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Abstract

Viewing behavior provides a window into many central aspects of human cognition and health,

and it is an important variable of interest or confound inmany fMRI studies. Tomake eye tracking

freely and widely available for MRI research, we developed DeepMReye: a convolutional neural

network that decodes gaze position from the MR-signal of the eyeballs. It performs camera-less

eye tracking at sub-imaging temporal resolution in held-out participants with little training data

and across a broad range of scanning protocols. Critically, it works even in existing datasets and

when the eyes are closed. Decoded eye movements explain network-wide brain activity also in

regions not associated with oculomotor function. This work emphasizes the importance of eye

tracking for the interpretation of fMRI results and provides an open-source software solution that

is widely applicable in research and clinical settings.
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Introduction1

Eye movements are a direct expression of our thoughts, goals and memories and where we look2

determines fundamentally what we know about the visual world. The combination of eye track-3

ing and neuroimaging can thus provide a window into many central aspects of human cognition,4

along with insights into neurodegenerative diseases and neural disorders of the brain (Anderson5

& MacAskill, 2013). A widely used tool to study human brain function is functional magnetic reso-6

nance imaging (fMRI), which allows examining brain activity while participants engage in a broad7

range of tasks. Viewing behavior is either a variable of interest or one of potential confound in8

many fMRI studies, yet the very large majority of them does not perform eye tracking.9

We argue that eye tracking can and should be a central component of fMRI research. Not only does10

it allow in-depth insights into brain function, but it also offers a powerful behavioral read-out during11

scanning. Importantly, eyemovements are also associated with perceptual distortions (Morrone et12

al., 2005), visual and motor activity (Berman et al., 1999; Petit & Haxby, 1999) and imaging artifacts13

(McNabb et al., 2020), which can severely affect the interpretation of neuroimaging results. If dif-14

ferences in viewing behavior between experimental conditions remain undetected, there is a high15

risk of misinterpreting differences in the observed brain activity. Crucially, this is not restricted to16

studies of the visual system but affects task-based and resting-state neuroimaging on a large scale.17

One example that illustrates the importance of eye tracking also for studies of higher-level cogni-18

tion is the subsequent-memory effect, the observation that hippocampal activity during encoding19

reflects whether a stimulus is later remembered or forgotten (Wagner et al., 1998). This effect is20

often attributed to mnemonic processes in the hippocampus. However, because we also tend to21

remember images better that we visually exploredmore thoroughly (Kafkas &Montaldi, 2011) and22

because hippocampal activity scales with the number of fixations on an image (Liu et al., 2017), the23

interpretation of hippocampal activity in this context can be difficult. Inmany such cases, it remains24

unclear if the observed brain activity reflects higher-level cognitive operations or if it is driven by25

viewing behavior (Voss et al., 2017).26

MR-compatible camera eye trackers offer a solution. They track gaze position during scanning27

and hence allow to analyze or account for gaze-related brain activity. In practice, however, camera-28

systems are not applicable inmany research and clinical settings, often because they are expensive,29

require trained staff and valuable setup and calibration time, and because they impose experimen-30

tal constraints (e.g. the eyes need to be open). Moreover, they cannot be used in visually impaired31

patient groups or post-hoc once the fMRI data has been acquired.32

An alternative framework is MR-based eye tracking: the reconstruction of gaze position directly33

from the MR-signal of the eyeballs. While previous work suggested that this is indeed feasible34

(Tregellas et al., 2002; Beauchamp, 2003; Heberlein et al., 2006; Son et al., 2020), several critical35

constraints remained that limited the usability to specific scenarios. These earlier approaches were36

not as accurate as required formany studies, were limited to the temporal resolution of the imaging37

protocol, and most importantly required dedicated calibration scans for every single participant.38

Here, we present DeepMReye, a novel open source camera-less eye tracking framework based on a39

convolutional neural network (CNN) that reconstructs viewing behavior directly from theMR-signal40

of the eyeballs. It can be used to perform highly robust camera-less eye tracking in future fMRI-41

experiments, but importantly also in datasets that have already been acquired. It decodes gaze po-42

sition in held-out participants at sub-imaging temporal resolution, performs unsupervised outlier43

detection and is robust across a wide range of viewing behaviors and fMRI protocols. Moreover,44
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it can create new experimental opportunities for example by performing eye tracking while the45

eyes are closed (e.g. during resting-state or REM-sleep) or in patient groups for which eye-tracker46

calibration remains challenging.47

Results48

In the following, we present our model and results in three sections. First, we introduce our49

datasets, tasks, data processing pipeline and CNN in detail. Second, we show that the decoded50

gaze positions are highly accurate and explore the applicability and requirements of DeepMReye51

in depth. Lastly, by regressing the decoded gaze labels against the simultaneously recorded brain52

activity, we show that viewing behavior explains activity in a large network of regions and that53

DeepMReye can replace camera-based eye tracking for studying or accounting for these effects.54

The approach and results presented below emphasize the importance of eye tracking for MRI re-55

search and introduce a software solution that makes camera-less MR-based eye tracking widely56

available for free.57

Decoding gaze position from the eyeballs using convolutional neural networks58

Wedemonstrate thewide applicability of our CNN-approach (Fig. 1AB) by decoding gaze frommulti-59

ple existing fMRI datasets with a total of 268 participants performing diverse viewing tasks (Fig. 1D)60

including fixation (dataset 1, Alexander et al., 2017), smooth pursuit (dataset 2-4, Nau et al., 2018a,61

2018b), visual search (dataset 5, Julian et al., 2018) and free picture viewing (part of dataset 6). These62

datasets were acquired on five 3T-MRI scanners using 14 scanning protocols. Repetition times (TR)63

ranged between 800-2500ms and voxel sizes ranged between 1.5-2.5mm. The eyeballs of each64

participant were first co-registered non-linearly to those of our group-average template, which65

was obtained by averaging the functional images of all participants in dataset 4 (Nau et al., 2018a)66

fixating at the screen center. For each participant, we first aligned the head, then a facial bounding67

box and finally the eyeballs to the ones of our template. This three-step procedure ensured that68

the eyeballs were aligned across participants and that the average gaze position reflected center69

fixation. The template brain has itself been co-registered to an MNI-structural template in which70

the eyes were manually segmented (Fig. 1A). We then extracted the multi-voxel-pattern (MVP) of71

the eyes at each imaging acquisition, normalized the pattern in time and space (Fig. 1B) and fed it72

into the CNN (Fig. 1C). While the exact model training and test procedure will be explained in detail73

later, it essentially uses the MVP of the eyes to predict 10 on-screen gaze coordinates correspond-74

ing to the respective volume. For the main analyses, these 10 gaze labels per TR were obtained75

either using camera-based eye tracking in case of the unconstrained visual search dataset (Julian76

et al., 2018), or from the screen coordinates of the fixation target in case of all others (Alexander77

et al., 2017; Nau et al., 2018a, 2018b). For the final model evaluation, these 10 gaze labels were78

median-averaged to obtain one gaze position per TR. The CNN was trained using cross-validation79

and a combination of twoweighted loss functions (Fig. 1C): 1) the ’Euclidean error’ between real and80

predicted gaze position and 2) a ’predicted error’. The latter represents an unsupervised measure81

of the expected Euclidean error given the current input data.82
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Figure 1: Model architecture and input. A)Manually delineated eyemasks superimposed on T1-weighted structural template

(Colin27) atMNI-coordinate Z = -36. B) EyeballMR-signal reflects gaze direction. Weplot the normalizedMR-signal of eye-mask

voxels of a sample participant who fixated a target on the left (X,Y = -10,0◦), right (10,0◦), top (0, 5.5◦) or bottom (0, -5.5◦) of

the screen. C) Convolutional neural network architecture. The model takes the eye-mask voxels as 3D-input and predicts

gaze position as a 2D (X, Y) regression target. It performs a series of 3D-convolutions (3D Conv) with group normalizations

(GroupNorm) and spatial downsampling via average pooling (AvgPool) in between. Residual blocks (ResBlock) comprise an ad-

ditional skip connection. Themodel is trained across participants using a combination of two loss functions: 1) The Euclidean

error between the predicted and the true gaze position, and 2) the error between the Euclidean error and a predicted error.

It outputs gaze position and the predicted error as a decoding-confidence measure for each TR. D) Schematics of viewing

priors. We trained and tested the model on data of 268 participants performing fixations (Alexander et al., 2017), smooth

pursuit on circular or star-shaped trajectories (Nau et al., 2018a, 2018b) and free viewing (Julian et al., 2018).

