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Abstract  
The non-selective serotonin 2A (5-HT2A) receptor agonist lysergic acid diethylamide 

(LSD) holds promise as a treatment for some psychiatric disorders. Psychedelic drugs such 

as LSD have been suggested to have therapeutic actions through their effects on learning. 

The behavioural effects of LSD in humans, however, remain largely unexplored. Here we 

examined how LSD affects probabilistic reversal learning in healthy humans. Healthy 

volunteers received intravenous LSD (75¿g in 10 mL saline) or placebo (10mL saline) in 

a within-subjects design and completed a probabilistic reversal learning task. Participants 

had to learn through trial and error which of three stimuli was rewarded most of the time, 

and these contingencies switched in a reversal phase. Computational models of 

reinforcement learning were fitted to the behavioural data to assess how LSD affected the 

updating (“learning rates”) and deployment (“reinforcement sensitivity”) of value 

representations during choice, as well as “stimulus stickiness”, which assays choice 

repetition irrespective of reinforcement history. Conventional measures assessing 

sensitivity to immediate feedback (“win-stay” and “lose-shift” probabilities) were 

unaffected, whereas LSD increased the impact of the strength of initial learning on 

perseveration. Computational modelling revealed that the most pronounced effect of LSD 

was enhancement of the reward learning rate. The punishment learning rate was also 

elevated. Stimulus stickiness was decreased by LSD, reflecting heightened exploratory 

behaviour, while reinforcement sensitivity was unaffected. Increased reinforcement 

learning rates suggest LSD induced a state of heightened plasticity. These results indicate 

a potential mechanism through which revision of maladaptive associations could occur in 

the clinical application of LSD.  
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Significance statement 
The psychedelic (“mind-manifesting”) drug LSD holds promise for the treatment of some 

psychiatric disorders. Theories have postulated its therapeutic potential centres on 

enhancing learning and flexible thinking. Here we provide substantiating empirical 

evidence by examining the computations underlying behaviour as healthy volunteers 

learned through trial and error under LSD. Viewing choice as based on representations of 

an action’s value, LSD increased the speed at which value was updated following 

feedback, which was more pronounced following reward than punishment. Behaviour 

was also more exploratory under LSD, irrespective of the outcome of actions. These 

results indicate that LSD impacted a fundamental belief-updating process inherent in the 

brain which can be leveraged to revise maladaptive associations characteristic of a range 

of mental disorders. 
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Introduction 
Research into lysergic acid diethylamide (LSD) as a potential therapeutic agent in 

psychiatry has been revitalised in recent years (Nutt and Carhart-Harris 2020; 

Vollenweider and Preller 2020). Theories on the putative beneficial effects of LSD on 

mental health centre on its effects on learning and plasticity (Carhart-Harris and Nutt 

2017), yet few studies have examined its effect on human behaviour. LSD acts principally 

but not exclusively as an agonist at the serotonin (5-HT; 5-hydroxytryptamine) 2A [5-

HT2A] receptor (Marona-Lewicka et al. 2005, 2007; Nichols 2016). Indeed, blocking 5-

HT2A receptors inhibits the psychedelic effects of LSD (Nichols 2016). The 5-HT2A 

receptor is involved in plasticity (Barre et al. 2016; Vaidya et al. 1997) and its modulation 

represents a putative neurobiological mechanism through which LSD could facilitate the 

revision of maladaptive associations (Carhart-Harris and Nutt 2017). Indeed, LSD and 5-

HT2A agonists have been shown to improve associative learning in non-human animals 

(Harvey 2003; Harvey et al. 1988; Romano et al. 2010; Schindler et al. 1986). However, 

studies of human learning and cognitive flexibility under the influence of psychedelic drugs 

using objective tests (rather than subjective experience) are limited in number (Pokorny et 

al. 2019). Here we tested whether LSD altered probabilistic reversal learning in healthy 

volunteers, and explored how LSD altered underlying learning mechanisms, using 

reinforcement learning models. 

 

Serotonin is critically involved in adapting behaviour flexibly as environmental 

circumstances change (Barlow et al. 2015; Brigman et al. 2010; Clarke et al. 2004; Matias 

et al. 2017; Rygula et al. 2015), as well as processing aversive outcomes (Bari et al. 2010; 

Chamberlain et al. 2006; Cools et al. 2008; Crockett et al. 2009; Dayan and Huys 2009; 

Deakin 2013; den Ouden et al. 2013; Geurts et al. 2013). Both can be modelled in a 

laboratory setting using probabilistic reversal learning (PRL) paradigms. In these, 

individuals learn by trial and error the most adaptive action, in an “acquisition” stage, and 

this rule eventually changes in a “reversal” phase (Lawrence et al. 1999). Profound 

neurotoxin-induced depletion of serotonin from the marmoset orbitofrontal cortex (OFC) 

causes perseverative, stimulus-bound behaviour (Walker et al. 2009) – an impaired ability 

to update action upon reversal (Clarke et al. 2004). At the same time, acute administration 
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of selective serotonin reuptake inhibitors (SSRIs), which can paradoxically lower serotonin 

concentration (Nord et al. 2013), has resulted in an increased sensitivity to negative 

feedback (referred to as “lose-shift” behaviour) in healthy humans (Chamberlain et al. 

