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Abstract

Transformation of postsynaptic potentials (PSPs) into action potentials (APs) is the rate-limiting step of
communication in neural networks. The efficiency of this intracellular information transfer also powerfully
shapes stimulus representations in sensory cortices. Using whole-cell recordings and information-theoretic
measures, we show herein that somatic PSPs accurately represent stimulus location on a trial-by-trial basis
in single neurons even 4 synapses away from the sensory periphery in the whisker system. This information
is largely lost during AP generation but can be rapidly (<20 ms) recovered using complementary
information in local populations in a cell-type-specific manner. These results show that as sensory
information is transferred from one neural locus to another, the circuits reconstruct the stimulus with high
fidelity so that sensory representations of single neurons faithfully represent the stimulus in the periphery,
but only in their PSPs, resulting in lossless information processing for the sense of touch in the primary

somatosensory cortex.
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Introduction

Neural information processing requires signal transformation every time the information is
transferred from one neuron to another. This transformation is performed in postsynaptic neurons by
integrating spatiotemporally distributed synaptic inputs and generating action potentials, which then
propagate information across synaptically coupled neurons. For each processing step, how much
information is retained, how much of it is transferred to a postsynaptic neuron, how much is lost, and
whether local networks can fully recover the lost information during this intracellular sub-to-suprathreshold
information transfer are questions that have yet to be answered. In an accompanying paper (Zeldenrust et
al., 2020) we show on a single neuron level that how much information is lost during action potential
generation depends on the cell-class. On a network level, the effectiveness of this input-to-spike operation
depends on the connectivity, the code used between the sender (i.e. presynaptic neurons), and the receiver
(i.e. postsynaptic neurons) as well as the noise characteristics of the channel. Since many of these are
currently impossible to assess experimentally, the rules of information transfer in biological circuits, with
the exception of cell-type-specific intracellular information transfer in single neurons as outlined in the
accompanying article (Zeldenrust et al., 2020), are still largely unknown.

Sensory systems in particular offer unique opportunities to study information processing in neural
circuits. If the primary function of a sensory circuit is to faithfully and reliably represent the environment
(Azarfar et al., 2018; DeCharms and Zador, 2000; Diamond et al., 1999; Knudsen et al., 1987), a substantial
part of the sensory information in the periphery should be represented throughout the sensory circuits in the
form of neural signals. Sensory systems are commonly organized in the form of topographical maps, where
sensory receptors in the periphery are represented by topographically organized groups of neurons along
the sensory axis (Harding-Forrester and Feldman, 2018; Kole et al., 2018; Petersen, 2019). However, the
functional role of these topographical maps for sensory processing is still not clear (Chklovskii and

Koulakov, 2004; Diamond et al., 1999; Kaas, 1997; Weinberg, 1997). Understanding the mechanisms of
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information processing, transfer and recovery is particularly important in sensory circuits, as the efficacy
of signal transformation should determine the extent, speed, and accuracy of sensory representations.

Stimulating single neurons in the sensory and motor cortices can result in observable behavioral
responses such as whisker movement (Brecht et al., 2004; Doron et al., 2014; Houweling and Brecht, 2008;
Voigts et al., 2008). However, single neurons carry surprisingly little information in the rate and timing of
their action potentials (Alenda et al., 2010; Panzeri et al., 2001; Petersen et al., 2001; Quian Quiroga and
Panzeri, 2009). Given that pooling information across simultaneously recorded neighboring neurons
minimally contributes to the information carried in local populations because neighboring neurons carry
largely redundant information (Petersen et al., 2002, 2001), the target postsynaptic neurons are likely to
reconstruct the stimulus by spatiotemporal integration across behaviorally relevant spatial and temporal
scales (Azarfar et al., 2018; Celikel and Sakmann, 2007).

Here, we performed intracellular recordings and used computational modeling to address the
principles of information processing in the somatosensory cortex. Surprisingly (to us), we found that the
sensory stimulus can be fully reconstructed with the information available in the subthreshold responses of
single excitatory neurons (i.e. the recorded EPSPs in L.2/3 neurons). Up to 90% of this information is lost
during intracellular information transfer, i.e. when an action potential is generated from these subthreshold
responses, in agreement with previous observations on the information content of action potentials in barrel
cortical neurons (Alenda et al., 2010; Panzeri et al., 2001; Petersen et al., 2002). In vivo information loss is
likely to exceed this value, due to background ongoing activity (Destexhe et al., 2003). Next, we assessed
information recovery on the population level using an analysis based on bootstrapped groups of neurons
recorded in vitro. We found that information lost during action potential generation can be fully recovered
by as little as 100 neurons with a time resolution of 2-3 ms. Finally, we turned to a realistic and well-
constrained simulation of a barrel column (Huang et al., 2020) to study the relation between encoding

strategies in L4 and decoding strategies in L2/3 to determine the mechanisms of information recovery.
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Comparing candidate encoding strategies in the L4 population, we found that a population rate code (using
peri-stimulus time histograms obtained in the in vivo recordings) is unsuitable for information transfer in a
cortical network because the trial-to-trial reliability is too low to fit the high information recovery that we
found as in our experiments. Codes with higher trial-to-trial reliability in timing and rate perform
substantially better, with optimal performance reached if neurons fire reliably across trials. In this case, the
L4 activity can be fully decoded by small groups (~25 cells) of both excitatory and inhibitory neurons in
L2/3 within ~20 ms after stimulus onset, and within a few ms after the first spike response. In summary,
we show that intracellular information transfer is highly lossy, and thus potentially selective. However, by
combining the limited but complementary information in the spike trains of L2/3 inhibitory and excitatory
neurons, single neurons could fully reconstruct stimulus resulting in lossless representation of sensory

information in their subthreshold responses.
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83  Results

84  L2/3 single cell responses to in vivo whisker stimulation

85  We performed whole-cell current-clamp recordings of Layer (L) 2/3 pyramidal neurons in the juvenile rat
86  primary somatosensory cortex, in the barrel cortical subregion under ketamine anesthesia. During these in
87  vivo recordings, sensory stimulation was provided by direct stimulation of the principal and 1st order
88  surround whiskers with a piezo stimulator in 2 directions (up-down: Fig. 1A). The cumulative synaptic
89  input in response to these stimuli was quantified in properties of the somatic post-synaptic potential (PSP),
90 i.e. the onset time, slope, and peak amplitude (Fig. 1B-D). Principal whisker stimulation-evoked PSPs
91 exhibited the shortest latency, as well as the highest slope and amplitude, in comparison to PSPs evoked by
92  the stimulation of surrounding whiskers, in agreement with previous observations (Brecht et al., 2003).
93  Although the PSPs were highly reliable (PW: 99.8%, SW: 91.8% of trials evoked PSPs), action potentials
94  (spikes) were sparse and unreliable, even after principal whisker deflections (PW: 6.2% (SD 8.6%) ; SW:
95 1.7% (SD 2.9%) of trials included evoked APs).

96  Properties of sub- & suprathreshold responses of 1.2/3 neurons to L4 stimulation

97  Mutual information calculations require long sampling durations, which limits the possibilities for unbiased
98  calculation of information processing with high-dimensional naturalistic stimuli in vivo. Therefore we
99  performed acute slice experiments with simplified stimuli (Fig.1E-P). Bipolar electrodes in L4 were used
100 to deliver square pulses with varying slopes as described before (Fig.1E-F; Huang et al., (2016); see
101 Materials and Methods). Visualized L.2/3 neurons were recorded in whole-cell current clamp configuration.
102 PSP responses of L2/3 neurons systematically varied with the four stimulus patterns (Fig. 1G-J). Spike

103 responses showed a similar dependence on the stimulus slope when averaged over multiple trials, with
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104  delayed spike times, increased threshold and decreased spike probability for shallower slopes of stimulation
105  (Fig. IK-M).

106 The average properties shown above indicate that individual cells qualitatively correspond to
107  whisker deflections mimicking spatial stimuli. However, during sensory processing, animals have to deduce
108  object location from single trials, not from averages over many trials, which is only possible when trial-to-
109 trial variability is low. Spikes exhibited a far greater temporal trial-to-trial variability than PSPs (Fig. IN-
110 P). PSP onset times showed an average progression with stimulus slope, with a small trial-to-trial
111  variability (Fig. IN, SD = 0.42-0.63 ms), whereas spike time variability was threefold higher (Fig.10, SD
112 =1.2-2.3 ms). Therefore, spike times could only to a very limited degree be predicted on the basis of PSP
113 onset times, with spikes often occurring with significant and variable delays (Fig. 1P, 2.8-4.7 (SD 1.1-2.1)
114  ms). Spike generation was also failure prone, with average spike failures rates up to 31.7% of the trials
115  [Range : 0-85%]. While spike failures bear information in rate-based codes, in timing-based codes
116  information is missing when the neuron fails to fire an action potential. To study the influence of trial-to-
117  trial variability in timing and rate on stimulus information, we calculated Shannon's mutual information
118  between the stimulus and several PSP and spike properties. This mutual information provides largely

119  agnostic estimates of the transmitted information between stimulus and response.