Decoding viewing behavior in held-out participants83

First, we examined the decoding performance in five key datasets that were acquired for other pur-84

poses (datasets 1-5, seeMethods, Fig. 2, Alexander et al., 2017; Nau et al., 2018a, 2018b; Julian et al.,85

2018). The model was trained and tested using an across-participant decoding scheme, meaning86

that it was trained on 80% of the participants within each dataset and then tested on the held-out87

20% of participants of that dataset. This procedure was cross-validated until all participants were88

tested once. For all viewing behaviors we found that the decoded gaze path followed the ground89

truth gaze path closely in the majority of participants (Fig. 2A). To quantify gaze decoding on the90

group level, we computed three measures: the Euclidean error (EE, Fig. Fig. 2B, S1), the Pearson91

correlation (r, Fig. 2C) as well as the coefficient-of-determination (R2, Fig. S2A) between the real92

and the decoded gaze paths of each participant. We found that gaze decoding worked in the large93

majority of participants with high precision (Fig. 2C, Fig. S2B) and for all viewing behaviors tested94

(Median performance of the 80% most reliable participants (low predicted error): All datasets: [r95

= 0.89, R
2 = 0.78, EE = 1.14◦], Fixation: [r = 0.86, R

2 = 0.74, EE = 2.89◦], Pursuit 1: [r = 0.94, R
2 =96

0.89, EE = 0.64◦], Pursuit 2: [r = 0.94, R
2 = 0.88, EE = 1.14◦], Pursuit 3: [r = 0.86, R

2 = 0.72, EE =97

1.11◦], Free viewing: [r = 0.89, R
2 = 0.78, EE = 2.17◦]). These results were robust also when indepen-98

dent data partitions of each participant were used for training and test (within-participant decoding99

scheme, Fig. S4A), and that DeepMReye uncovered gaze position even when independent datasets100

were used for model training and test (across-dataset decoding, Fig. S4B). Together, these results101

demonstrate that gaze decoding with DeepMReye can be highly reliable and accurate. It allows102

reconstructing even complex viewing behaviors in held-out participants and detects outliers in an103

unsupervised fashion. Critically, it does so by relying solely on theMR-signal of the eyeballs without104

requiring any MR-compatible camera equipment.105
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Figure 2: Across-participant gaze decoding results. A) Single-participant examples of successful gaze decoding for three view-

ing behaviors. B) Predicted error (PE) correlates with the Euclidean error between real and predicted gaze positions. This

allows filtering the test set post-decoding based on estimated reliability. We plot single-participant data with regression line.

Participants were split into 80%most reliable (Low PE, blue) and 20% least reliable participants (high PE, orange). Scores nor-

malized for visualization. C) Group results: Top panel shows gaze decoding expressed as the Pearson correlation between

true and decoded gaze trajectory for the five key datasets featuring fixations, 3x smooth pursuit and visual search. Partici-

pants are color coded according to PE. We plot Whisker-box-plots for Low-PE participants and single-participant data for all.

Bottom panel shows time-collapsed group-average histograms of decoded positions relative to the true positions [0,0] in vi-

sual degrees. Color depicts decoding probability (black = high). D) Test error as a function of howmanyparticipantswere used

for model training. E) Gaze decoding from the eyeballs and early visual cortex for time-shifted gaze labels. F) Sub-imaging

temporal resolution: We plot the model performance (explained variance normalized for each participant) depending on

how many sub-imaging samples were decoded. D-F show results for visual search dataset 5.

Unsupervised outlier detection106

As mentioned above, the model computes a predicted error score for each sample and participant107

in addition to decoding gaze position. Importantly, this predicted error correlated with the true108

Euclidean error across participants, allowing to detect participants for which the decoding did not109

work well (Fig. 2B, Fig. S1AB). It can thus be used to remove outliers from subsequent analysis110

or to account for them for example by adding covariate regressors in group analyses. Note that111

besides detecting outlier participants, the predicted error also allowed removing outlier-samples112

within each participant, which further improved the reliability of the results (Fig. S3).113
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No camera required for model training114

We next explored our model’s requirements and boundary conditions in detail. First, we tested115

what type of training labels are required for DeepMReye, finding that both the screen coordinates116

of a fixation target (Fig. 2C) and labels obtained using camera-based eye tracking (Fig. S5) led117

to similar performance. While the results presented for dataset 5 (Fig. 2C) already reflect the118

ones obtained with camera-based labels, we additionally re-ran the model on gaze labels obtained119

via camera-based eye tracking also for the smooth pursuit datasets 3-4 (Fig. S5). Thus, because120

DeepMReye can be trained on fixation-target labels only, and because it generalizes across par-121

ticipants (Fig. 2), users could acquire fMRI data for a few participants performing various fixation122

tasks, record the screen coordinates of the fixation target as training labels, train the model on123

these labels and then decode from all other participants. Upon publication, we will provide the124

code for an experimental paradigm that can be used to produce such training labels (see ’Data and125

code availability’ statement and ’User recommendation’ section).126

Small training set127

Next, we asked how many participants were required for model training. We tested this by itera-128

tively sub-sampling the number of participants in the training set, each time testing how well the129

model performed on the same test participants. We chose to conduct this analysis on the data of130

dataset 5 because it featured themost natural and hencemost complex viewing pattern tested. We131

found that model performance improved with an increasing training set size, but also that model132

performance already reached a ceiling level at as few as 6-8 participants (Mean performance, 1133

participant: [r = 0.43, R
2 = 0.11, EE = 5.12◦], 5 participants: [r = 0.81, R

2 = 0.62, EE = 3.18◦], 10 partic-134

ipants: [r = 0.86, R
2 = 0.71, EE = 2.58◦], Fig. 2D, Fig. S6). This suggests that even a small training set135

can yield a well-trained model and hence reliable decoding results. Model performance likely also136

depends on howmuch data is available for each participant and on how similar the expected view-137

ing behavior is between training and test set. If the gaze pattern is very similar across participants,138

which can be the case even for viewing of complex stimuli such as real-world scenes (Ehinger et al.,139

2009), decoding it in independent participants can work even better despite a small training set.140

This fact can be seen for example in our main results for the smooth-pursuit dataset 2 (Nau et al.,141

2018b, Fig. 2).142

No hemodynamic component143

Naturally, when the eyes move, the surrounding tissue undergoes dramatic structural changes,144

which are expected to affect the MR-signal acquired at that time. To test whether this is the source145

of information used for decoding, we shifted the gaze labels relative to the imaging data by vari-146

ous TR’s (0-10), each time training and testing the model anew. Indeed, we found that the eyeball147

decoding was most accurate for the instantaneous gaze position and that no hemodynamic fac-148

tors needed to be considered (Fig. 2E). This is in stark contrast to decoding from brain activity for149

which the same model pipeline can be used (Fig. 2E). In V1, decoding was optimal after around 5-6150

seconds (r=0.483 ± 0.132) and followed the shape of the hemodynamic response function (HRF).151

Sub-imaging temporal resolution152

Intriguingly, because different imaging slices were acquired at different times and because the MR-153

signal of a voxel can be affected by motion, it should in principle be possible to decode gaze posi-154

tion at a temporal resolution higher than the one of the imaging protocol (sub-TR resolution). As155
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mentioned above, DeepMReye classifies 10 gaze labels per functional volume, which are median-156

averaged to obtain one gaze position per TR. This procedure yielded a higher decoding perfor-157

mance compared to classifying only one position, and it enabled testing how well the gaze path158

can be explained by the sub-TR labels themselves (Fig. S8A). We found that during visual search159

more gaze-path variance was explained by decoding up to three positions per TR compared to160

decoding only one position per TR (3Hz, Fig. 2F), which dovetails with the average visual-search161

eye-movement frequency of 3Hz (Wolfe, 2020). Moreover, the 10 real and decoded sub-TR labels162

varied similarly within each TR (Fig. S8B), which again suggests that within-TR movements could163

be detected. While the exact resolution likely depends on the viewing behavior and the imaging164

protocol, these results show that at least a moderate sub-imaging temporal decoding resolution is165

indeed feasible.166

Across-dataset generalization167

The results presented so far show that the gaze decoding with DeepMReye is highly accurate168

when the viewing behavior and the imaging protocol are similar between training and test set.169

To test if our model also generalizes across datasets, we next implemented a leave-one-dataset-170

out cross-validation scheme. Most datasets were acquired by different groups using different171

MR-scanners, participants and viewing behaviors but with similar voxel sizes and TR’s. While this172

across-dataset scheme led to overall lower performance scores compared to the across-participant173

