compared to miR-206 knockdown alone (Fig 4D). AMD3100 treatment
217 decreased neutrophil recruitment to the site of infection compared to both control infected and
218 miR-206 knockdown infected embryos (Fig 4E). Bacterial burden was increased in AMD3100
219 treated embryos and AMD3100 treatment of miR-206 knockdown embryos restored bacterial
220 burden to control levels (Fig 4F).

221



222

223 **Fig 4. Cxcr4 reduction places the Cxcl12/Cxcr4 signalling axis downstream of miR-206.**

224 (A) Whole body neutrophil counts at 3 dpi of *cxcr4b* and double (*cxcr4b* and miR-206)
225 knockdown embryos. (B) Measurement of neutrophil levels following trunk infection with *M.*
226 *marinum* in double knockdown embryos. (C) Bacterial burden at 3 dpi in *M. marinum*-infected
227 double knockdown embryos. (D) Whole body neutrophil counts at 3 dpi in miR-206
228 knockdown embryos treatment with AMD3100. (E) Measurement of neutrophil recruitment to
229 *M. marinum* following trunk injection in miR-206 knockdown embryos treatment with
230 AMD3100. (F) Bacterial burden at 3 dpi in miR-206 knockdown embryos treatment with
231 AMD3100. Each data point represents a single measurement, with the mean and SEM shown.
232 For time-lapse imaging, each data point represents the mean of 6 foci of infection from 6
233 separate embryos. Bacterial burden analysis was performed on 15-25 embryos per treatment.
234 Graphs are representative of 2 biological replicates, except for AMD3100 data, which is a
235 single biological replicate.

236 Consistent with the results of *cxcr4b* knockdown, addition of *cxcl12a* knockdown to
237 miR-206 knockdown decreased the total number of neutrophils and number of neutrophils
238 recruited to sites of infection compared to miR-206 knockdown alone (Fig 5A-B), and
239 increased the bacterial burden compared to miR-206 knockdown alone (Fig 5C).

240

241 **Fig 5. Cxcl12a knockdown places the Cxcl12/Cxcr4 signalling axis downstream of miR-
242 206.** (A) Whole body neutrophil counts at 3 dpi of *cxcl12a* and double (*cxcl12a* and miR-206)
243 knockdown embryos. (B) Measurement of neutrophil recruitment to *M. marinum* following
244 trunk injection in double knockdown embryos. (C) Bacterial burden at 3 dpi in *M. marinum*-
245 infected double knockdown embryos. Each data point represents a single measurement, with
246 the mean and SEM shown. For time-lapse imaging, each data point represents the mean of 4
247 foci of infection from 4 separate embryos. Bacterial burden analysis was performed on 20-30
248 embryos per treatment. Graphs are representative of 2 biological replicates.

249

250 Discussion

251 In this study we have demonstrated an *in vivo* link between infection-induced miR-206
252 expression and the Cxcl12/Cxcr4 signalling axis in the control of mycobacterial infection.
253 Knockdown of miR-206 resulted in a decreased bacterial burden and improved infection
254 outcome. We attribute the reduced bacterial burden to an increased early neutrophil response
255 from increased *cxcr4b* and *cxcl12a* transcript abundance in miR-206 knockdown animals. We
256 show that host miR-206 is increased by pathogenic *M. marinum* to impede the host
257 Cxcl12/Cxcr4 signalling axis, thereby reducing protective early neutrophil recruitment to the
258 site of infection and aiding the creation of a permissive niche for mycobacterial infection.

259 As this early protective neutrophil response was specific to virulent intracellular
260 mycobacteria, the observed increase in miR-206 was deemed to be ESX1-dependent. We
261 hypothesise that this may be a mycobacteria-driven response to avoid neutrophil phagocytosis
262 and potentially oxidative killing (31). Neutrophils are one of the first immune cells to respond
263 to mycobacterial infection and are capable of both phagocytosing and trapping mycobacteria
264 in neutrophil extracellular traps (32). Therefore, it is not surprising that mycobacteria have
265 evolved a strategy to actively subvert host neutrophil recruitment by reducing Cxcl12/Cxcr4
266 signalling, limiting the downstream exposure of mycobacteria to phagocytosis and oxidative
267 killing.