120  Information transmission between somatic PSPs and Spikes

121  How much information does a somatosensory neuron carry about the sensory stimulus (S) and how much
122 of this information does it transfer to its postsynaptic targets? Surprisingly, the information between a single
123 somatic PSP and the stimulus contains the bulk (~95%, I(S;PSP) vs. H(S), Fig. 2A) of the entropy of the
124 sensory stimuli. The information between the onset time (81%, Fig. 2B), slope (8.4%, Fig. 2B) and
125  amplitude (6.4%, Fig. 2B) of the PSP and the stimulus contribute largely independently to the total

126  information content of a PSP (Fig. 2C). However most of this information is lost upon spike generation
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127 (down to 24%, I(S;(St,Vt), Fig. 2A), where spike timing (St, 16%, Fig. 2D) and voltage threshold (Vt, 6.2%,
128  Fig. 2D) carry most of the stimulus information contained in the spikes.

129 We can directly quantify how much of the information in the PSP is transferred to the spike (see
130  Materials and Methods). Unsurprisingly, the total entropy in the PSP (i.e across onset, slope and amplitude
131  together) exceeds the stimulus information multifold (6.4 bits, 3.2-fold, Fig.2E). The transferred
132 information from PSP to spike amounts to 22% and 15% of the PSP entropy for St and Vt respectively (Fig.
133 2E, comparison of medians). However, most of this information is redundant, since the actual amount of
134 stimulus information contained in a spike is much lower (0.41 bit, Fig. 2A). The individual PSP properties
135  on the other hand contribute slightly synergistically to the timing information in the spike (Fig. 2F, 6.4%,
136  p<107¥). Consequently, while a substantial amount of the information about the stimulus in the PSP is
137  transferred to the spike, this information is insufficient to encode the present stimulus space at the single

138  neuron level on a single neuron and single trial basis.

139  Information recovery in local neural populations irn silico and in vitro

140  If the PSP-to-spike transformation causes a dramatic drop in information about the stimulus carried in the
141  neural activity, how can the somatic PSPs of L.2/3 neurons carry near complete information (Fig.2A)? Since
142 these neurons are four synapses away from the sensory periphery, a recovery of information has to occur at
143 the network level. Information recovery was analyzed both in an anatomically and physiologically well-
144 constrained network model of a rat barrel column (Fig. 3) and on bootstrapped populations of the in vitro
145  data (Fig. 4, see Materials and Methods and Huang et al., (2020)).

146 The model has anatomically correct numbers and laminar locations of major classes of inhibitory
147  and excitatory neurons in L4 and L2/3 (Fig. 3A), single neuron dynamics based on experimental
148  observations as well as statistically defined connectivity and synaptic transmission parameters. Stimulation

149 was provided analogously to the in vitro stimulation in L4, using previously collected L4 peri-stimulus time
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150  histograms (PSTH) of principal and surround whisker stimulation in vivo (Fig. 3B, L4 response to principal
151  whisker in gray (Celikel et al., 2004). PSTHs of simulated L2/3 excitatory and inhibitory neurons
152 correspond to experimentally observed ones under similar conditions (De Kock et al., (2007), Fig. 3B red
153  and blue, respectively).

154 In the model, the timing of and information in PSPs and spikes closely matched the properties of
155  the real neurons in biological networks (compare Fig 3 to Fig.1-2). In the simulations, the trial-to-trial
156  variability in spike timing was substantially and significantly larger than the variability in PSP timing
157  (Fig. 3C, compare with Fig. 1A). Stimulus information was nearly fully retained in the somatic PSPs of
158  excitatory neurons (Fig. 3D, red, 88.8% of the stimulus entropy), yet reduced substantially (20.1%) during
159  spike generation, similar to our observations in biological neurons (Fig. 2A). Interestingly, inhibitory
160  neurons carried significantly less information in their PSPs (Fig. 3D, blue, 77.3%), but also exhibited less
161  information loss during spike generation (43.6%).

162 In the bootstrapped data, the stimulus information could be almost fully recovered from populations
163 of excitatory L2/3 neurons recorded in vitro (>81.1%, Fig. 4B). The amount of information recovered was
164  substantially greater for decoding including timing (81.1%, in timing of the 1st spike, binned at 2ms, 100
165  cells), than for rate based only decoding (50.5%, red vs. light red) and was largely independent of the
166  population size (i.e. the MI saturates quickly as a function of population size). To avoid an overestimation
167  of information from high-dimensional population data (due to the limited sampling bias), we first decoded
168  the stimulus from single trial responses using a support vector machine (SVM) based decoder (Fig. 4A)
169 before computing the MI (Ince et al., 2010b, 2010a; Quian Quiroga and Panzeri, 2009). To verify that this
170 method did not introduce a positive bias, we computed the information in response to an artificial
171  uninformative stimulus set (same PSTH for all stimuli, independent Poisson spiking), which yielded near-
172 zero MI values (Fig. 4C). The performance of the SVM provided significantly better results (correctly

173 predicting 94% of the stimuli), than linear (79%) or quadratic (80%) decoders. However, better decoders
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174 than the SVM may still exist, and the information calculated here therefore constitutes a lower bound on
175  the available information in the population data. Also, it should be noted that the present timing code does

176  not automatically include the rate code, since only the first spike is considered (see Materials and Methods).

177 Contribution of timing/rate reliability for information recovery

178  While a well-defined stimulus can be provided in vitro, the details of the L4 population activity cannot be
179  controlled. From the perspective of information transmission in single trials, the most important property
180  of the neural response is the reliability across trials. We utilized the barrel column in silico (Huang et al.,
181 2020) to investigate the influence of the encoding strategy in L4 (reliability of spike timing and spike count)
182  on the information transfer to L.2/3.

183 We first considered three extreme cases of encoding in L4, with a more systematic exploration in
184  the following section. In the first case (‘Rate + Poisson’), stimuli are encoded only by the population PSTH,
185  but spikes across trials and neurons are drawn with Poisson statistics. In the second case (‘Rate + Trial
186  Reliability’), stimuli are encoded by the population PSTH in L4, but also by the spike timing and count of
187 its individual neurons (i.e. the spike trains were identical for each trial with the same stimulus conditions).
188  Within the constraints of the experimentally observed PSTHs, these two cases constitute the lower and
189  upper bound of trial-to-trial reliability in L4. In the third case (‘No Rate + Trial Reliability’), the population
190 PSTH carries no information about the stimulus, but all information about the stimulus is encoded in the
191  spike timing and count of individual neurons. The latter case is added for comparison with the other two
192 encoding paradigms. Here, the population PSTH does not distinguish between stimuli, which happens for
193 instance for texture recognition tasks (Arabzadeh et al., 2005). These three cases are illustrated in the insets
194 of Fig. 4D-F. More details regarding the construction of these cases are given in Materials and Methods.
195 In the ‘Rate + Poisson’ case, information transfer is overall low, with interneurons providing a

196  superior readout of the information about the stimulus in L2/3 compared to excitatory neurons, both when


https://www.zotero.org/google-docs/?WX6uMr
https://www.zotero.org/google-docs/?WX6uMr
https://doi.org/10.1101/2020.12.08.415729
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.415729; this version posted December 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

197  the information was decoded in rate and in timing (Fig 4D right, light and solid colors respectively,
198  excitatory (red) vs. inhibitory (blue) neurons). While timing and rate codes are similarly efficient in
199  interneurons, substantially larger populations of excitatory neurons are required to decode information in
200  rate than in time. Given that the timing of the stimulus is only present on the population level in L4, the
201  dominance of this temporal readout in L2/3 is remarkable. Assuming the emulated stimuli in silico
202  approximate the stimuli in vitro with high accuracy (see Figs. 1 and 2), the ‘Rate + Poisson’ coding does
203  not reflect the L4 encoding scheme in the present experiments.

204 In the ‘Rate + Trial Reliability’ case, the information transfer is overall substantially higher than in
205  the ‘Rate+Poisson’ case (Fig. 4E right). In this condition the number of neurons required to recover the full
206  stimulus information is the lowest (~25) of the three cases. This was expected, since in this case two sources
207  of information - rate and timing - are used in the encoding of the stimulus. Remarkably, both cell-types and
208  both decoding strategies yield very similar information values here, suggesting this encoding strategy is
209  optimal for information transfer.