(within-dataset) scheme presented earlier, it nevertheless recovered viewing behavior with remark-174

able accuracy in all cases (Median performance of the 80%most reliable participants (low predicted175

error): All datasets: [r = 0.84, R
2 = 0.59, EE = 2.78◦], Fixation: [r = 0.79, R

2 = 0.52, EE = 5.34◦], Pursuit176

1: [r = 0.88, R
2 = 0.64, EE = 1.47◦], Pursuit 2: [r = 0.86, R

2 = 0.65, EE = 2.15◦], Pursuit 3: [r = 0.85, R
2 =177

0.55, EE = 2.01◦], Free viewing: [r = 0.84, R
2 = 0.61, EE = 2.96◦], Fig. S4). This suggests that datasets178

acquiredwith similar fMRI protocols can be used formodel training, even if the recording site or the179

protocol were not exactly the same. Future investigations will need to quantify how larger differ-180

ences in scan parameters affect this across-dataset generalization (e.g. different phase encoding181

directions or slice tilts). Note that despite higher Euclidean error and lower R
2-scores compared to182

within-dataset decoding, the across-dataset decoding scheme led to relatively high Pearson corre-183

lations. This indicates that the main reason for the lower performance scores is the scaling of the184

decoding output relative to the test labels, likely because the data range of the training and testing185

labels differed. Importantly, this also suggests that the presence of putative eye movements, but186

not their correct amplitude, could still be detected accurately, which is the most important aspect187

for many fMRI analyses or nuisance models.188

Robust across voxel sizes and repetition times189

Functional MRI protocols can differ in many aspects. Most importantly in this context, they can190

differ in the spatial and temporal resolution of the acquired data (i.e. voxel size and TR). To explore191

the influence of these two parameters on the decoding performance in detail, we varied them192

systematically across 9 fMRI protocols for the acquisition of a sixth dataset. For each of the 9193

sequences, we scanned 4 participants with concurrent camera-based eye tracking while they freely194

explored pictures (Hebart et al., 2019) or performed fixation (Alexander et al., 2017) and smooth195

pursuit tasks similar to the ones used earlier (Nau et al., 2018a, 2018b). DeepMReye decoded gaze196

position robustly in this dataset 6 during all of these tasks and in all imaging protocols tested (3x3197

design: TR = 1.25s, 1.8s, 2.5s, voxel size = 1.5mm, 2mm, 2.5mm, Fig. 3A), demonstrating that it is198

widely applicable across a broad range of routinely used voxel sizes and TR’s.199
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Eyes-closed tracking200

Traditional MR-compatible eye-tracking systems typically detect certain features of the eyes such201

as the pupil and/or the corneal reflection in a video, which are then tracked over time (Duchowski,202

2017). When the relevant features are occluded or cut off on the video (e.g. when the eyes close),203

the tracking is lost. Because our approach relies on the fact that the eyeball MR-signal changes as204

a function of gaze position (Fig. 1B), it might be possible to decode gaze position, or in this case205

more generally the state of the eyeballs, even when the eyes are closed. As a proof-of-concept, we206

therefore tested in one participant of dataset 6 whether DeepMReye can uncover viewing behavior207

even when the eyes are closed. The participant was instructed to close the eyes and move them208

either repeatedly from left to right or from top to bottom, and to indicate the behavior via key press.209

We trainedDeepMReye on the diverse eyes-open viewing data fromall participants in dataset 6 and210

then decoded from the one participant while the eyes were closed. We found that the gaze pattern211

decoded with DeepMReye closely matched the participant’s self-report, suggesting that it is indeed212

possible to perform eye tracking while the eyes are closed (see the ’User recommendation’ section).213

214

Figure 3: Effect of scan parameters and

eye tracking while the eyes are closed. A)

Effect of voxel size and repetition time

(TR). We plot gaze decoding expressed

as the Pearson correlation between true

and decoded gaze trajectory for different

voxel sizes and TR’s. We plot Whisker-

box-plots and single-participant data (n

= 4) for 9 fMRI protocols collapsed either

over TR or voxel size. DeepMReye recov-

ered viewing behavior successfully in all

sequences tested. B) Decoded gaze coor-

dinates for a participant being instructed

tomove the eyes left & right or up&down

while keeping them closed. Dots are col-

ored basedonbuttonpress of participant

indicating movement direction.

Viewing behavior explains network-wide brain activity215

The results presented so far demonstrate that DeepMReye can be used to perform eye tracking216

in many experimental settings. A critical open question that remained was whether its decoding217

output can be used to analyze brain activity. To test this, we implemented a whole-brain mass-218

univariate general model (GLM) for the visual search dataset 5. We again chose this dataset be-219

cause it featured the most complex viewing pattern tested. To simulate differences in viewing220

behavior between the two conditions, we first computed an eye-movement index, reflecting the221

Euclidean distance between gaze positions of subsequent volumes. We used this eye-movement in-222

dex to build twomain regressors of interest, onemodeling large eyemovements and onemodeling223

short eye movements. Both regressors were binarized and convolved with the hemodynamic re-224

sponse function. Contrasting the model weights estimated for these two regressors was expected225

to reveal regions in the brain whose activity is driven by viewing behavior such as the visual and226

oculomotor (attention) network (Berman et al., 1999; Petit & Haxby, 1999).227

To know what we were looking for, we first conducted this analysis using the gaze labels obtained228

with traditional camera-based eye tracking and then compared the results to the ones obtained for229

the three cross-validation schemes of DeepMReye (within-participants, across-participants, across-230

datasets).231
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Figure 4: Decoded viewing behavior explains network-wide brain activity. General-linear-model (GLM) group results for the

contrast ’Far vs. short eye movements’ during visual search. We plot the F-statistic of this contrast superimposed on a tem-

plate surface (fsaverage) for gaze-labels obtainedwith camera-based eye tracking (first panel) aswell as for threeDeepMReye

cross-validation schemes. Within-participants: All participants of a dataset were included with different partitions in model

training and test. Across-participants: Different participants were included during model training and test. Across-datasets:

Different datasets (and hence also different participants) were included during model training and test.

As predicted, we found that viewing behavior explained brain activity in a large network of regions232

(Fig. 4) including the early visual cortex, frontoparietal regions (likely the frontal eye fields), the pos-233

terior parietal cortex as well as temporal lobe regions (likely including the humanmotion complex).234

Importantly however, differences in viewing behavior also explained brain activity in regions not235

typically associated with oculomotor function such as the ventromedial prefrontal cortex (vmPFC),236

the anterior and posterior cingulate cortex, the medial parietal lobe (likely comprising the retros-237

plenial cortex), the parahippocampal gyrus as well as the hippocampus (Fig. 4).238

Strikingly, comparing the results obtained with DeepMReye to the ones obtained with camera-239

based eye tracking showed an exceptional match between the two (Fig. 4). This was true for all240

decoding schemes, including the across-participant decoding scheme, which can be conducted241

even in existing datasets with some preparation (Fig. 2, see ’User recommendations’). Moreover,242

even the across-dataset scheme explained gaze related variance on group level, despite the differ-243

ences in the underlying viewing behaviors and imaging protocols.244

Finally, because eye movements are associated not only with brain activity but also with imaging245

artifacts, the MRI signal might also be affected instantaneously when the movement occurs. To246

quantify these instantaneous effects, we repeated the GLM analysis modeling eye-movement re-247

lated fluctuations in the MRI signal without accounting for the hemodynamic response. This vari-248

ance is not captured by traditional head-motion regressors (Fig. S9). Again, we found that eye249

movements explained signal variations in many brain regions (Fig. S10), likely reflecting a combi-250

nation of imaging artifacts and instantaneous hemodynamic components (e.g. the initial dip).251
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Discussion252

DeepMReye is a camera-less eye tracking framework based on a CNN that decodes gaze position253

from the MR-signal of the eyeballs. It allows monitoring viewing behavior accurately and contin-254

uously at a moderate sub-imaging resolution without the need for MR-compatible cameras. We255

demonstrated that our approach works robustly for a wide range of voxel sizes and repetition256

times as well as for various viewing behaviors including fixation, smooth pursuit, free viewing and257

as a proof-of-concept even when the eyes were closed. For each gaze position and participant, the258

model outputs an unsupervised predicted error score that can be used to filter out outliers even259

when test labels are missing. A small training set can yield a well-trained model and high decoding260

performance even when trained without camera-based labels. The decoded gaze positions and261

eye movements can be used in subsequent fMRI analyses similar to camera-based eye tracking,262

and doing so here revealed gaze-related activity in a large network of regions in the brain (Berman263

et al., 1999; Petit & Haxby, 1999; Voss et al., 2017). Critically, by testing our model in independent264

participants within each dataset, but also in participants in other datasets acquired with different265

MR-scanners and protocols, we demonstrated the potential of DeepMReye to successfully decode266

viewing behavior also in existing fMRI data.267

MR-based gaze prediction268

The present work is directly inspired by earlier reports showing that the MR-signal of the eyeballs269

can be used to infer the state of the eyes during MRI-scanning. This includes movements of the270

eyes (Tregellas et al., 2002; Beauchamp, 2003; Keck et al., 2009; Franceschiello et al., 2020), the271

position of gaze on the screen (Heberlein et al., 2006; LaConte & Glielmi, 2006; Son et al., 2020;272

Sathian et al., 2011; Keck et al., 2009) or whether the eyes were open or closed (Brodoehl et al.,273

2016). Moreover, gaze position can be decoded from early visual cortex activity during scene view-274

ing (O’Connell & Chun, 2018) and as shown here during visual search (Fig. 2E). However, DeepM-275

Reye goes beyond these earlier reports in multiple ways. Most importantly, earlier approaches276

such as predictive-eye-estimation-regression (PEER, Son et al., 2020) required calibration data for277

every single participant, meaning that at least two calibration scans need to be acquired during278

each scanning session. In contrast, our deep-learning based approach generalizes across partici-279

pants, allowing to perform eye tracking even when training and test labels are missing. The model280

could be trained on the data of a few participants and then used for decoding from all other par-281

ticipants. Moreover, earlier approaches were limited to the sampling resolution of the imaging282

protocol, meaning that one average gaze position per functional image could be extracted. In con-283

trast, we extracted gaze position at a moderate sub-TR resolution (~3Hz) and with higher accuracy284

than previous approaches, allowing to perform MR-based eye tracking with a higher level of detail.285

