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Abstract 
 
We performed a comprehensive assessment of metagenomics classification tools on long 

sequenced reads. In addition to well defined mock communities, we prepared various 

synthetic datasets to simulate real-life scenarios. The results show that off-the-shelf mappers 

such as Minimap2 or Ram are at least comparable with mapping-based classification tools in 

most accuracy measures while not being much slower than kmer based tools and requiring 

equal or less RAM. Majority of tested tools are prone to report organisms not present in 

datasets and underperform in the case of high presence of host’s genetic material. 

Furthermore, longer read lengths make classification easier, but due to the difference in read 

length distributions among species, the usage of only longest reads reduces the accuracy. 

Finally, evaluation on a mock community shows the importance of careful isolation of genetic 

material and sequencing preparation.  

Availability and implementation: Python scripts used to generate all figures and tables in 

this study, and all supplementary texts and figures are available via the Github repository 

https://github.com/lbcb-sci/MetagenomicsBenchmark. Datasets, supporting files, analysis 

results and reports are available via Zenodo repository 

https://doi.org/10.5281/zenodo.5203182.  
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Introduction 

Imagine that one is interested in the analysis of a sequenced metagenomics sample. The study 

aims to provide information on present organisms and their quantity. However, the accuracy 

of the final result depends on many factors such as contamination with other genetic material 

(i.e. host’s DNA), material isolation, sequencing preparation, used sequencing technology and 

classification tools. The recent improvement in both the length and accuracy of long-read 

sequencing technologies promises a more precise analysis. In this manuscript, we evaluated 

several tools for metagenomic sample analysis based on long-read whole metagenome de 

novo sequencing. In addition, we investigated the performance of tools for classifying present 

organisms using datasets that mimic routine experiments. 

The advent of high-throughput sequencing has enabled a detailed analysis of microbial 

communities and their hosts through metagenomics1,2. Together with genetic material 

isolation,  an essential component of metagenomic sequencing workflows is a computational 

method for recognizing organisms present in a sample. The majority of current methods are 

tailored to work with short, accurate reads from second-generation sequencing technologies. 

However, due to an increase in accuracy and throughput, long-read sequencing technologies 

are gaining popularity. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies 

(ONT) are the most popular long-read sequencing technologies. Metagenomic sequencing 

approaches can be divided into marker gene (typically 16S rRNA) sequencing3 and whole-

metagenome shotgun sequencing. Since the 16S rRNA gene consists of both conserved and 

variable regions, it is suitable for cost-effective bacteria and archaea profiling. On the other 

hand, whole-metagenome shotgun sequencing covers all genomic information in a sample, 

enabling additional analyses such as binning, antibiotic resistance gene profiling, and 

metabolic function profiling. Metagenomic analysis pipelines often begin by detecting and 
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quantifying the taxa in a sample. When most of the genomes present in the sample are 

unknown, metagenomic de novo assembly methods (i.e.4) are used. Otherwise, the sequenced 

data can be compared to a reference database that stores genomic information related to 

various taxa. This work aims to analyze the performance of methods based on the comparison 

of long-read sequencing data with a reference database. Although there are several 

benchmarking studies on long reads5–7, our analysis includes both PacBio (including HiFi 

reads) and ONT sequencing technologies, incorporates an evaluation of the influence of the 

database on the results and assesses tradeoffs between running time and memory 

requirements in typical use cases with real sequencing data. 

Results 

We tested eight metagenomic classification tools, which could be roughly divided into (1) 

kmer-based (Kraken28, Centrifuge9, CLARK10, CLARK-S11) and (2) mapping-based 

(MetaMaps12, MEGAN-LR13; Minimap214, Ram15). We also evaluated Bracken16, a statistical 

method that computes the abundance of species using taxonomy labels assigned by 

Kraken/Kraken2. Minimap2 and Ram are off the shelf mappers whose outputs we adapted for 

metagenomics classifications. Minimap2 was tested in two modes: full alignment mode 

(calculating alignment path) and mapping mode (calculating approximate alignments), giving 

us 10 tools in total. 