268 Involvement of Cxcr4 and its ligand Cxcl12 in inflammation is well documented (33-
269 35), however, previous studies have largely focused on their role in viral responses. Cxcr4
270 expression is reduced in the lymphocytes of leprosy patients, but increased in *M. tuberculosis*-
271 infected macrophages (36, 37). Recent work has highlighted Cxcr4 as a mediator of host
272 infection-associated angiogenesis (38), while this study further links the Cxcl12/Cxcr4
273 signalling axis to virulence-dependent neutrophil recruitment during mycobacterial infections.
274 Cxcr4 has also been shown to participate in pathogen immune evasion via interaction with
275 TLR2, suggesting it may play an active role in other aspects of mycobacterial pathogenesis
276 (39).

277 Our data provide precedence for cross-species conservation of host miRNA responses
278 to mycobacterial infection. Although current understanding of the role of miR-206 in bacterial
279 infections has been limited to date, previous investigation using *M. tuberculosis* infection of
280 THP-1 cells revealed a similar infection-induced upregulation of miR-206 *in vitro* (11). Our *in*
281 *vivo* model of mycobacterial infection has allowed the interrogation of neutrophil responses as
282 a downstream cellular response controlled by miR-206.

283 While we have demonstrated the effect of miR-206 expression on *cxcl12a* and *cxcr4b*,
284 other genes targeted by miR-206 may also contribute to host control of mycobacterial infection.
285 One validated target of miR-206, Vegf, plays a significant role in the later development of
286 granulomas during mycobacterial infection, consistent with the late downregulation of miR-
287 206 that we observed (24, 26, 40). Infection-induced Vegf signalling results in an aberrant
288 angiogenesis programme which favours mycobacterial growth and spread (30, 41-43). This
289 effect may be synergistic with Cxcl12/Cxcr4 signalling, which supports granuloma-associated
290 angiogenesis through a Vegf-independent mechanism (38).

291 In addition, suppression of *elmo1* by miR-206 may further contribute to the immune
292 avoidance associated with the infection-induced increase in miR-206. Recent investigations
293 have revealed a role for Elmo1 in neutrophil migration and engulfment of apoptotic cells (44)
294 and this has been linked to enhanced intracellular mycobacterial growth (45). Increased
295 transcription of Elmo1 following miR-206 knockdown is likely to increase neutrophil mobility
296 during infection in cooperation with increased Cxcl12/Cxcr4 signalling.

297 miR-206 may also act on *tmp3* to inhibit the activity of Mmp9 during mycobacterial
298 infection (11), preventing macrophage recruitment and granuloma formation in our miR-206
299 knockdown model (46). However, dissecting the miR-206-Mmp9 interaction may require a
300 different experimental platform to determine if reduced *mmp9* expression is a result of
301 transcriptional feedback from its inhibitor Timp3 or caused by the reduced bacterial burden.
302 This may prove to be an additional pathway modulated by miR-206 during infection, acting to
303 alter disease progression and highlights the complex interaction of miRNA and their multiple
304 targets.

305 The final potential target gene we profiled, *mmd*, may also be of significance through
306 the positive regulation of macrophage activation and downstream cytokine signalling cascades
307 (47).

308 In summary, we have identified potential target genes of miR-206 which may be
309 biologically active during mycobacterial infection. We have demonstrated a link between
310 infection-associated upregulation of miR-206 and suppression of neutrophil recruitment to the
311 site of pathogenic mycobacterial infection involving the Cxcl12/Cxcr4 signalling pathway.
312 This host response to infection by pathogenic mycobacteria appears to be conserved across
313 host-pathogen pairings and could inform the development of biomarker or therapeutic
314 strategies.

315

316 **Methods**

317 **1. Zebrafish husbandry**

318 Adult zebrafish were housed at the Centenary Institute and experiments were approved by
319 Sydney Local Health District AWC Approval 17-036. The embryos were obtained by natural
320 spawning and were raised in E3 media and maintained at 28-32°C.