210 In the ‘No Rate + Trial Reliability’ case, the information transfer is intermediate between the two
211  preceding cases. Here, the stimulus is only encoded by the responses of individual L4 neurons, not by the
212 population PSTH. Interestingly, the opposite from the 'Rate + Poisson'-case can be observed here in the
213 decoding efficiency between 1.2/3 cell-types: contrary to the 'Rate + Poisson'-case, where interneurons
214 transfer more stimulus information, here excitatory neurons become substantially more efficient at
215  representing information (compare Fig. 4D to 4F).

216 In summary, the availability of stimulus information in L2/3 spike trains is highly dependent on 1)
217  the encoding properties of L4, 2) the decoding strategy in L2/3 and 3) the identity of the 1.2/3 neuronal
218  populations (inhibitory or excitatory, for a summary see Table 1). Information about the stimulus in the

219  spikes of L4 single units is best recovered by L2/3 excitatory neurons (Fig. 4F), given that there is a
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220  reasonable trial-to-trial reliability. Next, we systematically modulated the information content in L4 spike

221  trains to investigate the consequences for L2/3 information availability.

222 Population and single unit information selectively influence inhibitory or excitatory cells

223 While we only considered the extreme cases of L4 encoding above, realistic encoding will necessarily cover
224 arange of cases between these extremes. Different stimuli will often, but not always, lead to different
225  population PSTHs (but different surface textures may well lead to similar population PSTHs while finely
226  modulating single unit responses (Arabzadeh et al., 2005). Conversely, even in cases where the population
227  PSTH carries substantial information about the stimulus identity, spiking may well not be Poisson, but more
228  reliable (especially at the response onset see e.g. (Amarasingham et al., 2006)).

229 We investigated the contributions from the population and the single unit separately. Information
230  on the population level was represented as the average PSTH of the population (see Figure 6A1). Stimulus
231  information was encoded in L4 spike trains either as timing or rate differences. Timing differences were
232 implemented as shifts of the PSTHs (Ar), whereas firing rate differences were implemented as rate factors
233 between the PSTHs (Ac). If Ar=0 ms and Ac = 1, then no information is contained in the population PSTH.
234 Conversely, if Ay = 4ms and Ac = 4, the combined differences between the PSTHs are similar to the
235  experimentally observed ones. These parameters allow us to study the susceptibility of L2/3 neurons to the
236  different encoding strategies of L4 neurons (examples of spike patterns are shown in Fig. 5A1 above the
237  PSTHs, 10 trials each).

238 For decoding using spike times, inhibitory neurons exhibited a substantially greater susceptibility
239  to variations in the distinguishability of stimuli on the L4 population level compared to excitatory neurons
240  (blue vs. red, Fig. 5A2). This was true for both variations in time (Ar) and rate (Ac) in L4. Similarly, for

241  rate decoding, inhibitory neurons were more susceptible to changes in rate than excitatory neurons (Fig.

10
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242 5A3). Timing had little effect on rate decoding, since this corresponds mostly to a shift in the analysis
243 window (unrestricted here), with no change in rate information in L2/3.

244 Next, we considered the influence of various levels of single unit information on the information
245  availability in L2/3. Here, the population PSTH is kept fixed, but the temporal and count reliability are
246  varied on a neuron-to-neuron basis (see Fig. 5B1). The timing reliability was varied by introducing a
247  temporal jitter to individual spikes across trials (SDrt), while contracting spiking patterns to remain
248  consistent with the population PSTH. Count reliability was varied selectively by a linear transition between
249 a completely reliable and a Poisson model, while maintaining the population PSTHs. This was done by
250  shifting spikes between neurons while maintaining the temporal variability across neurons.

251 For decoding using spike times, excitatory neurons showed much greater susceptibility to single
252 unit differences in reliability in L4, both for rate and time (Fig. 5B2). Interestingly, this carried over to the
253  rate decoding to an even greater degree, which may be the domain of action for inhibitory neurons (Fig.
254  5B3).

255 In summary, L.2/3 excitatory neurons are much more sensitive than L.2/3 inhibitory neurons to the
256  spike timing of L4 single neurons, whereas the information encoded by the population PSTH in L4 is carried
257  mostly by inhibitory L2/3 neurons. Hence, we propose that the inhibitory and excitatory populations
258  perform stimulus decoding in parallel, extracting stimulus information from distinct features in L4 activity
259  (see Table 1). Together they have the ability to represent the entire information efficiently in small

260  populations.

261  Information recovery occurs rapidly within a few milliseconds

262  Information processing in the sensory cortices is under severe temporal constraints, especially in S1, where
263  the sensory input s tightly integrated with the motor output for the purpose of precise and adaptive whisking

264 control (Li et al., 2015; Proville et al., 2014; Voigts et al., 2015, 2008). The state of processing at a given
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265 time can be estimated by computing the mutual information over limited time windows, which
266  progressively include a larger proportion of the neural response (Fig. 6A, all excitatory and inhibitory
267  neurons separated for a single trial). In combination with varying the group size, we can thus obtain a
268  ‘neurotemporal’ overview over the process of information availability in L2/3 as a function of neuronal
269  class.

270 We consider three different encoding strategies by L4, ‘Rate + Poisson’, ‘Rate + Trial Reliability’
271  and ‘No Rate + Trial Reliability’ as in the previous section (Fig. 6B-D). In the ‘Rate + Poisson’ case, the
272  mutual information begins to increase with interneurons leading over excitatory neurons (Fig. 6B, left,
273  group size = 10 cells) around 12-14ms after stimulus onset (in L4). The inhibitory neurons reach maximal
274  stimulus information, and do not achieve full stimulus information. Groups of inhibitory neurons encode
275  more information than excitatory neurons, independent of the time relative to the stimulus onset and almost
276  independent of group size (Fig. 6B, right).

277 For the ‘Rate + Trial Reliability’ encoding condition in L4, the difference in the information content
278  between cell types in L2/3 is small, with inhibitory neurons carrying slightly more information at early peri-
279  stimulus times and across all group-sizes (Fig. 6C, right). The difference in onset timing renders the
280  information content of the inhibitory neurons higher only during the initial 1-2ms after response onset, due
281  to the earlier response times of the inhibitory neurons (Fig. 6C, left).

282 In the ‘No Rate + Trial Reliability’ condition, the times when the information content increases are
283  very comparable for excitatory and inhibitory neurons. However, after a few milliseconds, excitatory
284  neurons prevail over inhibitory neurons. This advantage is preserved over time, whereas the difference in
285  information content as a function of group size is strongly reduced, with inhibitory neurons eventually
286  catching up with excitatory neurons (Fig. 6D, right).

287 In summary, the representation of stimulus information in L.2/3 is rapidly completed within only a

288  few milliseconds (3-5) after response onset. Which neurons, i.e. excitatory or inhibitory, carry more
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289  stimulus information is determined by the encoding strategy in L4 (corresponding potentially to different
290  types of stimuli), but not much on the peri-stimulus time. As before, pure rate coding on the level of L4 is
291  identified as an insufficient coding strategy, as it does not fit our experimental results of almost complete

292 information recovery.

293  Discussion

294  We demonstrated that although the intracellular information transfer, i.e. the PSP-to-action potential
295 transformation, results in a significant loss of information about the stimulus, local networks can overcome
296  this loss by integrating information from a small, experimentally tractable, number of neurons. Therefore,
297  the somatic PSPs received by a single cortical neuron contain nearly complete information about the
298  stimulus, even several synapses away from the sensory periphery. The efficiency of such information
299  recovery is determined by a conjunction between the encoding scheme, neuronal class and decoding
300  strategy. Excitatory and inhibitory cells take complementary roles in carrying information in single unit or

301  population activity, respectively.

302  Contribution of temporal coding in somatosensory cortex

303 Encoding information on short temporal scales can enrich the information content of neural activity
304 relative to coarser average rates (Bialek et al., 1991; Bialek and Rieke, 1992). There has been a long
305  discussion about whether the brain uses such a ‘spike code’ or ‘rate code’ (for a review, see Brette, 2015).
306 It has been argued that since cortical networks are both noisy and very sensitive to perturbations, a rate
307  code is the only way to perform reliable computations (London et al., 2010, but see Denéve and Machens,
308  2016). However, others have pointed to the presence of temporally encoded information in the
309 somatosensory (Alenda et al., 2010; Panzeri and Diamond, 2010; Petersen et al., 2001) and other sensory

310  cortices (Kayser et al., 2012, 2010). In particular, the timing of the first (few) spike(s) in response to a
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311  stimulus conveys much of the information present in a spike train (Gollisch and Meister, 2008; Johansson
312 and Birznieks, 2004). Consistently, we find that the majority of the information in the PSP is encoded in its
313  timing. However, the timing of a spike in response to such a PSP is substantially more variable than the
314 PSP timing, such that only a small proportion of the information in the PSP is transferred to the spike
315  (Fig. 2). The amount of information loss could even be more substantial in vivo in the presence of
316  background ongoing activity. On the population level, we find again that the temporal information is highly
317  relevant during information recovery. In agreement with the previously observed importance of the first
318  spikes, we find that the information content in the population asymptotes within 5 ms after the first spike
319  inlocal populations, consistent with the time-scales of neuronal read-out in whisker cortex estimated before
320  (5-8 ms, (Stiittgen and Schwarz, 2010)).

