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Abstract

The non-selective serotonin 2A (5-HT,a) receptor agonist lysergic acid diethylamide
(LSD) holds promise as a treatment for some psychiatric disorders. Psychedelic drugs such
as LSD have been suggested to have therapeutic actions through their effects on learning.
The behavioural effects of LSD in humans, however, remain largely unexplored. Here we
examined how LSD affects probabilistic reversal learning in healthy humans. Healthy
volunteers received intravenous LSD (75ug in 10 mL saline) or placebo (10mL saline) in
a within-subjects design and completed a probabilistic reversal learning task. Participants
had to learn through trial and error which of three stimuli was rewarded most of the time,
and these contingencies switched in a reversal phase. Computational models of
reinforcement learning were fitted to the behavioural data to assess how LSD affected the
updating (“learning rates”) and deployment (“reinforcement sensitivity”) of value
representations during choice, as well as “stimulus stickiness”, which assays choice
repetition irrespective of reinforcement history. Conventional measures assessing
sensitivity to immediate feedback (“win-stay” and “lose-shift” probabilities) were
unaffected, whereas LSD increased the impact of the strength of initial learning on
perseveration. Computational modelling revealed that the most pronounced effect of LSD
was enhancement of the reward learning rate. The punishment learning rate was also
elevated. Stimulus stickiness was decreased by LSD, reflecting heightened exploratory
behaviour, while reinforcement sensitivity was unaffected. Increased reinforcement
learning rates suggest LSD induced a state of heightened plasticity. These results indicate
a potential mechanism through which revision of maladaptive associations could occur in

the clinical application of LSD.
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Significance statement
The psychedelic (“mind-manifesting”) drug LSD holds promise for the treatment of some

psychiatric disorders. Theories have postulated its therapeutic potential centres on
enhancing learning and flexible thinking. Here we provide substantiating empirical
evidence by examining the computations underlying behaviour as healthy volunteers
learned through trial and error under LSD. Viewing choice as based on representations of
an action’s value, LSD increased the speed at which value was updated following
feedback, which was more pronounced following reward than punishment. Behaviour
was also more exploratory under LSD, irrespective of the outcome of actions. These
results indicate that LSD impacted a fundamental belief-updating process inherent in the
brain which can be leveraged to revise maladaptive associations characteristic of a range

of mental disorders.


https://doi.org/10.1101/2020.12.04.412189
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.04.412189; this version posted January 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction
Research into lysergic acid diethylamide (LSD) as a potential therapeutic agent in

psychiatry has been revitalised in recent years (Nutt and Carhart-Harris 2020;
Vollenweider and Preller 2020). Theories on the putative beneficial effects of LSD on
mental health centre on its effects on learning and plasticity (Carhart-Harris and Nutt
2017), yet few studies have examined its effect on human behaviour. LSD acts principally
but not exclusively as an agonist at the serotonin (5-HT; 5-hydroxytryptamine) 2A [5-
HT,4] receptor (Marona-Lewicka et al. 2005, 2007; Nichols 2016). Indeed, blocking 5-
HT,, receptors inhibits the psychedelic effects of LSD (Nichols 2016). The 5-HT:a
receptor is involved in plasticity (Barre et al. 2016; Vaidya et al. 1997) and its modulation
represents a putative neurobiological mechanism through which LSD could facilitate the
revision of maladaptive associations (Carhart-Harris and Nutt 2017). Indeed, LSD and 5-
HT,, agonists have been shown to improve associative learning in non-human animals
(Harvey 2003; Harvey et al. 1988; Romano et al. 2010; Schindler et al. 1986). However,
studies of human learning and cognitive flexibility under the influence of psychedelic drugs
using objective tests (rather than subjective experience) are limited in number (Pokorny et
al. 2019). Here we tested whether LSD altered probabilistic reversal learning in healthy
volunteers, and explored how LSD altered underlying learning mechanisms, using

reinforcement learning models.

Serotonin is critically involved in adapting behaviour flexibly as environmental
circumstances change (Barlow et al. 2015; Brigman et al. 2010; Clarke et al. 2004; Matias
etal. 2017; Rygula et al. 2015), as well as processing aversive outcomes (Bari et al. 2010;
Chamberlain et al. 2006; Cools et al. 2008; Crockett et al. 2009; Dayan and Huys 2009;
Deakin 2013; den Ouden et al. 2013; Geurts et al. 2013). Both can be modelled in a
laboratory setting using probabilistic reversal learning (PRL) paradigms. In these,
individuals learn by trial and error the most adaptive action, in an “acquisition” stage, and
this rule eventually changes in a “reversal” phase (Lawrence et al. 1999). Profound
neurotoxin-induced depletion of serotonin from the marmoset orbitofrontal cortex (OFC)
causes perseverative, stimulus-bound behaviour (Walker et al. 2009) — an impaired ability

to update action upon reversal (Clarke et al. 2004). At the same time, acute administration
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of selective serotonin reuptake inhibitors (SSRIs), which can paradoxically lower serotonin
concentration (Nord et al. 2013), has resulted in an increased sensitivity to negative
feedback (referred to as “lose-shift” behaviour) in healthy humans (Chamberlain et al.