321

322 **2. Zebrafish lines**

323 Zebrafish were AB strain. Transgenic lines used were: *Tg(lyzC:GFP)^{nz117}* and
324 *Tg(lyzC:DsRed2)^{nz50}* were used for neutrophil imaging experiments (48).

325

326 **3. Embryo microinjection with antagomiR**

327 Embryos were obtained by natural spawning and were injected with either miR-206 antagomiR
328 (-CCACACACUUCCUUACAUUCCA-) or a scramble control (-
329 CAGUACUUUUGUGUAGUACAA-) (GenePharma, China) at 200 pg/embryo at the single
330 cell stage and maintained at 32°C.

331

332 **4. miRNA target prediction**

333 Prediction of target mRNA was performed using TargetScan. dre-miR-206-3p was entered into
334 TargetScanFish 6.2 (http://www.targetscan.org/fish_62/), hsa-miR-206 entered into
335 TargetScan 7.2 (http://www.targetscan.org/vert_72/), and mmu-miR-206 entered into
336 TargetScanMouse 7.2 (http://www.targetscan.org/mmu_72/).

337

338 **5. *M. marinum* culture**

339 *M. marinum* was cultured and quantified as previously described (49). *M. marinum* expressing
340 Wasabi or tdTomato fluorescent protein was used for infections.

341

342 **6. UPEC culture**

343 Uropathogenic *Escherichia coli* (UPEC) carrying the mCherry PGI6 plasmid was cultured in
344 LB supplemented with 50 µg/mL of spectinomycin overnight at 37°C with 200 RPM shaking.
345 Bacteria was then further diluted 1:10 with LB + spectinomycin (50 µg/ml) and incubated for
346 3 hours at 37°C with 200 RPM shaking. 1 mL of culture was centrifuged (16,000 x g for 1
347 minute), and the pellet washed in PBS. Following another centrifugation, the bacterial pellet
348 was resuspended in 300 µl of PBS + 10% glycerol and aliquoted for storage. Enumeration of

349 bacteria was performed by serial dilution on LB + spectinomycin agar plates and culturing at
350 37°C overnight. Bacterial concentration was determined by CFU counts.

351

352 7. UPEC plasmid construction

353 The plasmid pGI6 was constructed by replacing the open reading frame (ORF) of msfGFP in
354 pGI5 (50) with an *E. coli* codon-optimised ORF for mCherry. The mCherry ORF was first
355 amplified with the forward primer (GCG CCG CCA TGG GTG AGC AAG GGC GAG GAG
356 GAT) and reverse primer (GGC CCG GGA TCC TTA CTT GTA CAG CTC GTC CAT GCC)
357 from the template pIDJL117 (51). The PCR fragment was cloned at NcoI and BamHI in pGI5,
358 thus replacing msfGFP, and the PCR-generated confirmed by sequencing.

359

360 8. Bacterial infections

361 Staged at approximately 1.5 dpf, embryos were dechorionated and anesthetised in tricaine (160
362 µg/ml). Working solutions of *M. marinum* or UPEC (diluted with 0.5% w/v phenol red dye)
363 were injected into either the caudal vein or trunk to deliver approximately 200 CFU *M.*
364 *marinum* or 250 CFU UPEC. Embryos were recovered in E3 media + PTU (0.036 g/L) and
365 housed at 28°C.

366

367 9. Crispr-Cas9 mediated knockdown

368 Embryos were injected at the 1-2 cell stage with 1 nL of Crispr mixture containing 1 µg/µl
369 Guide (g) RNA (Table 1.), 500 µg/mL Cas9. For double knockdowns with Crispr-Cas9 and
370 antagomir, mixtures contained 1 µg/µl gRNA, 100 pg/nL antagomir (miR-206), and 500
371 µg/mL Cas9. gRNA was synthesised as previously described (52). Embryos were transferred
372 to E3 containing methylene blue and maintained at 32°C.