2006; Skandali et al. 2018) and rats (Bari et al. 2010). 

 

In addition to affecting the serotonin system, LSD has dopamine type 2 (D2) receptor 

agonist properties (Marona-Lewicka et al. 2005, 2007; Nichols 2004). Dopamine is 

particularly well known to play a fundamental role in learning from feedback (Schultz 

2019; Schultz et al. 1997) putatively mediating plasticity changes during associative 

learning (Shen et al. 2008; Yin and Knowlton 2006). Meanwhile, dopamine depletion of 

the marmoset caudate nucleus, like serotonergic OFC depletion, also induced perseveration 

(Clarke et al. 2011). Additionally, there is a body of evidence, across species, that D2-

modulating agents affect instrumental reversal learning (Boulougouris et al. 2009; Kanen 

et al. 2019; Lee et al. 2007).  

 

The aim of the current study was to examine the effects of LSD on learning in humans, to 

inform the psychological mechanisms by which LSD could have salubrious effects on 

mental health. To do so, we tested the acute effects of LSD on PRL, in a placebo-controlled 

study of healthy human volunteers. We predicted LSD modulates either sensitivity to 

negative feedback or the impact of learned values on subsequent perseverative behaviour 

(den Ouden et al. 2013). Measuring “staying” (repeating a choice) or “shifting” (choosing 

another stimulus) after wins or losses assesses sensitivity to immediate reinforcement, but 

does not account for the integration of feedback history across multiple experiences to 

influence behaviour (Daw 2011). We applied computational models of reinforcement 

learning to test the hypothesis that LSD alters the rate at which value is updated following 

reward or punishment. Through modelling we additionally investigated whether LSD 

affects the degree to which behaviour is stimulus-driven (“stimulus sticky”), independent 

of an action’s outcome. 
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Methods and Materials 

Subjects and drug administration 

Nineteen healthy volunteers, over the age of 21, attended two sessions at least two weeks 

apart where they received either intravenous LSD (75¿g in 10 mL saline) or placebo (10mL 

saline), in a single-blind within-subjects balanced-order design. All participants provided 

written informed consent after briefing on the study and screening. Participants had no 

personal history of diagnosed psychiatric disorder, or immediate family history of a 

psychotic disorder. Other inclusion criteria were normal electrocardiogram (ECG), routine 

blood tests, negative urine test for pregnancy and recent recreational drug use, negative 

breathalyser test for recent alcohol use, alcohol use limited to less than 40 units per week, 

and absence of a significant medical condition. Participants had previous experience with 

a classic psychedelic drug (e.g. LSD, mescaline, psilocybin/magic mushrooms, or 

DMT/ayahuasca) without an adverse reaction, and had not used these within six weeks of 

the study. Screening was conducted at the Imperial College London Clinical Research 

Facility (ICRF) at the Hammersmith Hospital campus, and the study was carried out at the 

Cardiff University Brain Research Imaging Centre (CUBRIC). Participants were blinded 

to the condition but the experimenters were not. A cannula was inserted and secured in the 

antecubital fossa and injection was performed over the course of two minutes. Participants 

reported noticing subjective effects of LSD 5 to 15 minutes after dosing. The PRL task was 

administered approximately five hours after injection. Once the subjective drug effects 

subsided, a psychiatrist assessed suitability for discharge. This experiment was part of a 

larger study, the data from which are published elsewhere (e.g. Carhart-Harris et al. 2016). 

Additional information, including subjective ratings, can be found in Carhart-Harris et al. 

(2016). 

 

Probabilistic reversal learning task 

A schematic of the task is shown in Figure 1A. On every trial, participants could choose 

from three visual stimuli, presented at three of four randomised locations on a computer 

screen. In the first half of the task (40 trials), choosing one of the stimuli resulted in positive 

feedback in the form of a green smiling face on 75% of trials. A second stimulus resulted 

in positive feedback 50% of the time, whilst the third stimulus yielded positive feedback 
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on only 25% of trials. Negative feedback was provided in the form of a red frowning face. 

The first stimulus that was selected, was defined as the initially rewarded stimulus; the 

choice on trial 1 always resulted in reward. The second stimulus that was selected was 

defined as the mostly punished stimulus, and by definition the 3rd stimulus was then the 

“neutral” stimulus. After 40 trials, the most and least optimal stimuli reversed, such that 

the stimulus that initially was correct 75% of the time was then only correct 25% of the 

time, and likewise the 25% correct stimulus then resulted in positive feedback on 75% of 

trials. This is a novel version (Kandroodi et al. 2020) of a widely used PRL task (Lawrence 

et al. 1999; den Ouden et al. 2013): novel due to the addition of a 50% “neutral” stimulus 

in order to distinguish learning to select the mostly rewarding stimulus from learning to 

avoid the mostly punishing stimulus.  