Third, as a proof-of-principle, we show that our model reconstructs viewing behavior even when286

the eyes are closed. Finally, we provide the first open source and user-friendly implementation287

for MR-based eye tracking as an interactive decoding pipeline inspired by other fMRI open source288

initiatives (e.g. (Esteban et al., 2019)). DeepMReye hence overcomes several critical limitations of289

earlier work, presenting the most general and versatile solution to camera-less eye tracking in MRI290

to date.291

What information does the model use?292

Eye movements naturally entail movements of the eyeballs but also of the optic nerves and the293

fatty tissue around them. To capture these movements, our custom eye masks cover a large area294

behind the eyes excluding skull and brain tissue. When the eyes move, the multi-voxel-pattern in295
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these masks changes drastically (Fig. 1B), an effect that might be even amplified by the magnetic296

field distortions often occurring around the eyes. DeepMReye hence likely utilizes information tra-297

ditionally considered to bemotion artifacts, which are not corrected by classical realignment during298

preprocessing (Fig. S9, Fig. S10). The fact that the actual motion of the eye is used for decoding299

also means that no hemodynamic lag needs to be considered (Fig. 2E). The current gaze position is300

decoded directly fromeach TR respectively. We believe that two sources of information further con-301

tribute to themoderate sub-imaging decoding resolution that we observed. First, different imaging302

slices are being acquired at a different time within each TR and thus inherently carry some sub-TR303

information. This is true also for fMRI protocols that use multiband acquisition, which includes304

all datasets tested here. Future studies could examine the effect of slice timing on the decoding305

resolution in more detail. Second, similar to motion blur in a long-exposure camera picture, the306

MR-signal intensity of a voxel can itself be affected by movements. The multi-voxel-pattern at each307

TR might hence reflect howmuch the eyes moved, and the same average gaze position might look308

different depending on which positions were sampled overall within the respective TR.309

Looking forward310

DeepMReye offers a multitude of exciting applications ranging from simple behavioral monitor-311

ing over confound removal to new and improved task-based analyses. Most basically, it offers an312

additional and low-effort behavioral read-out for any fMRI-experiment and allows to monitor task313

compliance for example by verifying that a fixation cross was fixated. Removing samples at which314

fixation was not maintained from subsequent analysis has been shown to improve predictive mod-315

eling results (LaConte & Glielmi, 2006) andmay help to reduce the effects of in-scanner sleepmore316

easily (Tagliazucchi & Laufs, 2014).317

Our approach enables studies of the relationship between viewing andbrain activity, andmaymore318

generally be used to inform almost any type of task-based model about the underlying viewing319

behavior. This could for example further improve the explanatory power of predictive models320

(Naselaris et al., 2011; Kriegeskorte & Douglas, 2019), and be especially promising for naturalistic321

free-viewing paradigms because the currently attended aspect of a stimulus can be taken into322

account (Sonkusare et al., 2019).323

Importantly, eye movements can also be a major source of confounds in neuroimaging studies.324

As mentioned in the introduction, if differences in viewing between two conditions remain unde-325

tected, the interpretation of neuroimaging results may be compromised. We demonstrated here326

that many brain regions are affected by this issue, many of which are not typically studied in the327

context of eyemovements (Fig. 4). Moreover, eyemovements are associated with imaging artifacts328

that can affect data integrity throughout the brain (McNabb et al., 2020). A popular way of minimiz-329

ing such confounds is having participants fixate at a fixation cross, which is helpful but also puts330

artificial constraints on a behavior that is fundamental to howwe explore theworld. Moreover, task331

compliance cannot always be guaranteed. DeepMReye may allow to identify and potentially com-332

pensate such confounds and artifacts for example by adding eye movement regressors directly to333

a GLM analysis as it is standard practice for head-motion regressors. This promises to improve the334

interpretability of task-based and resting-state fMRI results alike because nuisance variance would335

no longer be assigned to the regressors of interest (Murphy et al., 2013).336

Thus, DeepMReye canprovidemany experimental and analytical benefits that traditional eye-tracking337

systems can provide too. Critically, it does so without any expensive equipment, trained staff or338

experimental time to be used. It can therefore be used widely in both research and clinical settings339
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for example to study or diagnose neurodegenerative disorders (Anderson &MacAskill, 2013). Excit-340

ingly, it can even go beyond traditional eye tracking in certain aspects, offering new experimental341

possibilities that cannot easily be realized with a camera. For example, eye movements can be342

tracked even while the eyes are closed, suggesting it could be used to study oculomotor systems in343

the total absence of visual confounds, during resting state, and potentially even during rapid eye344

movements (REM) sleep. Moreover, the across-participant generalization enables new studies of345

patient groups for which camera-based eye trackers are not applicable. For example, DeepMReye346

could be trained on data of healthy volunteers and then tested on visually impaired participants for347

whom camera-based eye trackers cannot be calibrated. Most importantly, it allows gaze decoding348

in already existing task-based and resting-state fMRI datasets, in principle including all datasets349

that comprise the eyeballs. It could hence make new use of a large, existing and instantly available350

data resource (see "User recommendations").351

Finally, the samemodel architecture can be used to decode gaze position not only from the eyeballs352

but also frombrain activity directly. Doing so is as simple as replacing the eyemasks by a regions-of-353

interestmask of a certain brain region and accounting for the hemodynamic lag. We demonstrated354

this possibility using fMRI data from area V1 (Fig. 2E). Likewise, the same decoding pipeline could355

be used to decode other behavioral or stimulus features from brain activity, again showing the356

power of deep-learning-based methods for image analysis and neuroscience in general (Frey et al.,357

2019; Shen et al., 2017).358

Limitations359

It is important to note that DeepMReye also has certain limitations and disadvantages compared to360

camera-based eye tracking. First, the eyeballs need to be included in the MRI images. This may not361

always be possible and can affect the artifacts that eye movements can induce. In practice, how-362

ever, many existing and future datasets do include the eyes, and even if not, DeepMReye could still363

be used to decode from brain activity directly. Second, despite decoding at a temporal resolution364

that is higher than the one of the underlying imaging protocol, our approach does by no means365

reach the temporal resolution of a camera. Many aspects of viewing behavior happen on a time366

scale that can hence not be studied with DeepMReye. For experiments requiring such high tem-367

poral resolution, for example for studying individual saccades, we therefore recommend a camera368

system. However, many fMRI studies will not require monitoring gaze at high temporal resolution.369

This is because the regression analyses that are most commonly used in neuroimaging require the370

eye-tracking data to be downsampled to the imaging resolution irrespective of the sampling rate371

at which they were recorded. This means that even if gaze behavior wasmonitored at 1000 Hz with372

a camera, the effective eye-tracking data resolution that enters the fMRI analysis is often the same373

as the one of DeepMReye. Also, many MRI facilities simply do not have an MR-compatible camera,374

leaving MR-based eye tracking as the only available option.375

Conclusions376

In sum, DeepMReye is a camera-less deep-learning based eye tracking framework for fMRI experi-377

ments. It works robustly across a broad range of gaze behaviors and imaging protocols, allowing to378

reconstruct viewing behavior with high precision even in existing datasets. This work emphasizes379

the importance and the potential of combining eye tracking and neuroimaging for studying hu-380

man brain function and provides a user-friendly and open source software solution that is widely381

applicable post-hoc.382
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User recommendations483

General recommendations: Despite successfully applying DeepMReye to data obtained with 14 scanning protocols, our datasets still484

capture only a limited number of sequence parameters and behaviors. We therefore generally recommend running a pilot study using485

the setup and the imaging protocol that was or will be used in the acquisition of the to-be-analyzed dataset. The larger the sample486

size used for model training, the more data is being acquired for each participant, and the more similar the viewing behavior is to the487

one of the test set, the better the decoding will be.488

We further recommend thinking about whether the dataset includes at least some moments at which ground truth positions are489

known. For future studies, such scenarios could be added by design to validate the decoding output later on e.g. by presenting a490

fixation cross at various locations on the screen in the course of scanning. If the viewing behavior in the test set is unknown, we491

recommend training the model on a mixture of smooth pursuit and fixation with variable duration while sampling as many screen492

locations as possible.493

To ensure that the eye masks fit every participant, the input data is being warped into our own functional MNI group template space.494

Many popular normalization algorithms rely on brain tissue segmentation for normalization and hence typically neglect the eyeballs.495

We therefore recommend users to apply non-linear warping algorithms that are agnostic to the underlying tissue. Here, we used the496

Advanced Normalization Tools (ANTs) running under Python.497

Note that the placement of the mirror inside the MRI has a large impact on the position of the eyeballs relative to the screen. Even if498

participants fixate at the same position on the screen, depending on the mirror placement the eyeballs might be oriented differently.499

Our three-step co-registration procedure of the eyes mitigates this problem, but we still recommend users who acquire new data to500

place the mirror at approximately the same location and angle for all participants.501