373

374 Table 1. Guide RNA sequences used for Crispr-Cas9 mediated knockdown experiments

Target	Primer
cxcr4b target 1	TAATACGACTCACTATAGGAGCTCTGACTCCGGTTCTGTTAGAGCTAGAAATAGC
cxcr4b target 2	TAATACGACTCACTATAGGACTGCAAGATAGCGGTCCGTTAGAGCTAGAAATAGC

cxcr4b target 3	TAATACGACTCACTATAGGTACCCATGCTCGAATTGGTTTAGAGCTAGAAATAGC
cxcr4b target 4	TAATACGACTCACTATAGGCTACTGTGCCGGATCCGTTAGAGCTAGAAATAGC
cxcl12a target 1	TAATACGACTCACTATAGGCGTAGTAGTCGCTCTGAGTTAGAGCTAGAAATAGC
cxcl12a target 2	TAATACGACTCACTATAGGTCATGCACCGATTCCAAGTTAGAGCTAGAAATAGC
cxcl12a target 3	TAATACGACTCACTATAGGATACTCACATGACTGGAGTTAGAGCTAGAAATAGC
cxcl12a target 4	TAATACGACTCACTATAGGGCAGATACTCACATGACTGTTTAGAGCTAGAAATAGC

375

376 **10. Gene expression analysis**

377 Groups of 10 embryos were lysed and homogenised using a 27-gauge needle in 500 µl Trizol
378 (Invitrogen) and RNA extracted as per the manufacturer's instructions. cDNA was synthesised
379 from 500 ng RNA using the miScript II RT kit (Qiagen) with HiFlex buffer. qPCR was carried
380 out on an Mx3000p Real-time PCR system using Quantitect SYBR Green PCR Mastermix and
381 primer concentration of 300 nM (Table 2.). For miRNA qPCRs, the miScript Universal Primer
382 was used alongside miR specific miScript primer assays (miR-206 cat. no. MS00001869 and
383 U6 cat. no. MS00033740; Qiagen).

384

385 **Table 2. qPCR primer sequences**

qPCR Primer	Sequence 5'-3'	Ensembl ID
cxcr4a forward	CAGTTGGACCGGTACCTCG	ENSDARG00000057633
cxcr4a reverse	CCAGGTGACAAACGAGTCCT	
cxcr4b forward	TCGCAGACCTCCTGTTGTC	ENSDARG00000041959
cxcr4b reverse	CCTTCCCGCAAGCAATTCC	
cxcl12a forward	ATTCGCGAGCTCAAGTTCCT	ENSDARG00000037116
cxcl12a reverse	ATATCTGTGACGGTGGCTG	
elmo1 forward	TGTTGACCATGCGTCTCAGT	ENSDARG00000098753
elmo1 reverse	CCACCTTCACGATGTCTGCC	
mmd forward	GGGGTCTGGTCTACTGTCT	ENSDARG00000040387
mmd reverse	TTGTTAGTGGCTCAGGCGTC	
vegfaa forward	TCCCGACAGAGACACGAAAC	ENSDARG00000045971
vegfaa reverse	TTTACAGGTGAGGGGGTCCT	
b-actin forward	CCTTCCAGCAGATGTGGATT	ENSDARG00000037870
b-actin reverse	CACCTTCACCGTCCAGTTT	

386

387 Cycling conditions for miRNA were: 95°C for 15 minutes; 40 cycles of 95°C for 20 seconds,
388 56°C for 30 seconds, 72°C for 30 seconds with fluorescence data acquisition occurring at the
389 end of each cycle, followed by 1 cycle of 95°C for 1 minute, 65°C for 30 seconds, and 97°C
390 for 30 seconds. For mRNA, the conditions were: 95°C for 15 minutes; 40 cycles of 94°C for
391 15 seconds, 55°C for 30 seconds, 70°C for 30 seconds with fluorescence data acquisition
392 occurring at the end of each cycle, followed by 1 cycle of 95°C for 1 minute, 65°C for 30
393 seconds, and 97°C for 30 seconds.