321 The temporal information described above can be fully characterized by single neuron variations
322 inrate, and hence does not include higher order temporal codes, such as the pattern of inter-spike intervals.
323 Due to the sparse response nature of supragranular excitatory neurons, such a fine-grained higher order
324 temporal code could only exist in the inter-spike intervals of inhibitory neurons or spike-patterns across
325  multiple (excitatory or inhibitory) neurons. The term temporal code is however still appropriate for our
326 results, since the time scales of the response are not only reflecting dynamics in the stimulus, but correspond
327  to intrinsic computations of the neural network (Nemenman et al., 2004).

328 For the present dataset, Shannon's mutual information was computed with responses aligned to the
329 stimulus onset. Recent work by Panzeri and colleagues (Panzeri et al., 2010; Panzeri and Diamond, 2010)
330  have pointed out that such a reference time is not necessarily available to a decoder in S1. How would a
331  change to an internal reference time, such as the efference copy of the whisking signal (Crochet et al., 2011;
332 Crochet and Petersen, 2006; Poulet and Petersen, 2008) or a population-based timing (e.g. the “Columnar
333 Synchronous Response”, CSR, event defined by (Panzeri and Diamond, 2010)) affect the present results?

334  Assuming that the population response can be approximated by a set of individually recorded neurons (as
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335 in (Panzeri et al., 2010; Panzeri and Diamond, 2010)), the influence of such an intrinsic reference on our
336  results would be only minor, since the relative timing - and thus the relative trial-to-trial variability in timing
337 - would be the same as in the stimulus locked case. Hence, the information content would not be modified.
338 If, on the other hand, synchronization between neural groups occurs, results could be significantly
339  influenced, since then variability could be transferred from spikes to PSPs (in which case the alignment
340  would be based on the near-synchronous CSR). According to Petersen and colleagues (Petersen et al.,
341 2001), covariability, measured as noise correlation, was assessed to be ~0.1, and subsequent studies have
342 found even lower values (Renart et al., 2010), suggesting that stimulus-independent synchronization is not

343  substantial (note however the results of (Franke et al., 2016)

344  High information availability and multiplexed codes

345 To understand ‘how the brain works’, we need to understand what the neural computations are that
346  make an animal interact with its environment, i.e. how neural activity is transformed from the low-level
347  response, to perceptual input, to the high-level neural activity that generates behavior (Eliasmith and
348  Anderson, 2002). For instance, perceptual invariance (an object can be recognized as one and the same
349  under different circumstances) and selectivity (an object can be distinguished from other, similar objects)
350 need to be explained by any consistent theory of perception (Seung and Yuste, 2012). A model of how
351  increasingly abstract features can be recognized by neural networks along the sensory axis was already
352 explained by for instance the perceptron-model (Rosenblatt, 1958; Seung and Yuste, 2012). When neurons
353  in each processing layer respond to only a single, increasingly abstract, preferred feature, they disregard
354 necessarily a lot of information. Therefore, on the single-neuron level, the transformation from input to
355  output is expected to be very sparse, and ‘lossy’. However, whether on a population level it is necessary to
356  be able to fully reconstruct the stimulus, remains an open question. We have shown here that the entire

357  stimulus information is maintained in layer 2/3 of the barrel cortex and encoded by local populations in a
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358  distributed fashion. This information can be recovered already on the basis of a small subset of neurons
359  (~10-20, if single unit information is present) on short time-scales (~5ms relative to response onset),
360  ensuring a lossless representation of the sensory world in real-time, i.e. before the next sensory information
361 arrives from the periphery (in the case of active tactile exploration in freely behaving rodents, the inter-
362  contact intervals are >30 ms (Voigts et al., 2015, 2008)). In different setups (Dalgleish et al., 2020), in
363 mouse visual cortex (Sriram et al., 2020) and in salamander retina (Marre et al., 2015), comparable values
364  have been reported . This suggests that the full stimulus information is needed for the computations at
365  several levels. Combined with the single neuron selectivity, our results suggest that this network performs
366  a form of coordinate transformation (Denéve and Pouget, 2003). However, what the exact nature of the
367  computations of this and downstream networks is, remains an open question.

368 The neural activity of excitatory neurons in cortical layers 2/3 is generally considered to be sparser
369 thanin Layer 4 (see (Barth and Poulet, 2012) for a review, although the evidence is not yet fully conclusive).
370  This sparsity has been linked to higher selectivity of encoding, in terms of fewer, more specific features
371  represented per neuron. This increased selectivity could be the reason for the observed information loss
372  during the transformation of PSPs to spikes. It has been argued that the sparsity of the transformation of
373  presynaptic spike trains to PSPs to postsynaptic spikes is the result of optimal non-linear processing: only
374  redundant information, that has been gained before and can be predicted from previous activity, is
375  discarded, and postsynaptic neurons only respond to ‘new’ information (Denéve, 2008; Ujfalussy et al.,
376  2015). Our result that the postsynaptic membrane potential still contains the full stimulus information, is in
377  agreement with this argument, and the observation that most information is contained in the first spikes
378  mentioned before could also be explained this way. However, whether the information that is lost in the
379  spike-generating process is truly ‘discarded’ information, or, contrarily, redundant information, depends on
380  the presumed decoding of the neuron: which information is redundant or essential depends on the message

381  that needs to be conveyed.
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382 The distributed persistence of complete stimulus information could provide a practical solution to
383  one of the classical dilemmas of neural encoding: the compatibility between a specific feature and the
384  context of the entire stimulus space. Concretely, a readout neuron in L2/3 may have privileged access to L4
385  neurons selective for one type of feature, with in addition access to a wide range of inputs from a random
386  subset of the population. It could thus act as a comparator and evaluate the dominant feature in relation to
387  arepresentation of the entire stimulus. This becomes especially relevant in the case of multiple concurrent
388  stimulations on different whiskers, corresponding to the natural situation an animal is exposed to during
389  active exploration (Voigts et al., 2015). In this case, multiple signals (i.e. the signals from multiple whiskers,
390 that carry different spatial and temporal information) have to be processed by a single population of
391  neurons. If this population can be separated into independent-subpopulations, this implies that a population
392 consists of multiple channels (in the information-theory sense), but if this is not the case, multiple signals
393  are coded by a single population, so the code becomes multiplexed: a single channel (population) carries
394  complementary information through different codes. The observation that multiple subsets of neurons carry
395  complete stimulus information and the observation that spike timing and firing rate of the same population
396  (channel) can contain independent information about the stimulus hints at such multiplexing ((Panzeri et
397 al., 2001; Quian Quiroga and Panzeri, 2009), for a review, see (Panzeri et al., 2010)). Our finding that
398  different postsynaptic populations can decode the timing-encoded and rate-encoded information shows that
399  the information from both coding schemes (rate and timing by inhibitory and excitatory neurons) of such
400  multiplexed encoded information can also be used by the brain for further processing in later stages.
401  Information in inhibitory populations can then be forwarded by for instance disynaptic (dis)inhibition and
402  the modulation of firing rates or spike probabilities of excitatory populations. Multiplexed codes have been
403  discussed recently in the context of local field oscillations (Alenda et al., 2010), and the presence of
404  selective and general information as described herein may provide an additional example of multiplexing

405 (Fig. 7).
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406 Given the information content across the excitatory and inhibitory neural populations calculated
407  herein, we speculate that distinct tactile features are encoded by rate and timing of spiking during
408  information encoding and decoded by excitatory and inhibitory neurons separately (Fig. 7A). If an animal
409  were to use its whiskers to locate a tactile target in space for example (Celikel and Sakmann, 2007; Peron
410 et al.,, 2015), this model predicts that inhibitory neurons would carry the largest amount of information
411  during the first contact as the animal detects the edge of the tactile target. Similarly, at the detection of a
412  contact during passive whisking (Clem et al., 2008), inhibitory neurons would preferentially respond to the
413  onset of touch, serving as an edge detector. The information content of different signals within the L4-to-
414 L2/3 channel is temporally constrained as the animal continues to explore its immediate environment, and
415  makes additional whisker contacts with the tactile target (Fig. 7B; (Voigts et al., 2015, 2008)), presumably
416  to predict object distance and extract additional surface feature information about the target. With the
417  change of whisking pattern, the sensory history and the statistics of the local network activity, relative

418  information in the excitatory population will eventually dominate the neural representation of touch (Fig.

419  70).