2006; Skandali et al. 2018) and rats (Bari et al. 2010).

In addition to affecting the serotonin system, LSD has dopamine type 2 (D,) receptor
agonist properties (Marona-Lewicka et al. 2005, 2007; Nichols 2004). Dopamine is
particularly well known to play a fundamental role in learning from feedback (Schultz
2019; Schultz et al. 1997) putatively mediating plasticity changes during associative
learning (Shen et al. 2008; Yin and Knowlton 2006). Meanwhile, dopamine depletion of
the marmoset caudate nucleus, like serotonergic OFC depletion, also induced perseveration
(Clarke et al. 2011). Additionally, there is a body of evidence, across species, that D,-
modulating agents affect instrumental reversal learning (Boulougouris et al. 2009; Kanen

et al. 2019; Lee et al. 2007).

The aim of the current study was to examine the effects of LSD on learning in humans, to
inform the psychological mechanisms by which LSD could have salubrious effects on
mental health. To do so, we tested the acute effects of LSD on PRL, in a placebo-controlled
study of healthy human volunteers. We predicted LSD modulates either sensitivity to
negative feedback or the impact of learned values on subsequent perseverative behaviour
(den Ouden et al. 2013). Measuring “staying” (repeating a choice) or “shifting” (choosing
another stimulus) after wins or losses assesses sensitivity to immediate reinforcement, but
does not account for the integration of feedback history across multiple experiences to
influence behaviour (Daw 2011). We applied computational models of reinforcement
learning to test the hypothesis that LSD alters the rate at which value is updated following
reward or punishment. Through modelling we additionally investigated whether LSD
affects the degree to which behaviour is stimulus-driven (“stimulus sticky”), independent

of an action’s outcome.
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Methods and Materials

Subjects and drug administration

Nineteen healthy volunteers, over the age of 21, attended two sessions at least two weeks
apart where they received either intravenous LSD (75pg in 10 mL saline) or placebo (10mL
saline), in a single-blind within-subjects balanced-order design. All participants provided
written informed consent after briefing on the study and screening. Participants had no
personal history of diagnosed psychiatric disorder, or immediate family history of a
psychotic disorder. Other inclusion criteria were normal electrocardiogram (ECG), routine
blood tests, negative urine test for pregnancy and recent recreational drug use, negative
breathalyser test for recent alcohol use, alcohol use limited to less than 40 units per week,
and absence of a significant medical condition. Participants had previous experience with
a classic psychedelic drug (e.g. LSD, mescaline, psilocybin/magic mushrooms, or
DMT/ayahuasca) without an adverse reaction, and had not used these within six weeks of
the study. Screening was conducted at the Imperial College London Clinical Research
Facility (ICRF) at the Hammersmith Hospital campus, and the study was carried out at the
Cardiff University Brain Research Imaging Centre (CUBRIC). Participants were blinded
to the condition but the experimenters were not. A cannula was inserted and secured in the
antecubital fossa and injection was performed over the course of two minutes. Participants
reported noticing subjective effects of LSD 5 to 15 minutes after dosing. The PRL task was
administered approximately five hours after injection. Once the subjective drug effects
subsided, a psychiatrist assessed suitability for discharge. This experiment was part of a
larger study, the data from which are published elsewhere (e.g. Carhart-Harris et al. 2016).
Additional information, including subjective ratings, can be found in Carhart-Harris et al.

(2016).

Probabilistic reversal learning task

A schematic of the task is shown in Figure 1A. On every trial, participants could choose
from three visual stimuli, presented at three of four randomised locations on a computer
screen. In the first half of the task (40 trials), choosing one of the stimuli resulted in positive
feedback in the form of a green smiling face on 75% of trials. A second stimulus resulted

in positive feedback 50% of the time, whilst the third stimulus yielded positive feedback
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on only 25% of trials. Negative feedback was provided in the form of a red frowning face.
The first stimulus that was selected, was defined as the initially rewarded stimulus; the
choice on trial 1 always resulted in reward. The second stimulus that was selected was
defined as the mostly punished stimulus, and by definition the 3™ stimulus was then the
“neutral” stimulus. After 40 trials, the most and least optimal stimuli reversed, such that
the stimulus that initially was correct 75% of the time was then only correct 25% of the
time, and likewise the 25% correct stimulus then resulted in positive feedback on 75% of
trials. This is a novel version (Kandroodi et al. 2020) of a widely used PRL task (Lawrence
et al. 1999; den Ouden et al. 2013): novel due to the addition of a 50% “‘neutral” stimulus
in order to distinguish learning to select the mostly rewarding stimulus from learning to

avoid the mostly punishing stimulus.