394

395 U6 or β-actin was used as an endogenous control for normalisation and data analysed using the
396 $2^{-\Delta\Delta Ct}$ method.

397

398 **11. AMD3100 treatment**

399 Embryos were treated with 20 μM AMD3100 (Sigma-Aldrich), a pharmacological CXCR4
400 antagonist, dissolved in water and refreshed daily.

401

402 **12. Static imaging and burden analyses**

403 Live imaging was performed on anaesthetised embryos on a depression microscope slide.
404 Images were acquired using a Leica M205FA Fluorescent Stereo Microscope equipped with a
405 Leica DFC365FX monochrome digital camera (Leica Microsystems, Germany). Images were
406 analysed using ImageJ software to quantify the fluorescent pixel count (49).

407

408 **13. Neutrophil tracking analyses**

409 Time-lapse imaging was performed on a Deltavision Elite at 28°C (GE, USA). Following
410 infection with *M. marinum* into the trunk, embryos were mounted in a 96-well black-walled
411 microplate in 1% low-melting point agarose topped up with E3. Images were captured every
412 60-180 seconds for 16-24 hours. Analysis was performed using ImageJ software. Briefly, every
413 10-30 images were analysed for the quantity of neutrophils in a 1000 x 500 μm box around
414 infection foci by quantifying the fluorescent pixel count (total neutrophil area) at each time
415 point.

416

417 **14. Statistics**

418 Statistical analysis was performed in GraphPad Prism (v. 9.0.0). All data was analysed by T-
419 test or ANOVA depending on the number of experimental groups, post-hoc analysis performed
420 using Tukey's multiple comparisons test. For time-lapse data, group comparisons were
421 computed using the Sidak test. Outliers were removed prior to statistical analysis using ROUT,
422 with Q=1%.

423

424 **Acknowledgements**

425 Dr Angela Kurz of the BioImaging Facility and Sydney Cytometry at Centenary Institute for
426 technical assistance with imaging, Dr Pradeep Manuneedhi Cholan for assistance with imaging,
427 and Dr Elinor Horte for assistance with image analysis.

428

429 **Author contributions**

430 KW, KDS, KMP, ACP, WJB, SHO conceived the experiments. KW and SHO designed the
431 experiments. IGD and TAB created and provided essential reagents. KW performed the
432 experiments. KW and SHO analysed the data. KW and SHO wrote the paper that was read and
433 approved by all authors.

434

435 **References**

- 436 1. Horte E, Oehlers SH. Host-directed therapies targeting the tuberculosis granuloma stroma. Pathogens and Disease. 2020;78(2).
- 437 2. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nature Reviews Immunology. 2012;12(5):352-66.
- 438 3. Duchaine TF, Fabian MR. Mechanistic Insights into MicroRNA-Mediated Gene Silencing. Cold Spring Harbor Perspectives in Biology. 2018.
- 439 4. Behrouzi A, Alimohammadi M, Nafari AH, Yousefi MH, Riazi Rad F, Vaziri F, et al. The role of host miRNAs on *Mycobacterium tuberculosis*. ExRNA. 2019;1(1):40.
- 440 5. Han SA, Jhun BW, Kim S-Y, Moon SM, Yang B, Kwon OJ, et al. miRNA Expression Profiles and Potential as Biomarkers in Nontuberculous Mycobacterial Pulmonary Disease. Scientific Reports. 2020;10(1):3178.
- 441 6. Sabir N, Hussain T, Shah SZA, Peramo A, Zhao D, Zhou X. miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy. Frontiers in microbiology. 2018;9:602-.

449 7. Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal
450 muscle development. *Nucleic acids research*. 2006;34(20):5863-71.

451 8. Boettger T, Wüst S, Nolte H, Braun T. The miR-206/133b cluster is dispensable for
452 development, survival and regeneration of skeletal muscle. *Skeletal Muscle*. 2014;4(1):23.

453 9. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206
454 promotes muscle differentiation. *The Journal of Cell Biology*. 2006;174(5):677.