420 How to convey stimulus information both lossless and efficiently, and how this depends on physical
421  properties such as network connectivity and node (neuron) properties, is an important open question in
422  network science, and neuroscience specifically (Maheswaranathan et al., 2018; Mastrogiuseppe and
423 Ostojic, 2017), in which computational models like the one we present here (Huang et al., 2020) play an
424 invaluable role. Recently, it has been shown that there is a trade-off between the sparsity and the amount
425  of recovered information in neural coding (Billings et al., 2014): lossless coding is only possible if the
426  connectivity in the network is not too sparse. Specifically, the authors showed that optimal connectivity

427  included only a few excitatory synapses and strong inhibition. Moreover, activity-dependent thresholds
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428  appear to play an invaluable role in such efficient information transmission (Billings et al., 2014; Huang et

429  al., 2016).

430 For future in vivo studies, an important question will be, whether complete information
431  representation persists if larger stimulus sets/spaces are considered, since it is expected that the
432 dimensionality of the response, and hence the number of neurons needed for complete information
433 recovery, depends on the complexity of the stimulus (Gao and Ganguli, 2015). Due to the requirements of
434 accurate estimation of mutual information, we had to restrict the stimulus space to four stimuli in the context
435  of whole-cell recordings (leading to ~300 trials per recorded cell). Note, however, that even under these
436  conditions, trial-to-trial variability could have prevailed and prevented complete stimulus reconstruction on
437  the single neuron and population level. Moreover, the present results can only provide a lower bound on
438  the available information, since not all possible codes were explored and the decoding step between
439 stimulus and response renders all results lower bounds (Quian Quiroga and Panzeri, 2009). In contrast to a
440  previous study in the auditory cortex (Ince et al., 2013), we find that more complex decoding methods
441  provide an improved decoding quality and hence more mutual information. Concretely, support vector
442  machine decoding with radial basis functions provided superior performance (94%) than either diagonal
443 linear (77%), linear (79%), or quadratic (80%) decoders. In order for the neural system to achieve this
444  quality of decoding, it would, however, need to have readout mechanisms which use decoding strategies

445  beyond linear or quadratic combinations.

446  Predictions for cell-type specific coding strategies

447  The cortical population of neurons is composed of various cell-types, which differ in their morphology,
448  location and physiology (De Kock et al., 2007; Narayanan et al., 2015; Oberlaender et al., 2012; Staiger et

449  al., 2015). These differences suggest distinct roles in information processing, some of which have recently
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450  been elegantly elucidated (Ko et al., 2011). Coarsely, on the level of their firing patterns, inhibitory neurons
451  can be distinguished from excitatory neurons, by more dense responses, based on a greater convergence of
452  connections (reviewed in Harris and Mrsic-Flogel (2013)). The connectivity in the present model was set
453  in precise accordance with the latest results from the literature from identified, pairwise recordings (see
454  Huang et al. (2020) for detailed references), and consequently recreates these differences in firing behavior.
455  Going beyond previous work, we find the coding balance to lean to either cell class, depending on the
456  encoding strategy used in L4.

457 We explored these encoding strategies in L4, finding that excitatory neurons more effectively
458  convey information encoded in L4 single units, requiring a level of reliability in L4 beyond Poisson-spiking
459  (Figure 6B). Conversely, inhibitory neurons are more effective in carrying L4 population rate information
460  (Figure 6A). Hence, together, excitatory and inhibitory neurons make effective use of the combined
461  information in population rate and single unit responses in L4.

462 The L4 encoding is likely to depend on the stimulus condition: Many stimuli will induce time-
463  varying population rates, which distinguish them from other stimuli. However, exceptions exist, such as the
464  comparison of similar textures (Arabzadeh et al., 2005), which have only small differences in population
465  rate, and differ more in their fine-structure. On the other hand, temporally structured inputs (e.g. many
466  natural stimuli) lead to stronger time locking between neurons in L4 (Amarasingham et al., 2011; Litwin-
467  Kumar and Doiron, 2012). Based on our results, we suggest that excitatory and inhibitory neurons might
468  focus on distinct individual and population information to optimize the availability of stimulus information
469  inlocal networks. Since long-range projections of inhibitory neurons are rare (Thomson and Lamy, 2007),
470  the information content in the spiking of the inhibitory neurons is likely to be most relevant for local
471  processing. Testing this hypothesis will not be trivial, since the inhibitory neurons cannot be removed from
472  the network without influencing the overall network dynamics. Nonetheless, transient optogenetic

473  modulation of the rate and timing of select inhibitory neurons’ activity while studying neural encoding of
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stimuli in the rest of the network will help to answer the question about which inhibitory neurons contribute

more to the transfer and recovery of information within a column (i.e. local) and across columnar networks.

In summary, the results presented here suggest that single neurons are efficient real-time encoders
of stimuli even several synapses away from the sensory periphery, but intracellular information transfer
results in a substantial loss in the information transmitted to the postsynaptic neurons. The lost information
can be recovered rapidly, i.e. within 20 ms, by comparatively small numbers of neurons in local populations,
so that lossless information transfer along the sensory axis is ensured. The information recovery depends
critically on the type of the neuron as well as the coding properties of both the presynaptic and postsynaptic
pools of neurons, such that excitatory and inhibitory populations process complementary information about

the stimulus in the somatosensory cortex.
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487  Materials and Methods

488  Experimental procedures

489  Rats from either sex were used according to the Guidelines of National Institutes of Health and were
490  approved by the local Institutional Animal Care and Use Committee. All data can be found in this online
491  repository:  https://doi.org/10.34973/59my-jm24, the relevant code can be found here:

492 https://github.com/DepartmentofNeurophysiology/Information-transfer-and-recovery-for-sense-of-touch-

493  code-for-figures
494 In vitro recordings

495  In vitro whole-cell current-clamp recordings were performed in acutely prepared slices of the barrel cortex
496  between P18-21, after maturation of evoked neurotransmitter release (Martens et al., 2015) as described
497 before (Allen et al., 2003; Celikel et al., 2004; Clem et al., 2008). Oblique thalamocortical slices (300 mm,
498  (Finnerty and Connors, 2000)) were cut 45° from the midsagittal plane in chilled low-calcium, low-sodium
499  Ringer’s solution (in mM; sucrose, 250; KCl, 2.5; MgS04.7H-0, 4; NaH,PO.4.H>O, 1; HEPES, 15; D-(+)-
500  glucose, 11; CaCly, 0.1). Slices were first incubated at 37°C for 45 minutes and were subsequently kept in
501  room temperature in carbonated (95% 02/5% CO2) bath solution (pH 7.4, normal Ringer’s solution: in

502  mM, NaCl, 119; KCl, 2.5; MgSOs, 1.3; NaH,POs, 1; NaHCO3, 26.3; D-(+)-glucose, 11; CaCl,, 2.5).

503  Visualized whole-cell recordings were performed using an Axoclamp-2B amplifier under IR-DIC
504  illumination. A custom-made tungsten bipolar extracellular stimulation electrode (inter-tip distance 150
505  micrometer) was placed in the lower half of a L4 barrel. Stimulation protocol was as described before
506  (Huang et al., 2016). In short, 10 ms long current pulses were delivered using a bipolar electrode located in
507  the lower half of a mystacial whisker’s barrel. The pulses were square and had equal maximal amplitude

508 although the rising phase of the stimulus had different slopes. It took 0,2,4 or 6 ms for the pulse to reach
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509  the maximum amplitude for stimulus (S)1, S2, S3 and S4, respectively. All intracellular recordings (pipette
510  resistance 3-4 MOhm) were performed in 1.2/3, orthogonal to the stimulation electrode within 150-300 pm
511 of the cortical surface. The internal solution (pH 7.25) consisted of, in mM, potassium gluconate, 116; KCl,
512 6; NaCl, 2; HEPES, 20 mM; EGTA, 0.5; MgATP, 4; NaGTP, 0.3. For whole cell recordings, putative
513  excitatory cells were selected based on pyramidal shaped somata, apical dendrites and distal tuft orientation,
514  and regular pattern of spiking to somatic current injections (500 ms; data not shown). Data was low-pass
515 filtered (2 kHz), digitized at 5 kHz using a 12-bit National Instruments data acquisition board and acquired

516  using Strathclyde Electrophysiology Suite for offline data analysis.

517  Im vivo recordings

518  In vivo whole-cell current-clamp recordings were performed under ketamine/xylazine anesthesia at P28-
519  30. Anesthesia was induced using 100 mg/kg (ketamine) and 10 mg/kg (xylazine) mixture and maintained
520  with intraperitoneal ketamine-only injections (20% of the initial dose) as necessary. Upon complete loss
521  of facial and hind-limb motor reflexes, the skull was exposed. A head-bolt was fixed posterior to lambda

522 using cyanoacrylate and was used to immobilize the animal during experiments.