We created datasets to highlight some common use cases in microbiology analysis using 

reads sequenced by Oxford Nanopore Technologies or Pacific Biosystem devices.  

There are two main goals for classification algorithms: to identify species and to evaluate 

their abundances. Reaching these objectives highly depends on the community’s content and 

the actual number of reads for each species. Therefore, using existing reads, we synthesised 

several simple to complex communities containing 3 to 50 species, with highly abundant to 

very sparse species.  
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- Datasets ONT1, PB1, PB4 reflect a community of bacteria without eukaryotic species. 

- Datasets ONT2 and PB2 reflect metagenomics datasets with one or more eukaryotic species 

and many bacterial species. 

- Dataset PB3 reflects a community with predominantly human reads (99 %) and two low 

abundance bacterial species, reflecting what one might see in an infection setting. 

- Datasets PB1+NEG and PB2 represent a situation where a significant portion of the reads 

comes from an organism that is not present in the database and which has no similar 

organisms in the database. For the PB1+NEG dataset, those reads were obtained by 

generating “shuffled” reads using the human genome, while for the PB2 dataset, those are the 

reads belonging to D. melanogaster and human. 

We also used three well defined mock community datasets PB Zymo, ONT Zymo and PB PB 

ATCC. It is important to notice that for synthesized communities, we used reads sequenced 

with older PacBio technologies, mock communities are sequenced using Sequel 2 hifi 

technology.   

The tools were tested in four different areas: 

1. Read level classification – how accurately can they classify each read. 

2. Abundance estimation – how well can they be used to estimate the abundance of 

organisms in the sample. 

3. Organism detection – how accurately can they detect organisms in a sample. 

4. Computational resource usage - running time and consumption of RAM memory. 

We focus our analysis on microbial species. Therefore, accuracy and abundance errors are 

calculated only for the microbial species, ignoring reads assigned to the human. 

Read level classification 

In the first analysis, we assess the tools’ read level classification accuracy on seven 

synthesized datasets. We analysed both species and genus levels. Figure 1 shows that 
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mapping-based tools dominate on almost all datasets and on both levels. Differences between 

mapping-based and kmer-based tools vary up to 10 % at species levels. The only exception is 

MEGAN which performs similarly to kmer-based tools. Minimap2 with alignment 

overperforms other tools, followed by Minimap2 without alignment, Ram and MetaMaps. An 

interesting case is the ONT1 dataset which contains reads of two species of the Vibrio genus 

that are not in the database. Since there are other similar species of the Vibrio genus in the 

database, some tools, such as MEGAN and Minimap2, tend to assign those reads to other 

similar Vibrio species, while other tools, such as Clark-S and Ram, tend to leave those reads 

unassigned. Therefore, the results on the ONT1 dataset are almost reversed when analysing 

genus and species level of classification. Clark-S and Ram have the highest accuracy when 

inspecting the ONT1 dataset at the species level and lowest when inspecting the dataset at the 

genus level, while Minimap2 and MEGAN have the highest accuracy at the genus level but 

perform worse at the species level.   
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Figure 1. Read level classification accuracy, comparison between species and genus 
level classification. Kmer-based and mapping-based tools are represented in red and blue, 
respectively. Plot a) shows species level classification for which reads are considered 
correctly classified if classified to a correct species.  Plot b) shows genus-level classification 
for which reads are considered correctly classified if classified to a correct genus. Results for 
MEGAN are unavailable for the PB3 dataset. 
 
Since there is an imbalance in the number of reads per species, we also calculated the F1 

score for each class (organism in the sample) separately and averaged them (F1 macro 

average). Using F1 macro average instead of accuracy shows a similar pattern for most 

datasets with a clear domination of Minimap2 and a smaller distance between mapping-based 

and kmer-based tools (Supplementary Figure 1).  
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We further investigated the influence of the read length on classification. We present only 

analysis for Minimap2 with alignment, the most accurate tool at the read level. As it is 

evident from Figure 2, increasing the read length increases the level of classification. 

However, due to different read length distributions per organism, we could not select only the 

longest reads. Detailed analysis on how the read length impacts the results is provided in 

Supplementary Table 2.   