Conventional analysis of behaviour

We examined whether LSD impaired participants’ overall ability to perform the task by
analysing the number of responses made to each stimulus during the acquisition and
reversal phases. We measured feedback sensitivity by determining whether participants
stayed with the same choice following positive or negative feedback (win-stay or lose-
stay). The win-stay probability was defined as the number of times an individual repeated
a choice after a win, divided by the number of trials on which positive feedback occurred
(opportunities to stay after a win). Lose-stay probability was calculated in the same
manner: number of times a choice was repeated following a loss, divided by the total losses
experienced. Note that in previous studies with a choice between only two stimuli (or
responses), this metric is usually referred to as “win-stay / lose-shift”, which also captures
the tendency to repeat (rather than switch) responses following a win, and the tendency to
switch (rather than repeat) choices following a loss. Random choice would result in 50%
win-stay and 50% lose-shift; however, in the current paradigm with 3 stimuli, this base rate
is 33% (win-)stay and 67% (lose-)shift. We therefore encode both variables with respect
to the stay (rather than shift) rate, but they are still conceptually identical to earlier studies.
Perseveration was defined according to den Ouden et al. (2013) and was assessed based on
responses in the reversal phase. A perseverative error occurred when two or more (now

incorrect) responses were made to the previously correct stimulus, and these errors could
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occur at any point in the reversal phase. The first trial in the reversal phase (trial 41 of 80)
was excluded from the perseveration analysis, however, as at that point behaviour cannot
yet be shaped by the new feedback structure. Note again that this metric is not entirely
identical to the previous studies cited employing two stimuli, as the base-rate choice for
each stimulus is now 1/3, so the “chance” level of perseverative errors is lower. Null

hypothesis significance tests used a = 0.05.

Computational modelling of behaviour

Model fitting, comparison, and interpretation

These methods are based on our previous work (Kanen et al. 2019). We fitted three
reinforcement learning (RL) models to the behavioural data using a hierarchical Bayesian
method, via Hamiltonian Markov chain Monte Carlo sampling implemented in Stan 2.17.2
(Carpenter et al. 2017). Convergence was checked according to R, the potential scale
reduction factor measure (Gelman et al. 2012; Brooks and Gelman 1998), which
approaches 1 for perfect convergence. Values below 1.2 are typically used as a guideline
for determining model convergence (Brooks and Gelman 1988). We assumed the three
models had the same prior probability (0.33). Models were compared via a bridge sampling
estimate of the marginal likelihood (Gronau et al. 2017a), using the “bridgesampling”
package in R (Gronau et al. 2017b). Bridge sampling directly estimates the marginal
likelihood, and therefore the posterior probability of each model given the data (and prior
model probabilities), as well as the assumption that the models represent the entire group
of those to be considered. Posterior distributions were interpreted using the 95% highest
posterior density interval (HDI), which is the Bayesian “credible interval”. Parameter
recovery for this modelling approach has been confirmed in a previous study (Kanen et al.

2019).

The Bayesian hierarchy consisted of “drug condition” at the highest level, and “subject” at
the level below. For each parameter, each drug condition (e.g. LSD) had its own mean
(with a prior that was the same across conditions, i.e. with priors that were unbiased with
respect to LSD versus placebo). This was then merged with the intersubject variability

(assumed to be normally distributed; mean O by definition, standard deviation determined
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by a further prior). The priors used for each parameter are shown in Table 1. For instance,
the learning rate for a given subject under LSD was taken as: the group mean LSD value
for learning rate, plus the subject-specific component of learning rate. The learning rate for
a given subject under placebo was taken as: the group mean placebo value for learning rate,
plus the subject-specific component of learning rate for the same subject. This method
accounts for the within-subjects structure of the study design. This was done similarly (and

separately) for all other model parameters.

To determine the change (LSD — placebo) in parameters, we calculated [group mean LSD
learning rate] — [group mean placebo learning rate] for each of the ~8,000 simulation runs
and tested them against zero via the HDI. This approach also removes distributional
assumptions and provides an automatic multiple comparisons correction (Gelman and

Tuerlinckx 2000; Gelman et al. 2012; Kruschke 2011).