523  The surface over the primary somatosensory cortex (from Bregma, -0.5mm to -2.5mm, from Midline -
524 2.5mm to -4.5mm was thinned using a dental drill. The surface was kept moist with a thin layer of low-
525  viscosity mineral oil to maintain the transparency of the thinned skull. Cortical representation of the D2
526  whisker was localized in the contralateral hemisphere using intrinsic optical imaging as described before
527  (Stewart et al., 2013) while deflecting individual whiskers using piezoelectric actuators as described
528 elsewhere (Celikel et al., 2004). The skull above the center of mass of the functional whisker representation
529  was punctured using a 28 gauge needle to allow patch electrodes to access the cortical region of interest.
530  All electrode penetrations were perpendicular to the cortical surface. In vivo whole-cell recordings were

531 performed as described before (Margrie et al., 2002) with recording electrodes (6-7 MOhm) filled with the
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532 same intracellular solution used in slice experiments. Two different whisker deflection protocols were
533 used: During optical mapping experiments single whiskers were deflected along the dorsoventral axis at 5
534  Hz with 8° deflections for 20 times with an inter-trial interval of 20 sec (Stewart et al., 2013). During
535  electrophysiological recordings single dorsoventral whisker deflections were delivered at 0.2 Hz for 200
536  times. In each trial 4° whisker deflections were delivered at 10 Hz for 1s. Throughout the experiment the

537  animal's core body temperature was maintained at 36.5+0.5°C.

538  Data analysis

539  All analyses were performed off-line in Matlab (Mathworks, Inc), the code for the figures can be found
540  online: https:/github.com/DepartmentofNeurophysiology/Information-transfer-and-recovery-for-sense-
541  of-touch-code-for-figures. Raw voltage traces were smoothed using running window averaging (Ims
542 window size) and the following variables were calculated for all evoked responses: Onset time (Ot, in ms):
543  Latency of the postsynaptic potential (PSP) onset in respect to onset of the stimulus; Rise time (Rt, in ms):
544  Time it takes for the membrane to reach 90% of the PSP amplitude relative to the onset of PSP; PSP slope
545  (Sl, in mV/ms) between 10-90% of the PSP amplitude and amplitude of the EPSP (Amp, in mV). If the
546  trial included an action potential, the peak of the EPSP was set to the spike threshold (Vt). The spike
547  threshold was defined as the membrane potential value at which the second derivative of the membrane
548  potential reached a maximum as described before (Wilent and Contreras, 2004). In slice recordings, resting
549  membrane potential (Vm, in mV) was calculated as the average membrane potential in a 40 ms time window
550  prior to the stimulus onset. For in vivo recordings the same time window was used but the sweep was
551  included in the data analysis only if the variance of the membrane potential was < 0.5mV during the time
552 window. For those sweeps in which a spike was observed, the spike threshold and spike latency (St) were

553  also calculated.
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554  Mutual information analysis for single neurons.

555  Only cells with more than 250 acceptable sweeps (summed across all stimulus conditions) were
556  used to perform Shannon information analysis. The mutual information (MI) between any two
557  wvariables S, R can be calculated as

559 I(S;R) = H(R)- H(R|S) 0

559  in which H is the entropy of a given variable R:

H(R) = —jp(c)logz(p(r:»

560 ()
561  and H(R|S) is defined as

H(R|S)=-3 p(s)3 P(r|5)log, p(r]5)
s 2102 :

563  where i ranges over the stimulus/response types. Note that the stimulus entropy shows a small variability
564  due to rejected trials. Similarly, the mutual information between one variable S and multiple R (joint mutual
565  information) can also be calculated using equation (1). In this case, the synergistic effect of R can be
566  expressed as the difference between the linear sum of the mutual information between S and each individual

567 R and the joint information I(S;R):

Syn(S:R) = I(S;R) - EI(S;R,-)
568 “)

569  Information calculations were performed using the Information Breakdown toolbox (Magri et al., 2009) in
570  Matlab (Mathworks. Inc). In short, each variable was first digitized using the equal space (‘eqspace') binning
571  method with 7 bins. The effect of different binning methods as well as the number of bins on MI values are
572  also explored (Fig. S1). In the analysis based on the ‘eqpop’ binning method, the size of individual bins
573  was modified so that a roughly equal number of observations was placed in each bin, instead of keeping
574  the size of individual bins constant. Because in most trials only one spike was observed, only the first spike
575  was considered when calculating the information in St. Thus, the spike latency St can be digitized to a

576  single word, which has (number of bin + 1) possible outcomes, instead of a binary list which could have
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577 2°(number of bin) possible values. Shuffle correction combined with Panzeri-Treves (Panzeri and Treves,
578  1996) bias correction was used to perform all information calculations for neural recordings (note that
579  shuffle corrections can introduce a small source of variability, which can be seen for instance in comparing
580  I(S,PSP) in Figure 2A with and H(S) or with the joint MI in 2C, or that can lead to an error bar above the
581  stimulus entropy or below 0). The performance of the algorithm was evaluated by randomly selecting a
582  subset of trials to calculate the mutual information (I(S;PSP), I(PSP;Vt) and I(PSP;St)), and subsequently
583  checking the number of trials (Ns) needed for the calculated information values to reach asymptote (Fig.
584  S2). When the ‘egspace’ binning method was used, all information values reached asymptote after Ns > 70,
585  well below the average Ns in the present data set (124+33.2 (range: 78-220) stimulus repetitions per

586  stimulus).

587  Calculation of minimum observation size:

588 An essential step in the information calculation method listed above is the estimation of the stimulus-
589  response probability distributions from the experimental data. Following Panzeri and colleagues (Ince et
590 al., 2010b) we calculated the number of experimental trials per stimulus condition, Ns, to be ~32 times
591 larger than the number of possible response pattern, R, to get an accurate estimation (Ns/R=32). This also
592 means that to accurately estimate information between the subthreshold responses (Am, S1, Ot, all binned
593  to 7 bins) and the stimulus, 32x7x7x7 = 10976 trials/ stimulus =91h continuous recordings will be needed.
594 Given technical infeasibility of maintaining whole cell access for the designated period we performed bias
595  corrections to account for the upward bias in information estimation with limited sample sizes (see (Ince et
596  al., 2010b) and (Victor, 2009) for further discussion). Methods like quadratic extrapolation (QE), Panzeri-
597 Treves (PT) correction (Panzeri and Treves, 1996) and Nemenman-Shafee-Bialek (NSB) t experiments and

598  94425.6 (range, 60-146) trials/stimulus for the in vivo whole-cell recordings.
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599  Mutual information analysis for multiple neurons

600  For multi-neuron MI analysis we followed the approach to first decode and then estimate the MI between
601 stimuli and the confusion matrix of the decode (Ince et al., 2010b; Panzeri and Diamond, 2010; Quian
602  Quiroga and Panzeri, 2009) using support vector machine (SVM) in MATLAB with radial basis functions
603  as the kernel transform. We utilized 90/10% cross validation during decoding to obtain an estimate of the
604  generalized performance of the decoder. SVM decoding outperformed other decoders with an average
605  performance of 94%, compared with some other decoders (diagonal linear (77%), linear (79%), quadratic
606  (80%)). The use of an intermediate decoder ensured that the calculation was bias free (given that we observe
607  the correct value of 0 bits for an uninformative set of stimuli, with otherwise very similar properties (see
608  Fig. 3G)), but came at the expense of lower bound in MI estimates since a (potentially existing) better

609  decoder would improve the ML

610  For the in-vitro recordings we first had to generate bootstrapped populations of sufficient size to perform
611 the population MI calculations. In order to preserve the within-cell variability of responses across stimulus
612  and trials, we only drew bootstrap samples from the trials of each cell independently. As in the simulations
613  we drew 100 samples of groups of each population size. Curves in Fig. 4 display averages over these

614  samples.

615 Network Simulations

616  The reconstruction of information in the neural network was performed in an in silico model of the barrel

617  cortex.
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618  Neural network

619  The model included a realistic account of the number of (Izhikevich, 2004, 2003) neurons and connectivity
620  (Supplemental Table 1) within a barrel column for Layers 2/3, with inputs arriving from the L4, mimicking
621  the conditions in the in vitro/in vivo experiments. For more details on the network model, see (Huang et al.,

622  2020).

623  Synaptic currents in this network were modeled by a double-exponential function. Parameters of those
624  functions (peak amplitude, rise time, half width, and pair-pulse ratio) were adjusted to match experimentally
625  measured PSPs in barrel cortex (Supplemental Table 1; see Thomson and Lamy (2007) for a review). The
626  onsetlatency was calculated from the distance between cell pairs; the conduction velocity of action potential

627  was set to 190um/ms.

628  Differences in activation state of cortex were included in the model by setting the common initial voltage
629  and the equilibrium potential vr of all cells to -80, -70, or -60mV in a third of the trials, thus accounting for

630  potential up- and down-states as well as an intermediate state.