455 10. Ma G, Wang Y, Li Y, Cui L, Zhao Y, Zhao B, et al. MiR-206, a key modulator of skeletal muscle
456 development and disease. *Int J Biol Sci*. 2015;11(3):345-52.

457 11. Fu X, Zeng L, Liu Z, Ke X, Lei L, Li G. MicroRNA-206 regulates the secretion of inflammatory
458 cytokines and MMP9 expression by targeting TIMP3 in *Mycobacterium tuberculosis*-infected THP-1
459 human macrophages. *Biochemical and Biophysical Research Communications*. 2016;477(2):167-73.

460 12. Bamunuarachchi G, Yang X, Huang C, Liang Y, Guo Y, Liu L. MicroRNA-206 inhibits influenza A
461 virus replication by targeting tankyrase 2. *Cellular Microbiology*. 2020;n/a(n/a):e13281.

462 13. Duan X, Zohaib A, Li Y, Zhu B, Ye J, Wan S, et al. miR-206 modulates lipopolysaccharide-
463 mediated inflammatory cytokine production in human astrocytes. *Cellular Signalling*. 2015;27(1):61-
464 8.

465 14. Torraca V, Cui C, Boland R, Bebelman J-P, van der Sar AM, Smit MJ, et al. The CXCR3-CXCL11
466 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection.
467 *Disease Models & Mechanisms*. 2015;8(3):253-69.

468 15. Torraca V, Otto NA, Tavakoli-Tameh A, Meijer AH. The inflammatory chemokine Cxcl18b
469 exerts neutrophil-specific chemotaxis via the promiscuous chemokine receptor Cxcr2 in zebrafish.
470 *Developmental & Comparative Immunology*. 2017;67:57-65.

471 16. Sommer F, Torraca V, Meijer AH. Chemokine Receptors and Phagocyte Biology in Zebrafish.
472 *Frontiers in Immunology*. 2020;11(325).

473 17. Hsu AY, Wang D, Gurol T, Zhou W, Zhu X, Lu H-Y, et al. Overexpression of microRNA-722 fine-
474 tunes neutrophilic inflammation by inhibiting Rac2 in zebrafish. *Disease models & mechanisms*.
475 2017;10(11):1323-32.

476 18. Hsu AY, Wang D, Liu S, Lu J, Syahirah R, Bennin DA, et al. Phenotypical microRNA screen reveals
477 a noncanonical role of CDK2 in regulating neutrophil migration. *Proceedings of the National Academy
478 of Sciences*. 2019;116(37):18561.

479 19. Isles HM, Herman KD, Robertson AL, Loynes CA, Prince LR, Elks PM, et al. The CXCL12/CXCR4
480 Signaling Axis Retains Neutrophils at Inflammatory Sites in Zebrafish. *Frontiers in Immunology*.
481 2019;10(1784).

482 20. Zhou W, Cao L, Jeffries J, Zhu X, Staiger CJ, Deng Q. Neutrophil-specific knockout demonstrates
483 a role for mitochondria in regulating neutrophil motility in zebrafish. *Disease Models & Mechanisms*.
484 2018;11(3):dmm033027.

485 21. Zhou W, Pal AS, Hsu AY-H, Gurol T, Zhu X, Wirbisky-Hershberger SE, et al. MicroRNA-223
486 Suppresses the Canonical NF-κB Pathway in Basal Keratinocytes to Dampen Neutrophilic
487 Inflammation. *Cell Reports*. 2018;22(7):1810-23.

488 22. Conrad WH, Osman MM, Shanahan JK, Chu F, Takaki KK, Cameron J, et al. Mycobacterial ESX-1
489 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane
490 disruptions. *Proceedings of the National Academy of Sciences of the United States of America*.
491 2017;114(6):1371-6.

492 23. Li H, Yao G, Feng B, Lu X, Fan Y. Circ_0056618 and CXCR4 act as competing endogenous in
493 gastric cancer by regulating miR-206. *Journal of Cellular Biochemistry*. 2018;119(11):9543-51.