 

Conventional analysis of behaviour 

We examined whether LSD impaired participants’ overall ability to perform the task by 

analysing the number of responses made to each stimulus during the acquisition and 

reversal phases. We measured feedback sensitivity by determining whether participants 

stayed with the same choice following positive or negative feedback (win-stay or lose-

stay). The win-stay probability was defined as the number of times an individual repeated 

a choice after a win, divided by the number of trials on which positive feedback occurred 

(opportunities to stay after a win). Lose-stay probability was calculated in the same 

manner: number of times a choice was repeated following a loss, divided by the total losses 

experienced. Note that in previous studies with a choice between only two stimuli (or 

responses), this metric is usually referred to as “win-stay / lose-shift”, which also captures 

the tendency to repeat (rather than switch) responses following a win, and the tendency to 

switch (rather than repeat) choices following a loss. Random choice would result in 50% 

win-stay and 50% lose-shift; however, in the current paradigm with 3 stimuli, this base rate 

is 33% (win-)stay and 67% (lose-)shift. We therefore encode both variables with respect 

to the stay (rather than shift) rate, but they are still conceptually identical to earlier studies. 

Perseveration was defined according to den Ouden et al. (2013) and was assessed based on 

responses in the reversal phase. A perseverative error occurred when two or more (now 

incorrect) responses were made to the previously correct stimulus, and these errors could 
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occur at any point in the reversal phase. The first trial in the reversal phase (trial 41 of 80) 

was excluded from the perseveration analysis, however, as at that point behaviour cannot 

yet be shaped by the new feedback structure. Note again that this metric is not entirely 

identical to the previous studies cited employing two stimuli, as the base-rate choice for 

each stimulus is now 1/3, so the “chance” level of perseverative errors is lower. Null 

hypothesis significance tests used ³ = 0.05. 

 

Computational modelling of behaviour 

Model fitting, comparison, and interpretation  

These methods are based on our previous work (Kanen et al. 2019). We fitted three 

reinforcement learning (RL) models to the behavioural data using a hierarchical Bayesian 

method, via Hamiltonian Markov chain Monte Carlo sampling implemented in Stan 2.17.2 

(Carpenter et al. 2017). Convergence was checked according to �̂ , the potential scale 

reduction factor measure (Gelman et al. 2012; Brooks and Gelman 1998), which 

approaches 1 for perfect convergence. Values below 1.2 are typically used as a guideline 

for determining model convergence (Brooks and Gelman 1988). We assumed the three 

models had the same prior probability (0.33). Models were compared via a bridge sampling 

estimate of the marginal likelihood (Gronau et al. 2017a), using the “bridgesampling” 

package in R (Gronau et al. 2017b). Bridge sampling directly estimates the marginal 

likelihood, and therefore the posterior probability of each model given the data (and prior 

model probabilities), as well as the assumption that the models represent the entire group 

of those to be considered. Posterior distributions were interpreted using the 95% highest 

posterior density interval (HDI), which is the Bayesian “credible interval”. Parameter 

recovery for this modelling approach has been confirmed in a previous study (Kanen et al. 

2019). 

 

The Bayesian hierarchy consisted of “drug condition” at the highest level, and “subject” at 

the level below. For each parameter, each drug condition (e.g. LSD) had its own mean 

(with a prior that was the same across conditions, i.e. with priors that were unbiased with 

respect to LSD versus placebo). This was then merged with the intersubject variability 

(assumed to be normally distributed; mean 0 by definition, standard deviation determined 
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by a further prior). The priors used for each parameter are shown in Table 1. For instance, 

the learning rate for a given subject under LSD was taken as: the group mean LSD value 

for learning rate, plus the subject-specific component of learning rate. The learning rate for 

a given subject under placebo was taken as: the group mean placebo value for learning rate, 

plus the subject-specific component of learning rate for the same subject. This method 

accounts for the within-subjects structure of the study design. This was done similarly (and 

separately) for all other model parameters.  

 

To determine the change (LSD – placebo) in parameters, we calculated [group mean LSD 

learning rate] – [group mean placebo learning rate] for each of the ~8,000 simulation runs 

and tested them against zero via the HDI. This approach also removes distributional 

assumptions and provides an automatic multiple comparisons correction (Gelman and 

Tuerlinckx 2000; Gelman et al. 2012; Kruschke 2011). 

 

Models 

The parameters contained in each model are summarised in Tables 1 and 2. With Model 1, 

we tested the hypothesis that positive versus negative feedback guides behaviour 

differentially, and that LSD affects this. We augmented a basic RL model (Rescorla & 

Wagner 1972) with separate learning rates for reward ³rew and punishment ³pun. Positive 

feedback led to an increase in the value Vi of the stimulus i that was chosen, at a speed 

governed by the reward learning rate ³rew, via Vi,t+1 ± Vi,t + ³rew(Rt – Vi,t). Rt represents the 

outcome on trial t (defined as 1 on trials where positive feedback occurred), and (Rt – Vi,t) 

the prediction error. On trials where negative feedback occurred, Rt = 0, which led to a 

decrease in value of Vi at a speed governed by the punishment learning rate ³pun, according 

to Vi,t+1 ± Vi,t + ³pun(Rt – Vi,t). Stimulus value was incorporated into the final quantity 

controlling choice according to Qreinf
t = ÇreinfVt. The additional parameter Çreinf, termed 

reinforcement sensitivity, governs the degree to which behaviour is driven by 

reinforcement history. The quantities Q associated with the three available choices, for a 

given trial, were then input to a standard softmax choice function to compute the 

probability of each choice: 
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�(action+) = softmax+(�3...�5) =
�Q8

3 �Q:5
k=3

 

 

for n = 3 choice options. The probability values for each trial emerging from the softmax 

function (the probability of choosing stimulus 1) were fitted to the subject’s actual choices 

(did the subject choose stimulus 1?). Softmax inverse temperature was set to ³ = 1, and as 

a result the reinforcement sensitivity parameter (Çreinf) directly represented the weight given 

to the exponents in the softmax function.  