 
Figure 2. Comparison between classification accuracy and read length. The figure 
shows median read length for true positive and false positive read classifications for each 
dataset. The results shown in the figure were obtained using Minimap2 with alignment. 
 

The abundance estimation  

The abundance estimation is arguably the most important assessment. In microbiology, the 

abundance of a species is defined as the ratio of cells in the community. However, most 

assessed tools report read counts instead, which does not take into account that larger 

genomes will yield more reads for the same number of cells. Supplementary Table 3 shows 

on real datasets that a measure that includes genome sizes performs similar or better than read 

counts. Therefore, we used read-level classification output from each tool to calculate the 
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abundances, which are then compared between tools. How the abundance measure is 

calculated and compared is described in detail in the Methods section. 

We analysed the abundances for seven synthesized and three real datasets on species level. 

Table 1 shows the results. For species present in datasets, we calculate the mean and std of 

the absolute difference between calculated and real abundance in percentages. Furthermore, 

we present calculated cumulative abundances of species not present in the datasets. Minimap2 

outperforms other tools in absolute differences between abundances of present organisms. In 

most of the datasets, its mean difference is below 2%. However, other tools are not far away. 

PB3 dataset is specific due to the high percentage of human reads (99%). For this dataset, 

MetaMaps achieves the best results.  

Regarding species not present in the dataset, CLARK-S surpasses others, followed by 

MetaMaps, Ram and MEGAN. Minimap2 is more prone to reporting organisms not present in 

the sample, and we deem there is space for improvement in the postprocessing analysis or by 

changing its parameters such as kmer length or the percentage of filtered kmers.  

Supplementary Figure 2 shows a more detailed analysis of abundance errors for each tool and 

dataset. 

Results on mock communities are similar among tools. Kraken2 and Bracken slightly 

overperform others in the abundance of species present in the database but usually reports 

more unexisting species in the sample. It is important to note that results for the PB_Zymo 

dataset are significantly worse than for the other two real datasets. Since all tools report 

similar results, we think that the problem for this dataset might have been in isolation of 

genetic material and preparation of the sample for sequencing.  
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Table 1. Abundance estimation error in percentages on species level. The abundance 
estimation error is calculated by comparing the abundances calculated for each tool to the 
ground truth. Errors are calculated separately within the dataset and outside the dataset. For 
organisms within the sample, the mean and standard deviation of the abundance error are 
displayed. For organisms outside the sample, the absolute value of the abundance error is 
summed up and displayed in the table. Each dataset name is followed by the number of 
species in that dataset in parentheses. Results for MEGAN are unavailable for datasets PB3, 
PB_atcc and PB_zymo. The best (lowest) values are printed in bold. 
 

Dataset 
(no of 

species)  

In/Out 
of 

dataset 
Kraken2 Bracken Centrifuge CLARK CLARK-S Metamaps MEGAN 

Minimap2 
align 

Minimap2 
map 

Ram 

ONT1  
(18) 

In 
1.77 ± 
3.07 

2.62 ±  
3.04 

1.82 ± 
3.05 

1.79 ± 
3.09 

2.51 ± 
3.16 

2.34 ± 
3.04 

2.29 ± 
3.04 

1.67 ± 
3.08 

1.67 ± 
3.08 

1.90 ± 
3.02 

Out 21.1 20.5 21.8 18.2 4.93 16.7 20.3 21.9 21.6 17.57 

ONT2  
(8) 

In 
4.96 ± 
5.67 

6.98 ±  
4.52 

5.24 ± 
4.93 

4.99 ± 
5.55 

7.52 ± 
4.84 

5.19 ± 
4.53 

5.70 ± 
5.30 

4.29 ± 
5.30 

4.53 ± 
5.42 

4.68 ± 
5.21 

Out 39.9 32.5 42.0 34.5 14.5 23.1 36.2 33.9 36.3 31.3 

PB1  
(8) 