494 24. Stahlhut C, Suárez Y, Lu J, Mishima Y, Giraldez AJ. miR-1 and miR-206 regulate angiogenesis
495 by modulating VegfA expression in zebrafish. *Development*. 2012;139(23):4356.

496 25. Ulitsky I, Shkumatava A, Jan CH, Subtelny AO, Koppstein D, Bell GW, et al. Extensive alternative
497 polyadenylation during zebrafish development. *Genome Res*. 2012;22(10):2054-66.

498 26. Zheng X, Ma YF, Zhang XR, Li Y, Zhao HH, Han SG. *Circ_0056618* promoted cell proliferation,
499 migration and angiogenesis through sponging with miR-206 and upregulating CXCR4 and VEGF-A in
500 colorectal cancer. *Eur Rev Med Pharmacol Sci.* 2020;24(8):4190-202.

501 27. Döring Y, Pawig L, Weber C, Noels H. The CXCL12/CXCR4 chemokine ligand/receptor axis in
502 cardiovascular disease. *Frontiers in Physiology.* 2014;5(212).

503 28. Walters KB, Green JM, Surfus JC, Yoo SK, Huttenlocher A. Live imaging of neutrophil motility
504 in a zebrafish model of WHIM syndrome. *Blood.* 2010;116(15):2803-11.

505 29. Zou Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor
506 CXCR4 in haematopoiesis and in cerebellar development. *Nature.* 1998;393(6685):595-9.

507 30. Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS, Walton EM, et al. Interception of
508 host angiogenic signalling limits mycobacterial growth. *Nature.* 2015;517(7536):612-5.

509 31. Yang C-T, Cambier CJ, Davis JM, Hall Christopher J, Crosier Philip S, Ramakrishnan L.
510 Neutrophils Exert Protection in the Early Tuberculous Granuloma by Oxidative Killing of Mycobacteria
511 Phagocytosed from Infected Macrophages. *Cell Host & Microbe.* 2012;12(3):301-12.

512 32. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. *Nature Reviews
513 Immunology.* 2018;18(2):134-47.

514 33. García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M.
515 The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. *Frontiers in Endocrinology.*
516 2019;10(585).

517 34. Lopez MJ, Seyed-Razavi Y, Jamali A, Harris DL, Hamrah P. The Chemokine Receptor CXCR4
518 Mediates Recruitment of CD11c+ Conventional Dendritic Cells Into the Inflamed Murine Cornea.
519 *Investigative Ophthalmology & Visual Science.* 2018;59(13):5671-81.

520 35. Tian X, Xie G, Xiao H, Ding F, Bao W, Zhang M. CXCR4 knockdown prevents inflammatory
521 cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways.
522 *Cell & Bioscience.* 2019;9(1):55.

523 36. Hoshino Y, Tse DB, Rochford G, Prabhakar S, Hoshino S, Chitkara N, et al. *Mycobacterium
524 tuberculosis*-Induced CXCR4 and Chemokine Expression Leads to Preferential X4 HIV-1 Replication in
525 Human Macrophages. *The Journal of Immunology.* 2004;172(10):6251-8.

526 37. Mendonça VA, Alvim de Melo GEB, Araújo MG, Borges VO, Costa RD, Martins-Filho OA, et al.
527 Expression of the chemokine receptor CXCR4 on lymphocytes of leprosy patients. *Brazilian Journal of
528 Medical and Biological Research.* 2011;44:1256-60.

529 38. Torraca V, Tulotta C, Snaar-Jagalska BE, Meijer AH. The chemokine receptor CXCR4 promotes
530 granuloma formation by sustaining a mycobacteria-induced angiogenesis programme. *Scientific
531 reports.* 2017;7:45061-.

532 39. Hajishengallis G, Wang M, Liang S, Triantafilou M, Triantafilou K. Pathogen induction of
533 CXCR4/TLR2 cross-talk impairs host defense function. *Proceedings of the National Academy of
534 Sciences.* 2008;105(36):13532-7.

535 40. Wang M, Ji Y, Cai S, Ding W. MiR-206 Suppresses the Progression of Coronary Artery Disease
536 by Modulating Vascular Endothelial Growth Factor (VEGF) Expression. *Med Sci Monit.* 2016;22:5011-
537 20.