For users wishing to perform eye tracking while the eyes are closed, we recommend training the model on a combination of eyes-502

closed and eyes-open gaze labels. One option to obtain such labels would be to have participants fixate at various target locations503

on the screen and then close their eyes without moving them for 2-3 s. For studies planning on using DeepMReye during in-scanner504

sleep, we further recommend adding an awake but eyes-closed validation paradigm to the study, which could be similar to the one505

used here (Fig. 3B).506

Finally, irrespective of which of the following decoding option is used, we recommend assessing the predicted error scores carefully507

for each participant (Fig. 2B, Fig. S1). The predicted error score is tightly correlated with the Euclidean error between real and decoded508

gaze position and hence allows to detect and remove outliers even when test labels are missing.509

In the following, we outline multiple ways of how DeepMReye can be used. Which option is best depends on howmuch experimental510

time and data are available.511

User option 1: Tomaximize accuracy and robustness, we recommenduserswho acquire newdata to scan a short calibration paradigm512

in addition to their regular experimental paradigm. This could be as simple as presenting various fixation targets sequentially at513

different locations on the screen (see e.g. dataset 1). Upon publication, we will provide the code for such a calibration scan online514

(see ’Data & code availability’ statement). Importantly, the more similar the viewing behavior is between training and test set the more515

accurate the decoding will be. Acquiring such calibration data will allow training the model on data acquired in the same participants516

with the same fMRI sequence that the model is being tested on, which promises the best result. This option is recommended in517

any case, but especially when eyes-closed data are being analyzed. Note that in this case the model is still evaluated on data of all518

participants, with the calibration data used for model training and the actual experimental data used for decoding.519

User option 2: For users who cannot scan individual eye tracking calibrations for all participant, we recommend acquiring such cali-520

bration data at least for a subset of participants for example during piloting. This will allow training the model on some participants521

scanned on the sameMRI scanner with the same imaging protocol, and then decode fromothers. This also offers a solution for already522

existing datasets. In this case, we again recommend scanning calibration data for a few participants with the same imaging protocol523

on the same MRI scanner if possible. We suggest acquiring calibration data for at least 6-8 participants, and to carefully evaluate the524

model performance within the training set. If necessary, more participants can be added. In addition, stronger dropout regularization525

and/or the use of ensemble learning with various dropout strengths can help to improve model training in case of small sample sizes.526

User option 3: If no new calibration data can be acquired, usersmay use an already pre-trained version of DeepMReye that we provide.527

Note thatwedid show that ourmodel generalizes across datasets, but also that it performed less accurately than the across-participant528

prediction within each dataset. We therefore recommend this option only for datasets in which at least some ground-truth-validation529

labels are known. Having said that, if more training data are being added to the model training in the future, the across-dataset530

prediction is expected to further improve. Especially importantwill be data featuring evenmore diverse viewing behaviors and imaging531

protocols.532
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Methods533

Datasets534

DeepMReye was trained and tested on data of 268 participants acquired on five 3T MRI scanners with 14 different scanning protocols535

and various pre-processing settings. The individual datasets are described below and were partially used in earlier reports. For other536

details of each individual dataset please see the original published articles (Alexander et al., 2017; Nau et al., 2018a, 2018b; Julian et537

al., 2018). A T1-weighted structural scan with 1 mm isotropic voxel resolution was acquired for all participants, and camera-based538

eye-tracking data was included for participants in datasets 3-6. An overview of the datasets is provided in Table 1.539

Dataset Behavior TR Voxel size Participants #TRs #Minutes Gaze labels Field of View

1 Fixation 800ms 2.4mm3 n = 170 270 3.60 Target 19◦ x 15◦

2 Pursuit 1000ms 2.0mm3 n = 24 3961 66.01 Both 15◦ x 15◦

3 Pursuit 1020ms 2.0mm3 n = 34 3568 60.65 Both 10◦ x 10◦

4 Pursuit 870ms 2.0mm3 n = 9 2778 40.28 Target 8◦ x 8◦

5 Free viewing 1000ms 2.0mm3 n = 27 2128 35.46 Camera 17◦ x 17◦

6

1250ms 1.5mm3 287

1800ms 1.5mm3 200

2500ms 1.5mm3 144

1250ms 2.0mm3 287

All the above 1800ms 2.0mm3 n = 4 200 ∼ 6 Both 30◦ x 15◦

2500ms 2.0mm3 144

1250ms 2.5mm3 287

1800ms 2.5mm3 199

2500ms 2.5mm3 144

Table 1: Overview of the six datasets. We list the dataset number, the viewing behavior that was tested, the repetition time (TR) and

voxel size of the imaging protocol, the number of participants, the amount of data acquired for each participant expressed as the

average number of acquired volumes (#TRs) and as the total scanning time (#Minutes), the type of gaze labels that DeepMReye was

trained and tested on (incl. camera-based labels, screen coordinates of the fixation target, or both) as well as the task-relevant field

of view (FoV) of the participant.

Dataset 1: Fixation and saccades540

Data & task: These data weremade publicly available by Alexander and colleagues (Alexander et al., 2017) and were downloaded from541

the Healthy Brain Network (HBN) Biobank (http://fcon_1000.projects.nitrc.org). These data were also used in earlier reports (Son et al.,542

2020). It is part of a larger and ongoing data collection effort with pediatric focus and comprises participants between 5 and 21 years of543

age. We limited our analysis to a subset of the full dataset for which we ensured that there were no visiblemotion artifacts in either the544

T1- or the average T2*-weighted images and the eyeballs were fully included in the functional images. We included 170 participants545

in total. For each participant, at least two fMRI runs were scanned in which they performed a typical eye tracking calibration protocol.546

In each run, they fixated at a fixation target that sequentially moved through 27 locations on the screen, with each location being547

sampled twice for 5s. Gaze positions were sampled within a window of X = 19◦ and Y = 15◦ visual angle. The screen coordinates of the548

fixation target served as training and testing labels for the main analyses (Fig. 2).549

fMRI-data acquisition & preprocessing: Imaging data were acquired on a Siemens 3T Tim Trio MRI scanner located at the Rutgers550

University Brain Imaging Center, Newark, USA. Following EPI parameters were used: voxel size = 2.4mm isotropic, TR = 800ms, TE =551

30ms, flip angle = 31◦, multiband factor = 6. Images were coregistered to our template space as described below.552

Dataset 2: Smooth pursuit 1553

Data & task: These data were used in one of our previous reports (Nau et al., 2018b). Nine participants performed a smooth pursuit554

visual tracking task in which they either tracked a fixation target moving on a circular trajectory with a radius of 8◦ visual angle or555

one that remained at the screen center. In addition, planar-dot-motion stimuli were displayed in the background moving on the556

same circular trajectory at various speeds. This resulted in a total of 9 different conditions. Following pursuit and motion speed557

combinations were tested in separate trials: [eye, background in ◦/s] = [0,0], [0,1], [0,3], [2,1], [2,2], [2,3], [3,2], [3,3], [3,4]. These558

conditions were tested in blocks of 12 seconds in the course of 34 trials over 4 scanning runs of ∼10.5 minutes each. To balance559

attention across conditions, participants performed a letter-repetition-detection task displayed on the fixation target. Gaze positions560

were sampled within a window of X = 8◦ and Y = 8◦ visual angle. The screen coordinates of the fixation target served as training and561

testing labels for our model.562

fMRI-data acquisition & preprocessing: Imaging data were acquired on a Siemens 3T MAGNETOM Prisma MRI scanner located at563

the Max-Planck-Institute for Biological Cybernetics in Tuebingen, Germany. Following EPI-parameters were used: voxel size = 2mm564

isotropic, TR = 870ms, TE = 30ms, flip angle = 56◦, multiband factor = 4, GRAPPA factor = 2. Note that 9 other participants were565

excluded because the functional images did not or only partially included the eyeballs. Images were corrected for head motion and566

field distortions using SPM12 (www.fil.ion.ucl.ac.uk/spm/) and then coregistered to our template space as described below.567
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Eye tracking: We monitored gaze position at 60 Hz using a camera-based eye tracker by Arrington Research. Please note that these568

eye-tracking data showed a higher noise level than the other datasets due to drift and because the pupil was frequently lost. We569

therefore used the screen coordinates of the fixation target for model training and testing as in dataset 1. To still visually compare the570

decoding output to the eye-tracking data post-hoc, we removed blinks, detrended the eye tracking time series using a second-order571

polynomial function and median-centered it on the screen center. We removed samples in which the pupil was lost by limiting the572

time series to the central 14x14 degree visual angle, smoothed it using a running-average kernel of 100ms and scaled it to match the573

data range of the fixation target using the sum-of-squared-errors as loss function. The time series was then split into the individual574

scanning acquisitions.575

Dataset 3: Smooth pursuit 2576

Data & task: These data are currently being analyzed for another report and comprised 34 participants (Polti & Nau et al., in prep).577

Like in dataset 2, participants performed a smooth pursuit visual tracking task in which they fixated at a fixation target moving on a578

star-shaped trajectory. Twenty-four eye movement directions were sampled in steps of 15◦ at four speed levels: 4.2◦/s, 5.8◦/s, 7.5◦/s579

and 9.1◦/s. Speeds were interleaved and sampled in a counterbalanced fashion. In addition to the visual tracking task, participants580

performed a time-to-collision (TTC) task. The trajectory was surrounded by a circular yellow line on gray background with a radius of581