In 1.27 ± 
0.95 

4.24 ± 
 2.04 

2.44 ± 
2.54 

1.83 ± 
1.66 

4.09 ± 
2.57 

0.55 ± 
0.25 

2.81 ± 
1.81 

0.43 ± 
0.31 

0.43 ± 
0.36 

0.60 ± 
0.41 

Out 6.16 6.35 6.68 5.46 0.45 1.17 1.66 2.28 2.74 1.92 

PB1+NEG  
(8) 

In 2.25 ± 
0.94 

4.31 ±  
2.00 

2.60 ± 
2.74 

1.83 ± 
1.66 

4.09 ± 
2.57 

0.55 ± 
0.26 

3.82 ± 
2.13 

0.43 ± 
0.31 

1.76 ± 
0.55 

0.60 ± 
0.41 

Out 18.0 8.15 20.8 5.50 0.45 1.20 2.01 2.28 14.0 1.92 

PB2  
(13) 

In 
1.68 ± 
1.54 

1.33 ±  
 0.71 

2.37 ± 
2.30 

0.82 ± 
1.44 

1.77 ± 
1.70 

1.10 ± 
1.79 

1.17 ± 
0.98 

0.30 ± 
0.49 

3.13 ± 
3.66 

0.30 ± 
0.48 

Out 21.8 5.22 30.7 5.59 0.18 11.5 2.30 3.90 40.7 2.60 

PB3  
(3) 

In 
13.9 ± 
9.74 

7.37 ±  
6.12 

4.16 ± 
0.67 

12.1 ± 
5.49 

10.1 ± 
5.52 

9.06 ± 
3.47 

- 
9.89 ± 
3.27 

23.1 ± 
19.2 

23.4 ± 
2.94 

Out 22.4 6.57 21.6 11.3 0.65 5.55 - 8.05 71.4 14.8 

PB4  
(46) 

In 
0.27 ± 
0.46 

0.75 ± 
1.12 

0.30 ± 
0.59 

0.27 ± 
0.43 

0.49 ± 
0.83 

0.26 ± 
0.46 

0.50 ± 
0.98 

0.21 ± 
0.40 

0.23 ± 
0.42 

0.24 ± 
0.42 

Out 10.38 12.2 11.1 8.66 4.87 8.44 4.42 8.28 9.15 7.80 

ONT Zymo 
(10) 

In 1.17 ± 
0.84 

2.20 ± 
1.68 

2.04 ± 
2.68 

1.49 ± 
1.31 

1.90 ± 
2.55 

1.72 ± 
1.68 

2.59 ± 
2.04 

1.52 ± 
1.27 

1.57 ± 
1.33 

1.70 ± 
1.46 

Out 7.11 5.05 6.11 4.56 0.16 0.34 1.31 1.32 1.22 1.59 

PB ATCC 
(20) 

In 
1.20 ± 
1.97 

0.94 ±  
1.38 

1.28 ± 
2.12 

1.06 ± 
1.88 

1.05 ± 
1.93 

1.05 ± 
1.88 

- 
1.05 ± 
1.87 

1.06 ± 
1.87 

1.05± 
1.8 7 

Out 1.69 1.98 0.51 0.18 0.04 0.12 - 0.31 0.45 0.36 

PB Zymo 
(17) 

In 
3.84 ± 
5.10 

3.79 ±  
4.98 

3.86 ± 
5.13 

3.88 ± 
5.08 

4.54 ± 
5.46 

4.00 ± 
5.07 

- 
3.96 ± 
5.07 

3.90 ± 
5.08 

4.07 ± 
5.09 

Out 44.8 41.5 45.4 43.7 16.0 40.6 - 41.7 43.6 40.4 

 
Additionally, we analysed a cumulative abundance estimation error. We calculate it as a total 

sum of absolute values of differences between true and calculated abundance for each 

reported species independently, present or not present in the original sample. The main part of 

the tests was performed on a database constructed for each tool from the same set of 

sequences: NCBI-NR database with all bacterial and archaeal genomes, plus the human 
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genome. We also tested the tools on a database without a human genome (containing only 

bacterial and archaeal genomes). The comparison of the abundance estimation error for both 

databases is given in Table 2. 