 

Model 2 again augmented a simple RL model, but now also described the tendency to 

repeat a response, irrespective of the outcome that followed it (in other words, the tendency 

to “stay” regardless of outcome). With Model 2 we tested the hypothesis that LSD affects 

this basic perseverative tendency. This was implemented using a “stimulus stickiness” 

parameter Çstim. The stimulus stickiness effect was modelled as Qstim
t = Çstimst–1, where st–1 

was 1 for the stimulus that was chosen on the previous trial and was 0 for the other two 

stimuli. In this model we used only a single learning rate ³reinf. Positive reinforcement led 

to an increase in the value Vi of the stimulus i that was chosen, at a speed controlled by the 

learning rate ³reinf, via Vi,t+1 ± Vi,t + ³reinf(Rt – Vi,t). The final quantity controlling choice 

incorporated the additional stickiness parameter as Qt = Qreinf
t + Qstim

t. Quantities Q, 

corresponding to the three choice options on a given trial, were then fed into the softmax 

function as above. It should be noted that if Çstim is not in the model (or is zero), then Çreinf is 

mathematically identical to the notion of softmax inverse temperature typically 

implemented as ³. The notation Çreinf is used, however, because it contributes to Qreinf
t but 

not to Qstim
t. A standard implementation of ³, by contrast, would govern the effects of both 

Qreinf
t and Qstim

t by weighting the sum of the two (Qt). 

 

Model 3 was the full model that incorporated separate reward and punishment learning 

rates as well as the stimulus stickiness parameter. With Model 3, we tested the hypothesis 

that LSD affects both how positive versus negative feedback guides behaviour 

differentially, and how LSD affects a basic perseverative tendency. Again, the final 

quantity controlling choice was determined by Qt = Qreinf
t + Qstim

t. 
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Results 

Learning and perseveration  

First, we verified that LSD did not impair participants’ overall ability to perform the task. 

Behavioural performance is depicted in Figure 1 and 2. To examine whether LSD affected 

the number of times each stimulus was chosen, repeated-measures analysis of variance 

(ANOVA) was conducted with drug (LSD, placebo), phase (acquisition, reversal), and 

stimulus type (75%, 50%, or 25% rewarded) as within-subjects factors. This revealed a 

main effect of stimulus (F1,23 = 30.66, p = 3 × 10-6, ·p
2 = .63), a stimulus × phase interaction 

(F = 28.62, p = 2 × 10-6, ·p
2 = .61), and no interaction of LSD with stimulus or phase (F < 

1.5, p > .24, ·p
2 < .08, for terms involving LSD). The number of correct responses did not 

differ between placebo and LSD during the acquisition (paired-sample t test, t18 = 0.84, p 

= .4, d = .19) or reversal phases (t18 = 0.23, p = .8, d = .05).  

 

We then examined the relationship between initial learning and perseveration, following 

den Ouden et al. (2013) (Figure 2B). LSD enhanced the relationship between the number 

of correct responses during the acquisition phase and the number of perseverative errors 

made during the subsequent reversal stage (acquisition correct responses [LSD minus 

placebo] versus reversal perseverative errors [LSD minus placebo]: linear regression 

coefficient ³ = .56, p = 0.002). Confirming this, making fewer errors during the acquisition 

phase predicted more perseverative errors when on LSD (³ = 0.44, p = 0.003) but not when 

under placebo (³ = 0.04, p = .8). Perseverative errors, a subset of all reversal errors, alone 

did not differ between conditions (t18 = 0.03, p = .98, d = .01). 

 

Feedback sensitivity 

We next assessed whether LSD influenced individuals’ responses on trials immediately 

after positive versus negative feedback – whether participants stayed with the same choice 

after a win or a loss (win-stay/lose-stay; Figure 1D, 2D). Repeated-measures ANOVA with 

drug (LSD, placebo) and valence (win, loss) as within-subjects factors revealed a main 

effect of valence – participants “stayed” more after wins than losses (F1,18 = 37.76, p = 8.0 

× 10–6, ·p
2 = 0.68) – and no main effect of LSD (F1,18 = 0.20, p = .66, ·p

2 = .01). There was 

also no interaction of valence × LSD (F1,18 = 0.63, p = .44, ·p
2 = .03). 
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Choice of reinforcement learning model 

The core modelling results are displayed in Figure 2E. We fitted and compared three 

reinforcement learning models. Convergence was good with all three models having �̂ < 

1.2. Behaviour was best characterised by a reinforcement learning model with four 

parameters (Table 2). The four parameters in the winning model were: 1) reward learning 

rate, which reflects the degree to which the chosen stimulus value is increased following a 

positive outcome (reward prediction error); 2) punishment learning rate, degree to which 

the chosen stimulus value is decreased following a negative outcome (punishment 

prediction error); 3) reinforcement sensitivity (comparable to inverse temperature), which 

is the degree to which the values learned through reinforcement contribute to final choice; 

and 4) “stimulus stickiness”, which indexes the tendency to get “stuck” to a stimulus and 

choose it because it was chosen on the previous trial, irrespective of outcome. The last two 

parameters resemble the explore/exploit trade-off: low values of stickiness or 

reinforcement sensitivity index two different types of exploratory behaviour. 