10◦ visual angle centered on the screen center. Whenever the fixation target stopped moving before switching direction, participants582

indicated by button press when the target would have touched the yellow line if it continued moving. Gaze positions were sampled583

within a window of X = 10◦ and Y = 10◦ visual angle. Each participant performed a total of 768 trials in the course of 4 scanning runs584

with 16-18 minutes (including a short break in the middle). The screen coordinates of the fixation target served as training and testing585

labels for the main analyses (Fig. 2).586

fMRI-data acquisition & preprocessing: Imaging data were acquired on a Siemens 3T MAGNETOM Skyra located at the St. Olavs587

Hospital in Trondheim, Norway. Following EPI-parameters were used: voxel size = 2mm isotropic, TR = 1020ms, TE = 34.6ms, flip588

angle = 55◦, multiband factor = 6. Images were corrected for head motion using SPM12. The FSL topup function was used to589

correct field distortions using an image acquired with the same protocol except that the phase-encoding direction was inverted590

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup). Images were then coregistered to our template space as described below.591

Eye tracking: We monitored gaze position during the experiment at a rate of 1000 Hz using an MR-compatible infrared-based eye592

tracker (Eyelink1000). Blinks were removed, the time series was downsampled to 100hz, linearly detrended within each scanning run593

and smoothed with a running-average kernel of 100ms. We then split the time series into individual scanning acquisitions (TR’s) to594

obtain the final training and testing gaze labels for our model. The camera-based eye tracking labels served as training and testing595

labels for supplementary analyses (Fig. S5).596

Dataset 4: Smooth pursuit 3597

Data & task: These data were used in one of our previous reports (Nau et al., 2018a). Twenty-four participants performed a smooth598

pursuit visual tracking task in which they tracked a fixation target moving at a speed of 7.5◦/s on a star-shaped trajectory with 36599

directions. The target moved within a virtual arena which participants oversaw from bird’s eye view. Eye movement directions were600

sampled in steps of 10◦. In a visual-motion control condition, the target remained at the screen center and the arena moved instead.601

Participants additionally performed a spatial memory task. Theymemorized the location of colored objects on the screen, which were602

shown only when the fixation target moved across them. Gaze positions were sampled within a window of X = 15◦ and Y = 15◦ visual603

angle. Each participant performed a total of 81 trials in the course of 9 scanning runs. This included 54 smooth pursuit trials of 60604

seconds each and 27 center fixation trials of 30 seconds each. The screen coordinates of the fixation target served as training and605

testing labels for the main analyses (Fig. 2).606

fMRI-data acquisition & preprocessing: Imaging data were acquired on a Siemens 3T MAGNETOM PrismaFit MRI scanner located at607

the Donders Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands. Following EPI-parameters were used: voxel size = 2mm608

isotropic, TR = 1000ms, TE = 34ms, flip angle = 60◦, multiband factor = 6. Data were realigned using SPM12 (www.fil.ion.ucl.ac.uk/spm/)609

and coregistered to our template space as described below.610

Eye tracking: Similar to dataset 3, we again monitored gaze position during the experiment at 1000 Hz using an Eyelink 1000 eye611

tracker. Blinks were removed and the data were downsampled to the monitor refresh rate of 60hz. We then reduced additional612

tracking noise by removing samples at which the pupil size diverged more than one standard deviation from the mean, by removing613

the inter-trial-interval during which most blinks occurred and by smoothing the time series with a running-average kernel of 100ms.614

We then linearly detrended and median-centered the time series of each trial individually to remove drift. Finally, we split the time615

series according to the underlying scanner acquisition times to create our final training and testing labels for this dataset. Note that616

the original dataset (Nau et al., 2018a) comprises 5 additional participants for which no eye-tracking data has been obtained and that617

were excluded. The camera-based eye tracking labels served as training and testing labels for supplementary analyses (Fig. S5).618

Dataset 5: Visual search619

Data & task: These data were kindly provided by Julian and colleagues (Julian et al., 2018). Twenty-seven participants performed a self-620

paced visual search task, searching for the letter “L” in a search display filled with distractor letters “T”. Upon detection, participants621

pressed a button. Each trial lasted for an average of 7.50 seconds, followed by fixation at the screen center for 2 - 6 seconds. The622

number of distractors varied over trials between 81, 100, 144, 169, or 121. Participants performed either 4 or 6 runs of 6.5 minutes623

each. Task-relevant gaze positions were sampled within a window of X = 17◦ and Y = 17◦ visual angle. Camera-based eye-tracking data624

were acquired and served as training and testing labels for our model (see below).625
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fMRI-data acquisition & preprocessing: Imaging data were acquired on a Siemens 3T MAGNETOM Prisma MRI scanner located at the626

Center for Functional Imaging in Philadelphia, USA. Following EPI-parameters were used: voxel size = 2mm isotropic, TR = 1000ms, TE627

= 25ms, flip angle = 45◦, multiband factor = 4. Images were corrected for head motion using SPM12 and coregistered to our template628

space as described below. Note that the original dataset includes 9 more participants whose eyeballs were cut off on the functional629

images and that were excluded here.630

Eye tracking: Gaze position wasmonitored at 30 Hz using the camera-based eye tracker LiveTrack AV by Cambridge Research Systems.631

Wemedian-centered the time series and removed tracking noise by limiting the time series to values within the central 40 x 40 visual632

degree. We then split the data into individual scanning acquisitions to obtain the final gaze labels for model training and test.633

Dataset 6: Fixation, smooth pursuit, free viewing & eyes-closed eye movements634

Data & task: Four participants performed 4 viewing tasks while imaging data were acquired in the course of 9 scanning runs using635

9 EPI-protocols (1 per run) along with concurrent camera-based eye tracking. First, they fixated sequentially at 37 locations on the636

screen for 2s each starting in the screen center. The locations were determined using a custom random-walk algorithm that balanced637

the sampling of 12 directions (30 steps) and distances between the fixation points (4, 8, or 12 visual angle). Next, they performed a638

smooth pursuit version of this random-walk task forwhichwe linearly interpolated the trajectory between fixation points. This resulted639

in a target moving sequentially into 12 directions at a speed of either 2/s, 4/s, or 6/s, changing to a randomly selected direction and640

speed every 2s. Next, participants freely explored 30 sequentially presented images of everyday objects for 3s each. The images were641

randomly drawn from the THINGS database (Hebart et al., 2019). Finally, participants closed their eyes and moved them either from642

left to right or from top to bottom for a total of 105 s. Switches between horizontal and vertical movements were indicated via button643

press.644

fMRI-data acquisition & preprocessing: Imaging data were acquired using 9 EPI-sequences on a Siemens 3TMAGNETOMSkyra located645

at the St. Olavs Hospital in Trondheim, Norway. The sequences featured 3 repetition times and 3 voxel sizes in a 3x3 design. All646

images were corrected for head motion using SPM12 and coregistered to our template space as described below. See Table 2 for647

parameter details. Data acquisition was approved by the regional committees for medical and health research ethics (REC), Norway,648

and participants gave written informed consent prior to scanning.649

Sequence Voxel size TR TE FA MB pF #Slices

1 1.5mm3 1250ms 26ms 66 4 7/8 40

2 1.5mm3 1800ms 26ms 74 4 7/8 40

3 1.5mm3 2500ms 26ms 80 4 7/8 40

4 2.0mm3 1250ms 26ms 66 4 7/8 60

5 2.0mm3 1800ms 26ms 74 4 7/8 60

6 2.0mm3 2500ms 26ms 80 4 7/8 60

7 2.5mm3 1250ms 26ms 66 4 7/8 60

8 2.5mm3 1800ms 26ms 74 4 7/8 60

9 2.5mm3 2500ms 26ms 80 4 7/8 60

Table 2: Sequence parameters of the 9 EPI-protocols used in the acquisition of dataset 6. For each sequence, we list the isotropic

voxel size, the repetition time (TR), the echo time (TE), the flip angle (FA), the multiband factor (MB), partial Fourier factor (pF) and the

number of slices (#Slices). All flip angles were aligned to the respective Ernst angle.