Models

The parameters contained in each model are summarised in Tables 1 and 2. With Model 1,
we tested the hypothesis that positive versus negative feedback guides behaviour
differentially, and that LSD affects this. We augmented a basic RL model (Rescorla &
Wagner 1972) with separate learning rates for reward o’* and punishment . Positive
feedback led to an increase in the value V; of the stimulus i that was chosen, at a speed
governed by the reward learning rate o™, via V., < V;, + &’ (R, — V:,). R, represents the
outcome on trial 7 (defined as 1 on trials where positive feedback occurred), and (R, — V;,)
the prediction error. On trials where negative feedback occurred, R, = 0, which led to a
decrease in value of V; at a speed governed by the punishment learning rate a’*", according
to Vi «— Vi, + o»*(R, — V;,). Stimulus value was incorporated into the final quantity
controlling choice according to Q", = 7"V, The additional parameter 7"/, termed
reinforcement sensitivity, governs the degree to which behaviour is driven by
reinforcement history. The quantities Q associated with the three available choices, for a
given trial, were then input to a standard softmax choice function to compute the

probability of each choice:
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P(action,) = softmax?(Q;...Q,) =

for n = 3 choice options. The probability values for each trial emerging from the softmax
function (the probability of choosing stimulus 1) were fitted to the subject’s actual choices
(did the subject choose stimulus 1?). Softmax inverse temperature was set to 8 = 1, and as
a result the reinforcement sensitivity parameter (z"") directly represented the weight given

to the exponents in the softmax function.

Model 2 again augmented a simple RL model, but now also described the tendency to
repeat a response, irrespective of the outcome that followed it (in other words, the tendency
to “stay” regardless of outcome). With Model 2 we tested the hypothesis that LSD affects
this basic perseverative tendency. This was implemented using a “stimulus stickiness”
parameter %", The stimulus stickiness effect was modelled as Q% = t*ims, ;, where s, ;
was 1 for the stimulus that was chosen on the previous trial and was 0 for the other two
stimuli. In this model we used only a single learning rate " Positive reinforcement led
to an increase in the value V; of the stimulus i that was chosen, at a speed controlled by the
learning rate a™, via V., < Vi, + a™™(R, — V;,). The final quantity controlling choice
incorporated the additional stickiness parameter as Q, = Q™", + Q*m,. Quantities Q,
corresponding to the three choice options on a given trial, were then fed into the softmax
function as above. It should be noted that if 7% is not in the model (or is zero), then 77" is
mathematically identical to the notion of softmax inverse temperature typically
implemented as /3. The notation 7" is used, however, because it contributes to Q"", but
not to Q*™,. A standard implementation of /3, by contrast, would govern the effects of both

Qe and Q™ by weighting the sum of the two (Q,).

Model 3 was the full model that incorporated separate reward and punishment learning
rates as well as the stimulus stickiness parameter. With Model 3, we tested the hypothesis
that LSD affects both how positive versus negative feedback guides behaviour
differentially, and how LSD affects a basic perseverative tendency. Again, the final

quantity controlling choice was determined by Q, = Q™" + Q'im,.
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Results

Learning and perseveration

First, we verified that LSD did not impair participants’ overall ability to perform the task.
Behavioural performance is depicted in Figure 1 and 2. To examine whether LSD affected
the number of times each stimulus was chosen, repeated-measures analysis of variance
(ANOVA) was conducted with drug (LSD, placebo), phase (acquisition, reversal), and
stimulus type (75%, 50%, or 25% rewarded) as within-subjects factors. This revealed a
main effect of stimulus (F 3 =30.66, p =3 x 10, 17,2 = .63), a stimulus x phase interaction
(F=28.62,p=2x10% 7,>=.61), and no interaction of LSD with stimulus or phase (F <
1.5,p > 24,1n,°< .08, for terms involving LSD). The number of correct responses did not
differ between placebo and LSD during the acquisition (paired-sample 7 test, ;3 = 0.84, p
= 4,d=.19) or reversal phases (t;s=0.23,p = .8,d = 05).

We then examined the relationship between initial learning and perseveration, following
den Ouden et al. (2013) (Figure 2B). LSD enhanced the relationship between the number
of correct responses during the acquisition phase and the number of perseverative errors
made during the subsequent reversal stage (acquisition correct responses [LSD minus
placebo] versus reversal perseverative errors [LSD minus placebo]: linear regression
coefficient § = .56, p = 0.002). Confirming this, making fewer errors during the acquisition
phase predicted more perseverative errors when on LSD (8 =0.44, p = 0.003) but not when
under placebo (5 = 0.04, p = .8). Perseverative errors, a subset of all reversal errors, alone

did not differ between conditions (¢;3 =0.03,p = .98,d = .01).

Feedback sensitivity

We next assessed whether LSD influenced individuals’ responses on trials immediately
after positive versus negative feedback — whether participants stayed with the same choice
after a win or a loss (win-stay/lose-stay; Figure 1D, 2D). Repeated-measures ANOVA with
drug (LSD, placebo) and valence (win, loss) as within-subjects factors revealed a main
effect of valence — participants “stayed” more after wins than losses (F; s = 37.76,p = 8.0
x 10, 17,2 = 0.68) — and no main effect of LSD (F ;5 = 0.20, p = .66, 57,2 = .01). There was
also no interaction of valence x LSD (F, ;5 =0.63, p = 44, 7,> = .03).