 

Reward and punishment learning rates 

The reward learning rate was significantly elevated on LSD (mean 0.87) compared to 

placebo (mean 0.28) (with the posterior 99.9% highest posterior density interval [HDI] of 

the difference between these means excluding zero; 0 + 99.9% HDI; Figure 2E). There 

was also an increased punishment learning rate under LSD (mean 0.48) relative to placebo 

(mean 0.39) (drug difference, 0 + 99% HDI). Importantly, LSD increased the reward 

learning rate to a greater extent than the punishment learning rate ([³rew,LSD – ³rew,placebo] – 

[³pun,LSD – ³pun,placebo] > 0; drug difference, 0 + 99% HDI). 

 

Stimulus stickiness and reinforcement sensitivity 

Stimulus stickiness was lowered by LSD (mean 0.23) relative to placebo (mean 0.43) (drug 

difference, 0 + 90% HDI; Figure 2E), which is a manifestation of increased exploratory 

behaviour. Reinforcement sensitivity was not modulated by LSD (LSD mean 4.70, placebo 
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mean 5.57; no drug difference, 0 * 95% HDI). This is in line with the absence of an effect 

of LSD on the tendency to ‘stay’ following reward or punishment (see conventional 

analysis above).  

 

Relationship between model parameters and conventional behavioural measures  

Analyses to understand the relationship between computational and conventional measures 

were conducted, corrected for multiple comparisons, and are summarised in 

Supplementary Table 1. Given the initial finding on the relationship between better 

acquisition learning and perseveration, the first question addressed was whether the 

elevated reward learning rate from the computational model under LSD was predictive of 

the conventional measure of perseveration from den Ouden et al. (2013). Simple linear 

regression showed that under LSD, a higher reward learning rate predicted significantly 

more perseverative errors (³ = 30.22, p = .02), whereas no such relationship was present 

when the same participants were under placebo (³ = -.57, p = .95). Next we examined the 

relationship between the stimulus stickiness parameter from the computational model and 

the conventional measure of perseveration. Stimulus stickiness was not correlated with the 

conventional measure of perseveration, in either the placebo (³ = 3.60, p = .43) or LSD (³ 

= 7.67, p = .13) condition, indicating these were two independent processes. Further 

exploratory analyses are reported in Supplementary Table 1. 

 

Discussion 

There has been a recent surge of interest in potential therapeutic effects of psychedelics, 

particularly LSD. Theorising on the mechanisms of such effects centres on their role in 

enhancing learning and plasticity. In the current study we tested these postulated effects of 

LSD in flexible learning in humans and find that LSD increased learning rates, exploratory 

behaviour, as well as the impact of previously learnt values on subsequent perseverative 

behaviour. Specifically, LSD increased the speed at which value representations were 

updated following prediction error (the mismatch between expectations and experience). 

Whilst LSD enhanced the impact of both positive and negative feedback, it augmented 

learning from reward significantly more than it augmented learning from punishment.  
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The observation that LSD enhanced learning rates may be particularly important for 

understanding the mechanisms through which LSD might be therapeutically useful. 

Psychedelic drugs have been hypothesised to destabilise pre-existing beliefs (i.e. relax prior 

beliefs or “priors”), making them amenable to revision (Carhart-Harris and Friston 2019). 

The notion of relaxed priors is directly compatible with increased reinforcement learning 

rates: in our study, LSD rendered subjects more sensitive to prediction errors, which 

naturally implies downweighting of prior beliefs (Carhart-Harris and Friston 2019). That 

LSD affected a fundamental belief-updating process is notable given that psychedelics are 

under investigation trans-diagnostically for diverse clinical phenomena including 

depression (Carhart-Harris et al. 2016, 2018; Ross et al. 2016), anxiety (Griffiths et al. 

2016; Grob et al. 2011), alcohol (Bogenschutz et al. 2015) and nicotine abuse (Johnson et 

al. 2014), OCD (Moreno et al. 2006), and eating disorders (Lafrance et al. 2017); a unifying 

feature of these conditions is maladaptive associations in need of revision. 

 

Behaviour was more exploratory overall under LSD irrespective of reinforcement history, 

reflected by lower estimates of the stimulus stickiness parameter. This is entirely consistent 

with theoretical accounts of psychedelic effects which have predicted increased 

exploratory tendencies (Carhart-Harris and Friston 2019). Another type of exploratory 

behaviour that is more commonly studied, low reinforcement sensitivity (a lower tendency 

to exploit a highly valued option), was unaffected by LSD: this highlights the utility of the 

stimulus stickiness parameter in parcellating and thus uncovering exploratory behaviour. 