Eye tracking: Gaze position was monitored during the experiment at 1000 Hz using an Eyelink 1000 eye tracker. Tracking noise was650

reduced by excluding samples at which the pupil size diverged more than two standard deviations from the mean. Blinks were651

removed. The time series was downsampled to 60 Hz and median-centered based on the median gaze position of the free viewing652

condition within each scanning run. We then split the time series into individual scanning acquisitions to obtain the final training and653

testing gaze labels for our model.654

Eye masks, co-registration & normalization655

Eye masks were created by manually segmenting the eyeballs including the adjacent optic nerve, fatty tissue and muscle area in656

the Colin27 structural MNI template using itkSNAP (http://www.itksnap.org, Fig. 1A). We then created a group-average functional657

template by averaging the co-registered functional images of 29 participants. These were acquired while the participants fixated at658

the screen center for around 13 minutes each in the course of a longer scanning session (Nau et al., 2018a). To ensure that the659

final eye masks contain the eyeballs of every participant, all imaging data underwent three co-registration steps conducted using660

Advanced Normalization Tools (ANTs) within Python (ANTsPy). First, we co-registered each participant’s mean-EPI non-linearly to our661

group-level average template. Second, we co-registered all voxels within a bounding box that included the eyes to a pre-selected662

bounding box in our group template to further improve the fit. Finally, we co-registered the eyeballs to the ones of the template663

specifically. Importantly, all data in our group-average template reflected gaze coordinates (0,0), i.e. the screen center. This third664

eyeball co-registration hence centered the average gaze position of each participant on the screen. We did this to improve the fit but665

also because it aligned the orientation of the eyeballs relative to the screen across participants. Finally, each voxel underwent two666
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normalization steps. First, we subtracted the across-run median signal intensity from each voxel and sample and divided it by the667

median absolute deviation (MAD) over time (temporal normalization). Second, for each sample, we subtracted the mean across all668

voxels within the eye masks and divided by the standard deviation across voxels (spatial normalization). The fully co-registered and669

normalized voxels inside the eye masks served as model input.670

Model architecture671

DeepMReye is a convolutional neural network that uses three-dimensional data to classify a two-dimensional output; the horizontal672

(X) and vertical (Y) gaze coordinates on the screen. The model uses the voxel intensities from the eye masks as input and passes673

it through a series of 3D-convolutional layers interleaved with group normalization and non-linear activation functions (mish, Misra674

2019). In detail, the eye mask (input layer) is connected to a 3D convolutional block with a kernel size of 3 and strides of 1, followed675

by dropout and a 3D convolutional downsampling block which consists of one 3D-convolution followed by a 2x2x2 average pooling676

layer. After this layer, we use a total of six residuals blocks, in which the residual connection consists of one 3D convolutional block,677

concatenated via simple addition. Each residual block consists of group normalization, non-linear activation, and a 3D convolution,678

which is applied twice before being added to the residual connection. This results in a bottleneck layer consisting of 7680 units, which679

we resample to achieve sub-TR resolution (see details below). The time resolution dictates the number of resampled bottleneck layers,680

with e.g. 10 resampled layers producing a 10 times higher virtual resolution than the original TR. Each resampled layer is connected681

to a dense (fully-connected) layer which decodes the corresponding gaze position.682

In addition to the above described model decoding gaze position directly, we also added a second block of fully-connected layers683

connected to the bottleneck layer. This second fully-connected layer block did not classify gaze position, but instead tried to predict684

the Euclidean error of the first model. This allowed us to obtain an unsupervised Euclidean error for each decoded gaze sample, even685

when test labels weremissing. We refer to this predicted, unsupervised Euclidean error as the predicted error. It indicates how certain686

the model is about its own gaze decoding output and is strongly correlated with the real Euclidean error in our test data (Fig. 2B, Fig.687

S1). If the unsupervised error is high, the model itself anticipates that the decoded gaze position likely diverges much from the real688

gaze position. Accordingly, samples with high predicted error should not be trusted. DeepMReye is trained using a combination of689

the two losses, the Euclidean Error (90% weighting) and the predicted error loss (10% weighting) as described in detail below.690

Model optimization & training691

Hyper-parameterswere optimizedusing randomsearch, whichwemonitoredusing the ’Weights&Biases’model tracking tool (Biewald,692

2020). Following parameters were optimized: the learning rate (0.001-0.00001), the number of residual blocks (depth, 3-6), the size693

of the filters (16-64), the filter multiplier per layer (1-2, e.g. 32, 64, 128 uses a multiplier of 2), the activation function (relu, elu, mish),694

the number of groups in the group normalization (4,8,16), the number of fully-connected layers (1,2), the number of units in each695

fully-connected layer (128-1024) as well as the dropout rate (0-0.5). In addition, to further improve the generalizability of our model,696

we added following data augmentations to the model training: input scaling, translations (X, Y, Z) and rotations (azimuth, pitch, and697

roll) which were applied on each sample.698

We used Adam as learning algorithm (Kingma & Ba, 2015) and a batch size of 8 to train the model. Because considering samples from699

different participants improved model performance in an earlier version of our pipeline, we mixed samples in each training batch700

to represent 3D-inputs from different participants. For estimating the loss between real and predicted gaze position we used the701

Euclidean error:702

LED =

√

√

√

M
∑

i=1

(ŷi − yi)
2 (1)

with yi the real gaze position, and ŷi the predicted gaze position. For calculating the predicted error, which reflects an unsupervised703

estimate of the Euclidean error, we used the mean squared error between real and predicted Euclidean error, which itself has been704

computed using the real and predicted gaze path as described above. The predicted error was computed as:705

LMS E =
1

M

M
∑

i=1

(ŷi − yi)
2 (2)

with yi being the Euclidean error between real and predicted gaze path (LED), and ŷi being the predicted Euclidean error for this sample.706

The full loss for optimizing the model weights was computed as:707

L = 0.1 ∗ LMS E +LED (3)

Decoding schemes708

We implemented three decoding schemes differing in how the data was split into training and test set. These decoding schemes are709

described in the following.710

Within-participant decoding: Here, we split the data of each participant into two equally sized partitions (50/50% split). The model was711

trained on one half of the data of all participants and then tested on the other half of the data of all participants. This cross-validation712
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procedure allowed themodel to learn about the intricacies and details of each participant’s MR-signal and behaviors, while still having713

to generalize across participants and to new data of the same participants (Fig. S4).714

Across-participant decoding: To test whether the model generalizes to held-out and hence fully independent participants, we further715

implemented an across-participant decoding scheme. This scheme represents our default pipeline and was used to obtain the main716

results Fig. 2. Each dataset was split into 5 equally sized partitions containing different participants. We then trained the model on717

4 of these data partitions and then decoded from the fifth (80/20% split). This procedure was cross-validated until all data partitions718

and hence all participants were tested once. The across-participant decoding scheme requires the model to generalize to eyeballs719

and behavioral priors that it has not encountered during training. The fMRI and eye-tracking data however have been acquired on720

the same scanner and with the same scanning protocol.721

Across-dataset decoding: Finally, we tested whether DeepMReye generalizes across datasets that have been acquired in independent722

participants performing different viewing tasks scanned on different scanners and with different scanning protocols. We trained the723

model in a leave-one-dataset-out fashion using all datasets (Fig. 2), meaning that the model was trained on all datasets except one724

and then tested on the one that was held out. This procedure was cross-validated until all datasets and hence all participants were725

tested once. Note that the voxel sizes and repetition times used for the acquisition of the key datasets 1-5 were similar, but that the726

model still had to generalize across different participants, MRI scanners and other scan parameters (e.g. slice orientation). Further727

note that themodel performance of the across-dataset procedure would likely further improve if evenmore diverse viewing behaviors728

and fMRI data were used for model training (Fig. S4).729

Model quantification730

To quantify model performance, we used the Euclidean error as described above for model training and evaluation. In addition, we731

computed the Pearson correlation and the R2-score as implemented in scikit-learn (Pedregosa et al., 2011) between real and decoded732

gaze path for model inference. The R2-score expresses the fraction-of-variance that our gaze decoding accounted for in the ground733

truth gaze path.734

R2
= 1 −

∑M
i=1(yi − αŷi − β)

2

∑M
i=1(yi − ȳ)

(4)

with yi the ground truth of sample i, ŷi the predicted value and ȳ the mean value. Unlike the Pearson correlation, or the squared735

Pearson correlation, the R2-score used here is affected by the scaling of the data and can be arbitrarily negative.736

Decoding from the eyeballs and early visual cortex with time-shifted data737

To investigate if the decoding is instantaneous or further improves when temporal delays are being considered, we shifted the func-738

tional image time series relative to the gaze labels. We again used the free-viewing dataset (Julian et al., 2018), because it featured the739

most complex and natural viewing behaviors in our sample. For each image shift (0-10 TR’s), we retrained the full model and tested it740

on held-out participants using the across-participant decoding scheme.741

To further assess whether DeepMReye can also be used to decode from brain activity directly, we used the same temporal shift-742

ing procedure while decoding from area V1. The regions-of-interest mask was obtained by thresholding the Juelich-atlas mask "Vi-743

sual_hOc1.nii" at 60 % probability and reslicing it to the resolution of our template space (Fig. S7). As the model is agnostic to the744

dimensions of the input data, decoding from region-of-interests other than the eyeballs required no change in model architecture.745

Effect of training set size746

To evaluate how the number of participants in the training set influences decoding performance, we retrained the model using dif-747

ferent subsets of participants across model iterations (1-21 participants). For each iteration, we tested the model on the same 6748

participants, which were not part of the training set. To ensure that the results were robust and did not depend on individual details749

of single participants used for model training, we repeated this procedure 5 times for each training-set size and then averaged the750

results. To do so, we randomly assigned participants to the training set in each cross-validation loop while keeping the test set fixed.751