11
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Choice of reinforcement learning model

The core modelling results are displayed in Figure 2E. We fitted and compared three
reinforcement learning models. Convergence was good with all three models having R <
1.2. Behaviour was best characterised by a reinforcement learning model with four
parameters (Table 2). The four parameters in the winning model were: 1) reward learning
rate, which reflects the degree to which the chosen stimulus value is increased following a
positive outcome (reward prediction error); 2) punishment learning rate, degree to which
the chosen stimulus value is decreased following a negative outcome (punishment
prediction error); 3) reinforcement sensitivity (comparable to inverse temperature), which
is the degree to which the values learned through reinforcement contribute to final choice;
and 4) “stimulus stickiness”, which indexes the tendency to get “stuck” to a stimulus and
choose it because it was chosen on the previous trial, irrespective of outcome. The last two
parameters resemble the explore/exploit trade-off: low values of stickiness or

reinforcement sensitivity index two different types of exploratory behaviour.

Reward and punishment learning rates
The reward learning rate was significantly elevated on LSD (mean 0.87) compared to

placebo (mean 0.28) (with the posterior 99.9% highest posterior density interval [HDI] of
the difference between these means excluding zero; 0 & 99.9% HDI; Figure 2E). There

was also an increased punishment learning rate under LSD (mean 0.48) relative to placebo

(mean 0.39) (drug difference, 0 & 99% HDI). Importantly, LSD increased the reward

learning rate to a greater extent than the punishment learning rate ([aeLSP — qrewplacebo] —

[apuntSD — gpunplacebo] > (); drug difference, 0 &€ 99% HDI).

Stimulus stickiness and reinforcement sensitivity

Stimulus stickiness was lowered by LSD (mean 0.23) relative to placebo (mean 0.43) (drug

difference, 0 & 90% HDI; Figure 2E), which is a manifestation of increased exploratory

behaviour. Reinforcement sensitivity was not modulated by LSD (LSD mean 4.70, placebo

12
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mean 5.57; no drug difference, 0 € 95% HDI). This is in line with the absence of an effect

of LSD on the tendency to ‘stay’ following reward or punishment (see conventional

analysis above).

Relationship between model parameters and conventional behavioural measures

Analyses to understand the relationship between computational and conventional measures
were conducted, corrected for multiple comparisons, and are summarised in
Supplementary Table 1. Given the initial finding on the relationship between better
acquisition learning and perseveration, the first question addressed was whether the
elevated reward learning rate from the computational model under LSD was predictive of
the conventional measure of perseveration from den Ouden et al. (2013). Simple linear
regression showed that under LSD, a higher reward learning rate predicted significantly
more perseverative errors ( = 30.22, p = .02), whereas no such relationship was present
when the same participants were under placebo (8 = -.57, p = .95). Next we examined the
relationship between the stimulus stickiness parameter from the computational model and
the conventional measure of perseveration. Stimulus stickiness was not correlated with the
conventional measure of perseveration, in either the placebo (8 =3.60, p = 43) or LSD (§
= 7.67, p = .13) condition, indicating these were two independent processes. Further

exploratory analyses are reported in Supplementary Table 1.

Discussion

There has been a recent surge of interest in potential therapeutic effects of psychedelics,
particularly LSD. Theorising on the mechanisms of such effects centres on their role in
enhancing learning and plasticity. In the current study we tested these postulated effects of
LSD in flexible learning in humans and find that LSD increased learning rates, exploratory
behaviour, as well as the impact of previously learnt values on subsequent perseverative
behaviour. Specifically, LSD increased the speed at which value representations were
updated following prediction error (the mismatch between expectations and experience).
Whilst LSD enhanced the impact of both positive and negative feedback, it augmented

learning from reward significantly more than it augmented learning from punishment.
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The observation that LSD enhanced learning rates may be particularly important for
understanding the mechanisms through which LSD might be therapeutically useful.
Psychedelic drugs have been hypothesised to destabilise pre-existing beliefs (i.e. relax prior
beliefs or “priors”), making them amenable to revision (Carhart-Harris and Friston 2019).
The notion of relaxed priors is directly compatible with increased reinforcement learning
rates: in our study, LSD rendered subjects more sensitive to prediction errors, which
naturally implies downweighting of prior beliefs (Carhart-Harris and Friston 2019). That
LSD affected a fundamental belief-updating process is notable given that psychedelics are
under investigation trans-diagnostically for diverse clinical phenomena including
depression (Carhart-Harris et al. 2016, 2018; Ross et al. 2016), anxiety (Griffiths et al.
2016; Grob et al. 2011), alcohol (Bogenschutz et al. 2015) and nicotine abuse (Johnson et
al.2014), OCD (Moreno et al. 2006), and eating disorders (Lafrance et al. 2017); a unifying

feature of these conditions is maladaptive associations in need of revision.