That LSD lowered stimulus stickiness may also be clinically relevant: stimulus stickiness 

was recently shown to be abnormally high in cocaine and amphetamine use disorders, 

whilst reinforcement sensitivity was unaffected (Kanen et al. 2019). 

 

Under LSD, better initial learning led to more perseverative responding. Importantly, 

perseveration (den Ouden et al. 2013) itself from the conventional analysis was not 

elevated by LSD nor did it correlate with stimulus stickiness (Supplementary Table 1), 

indicating these are two independent measures. The implication is that when a behaviour 

is newly and more strongly learned through positive reinforcement (i.e. the acquisition 
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phase) under LSD, it may persist more strongly even when that action is no longer relevant 

(i.e. the reversal phase). This is orthogonal to an overall tendency towards exploration 

irrespective of reinforcement history (low stimulus stickiness, estimated from choice 

behaviour across both acquisition and reversal phases). 

 

Given the broad effect of LSD on a range of neurotransmitter systems (Nichols 2004, 

2016), it is not possible to determine the specific neurochemical mechanism underlying the 

observed LSD effects on learning. Nonetheless, obvious possibilities involve the serotonin 

and dopamine system, in particular 5-HT2A and D2 receptors (Marona-Lewicka et al. 2005, 

2007; Nichols 2004, 2016). Specifically, the psychological plasticity purportedly promoted 

by psychedelics is believed to be mediated through action at 5-HT2A receptors (Carhart-

Harris and Nutt 2017) via downstream enhancement of NMDA (N-methyl-D-aspartate) 

glutamate receptor transmission (Barre et al. 2016) and brain-derived neurotrophic factor 

(BDNF) expression (Vaidya et al. 1997). The hypothesis that the present reinforcement 

learning rate results are driven by serotonergic effects of LSD is supported by two recent 

studies in mice. Optogenetically stimulating dorsal raphé serotonin neurons enhanced 

reinforcement learning rates (Iigaya et al. 2018), whilst activation of these neurons tracked 

both reward and punishment prediction errors during reversal learning (Matias et al. 2017). 

Neurotoxic manipulation of serotonin in marmoset monkeys during PRL, meanwhile, 

altered stimulus stickiness (Rygula et al. 2015): this implicates a serotonergic mechanism 

underlying increased exploratory behaviour following LSD administration in the present 

study. 

 

In addition to affecting the serotonin system, however, LSD also acts at dopamine receptors 

(Nichols 2004, 2016). Dopamine has long been known to play a crucial role in belief 

updating following reward (Schultz et al. 1997), and more recent evidence shows that 

dopaminergic manipulations may alter learning rates (Kanen et al. 2019; Schultz 2019; 

Swart et al. 2017). A dopaminergic effect would be in line with our previous study where 

genetic variation in the dopamine, but not serotonin transporter polymorphism, was 

associated with the same enhanced relationship between acquisition and perseveration as 

reported here under LSD (den Ouden et al. 2013).  
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Serotonin–dopamine interactions represent another candidate mechanism that could 

underlie the present findings. For example, stimulation of 5-HT2A receptors in the 

prefrontal cortex of the rat, enhanced ventral tegmental area (VTA) dopaminergic activity 

(Bortolozzi et al. 2005). Indeed, the initial action of LSD at 5-HT2A receptors has been 

proposed to sensitise dopamine neuron firing, which subsequently potentiates the direct 

dopaminergic effects of LSD (Nichols 2016). LSD action at D2 receptors, consequently, 

appears to be especially pronounced at a later time following LSD administration (Marona-

Lewicka et al. 2005, 2007), which is relevant given the relatively long delay between LSD 

administration and performance of the current task (see Methods). However, arguing 

against a late dopaminergic effect is a previous study in rodents where the effects of LSD 

on reversal learning were consistent across four different time lags between drug 

administration and behavioural testing (King et al. 1974).  

 

The result of enhanced coupling of acquisition learning and perseverative responding under 

LSD is in line with a recent study showing that LSD induced spatial working memory 

deficits and higher-order cognitive inflexibility in a set-shifting paradigm (Pokorny et al. 

2019). Importantly, these effects were blocked by co-administration of the 5-HT2A 

antagonist ketanserin (Pokorny et al. 2019), showing that the LSD-induced impairments 

were mediated by 5-HT2A agonism, consistent with a 5-HT2A mechanism underlying the 

present results.  

 

LSD’s effects to increase acquisition-perseveration coupling and worsen set-shifting 

(Pokorny et al. 2019), in conjunction, suggest that what is newly learned through 

reinforcement under LSD is more “stamped in”, which may subsequently be harder to 

update. Whilst these findings are ostensibly at odds with the observation that LSD 

enhanced plasticity (through enhanced learning rates), these results can be reconciled by 

considering the timing of drug administration with respect to initial learning and tests of 

cognitive flexibility. In both the present experiment and the previous set-shifting study 

(Pokorny et al. 2019), all phases of learning (acquisition and reversal) were conducted after 

LSD administration. In contrast, when acquisition learning was conducted prior to LSD 
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administration, LSD resulted in improved reversal learning (using a reversal paradigm in 

rats; King et al. 1974). Likewise, when acquisition learning was conducted prior to 

administration of a 5-HT2A antagonist, reversal learning was impaired (Boulougouris et al. 