631  Synaptic input from layer 4

632  Layer 4 stimulation was provided in the model based on population PSTHs collected extracellularly in
633 anesthetized animals in vivo (Celikel et al., 2004). We used PSTHs of principal and 1st order surround
634  whisker stimulation, as well as two linear interpolations between the two, yielding 4 stimuli with 2 bits total
635  entropy, matching the numbers in the in vitro experiments. The PSTHs only specified the population firing
636  rate in L4. We further explored population coding properties, by modifying the variability of spike timing
637  across trials. If response times and spike counts were conserved across multiple trials, spike timing and

638  counts within and between neurons start to carry additional information.
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639 In the ‘Rate + Poisson’ condition, we assumed no trial-to-trial reliability beyond that given by the
640  PSTH. Spike times were drawn based on Poisson statistics for each time with the PSTH modulating the
641  firing rate (see Fig. 4D left). This condition forms a lower bound on the transferred information between
642 L4 and L2/3, under the experimental constraints on the model. On the other extreme, in the ‘Rate + Trial
643  Reliability’ condition, the PSTHs varied as before, but in addition neurons emitted the same sequence of
644  spikes for every trial, preserving timing and count perfectly. This condition forms an upper bound on the
645  information transfer, since within the experimental constraints no additional variability is introduced, which
646  would reduce the mutual information. Finally, we consider the ‘No Rate + Trial Reliability’ condition,
647  where the population PSTHs are uninformative across stimuli, and stimulus information is only contained
648  in the spike trains of individual neurons. This case is a reference for other stimulus scenarios, where the

649  PSTH may not vary much (e.g. texture-type stimuli), and individual timing becomes more important.

650 We also explored conditions between these extremes (Fig. 5), where the information in population
651  or single neuron response was systematically varied. For the case of the population response we varied the
652  different in time and firing rate of the PSTHs for different stimuli (Fig. 5A). Time differences were
653  implemented by simply shifting the entire PSTH in time (tested shifts: [0,1,2,3] ms per stimulus, i.e.
654  maximum shift was 9 ms). Rate differences were implemented as the fraction between the maximal and the
655 minimal stimulus (tested fractions were [1,2,3,4], where e.g. 4 corresponds to the weakest stimulus being
656  25% of the strongest stimulus at the peak of the PSTH). The case of time shift O ms and rate fraction 1 is
657  uninformative on the level of population rate. Single neuron reliability in this case was chosen as a medium
658  level of single unit reliability (SDt = 3 ms, SDc = 20%). Single neuron reliability in response was also
659  explored in timing and rate (Fig. 5B). Starting from perfect timing and rate, we degraded the information
660  extractable from single neurons, by introducing timing variability (spike times were shifted by Gaussian-

661  distributed noise with standard deviation SDr) and rate/count variability (spikes were deleted or added, by
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linearly mixing between Poisson and perfectly reliable spiking, with mixing parameter SDc, denoted as %
in the figure). For both procedures, the modifications were performed while keeping the population PSTH
approximately unchanged, i.e. for timing the overall timing distribution was contracted to keep the original

PSTH, and for rate, spikes were shifted between neurons, rather than only removed from individual neurons.

These independent variations of population and single unit responses allowed us to separate the
contribution of these two information sources to the information available in groups of L2/3 excitatory and

inhibitory neurons (see Results).
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Abbreviations
AP : Action potential / spike

PW : Principal whisker

H : Entropy

S : Stimulus

Ar : Variation in spike timing
L : (Cortical) layer

PSP
SW

PSTH
Ac
CSR

: Postsynaptic potential

: Surround whisker

: (Mutual) Information

: Peristimulus time histogram
: Variation in spike rate

: Columnar Synchronous Response
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Table 1: Summary of information recovery results depending on L4 encoding and L2/3 decoding schemes.

L4 encoding->

population level

single neuron level

L2/3 decodingd,

timing

(Ar>0, Ac = 1)

rate
(Ar=0,Ac>1)

timing reliability
(SDr>0, shift=0)

count reliability
(SD1=0, shift>0)

spike times

inhibitory neurons

more susceptible

inhibitory neurons

more susceptible

excitatory neurons

more susceptible

excitatory neurons

more susceptible

rate

no effect

inhibitory neurons

more susceptible

excitatory neurons

more susceptible

excitatory neurons

more susceptible
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690  Figure 1. In vivo and in vitro stimulus representation in single L.2/3 somatosensory cortical neurons

691 (A) We deflected whisker D2 and its first order neighbors (D1,D3,C2,E2) individually to determine the
692  spatial encoding properties of cortical L2/3 pyramidal neurons in the D2 barrel under anesthesia using
693  whole cell current clamp recordings. (B-D) EPSP response to in vivo stimulation. Analysis of the EPSP
694  parameters showed that principal whisker stimulation was correlated with earlier onset times (B), larger
695  slopes (C) and larger amplitudes (D) compared to the surround whiskers. Onset time was described as the
696  latency between stimulus onset and the time it takes for the membrane to reach 10% of the peak somatic
697  EPSP amplitude. The EPSP slope was calculated to be between 10-90% of the somatic EPSP. The
698  amplitude was measured at the peak. All measurements were performed on monosynaptic EPSPs.
699  (E-M) Response to in vitro stimulation mimicking in vivo stimulation. Due to the sparse nature of action
700  potentials in vivo, we developed a stimulation protocol to mimic the subthreshold stimulus encoding
701  properties of 1.2/3 neurons in vitro. (E) Whole cell intracellular current clamp recordings were performed
702  inL2/3 while L4 neurons were stimulated using a bipolar electrode. (F) Soma location of randomly selected
703 neurons. (G) The stimuli were direct current injections with equal maximal amplitudes as the in vivo
704  EPSCs, but the rising slope of the current was systematically reduced across the four stimulus conditions
705  (see (Huang et al., 2016)). (H-M) L2/3 pyramidal neurons’ responses to L4 stimulation. Each circle shows
706  the average (over trials) response of one neuron (N=11). (H-J) EPSP response to in vitro stimulation. H:
707  Onset time, I: Slope, J: EPSP amplitude; (K-M) Spike response to in vitro stimulation. K: Spike time, i.e.
708 latency to spike after stimulus onset; L: Spike threshold, described as the membrane potential at which the
709  second derivative reaches a global (positive) maximum; M: Action potential (i.e. spike) probability, across
710  trials. (N-P) Spike versus EPSP response to in vitro stimulus. While both EPSP and spike parameters
711  displayed an average dependence on the stimulus, EPSP parameters are more accurately determined by the
712 stimulus than spike parameters on single trials.

713

35


https://www.zotero.org/google-docs/?VBQDcn
https://doi.org/10.1101/2020.12.08.415729
http://creativecommons.org/licenses/by-nd/4.0/

714

715

716
717
718
719
720
721
722
723
724
725

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.415729; this version posted December 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

r«\ff\J\ﬁBJ(\f\R

A C I—&\/ —
£ £ 2 _ I(S;PSP)
= c c
=] =] 2
s 811 L 51
£ E 1= £ .
@ © T ©
20 20 e £0 —
= = =
% 7 5 %S, 7S % b % %,
d} Py ) ge) g, o % O@f
S % 7 Z &) 9
) /4@} 2 /2

z z8 z8 |(PSP;St)

i T =2 Z & ‘-

] S 1 S

i 5 E

E 1 E 4 E 4

S S S

[= [ = [ =4

= E Z 2 = 2

2, = = 3 - 3 =

2 2o 20 -
% % % % 7 7z % Ry 1y
S &, [\ 7 2, 2, o 7, S,
% ’ [’0 '%,; "S)?, &'?@ Q?'b ® K %,

) % Z %

Figure 2. Postsynaptic potentials encode substantially more stimulus information than spikes in vitro
(A) The information between PSPs and the stimulus is significantly higher than the information between
spikes and the stimulus. While the PSP contains a large fraction of the stimulus entropy (95%, 1(S;PSP),
1.81+0.31 bit vs. H(S), 1.86£0.17 bit, p = 0.16), most of this information is not transferred to the spike
(I(S;Spike), 0.47 £0.19 bit, 24%). (B) The majority of the information in the PSP is carried by the onset
timing (Ot, 1.6£0.31 bit, 85%), while slope (S1, 0.17 £0.09 bit, 10%) amplitude (Am, 0.13 +0.07 bit, 5%)
carry only small amounts of information. (C) Ot, SI, and Am add their information independently, as the
synergy between them is close to 0 (Synergy : 0.03 £0.18 bit, p = 0.15, t-test). (D) The information in the
spike is contributed by spike time (St, 0.31 +0.13 bit, 16%) and threshold (Vt, 0.12 £0.08 bit, 6.2%), and
jointly only reach 21% of the total information (repeated from A). (E) Substantial information transfer

occurs between the PSP and the spike, although this constitutes only 22% (St) and 15% (V) of the entropy
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in the PSP. (F) The information in the properties of the PSP adds largely independently to the joint
information, with a small but highly significant synergistic contribution of different PSP properties (0.41
+0.13 bit, 6.4%, p<107). In all figures data is plotted as inter-quartile intervals and red lines denote the
median of each distribution. Outliers are plotted as red dots. The dotted line denotes the maximal stimulus

entropy.