Behaviour was more exploratory overall under LSD irrespective of reinforcement history,
reflected by lower estimates of the stimulus stickiness parameter. This is entirely consistent
with theoretical accounts of psychedelic effects which have predicted increased
exploratory tendencies (Carhart-Harris and Friston 2019). Another type of exploratory
behaviour that is more commonly studied, low reinforcement sensitivity (a lower tendency
to exploit a highly valued option), was unaffected by LSD: this highlights the utility of the
stimulus stickiness parameter in parcellating and thus uncovering exploratory behaviour.
That LSD lowered stimulus stickiness may also be clinically relevant: stimulus stickiness
was recently shown to be abnormally high in cocaine and amphetamine use disorders,

whilst reinforcement sensitivity was unaffected (Kanen et al. 2019).

Under LSD, better initial learning led to more perseverative responding. Importantly,
perseveration (den Ouden et al. 2013) itself from the conventional analysis was not
elevated by LSD nor did it correlate with stimulus stickiness (Supplementary Table 1),
indicating these are two independent measures. The implication is that when a behaviour

is newly and more strongly learned through positive reinforcement (i.e. the acquisition
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phase) under LSD, it may persist more strongly even when that action is no longer relevant
(i.e. the reversal phase). This is orthogonal to an overall tendency towards exploration
irrespective of reinforcement history (low stimulus stickiness, estimated from choice

behaviour across both acquisition and reversal phases).

Given the broad effect of LSD on a range of neurotransmitter systems (Nichols 2004,
2016), it is not possible to determine the specific neurochemical mechanism underlying the
observed LSD effects on learning. Nonetheless, obvious possibilities involve the serotonin
and dopamine system, in particular 5-HT,, and D, receptors (Marona-Lewicka et al. 2005,
2007; Nichols 2004, 2016). Specifically, the psychological plasticity purportedly promoted
by psychedelics is believed to be mediated through action at 5-HT,, receptors (Carhart-
Harris and Nutt 2017) via downstream enhancement of NMDA (N-methyl-D-aspartate)
glutamate receptor transmission (Barre et al. 2016) and brain-derived neurotrophic factor
(BDNF) expression (Vaidya et al. 1997). The hypothesis that the present reinforcement
learning rate results are driven by serotonergic effects of LSD is supported by two recent
studies in mice. Optogenetically stimulating dorsal raphé serotonin neurons enhanced
reinforcement learning rates (ligaya et al. 2018), whilst activation of these neurons tracked
both reward and punishment prediction errors during reversal learning (Matias et al. 2017).
Neurotoxic manipulation of serotonin in marmoset monkeys during PRL, meanwhile,
altered stimulus stickiness (Rygula et al. 2015): this implicates a serotonergic mechanism
underlying increased exploratory behaviour following LSD administration in the present

study.

In addition to affecting the serotonin system, however, LSD also acts at dopamine receptors
(Nichols 2004, 2016). Dopamine has long been known to play a crucial role in belief
updating following reward (Schultz et al. 1997), and more recent evidence shows that
dopaminergic manipulations may alter learning rates (Kanen et al. 2019; Schultz 2019;
Swart et al. 2017). A dopaminergic effect would be in line with our previous study where
genetic variation in the dopamine, but not serotonin transporter polymorphism, was
associated with the same enhanced relationship between acquisition and perseveration as

reported here under LSD (den Ouden et al. 2013).
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Serotonin—dopamine interactions represent another candidate mechanism that could
underlie the present findings. For example, stimulation of 5-HT,, receptors in the
prefrontal cortex of the rat, enhanced ventral tegmental area (VTA) dopaminergic activity
(Bortolozzi et al. 2005). Indeed, the initial action of LSD at 5-HT,, receptors has been
proposed to sensitise dopamine neuron firing, which subsequently potentiates the direct
dopaminergic effects of LSD (Nichols 2016). LSD action at D, receptors, consequently,
appears to be especially pronounced at a later time following LSD administration (Marona-
Lewicka et al. 2005, 2007), which is relevant given the relatively long delay between LSD
administration and performance of the current task (see Methods). However, arguing
against a late dopaminergic effect is a previous study in rodents where the effects of LSD
on reversal learning were consistent across four different time lags between drug

administration and behavioural testing (King et al. 1974).

The result of enhanced coupling of acquisition learning and perseverative responding under
LSD is in line with a recent study showing that LSD induced spatial working memory
deficits and higher-order cognitive inflexibility in a set-shifting paradigm (Pokorny et al.
2019). Importantly, these effects were blocked by co-administration of the 5-HT,a
antagonist ketanserin (Pokorny et al. 2019), showing that the LSD-induced impairments
were mediated by 5-HT,, agonism, consistent with a 5-HT,, mechanism underlying the

present results.