Table 2 shows that MetaMaps and Minimap2 with alignment outperform other tools, 

followed by Ram. Kmer-based tools Kraken2, Centrifuge, CLARK and CLARK-S perform 

similarly, and their results are near to those achieved by Ram. Datasets PB2 and PB3 have a 

higher percentage of human reads (20% and 99%, respectively). Ram achieves the best results 

on the PB2 dataset and MetaMaps on PB3. Results show that having a host genetic material 

in a dataset significantly increases the abundance levels of taxa not present in the sample. 

When the high proportion of reads belongs to the host, most tools struggled even when the 

human genome was present in the database. 

Comparing data from well-defined, accurately characterized mock communities ONT Zymo 

and PB ATCC (hifi reads) difference in abundance estimation accuracy of tools between 

datasets is not high. Unfortunately, we could not find ONT and PacBio data for the same 

mock community, so we cannot conclude about the influence of the sequencing technology 

on tools’ performances. Results on PacBio Zymo Gut Microbiome Standard dataset (PB 

Zymo) were again worse for all tools.  
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Table 2. Comparing abundance estimation error for the database with human genome 
and database without human genome.  
The table shows the total abundance estimation error for each dataset and tool and for two 
databases: database with the human genome and database without the human genome. 
The error is calculated by calculating the absolute value of the difference between 
abundance calculated for each tool and true abundance and summing it up across all 
organisms (in and out of sample). Each dataset name is followed by the percentage of 
human reads in that dataset in parentheses. Results for MEGAN are unavailable for datasets 
PB3, PB_atcc and PB_zymo. 
 

Dataset 
(% 

human) 
Database Kraken2 Bracken Centrifuge CLARK CLARK-S Metamaps MEGAN Minimap2 

align 
Minimap2 

map Ram 

ONT1 
(0%) 

human 52.9 67.6 54.6 50.3 50.0 58.9 61.5 52.0 51.7 51.7 

no human 53.1 68.0 54.7 50.3 50.1 58.9 61.5 52.0 51.7 51.7 

ONT2 
(5.78%) 

human 79.8 88.3 84.0 74.5 74.7 64.6 81.8 68.2 72.5 68.7 

no human 83.7 88.2 90.6 76.0 74.3 64.7 84.2 72.3 75.9 69.6 

PB1 
(0%) 

human 16.3 40.2 27.2 20.1 33.1 5.5 24.2 5.8 6.1 6.7 

no human 16.6 40.3 27.3 20.1 33.6 5.5 24.2 5.8 6.2 6.6 

PB1+ 
NEG 
(0%) 

human 36.0 42.6 41.6 20.1 33.1 5.6 32.6 5.8 28.1 6.7 

no human 39.4 43.0 45.7 20.1 33.6 5.6 32.6 5.8 31.1 6.6 

PB2 
(20%) 

human 43.7 22.5 61.5 16.3 23.2 25.8 17.6 7.8 81.4 6.4 

no human 89.2 54.2 98.3 63.8 23.3 26.0 38.9 49.0 106.8 8.8 

PB3 
(99%) 

human 50.1 21.3 104.8 35.5 20.8 23.7 63.7 37.8 117.7 61.6 

no human 145.7 145.1 145.7 145.7 140.1 96.0 145.7 145.5 145.5 140.3 

PB4 
(0%) 

human 23.0 46.7 24.9 21.0 27.3 20.3 27.2 18.0 19.6 18.9 

no human 23.3 46.6 25.1 21.1 27.6 20.3 27.2 18.0 19.7 18.8 

ONT 
zymo 
(0%) 

human 18.8 27.1 26.5 19.5 19.2 17.5 27.2 16.5 16.9 18.5 

no human 18.8 27.1 26.6 19.5 19.2 17.5 27.2 16.5 16.9 17.4 

PB 
atcc 
(0%) 

human 25.8 20.8 26.1 21.4 21.1 21.1 - 21.4 21.6 21.5 

no human 25.8 20.8 26.1 21.4 21.1 21.1 - 21.4 21.6 21.5 

PB 
zymo 
(0%) 

human 110.1 106.0 111.0 109.7 93.1 108.6 - 109.1 109.9 109.6 

no human 110.2 106.0 111.0 109.8 93.1 108.6 - 109.1 109.9 109.6 

 