37


https://doi.org/10.1101/2020.12.08.415729
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.415729; this version posted December 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

731

732

733
734

735
736
737
738
739

>

Cortical Depth [um]

@

Onset time (Ms)

-250

-500

W
o

N
o

-y
o

L4
L2/3 Inhibitory
L2/3 Excitatory

L1 B
£ 100
E 50
L2/3 0
€ 100
=
= 200
L4 & 300
S 400
-100 9 4qg 100 © 190 o
RC [um) L e
D
S1 S3 S4
. [0
‘% .| 3=
/ 2 oo =
%}7 .pﬂ“‘é . =
/—M-h

0 10 20 30
Spike time (ms)

25 50
Time (ms)
Excitatory
Inhibitory
iy
]
i} i !
| '
B
1
I(S;PSP) 1(S;Spike)

Figure 3. Anatomically constrained barrel column ir silico reproduces the relationships between sub-

and supra-threshold information

(A) An anatomically based model of a barrel column for L2/3/4 was generated to analyze the information

transfer between L4 and L2/3 in analogy to the physiological recordings (see Huang et al. (2020) for

details).

(B) In response to stimulation in L4 with a whisker-like PSTH (grey), excitatory (red) and

inhibitory (blue) cells respond in L2/3, with inhibitory activity eventually extinguishing the total activity in

the network. (C) Corresponding to the in vitro/in vivo data, the timing of PSPs for a given stimulus is more
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740  precise than the spikes they evoke (compare to Fig. 1L). (D) The relationship between PSPs and spikes in
741  terms of timing and reliability leads to single cell mutual information very similar to the recorded data
742 (excitatory cells, compare to Fig.2A). Inhibitory cells (not recorded), show less information in their PSP
743 response, but more information in the spikes (all properties combined for both cell-types). Dotted line:

744 stimulus entropy.
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746  Figure 4. Information recovery in neural populations recorded ir vitro.

747  If a postsynaptic EPSP carries near complete information about the stimulus in the periphery
748  (Figure 2), how does the postsynaptic neuron reconstruct this information from poorly informative
749  action potentials of the presynaptic neurons? (A) To address this question we evaluate the mutual
750  information from population spike trains of groups of excitatory or inhibitory neurons. To prevent
751  the sampling bias, Ml is estimated between the stimulus and an SVM decoding from the population
752 response. (B) Population information estimated from bootstrapped in vitro recordings show nearly
753  complete recovery of stimulus information. Asymptote is reached above 81% for 100 neurons for
754  temporal decoding (dark red), and remains systematically lower for the rate-based decoding (light
755  red). (C) Estimating population information for non-informative stimuli (identical PSTH, Poisson-
756  spiking) leads to vanishingly low MI values, demonstrating that the analysis does not introduce a
757  positive bias. (D) If the population activity in L4 is only constrained by the PSTH and otherwise
758  spikes are drawn according to Poisson-distributions (bottom left, different colors = different
759  stimuli), then inhibitory neurons carry more information for both time (dark blue) and rate (light
760  blue) decoding, than excitatory neurons (dark & light red respectively). The gray line denotes the
761  entropy of the stimulus. (E) If PSTHs differ across stimuli but spike timing is stereotypical across
762  trials (‘Rate + Trial Reliability’, top left, multiple trials per neuron above each other), coding
763  becomes highly effective and independent of the cell-type and coding strategy (~25 cells). (F) If
764 L4 PSTHs do not distinguish stimuli, but only the timing of individual neurons across trials is
765  stereotypical (No Rate + Trial Reliability, top left), a remarkable shift occurs, with excitatory
766  neurons reaching almost complete information for much smaller group sizes (~25 cells). In all

767  plots the vertical grey line indicates where 90% of the information is represented.

768
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770  Figure 5. Stimulus encoding by presynaptic single neurons and populations of neurons selectively
771  influences the decoding performance of the postsynaptic excitatory or inhibitory neurons,

772  respectively.

773 (A1) Stimulus information can be encoded in differences in rate or timing on the level of the
774  population PSTH. Different combinations of these two coding dimensions are varied, with Ar
775  (abscissa) indicating different timing for different stimuli (different colors, see Fig. 4), and Ac
776  (ordinate) indicating different rates for different stimuli. Maximal information is achieved for high
777  values of At and Ac. For each condition the population PSTHs and two example cells are shown
778  (raster plot for 10 trials, above). Spike-times of individual neurons are Poisson-distributed given
779  the PSTH. NB C1 and C2 denote the responses of two different example cells. (A2) Decoding of
780  first spike timing reveals a greater sensitivity of inhibitory neurons (blue) to the level of
781  information in the L4 population response, both for time and rate information in L4. Conversely,
782  excitatory neurons (red) are comparatively insensitive. (A3) Decoding of rate again reveals a
783  greater sensitivity of inhibitory neurons to the level of information in the L4 response for different
784  rates. Since we did not limit the time window of analysis, neither of the cell types is influenced by
785  variation in time, while leaving the rate information unchanged. (B1) Stimulus information can
786  also be encoded in the reliable discharge of single units. We modulated the reliability by
787  introducing variability in timing (SDt) or variability in count (SDc) independent of each other.
788  Maximal information is achieved for SDt and SDc both close to 0, 1.e. perfectly reliable responses.
789  Colors and raster plots as in Al. (B2) Decoding of first spike timing reveals a great sensitivity of
790  excitatory neurons to the L4 information in single unit responses for both variability in time (SDT)
791  andrate (SDc). (B3) Decoding of rate shows a very strong sensitivity of excitatory neurons on the
792  single unit information. Conversely, inhibitory neurons exhibit almost no sensitivity to single unit

793  information in L4, and are thus dominated by L4 population information.
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795  Figure 6. Neuronal information recovery is completed in <20ms after stimulus onset.

796  (A) Time-scales of information recovery computed by calculating the MI between stimulus (not shown)
797  and spike trains (single trial example shown) over time-windows of increasing lengths (6-30ms at 3ms
798  steps) (B) For the ‘Rate + Poisson’ encoding in L4, both excitatory (red) and inhibitory (blue) neurons in
799  L2/3 reach their respective maximal information (left: group size of 10 cells, the gray line denotes the
800  entropy of the stimulus), ~25-30ms after stimulus onset. L2/3 inhibitory neurons (blue) encode more
801 information, independent from the peri-stimulus time and group size (right). The color code shows the
802  difference in MI between the excitatory and inhibitory groups, with red for larger MI in the excitatory, and
803  blue for greater MI for the inhibitory neurons. (C) For the ‘Rate + Trial Reliability’ condition in L4, the
804  information content of the two populations is quite similar (left) with a slight advantage for the inhibitory
805  neurons at early times, but no dependence on group size (right). (D) In the ‘No Rate - Trial Reliability”’
806  case, the divergence between information content only begins around 12ms after stimulus onset, after which

807  excitatory neurons achieve a substantial coding advantage, especially for smaller group sizes.
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809  Figure 7. Multiplexed coding of touch.

810  If intracellular information transfer, i.e. from EPSP-to-spike, results in a significant loss of near complete
811  information, originally available in a single EPSP (Fig. 2), and if this information is recovered in local
812  networks (Fig. 4 and 5) before the next sensory stimulus arrives (Fig. 6) using the rate and timing of spikes
813  at the single cell and population levels (Fig. 4-6), selective decoding of stimulus properties by excitatory
814  and inhibitory neural populations (Fig.5) will result in a multiplexed code for sensory processing. (A) If
815  excitatory and inhibitory neurons preferentially decode the stimulus information from the spike timing of
816  individual neurons and the population rate of presynaptic neuronal activity (Fig. 5), respectively,
817  information content of the activity in excitatory and inhibitory neurons should vary predictably — see the
818  suggested coding schema for touch. (B-C) The information content across the neural populations will also
819  vary depending on the complexity of the stimulus. (B) During tactile object localization in freely behaving
820  animals (Celikel and Sakmann, 2007; Voigts et al., 2015, 2008), for example, as the animal approaches the
821  tactile target and makes multiple contacts, the information content will change not only because the
822  kinematics of touch varies, e.g. the amplitude whisker deflections is reduced to match the predicted position

823  of the sensory target (Voigts et al., 2015), but also the neurons will represent different features of the sensory
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824  target. (C) We speculate that information in the inhibitory neurons will better predict the stimulus location,
825  although the information content of the excitatory neurons will eventually supersede as surface features are
826  encoded with the subsequent contacts with the target.

827

828
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