LSD’s effects to increase acquisition-perseveration coupling and worsen set-shifting
(Pokorny et al. 2019), in conjunction, suggest that what is newly learned through
reinforcement under LSD is more “stamped in”, which may subsequently be harder to
update. Whilst these findings are ostensibly at odds with the observation that LSD
enhanced plasticity (through enhanced learning rates), these results can be reconciled by
considering the timing of drug administration with respect to initial learning and tests of
cognitive flexibility. In both the present experiment and the previous set-shifting study
(Pokorny et al. 2019), all phases of learning (acquisition and reversal) were conducted after

LSD administration. In contrast, when acquisition learning was conducted prior to LSD
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administration, LSD resulted in improved reversal learning (using a reversal paradigm in
rats; King et al. 1974). Likewise, when acquisition learning was conducted prior to
administration of a 5-HT,, antagonist, reversal learning was impaired (Boulougouris et al.
2008). Collectively, these findings suggest that whether a prior belief is down- or up-
weighted under LSD may depend on whether the prior is formed before or during drug
administration, respectively. This observation is of great relevance for a putative

therapeutic setting, where maladaptive beliefs will have been formed before treatment.

In summary, the core result of this study was that LSD enhanced the rate at which humans
updated their beliefs based on feedback. Learning rate was most enhanced by LSD when
receiving reward, and to a lesser extent following punishment. LSD also increased
exploratory behaviour, which was independent of reinforcement history. This study
represents one of the few applications of objective measures to investigate fundamental
cognitive processes in humans under LSD. These findings have implications for
understanding the mechanisms through which LSD might be therapeutically useful for

revising deleterious associations.
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Figures

Figure 1. A) Schematic of the probabilistic reversal learning task. Subjects chose one of
three stimuli. The timeline of a trial is depicted: stimuli appear, a choice is made, the
outcome is shown, a fixation cross is presented during the intertrial interval, stimuli
appear for the next trial (etc.) (RT, reaction time). One stimulus delivered positive
feedback (green smiling face) with a 75% probability, one with 50%, and one with 25%.
The probabilistic alternative was negative feedback (red sad face). Midway through the
task, the contingencies for the best and worst stimuli swapped. s = seconds. B) Trial-by-
trial average probability of choosing each stimulus, averaged over subjects and sessions,
collapsed across LSD and placebo sessions. A sliding 5-trial window was used for
smoothing. The vertical dotted line indicates the reversal of contingencies. Shading
indicates 1 standard error of the mean (SE). C) Distributions depicting the average per-
subject probability (scattered dots) of choosing each stimulus during the acquisition
(shown in dark blue) and reversal (light blue) phases, collapsed across LSD and placebo
sessions. Mean value for each distribution is illustrated with a single dot at the base of
each distribution, and the mean values for the probability of choosing different stimuli in
each phase are connected by a line. One SE is shown by black error bars around the mean
value. Horizontal dotted line indicates chance-level stay-behaviour (33%). D)
Distributions depicting the average per-subject probability (scattered dots) of repeating a
choice (staying) after receiving positive or negative feedback during the acquisition (dark
blue) and reversal (light blue) phases, collapsed across LSD and placebo sessions.
Horizontal dotted line indicates chance-level stay-behaviour (33%).
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Figure 2. A) Trial-by-trial average probability of choosing each stimulus, averaged over
subjects, separated by drug session. A sliding 5-trial window was used for smoothing.
The vertical dotted line indicates the reversal of contingencies. Shading indicates 1
standard error of the mean (SE). B) Better initial learning was predictive of more
perseveration on LSD and not on placebo. Shading indicates 1 SE. C) Distributions
depicting the average per-subject probability (scattered dots) of choosing each stimulus
while under placebo (shown in dark blue) and LSD (light blue). Mean value for each
distribution is illustrated with a single dot at the base of each distribution, and the mean
values for the probability of choosing different stimuli in each condition are connected by
a line. One SE is shown by black error bars around the mean value. Horizontal dotted line
indicates chance-level stay-behaviour (33%). D) Conventional analyses of feedback
sensitivity were unaffected by LSD. Distributions depicting the average per-subject
probability (scattered dots) of repeating a choice (staying) after receiving positive or
negative feedback under placebo (dark blue) and LSD (light blue). Horizontal dotted line
indicates chance-level stay-behaviour (33%). E) Effects of LSD relative to placebo on
model parameters. Contrasts with the posterior 95% (or greater) highest posterior density

interval [HDI] of the difference between means excluding zero (0 & 95% HDI) are
shown in red. Orange signifies O & 90% HDI. The third row represents a difference of
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Tables