2008). Collectively, these findings suggest that whether a prior belief is down- or up-

weighted under LSD may depend on whether the prior is formed before or during drug 

administration, respectively. This observation is of great relevance for a putative 

therapeutic setting, where maladaptive beliefs will have been formed before treatment.  

 

In summary, the core result of this study was that LSD enhanced the rate at which humans 

updated their beliefs based on feedback. Learning rate was most enhanced by LSD when 

receiving reward, and to a lesser extent following punishment. LSD also increased 

exploratory behaviour, which was independent of reinforcement history. This study 

represents one of the few applications of objective measures to investigate fundamental 

cognitive processes in humans under LSD. These findings have implications for 

understanding the mechanisms through which LSD might be therapeutically useful for 

revising deleterious associations.  
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Figures 
Figure 1. A) Schematic of the probabilistic reversal learning task. Subjects chose one of 

three stimuli. The timeline of a trial is depicted: stimuli appear, a choice is made, the 

outcome is shown, a fixation cross is presented during the intertrial interval, stimuli 

appear for the next trial (etc.) (RT, reaction time). One stimulus delivered positive 

feedback (green smiling face) with a 75% probability, one with 50%, and one with 25%. 

The probabilistic alternative was negative feedback (red sad face). Midway through the 

task, the contingencies for the best and worst stimuli swapped. s = seconds. B) Trial-by-

trial average probability of choosing each stimulus, averaged over subjects and sessions, 

collapsed across LSD and placebo sessions. A sliding 5-trial window was used for 

smoothing. The vertical dotted line indicates the reversal of contingencies. Shading 

indicates 1 standard error of the mean (SE). C) Distributions depicting the average per-

subject probability (scattered dots) of choosing each stimulus during the acquisition 

(shown in dark blue) and reversal (light blue) phases, collapsed across LSD and placebo 

sessions. Mean value for each distribution is illustrated with a single dot at the base of 

each distribution, and the mean values for the probability of choosing different stimuli in 

each phase are connected by a line. One SE is shown by black error bars around the mean 

value. Horizontal dotted line indicates chance-level stay-behaviour (33%). D) 

Distributions depicting the average per-subject probability (scattered dots) of repeating a 

choice (staying) after receiving positive or negative feedback during the acquisition (dark 

blue) and reversal (light blue) phases, collapsed across LSD and placebo sessions. 

Horizontal dotted line indicates chance-level stay-behaviour (33%). 
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Figure 2. A) Trial-by-trial average probability of choosing each stimulus, averaged over 

subjects, separated by drug session. A sliding 5-trial window was used for smoothing. 

The vertical dotted line indicates the reversal of contingencies. Shading indicates 1 

standard error of the mean (SE). B) Better initial learning was predictive of more 

perseveration on LSD and not on placebo. Shading indicates 1 SE. C) Distributions 

depicting the average per-subject	probability (scattered dots) of choosing each stimulus 

while under placebo (shown in dark blue) and LSD (light blue). Mean value for each 

distribution is illustrated with a single dot at the base of each distribution, and the mean 

values for the probability of choosing different stimuli in each condition are connected by 

a line. One SE is shown by black error bars around the mean value. Horizontal dotted line 

indicates chance-level stay-behaviour (33%). D) Conventional analyses of feedback 

sensitivity were unaffected by LSD. Distributions depicting the average per-subject 

probability (scattered dots) of repeating a choice (staying) after receiving positive or 

negative feedback under placebo (dark blue) and LSD (light blue). Horizontal dotted line 

indicates chance-level stay-behaviour (33%). E) Effects of LSD relative to placebo on 

model parameters. Contrasts with the posterior 95% (or greater) highest posterior density 

interval [HDI] of the difference between means excluding zero (0 + 95% HDI) are 

shown in red. Orange signifies 0 + 90% HDI. The third row represents a difference of 

differences scores: [³rew
LSD – ³pun

LSD] – [³rew
placebo – ³pun

placebo]. 
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Tables 
 

Table 1. Prior distributions for model parameters 

 

Model	

parameters	

Models using 

each 

parameter 

Range Prior Reference 

reward learning 

rate, ³rew	
1, 3 [0, 1] Beta(1.2, 1.2) den Ouden et al. 

(2013) 

punishment 

learning rate, ³pun	
1, 3 [0, 1] Beta(1.2, 1.2) den Ouden et al. 

(2013) 

combined 

reward/punishment 

learning rate, ³reinf	

2 [0, 1] Beta(1.2, 1.2) den Ouden et al. 

(2013) 

reinforcement 

sensitivity, Çreinf	
1, 2, 3 [0, +>] Gamma(³=4.82, 

³=0.88) 

Gershman (2016) 

stimulus stickiness, 

Çstim	
2, 3 [3>, +>] Normal(0, 1) Christakou et al. 

(2013) 

Intersubject	

variability	in	
parameters	

    

Intersubject	

standard	

deviations	for	

³rew,	³pun,	³reinf, Çloc	

As above [0, +>] Half-normal: 

Normal(0, 0.05) 

constrained to g0 

Kanen et al. 