Moreover, to avoid overfitting to these small training sets, we reduced the number of training epochs, using e = 2 + N with N the752

number of participants in the current training run and e the number of epochs. We kept the number of gradient steps in each epoch753

constant (n=1500).754

Eyes-closed eye tracking755

As a proof-of-concept, we tested whether DeepMReye is capable of decoding gaze position, or rather the state of the eyeballs, while756

the eyes are closed. We trained the model on the camera-based eye tracking labels of the 4 participants in dataset 6. We included757

the data acquired with all 9 scanning protocols and with all viewing behaviors tested (fixation, smooth pursuit, and picture viewing).758

We then evaluated the model on one participant, who was instructed to close the eyes and move them alternatingly from left to right759

or up and down. The participant indicated the direction of movement by pressing a button which was used to color the coordinates760

in (Fig. 3B). The participant performed this task nine times for one minute each. To reduce overfitting to the viewing behaviors in761

the training set, we here used a higher dropout rate in the fully connected layers (drop ratio=0.5) than in our default model (drop762

ratio=0.1).763
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Decoding at sub-imaging temporal resolution764

Because different imaging slices are being acquired at different times, and because the MR-signal of a voxel could be affected by eye765

motion within each TR, we tested whether our model is capable of decoding gaze position at sub-imaging temporal resolution. Across766

different model iterations, we re-trained and re-tested the model using different numbers of gaze labels per TR (n = 1-10 labels), each767

time testing how much variance the decoded gaze path explained of the true gaze path. Decoding different numbers of gaze labels768

per TR was achieved by replicating the bottleneck layer n times, each one decoding gaze position for their respective time points using769

a fully connected layer. Importantly, the weights between these layers were not shared, which allowed each layer to utilize a different770

node in the bottleneck layer. Each layer could therefore capture unique information at its corresponding within-TR time point to771

decode its respective gaze label. To keep the overall explainable variance in the test set gaze path constant, we always upsampled the772

decoded gaze path to a resolution of 10 labels per TR using linear interpolation before computing the R2-score scores for each model773

iteration. Potential differences in model performance across iterations can therefore not be explained by differences in explainable774

variance. These final test R2-scores were range-normalized within each participant for visualization (Fig. 2F).775

Functional imaging analyses776

We tested whether the decoding output of DeepMReye is suitable for the analysis of functional imaging data by regressing it against777

brain activity using a mass-univariate general linear model (GLM). This analysis was expected to uncover brain activity related to eye778

movements in visual, motion, and oculomotor regions. To demonstrate that our approach is applicable even for natural and complex779

viewing behavior, we conducted these analyses on the visual search dataset (Julian et al., 2018).780

First, we decoded the median gaze position at each imaging volume using all cross-validation schemes described above. We then781

obtained an approximate measure of eye movement amplitude by computing the vector between gaze positions of subsequent782

volumes. Based on the vector length, or the amplitude of decoded putative eye movements, we built two regressors of interest; one783

for far eyemovements (>66th percentile of movement amplitudes) and one for short eyemovements (<33rd percentile of amplitudes).784

The mid-section was excluded to separate the modeled events in time. The two resulting regressors per scanning run were binarized785

and convolved with the hemodynamic response function implemented in SPM12 using default settings. Head-motion parameters786

obtained during preprocessing were added as nuisance regressors. Contrasting the resulting model weight between far and short787

eye movements yielded one t-statistics map per participant.788

To test which brain areas signaled the difference between far and short eye movements, we normalized the t-map of each participant789

to MNI-space and smoothed it with an isotropic Gaussian kernel of 6mm (full-width-half-maximum). The smoothed statistical maps790

were then used to compute an F-statistic on group level using SPM12. Moreover, to compare the results obtained with DeepMReye791

to the ones of conventional eye tracking we repeated the imaging analysis described above using gaze positions obtained with a792

conventional camera-based eye tracker. The final F-statistics maps were warped onto the fsaverage Freesurfer template surface for793

visualization using Freesurfer (https://surfer.nmr.mgh.harvard.edu/).794

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.11.30.401323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.30.401323
http://creativecommons.org/licenses/by-nc-nd/4.0/


23

Supplementary Material795

Figure S1: Predicted error (PE) correlates with the Euclidean error between real and predicted gaze positions. This allows to

filter the test set post-decoding based on estimated reliability. A) Results plotted for models trained and tested using the

fixation target coordinates. B) Results plotted for models trained and tested using labels acquired using camera-based eye

tracking. We plot single-participant data with regression line. Participants were split into 80% most reliable (Low PE, blue)

and 20% least reliable participants (high PE, orange). All scores expressed in visual degrees.
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Figure S2: A) Gaze decoding group results expressed as the coefficient-of-determination (R2). Top panel shows gaze decoding

expressed as the R2-score implemented in scikit-learn (Pedregosa et al., 2011) between the true and decoded gaze trajectory

for the five key datasets featuring fixations, 3x smooth pursuit and visual search. Note that R2 can range from negative infin-

ity to one. Participants are color coded according to predicted error (PE). We plot Whisker-box-plots for Low-PE participants

and single-participant data for all. (B) Group-average spread of decoded positions around true positions collapsed over time

in visual degrees for participants with high predicted error (orange dots in A).
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Figure S3: Model performance evaluated before and after exclusion of volumes with unreliable decoding. Here, before com-

puting model performance we filtered out either the 0%, 20% or 50% least reliable volumes (i.e. those with the highest pre-

dicted error (PE)). Model performance is expressed as the coefficient-of-determination R2-score implemented in scikit-learn

(Pedregosa et al., 2011) between true and decoded gaze trajectory for the five key datasets featuring fixations, 3x smooth

pursuit and visual search. Note that R2 can range from negative infinity to one. We plot single participant data (dots) as well

as the mean ± standard error of the mean. Participant dots were additionally color coded according to the participants’ PE.
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Figure S4: A) Within-participant gaze decoding obtained by training and testing the model on different data partitions of all

participants within a dataset. B) Across-dataset gaze decoding obtained using leave-one-data-set-out cross-validation. We

plot the R2-score as implemented in scikit-learn (Pedregosa et al., 2011) between true and decoded gaze trajectory for the

five key datasets featuring fixations, 3x smooth pursuit and visual search. Note that R2 can range from negative infinity to

one. The results of datasets 1-3 were obtained using the fixation target labels, the ones of datasets 4-5 were obtained using

camera-based eye tracking labels. Participants are color coded according to predicted error (PE). We plot Whisker-box-plots

for Low-PE participants and single-participant data for all.
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Figure S5: Gaze decoding evaluated using camera-based eye tracking for smooth pursuit datasets 3-4. Model performance

expressed as the Pearson correlation between true and decoded gaze trajectory for the datasets with camera-based eye

tracking. Because the visual search dataset 5 used labels obtained using camera-based eye tracking as well, we additionally

plot the results obtained for this dataset again for the sake of completeness. Participants are color coded according to

predicted error (PE). We plot Whisker-box-plots for Low-PE participants and single-participant data for all.
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Figure S6: Normalized test error as a function of howmany participants were used formodel training plotted for three differ-

ent viewing behaviors. We plot single participant data (dots) as well as the across-participant average model performance

(black lines). Error bars depict the standard error of the mean. Right panel shows the average across datasets.
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Figure S7: Visualisation of eyeball and visual cortex (V1) masks used for decoding in Figure 2E. Eyeballs were manually seg-

mented in the structural scan of the SPM-template participant "Colin27". The V1 mask was obtained by thresholding the

Juelich-atlas mask "Visual_hOc1.nii" at 60 percent probability. MNI coordinates added. For decoding, both masks were

resliced to 2mm isotropic to match the voxel resolution of our template space.
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Figure S8: Sub-imaging decoding resolution. A) Group results when all 10 sub-TR samples are considered for computing the

Pearson correlation between true and decoded gaze trajectories. Participants are color coded according to predicted error

(PE). We plot Whisker-box-plots for Low-PE participants and single-participant data for all. B) Similar standard deviation of

real and decoded gaze labels within each functional volume (TR), i.e. if the 10 real gaze labels of a TR had a high standard

deviation (indicating larger eyemovementswithin this TR) then the 10 decoded gaze labels showed a high standard deviation

as well. We plot the Pearson correlation between the within-TR standard deviation computed using the full time course of

each participant as Whisker-box-plots and single-participant data as dots.
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Figure S9: No correlation between eye movements and head motion in visual search dataset 5. Eye movements were com-

puted as the vector length between gaze positions of subsequent volumes. Head motion estimates reflect the 6 SPM12-

realignment parameters. We plot Whisker-box-plots of this correlation computed for gaze labels obtained with camera-

based eye tracking as well as with three cross-validation schemes of DeepMReye (within-participant-, across-participant-

and across-dataset prediction).
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Figure S10: General-linear-model (GLM) group results for the contrast ’Far vs. short eyemovements’ during visual searchwith-

out accounting for the hemodynamic response function. We plot the F-statistic of this contrast superimposed on a template

surface (fsaverage) for gaze-labels obtained with camera-based eye tracking (first panel) as well as for three DeepMReye

cross-validation schemes. Within-participants: All participants of a dataset were included with different partitions in model

training and test. Across-participants: Different participants were included during model training and test. Across-datasets:

Different datasets (and hence also different participants) were included during model training and test.
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