538 41. Oehlers SH, Cronan MR, Beerman RW, Johnson MG, Huang J, Kontos CD, et al. Infection-
539 Induced Vascular Permeability Aids Mycobacterial Growth. *The Journal of Infectious Diseases.*
540 2017;215(5):813-7.

541 42. Polena H, Boudou F, Tilleul S, Dubois-Colas N, Lecointe C, Rakotosamimanana N, et al.
542 Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination.
543 *Scientific Reports.* 2016;6(1):33162.

544 43. Walton EM, Cronan MR, Cambier CJ, Rossi A, Marass M, Foglia MD, et al. Cyclopropane
545 Modification of Trehalose Dimycolate Drives Granuloma Angiogenesis and Mycobacterial Growth
546 through Vegf Signaling. *Cell Host & Microbe.* 2018;24(4):514-25.e6.

547 44. Arandjelovic S, Perry JSA, Lucas CD, Penberthy KK, Kim T-H, Zhou M, et al. A noncanonical role
548 for the engulfment gene *ELMO1* in neutrophils that promotes inflammatory arthritis. *Nature
549 Immunology*. 2019;20(2):141-51.

550 45. Tamgue O, Gcanga L, Ozturk M, Whitehead L, Pillay S, Jacobs R, et al. Differential Targeting of
551 c-Maf, Bach-1, and Elmo-1 by microRNA-143 and microRNA-365 Promotes the Intracellular Growth of
552 *Mycobacterium tuberculosis* in Alternatively IL-4/IL-13 Activated Macrophages. *Frontiers in
553 Immunology*. 2019;10:421.

554 46. Taylor JL, Hattle JM, Dreitz SA, Trout JM, Izzo LS, Basaraba RJ, et al. Role for Matrix
555 Metalloproteinase 9 in Granuloma Formation during Pulmonary *Mycobacterium tuberculosis*
556 Infection. *Infection and Immunity*. 2006;74(11):6135-44.

557 47. Liu Q, Zheng J, Yin D-D, Xiang J, He F, Wang Y-C, et al. Monocyte to macrophage differentiation-
558 associated (MMD) positively regulates ERK and Akt activation and TNF- α and NO production in
559 macrophages. *Molecular Biology Reports*. 2012;39(5):5643-50.

560 48. Hall C, Flores MV, Storm T, Crosier K, Crosier P. The zebrafish lysozyme C promoter drives
561 myeloid-specific expression in transgenic fish. *BMC Developmental Biology*. 2007;7(1):42.

562 49. Matty MA, Oehlers SH, Tobin DM. Live Imaging of Host–Pathogen Interactions in Zebrafish
563 Larvae. In: Kawakami K, Patton EE, Orger M, editors. *Zebrafish: Methods and Protocols*. New York, NY:
564 Springer New York; 2016. p. 207-23.

565 50. Duggin IG, Aylett CHS, Walsh JC, Michie KA, Wang Q, Turnbull L, et al. CetZ tubulin-like proteins
566 control archaeal cell shape. *Nature*. 2015;519(7543):362-5.

567 51. Iosifidis G, Duggin IG. Distinct Morphological Fates of Uropathogenic *Escherichia coli*
568 Intracellular Bacterial Communities: Dependency on Urine Composition and pH. *Infection and
569 Immunity*. 2020;88(9):e00884-19.

570 52. Wu RS, Lam II, Clay H, Duong DN, Deo RC, Coughlin SR. A Rapid Method for Directed Gene
571 Knockout for Screening in G0 Zebrafish. *Developmental Cell*. 2018;46(1):112-25.e4.

572

573 **Supporting information**

574 **S1 video. Neutrophil migration to infection in control embryos.**

575 **S2 video. Neutrophil migration to infection in miR-206 knockdown embryos.**

576 **S3 video. Neutrophil migration to sterile wound site in control embryos.**

577 **S4 video. Neutrophil migration to sterile wound site in miR-206 knockdown embryos.**