(2019) 

Intersubject	

standard	

deviations	for	Çreinf	

As above [0, +>] Half-normal: 

Normal(0, 1) 

constrained to g0 

Kanen et al. 

(2019)  

 

rew reward, pun punishment, reinf reinforcement, stim stimulus 

 

 

Table 2. Model comparison  

 

Rank Name Parameters log marginal 

likelihood 

log posterior P(model) 

2 Model 1 ³rew, ³pun, Çreinf -2401.49 -33.28 

3 Model 2 ³reinf, Çreinf, Çstim -2428.52 -60.32 

1 Model 3 ³rew, ³pun, Çreinf, Çstim -2368.21 0 

 

rew reward, pun punishment, reinf reinforcement, stim stimulus 
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Supplementary information 
 

Simulation: Methods 

We simulated behavioural data from the winning model to determine how behavioural 

patterns in the synthetic data compared to the raw data. Simulated data were analysed for 

win-stay probability, lose-stay probability, acquisition performance, and perseveration, as 

was done for the original raw data analysis. For each condition (placebo and LSD), we 

simulated 100 “virtual subjects” using the posterior mean parameters from that condition, 

from the winning model, per Kanen et al. (2019).  

 

Simulation: Results  

Simulated behavioural data, generated using parameter estimates from the winning model, 

were analysed using conventional methods in order to assess whether the winning model 

could capture the observed effects of LSD on raw behaviour. Simulated data are shown in 

Supplementary Figure 1. Consistent with the original data, lose-stay probability was 

unaffected by LSD in the simulated behaviour (t99 = –0.37, p = .71, d = .03) and acquisition 

performance was also unaffected (t99 = 0.25, p = .81, d = .03). Perseveration was enhanced 

by LSD in the simulation (t99 = –2.24, p = 0.03, d = .22), which differs slightly from, yet is 

in line with, the original analyses showing an enhanced relationship between acquisition 

and perseveration under LSD. Linear regression examining whether correct responses 

during the acquisition phase (LSD minus placebo) predicted more perseverative errors in 

the reversal stage (LSD minus placebo) was not significant in the simulated data (³ = 0.15, 

p = 0.13). Separate regressions for each condition also showed no significant relationship 

between acquisition performance and perseveration for LSD (³ = 0.12, p = 0.25) or for 

placebo (³ = 0.01, p = .91). Win-stay probability was diminished under LSD in the 

simulated data (t99 = 11.91, p = 8.21 × 10–21, d = 1.19) whereas it was unaffected by LSD 

in the raw data analysis.  
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Supplementary Figure 1. Simulated data. A) Trial-by-trial average probability of 

choosing each stimulus, averaged over simulated subjects, separated by drug session. A 

sliding 5-trial window was used for smoothing. The vertical dotted line indicates the 

reversal of contingencies. Shading indicates 1 standard error of the mean (SE). B) 

Relationship between initial learning and perseveration on LSD versus placebo in 

simulated data. Shading indicates 1 SE. C) Distributions depicting the average per-

subject probability (scattered dots) of simulated subjects choosing each stimulus while 

under placebo (shown in dark blue) and LSD (light blue). Mean value for each 

distribution is illustrated with a single dot at the base of each distribution, and the mean 

values for the probability of choosing different stimuli in each condition are connected by 

a line. One SE is shown by black error bars around the mean value. Horizontal dotted line 

indicates chance-level stay-behaviour (33%). D) Distributions depicting the average per-

subject probability (scattered dots) of simulated subjects repeating a choice (staying) after 

receiving positive or negative feedback under placebo (dark blue) and LSD (light blue). 

Horizontal dotted line indicates chance-level stay-behaviour (33%). 
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Supplementary Table 1 

Summary of correlations between conventional behavioural measures and model 

parameters. ± significant positive correlation; ³ significant negative correlation; – 

no significant correlation. All significant correlations survived correction for 32 

comparisons, using the Benjamini-Hochberg method at q = .15 (Skandali et al. 

2018). 

 

 

rew reward, pun punishment, reinf reinforcement, stim stimulus 

 

 
	

 Acquisition Performance  Perseveration Proportion  

Lose-Stay  

Proportion  

Win-Stay 

 Placebo LSD Placebo LSD Placebo LSD Placebo LSD 

Reward 

Learning 

Rate, ³rew 

- 

p = .86 

- 

p = .053 

- 

p = .95 

± 

p = .02 

- 

p = .79 

- 

p = .37 

- 

p = .55 

- 

p = .11 

Punishment 

Learning 

Rate, ³pun 

- 

p = .18 

- 

p = .053 

- 

p = .34 

- 

p = .60 

³ 

p = .01 

³ 

p = .04 

- 

p = .08 

- 

p = .65 

Reinforcement 

Sensitivity, 

Ç
reinf 

± 

p = 1 × 10-3 

± 

p = 3 × 10-3 

- 

p = .26 

± 

p = .02 

± 

p = 1 × 10-3 

± 

p = .01 

± 

p = .01 

± 

p = .02 

Stimulus 

Stickiness, Çstim 

± 

p = .02 

- 

p = .16 

- 

p = .43 

- 

p = .13 

± 

p = 2 × 10-3 

± 

p = .03 

- 

p = .07 

± 

p = .02 
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