Table 1. Prior distributions for model parameters

Model Models using Range Prior Reference
parameters each

parameter
reward learning 1,3 [0, 1] Beta(1.2, 1.2) den Ouden et al.
rate, a"" (2013)
punishment 1,3 [0, 1] Beta(1.2, 1.2) den Ouden et al.
learning rate, a”*" (2013)
combined 2 [0, 1] Beta(1.2, 1.2) den Ouden et al.
reward/punishment (2013)
learning rate, o™
reinforcement 1,2,3 [0, +oo] Gamma(a=4.82, Gershman (2016)
sensitivity, 77" $=0.88)
stimulus stickiness, 2,3 [—o0, 0] Normal(0, 1) Christakou et al.
eiim (2013)
Intersubject
variability in
parameters
Intersubject As above [0, +o0] Half-normal: Kanen et al.
standard Normal(0, 0.05) (2019)
deviations for constrained to >0
arew’ a]nm' ar('inf’ T]M
Intersubject As above [0, +o0] Half-normal: Kanen et al.
standard Normal(0, 1) (2019)
deviations for 7" constrained to >0

rew reward, pun punishment, reinf reinforcement, stim stimulus

Table 2. Model comparison

Rank Name Parameters log marginal log posterior P(model)
likelihood
2 Model 1 are, ape, e -2401 .49 -33.28
Model 2 e, grei, getim -2428.52 -60.32
1 Model 3 are, ape, T, g -2368.21 0

rew reward, pun punishment, reinf reinforcement, stim stimulus
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Supplementary information

Simulation: Methods

We simulated behavioural data from the winning model to determine how behavioural
patterns in the synthetic data compared to the raw data. Simulated data were analysed for
win-stay probability, lose-stay probability, acquisition performance, and perseveration, as
was done for the original raw data analysis. For each condition (placebo and LSD), we
simulated 100 “virtual subjects” using the posterior mean parameters from that condition,

from the winning model, per Kanen et al. (2019).

Simulation: Results

Simulated behavioural data, generated using parameter estimates from the winning model,
were analysed using conventional methods in order to assess whether the winning model
could capture the observed effects of LSD on raw behaviour. Simulated data are shown in
Supplementary Figure 1. Consistent with the original data, lose-stay probability was
unaffected by LSD in the simulated behaviour (ty =—-0.37,p = .71,d = .03) and acquisition
performance was also unaffected (f5 = 0.25, p = .81, d = .03). Perseveration was enhanced
by LSD in the simulation (fy = -2.24, p =0.03, d = .22), which differs slightly from, yet is
in line with, the original analyses showing an enhanced relationship between acquisition
and perseveration under LSD. Linear regression examining whether correct responses
during the acquisition phase (LSD minus placebo) predicted more perseverative errors in
the reversal stage (LSD minus placebo) was not significant in the simulated data (8 =0.15,
p = 0.13). Separate regressions for each condition also showed no significant relationship
between acquisition performance and perseveration for LSD (8 = 0.12, p = 0.25) or for
placebo (8 = 0.01, p = 91). Win-stay probability was diminished under LSD in the
simulated data (to9 = 11.91, p = 8.21 x 102!, d = 1.19) whereas it was unaffected by LSD

in the raw data analysis.
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Supplementary Figure 1. Simulated data. A) Trial-by-trial average probability of
choosing each stimulus, averaged over simulated subjects, separated by drug session. A
sliding 5-trial window was used for smoothing. The vertical dotted line indicates the
reversal of contingencies. Shading indicates 1 standard error of the mean (SE). B)
Relationship between initial learning and perseveration on LSD versus placebo in
simulated data. Shading indicates 1 SE. C) Distributions depicting the average per-
subject probability (scattered dots) of simulated subjects choosing each stimulus while
under placebo (shown in dark blue) and LSD (light blue). Mean value for each
distribution is illustrated with a single dot at the base of each distribution, and the mean
values for the probability of choosing different stimuli in each condition are connected by
a line. One SE is shown by black error bars around the mean value. Horizontal dotted line
indicates chance-level stay-behaviour (33%). D) Distributions depicting the average per-
subject probability (scattered dots) of simulated subjects repeating a choice (staying) after
receiving positive or negative feedback under placebo (dark blue) and LSD (light blue).
Horizontal dotted line indicates chance-level stay-behaviour (33%).
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Supplementary Table 1
Summary of correlations between conventional behavioural measures and model

parameters. T significant positive correlation; | significant negative correlation; —

no significant correlation. All significant correlations survived correction for 32
comparisons, using the Benjamini-Hochberg method at q = .15 (Skandali et al.

2018).
Acquisition Performance Perseveration Proportion Proportion
Lose-Stay Win-Stay
Placebo LSD Placebo LSD Placebo LSD Placebo LSD

Reward - - - 1 - - - -
Learning p= .86 p=.053 p=95 | p=.02 p=.79 p=371| p=.55 | p=.11
Rate, a™”
Punishment - - - - ! ! - -
Learning p=.18 p=.053 p=34 | p=60| p=0l | p=04| p=08 |p=.65
Rate, ar*"
Reinforcement 1 1 - 1 1 1 0 1
Sensitivity, p=1x10? p=3x103 p=26 | p=02 | p=1x103 | p=01 | p=01 | p=.02
rreinf
Stimulus 0 — _ _ 1 1 _ 1
Stickiness, 7" p=.02 p=.16 p=43 | p=.13 | p=2x10° | p=03 | p=07 | p=.02

rew reward, pun punishment, reinf reinforcement, stim stimulus
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