Organism detection 

We also assessed how well tools identify organisms present in a sample. Table 3 shows how 

the number of correctly and incorrectly recognised organisms is related to a threshold - 

minimal number of assigned reads for reporting an organism as present in the sample. For 

most datasets, the number of incorrectly recognized species decreases while keeping the 
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recognition of present organisms. However, if there are species with a very low number of 

reads, such as in datasets PB4 (lowest proportion of reads - 0.005 %) and ONT1 (lowest 

proportion of reads - 0.01 %), thresholds may also influence recognition of present organisms.  

In accordance with the results in previous sections, CLARK-S surpasses other tools for all 

datasets, followed by Ram. MetaMaps is the second best at PB3, confirming it as a good 

choice in the case of the large presence of host genetic material. However, Minimap2 and 

Ram are also close.  

Table 3. True positive and false positive organism detection. The table shows true and 
false positive organism detections for three different thresholds: 1, 10 and 50. A threshold 
represents a number of reads that need to be assigned to that organism for it to be 
considered present in the sample. The data is presented as the number of false-positive 
detections (organisms incorrectly reported as present), followed by the number of true 
positive detections in parentheses (organisms correctly reported as present). Each dataset 
name is followed by the number of species in that dataset in parentheses. Results for 
MEGAN are unavailable for dataset PB3.  

Dataset 
(TP) 

Thres 
hold 

Kraken2 Bracken Centrifuge CLARK CLARK-S Metamaps MEGAN Minimap2 
align 

Minimap2 
map 

Ram 

ONT1 
(18) 

1 2162(15) 135 (14) 2365 (15) 905 (15) 51 (15) 596 (15) 547 (15) 428 (15) 592 (15) 127 (15) 

5 375 (14) 135 (14) 502 (14) 223 (15) 20 (15) 78 (15) 160 (15) 132 (14) 154 (15) 54 (15) 

50 33 (14) 42 (14) 42 (14) 26 (15) 3 (14) 10 (15) 18 (14) 21 (14) 21 (15) 13 (15) 

ONT2 
(8) 

1 2033 (6) 87 (6) 2318 (6) 596 (6) 62 (6) 323 (6) 216 (6) 170 (6) 247 (6) 102 (6) 

5 172 (6) 87 (6) 215 (6) 125 (6) 17 (6) 45 (6) 69 (6) 69 (6) 79 (6) 43 (6) 

50 19 (6) 26 (6) 30 (6) 15 (6) 6 (6) 8 (6) 12 (6) 12 (6) 13 (6) 9 (6) 

PB1 
(8) 

1 942 (8) 73 (8) 999 (8) 590 (8) 63 (8) 111 (8) 101 (8) 91 (8) 427 (8) 83 (8) 

5 157 (8) 73 (8) 116 (8) 124 (8) 13 (8) 22 (8) 34 (8) 38 (8) 50 (8) 39 (8) 

50 28 (8) 31 (8) 22 (8) 23 (8) 2 (8) 4 (8) 8 (8) 10 (8) 11 (8) 13 (8) 

PB1+ 
NEG 
(8) 

1 3035 (8) 127 (8) 2877 (8) 594 (8) 62 (8) 177 (7) 116 (8) 91 (8) 2467 (8) 83 (8) 

5 494 (8) 127 (8) 476 (8) 124 (8) 13 (8) 23 (7) 40 (8) 38 (8) 287 (8) 39 (8) 

50 28 (8) 34 (8) 26 (8) 23 (8) 2 (8) 4 (7) 10 (8) 10 (8) 13 (8) 13 (8) 

PB2 
(13) 

1 3005(12) 83 (12) 3337 (12) 448 (12) 42 (12) 119 (12) 218 (12) 108 (12) 3556 (12) 77 (12) 

5 299 (12) 83 (12) 390 (12) 68 (12) 9 (12) 16 (12) 42 (12) 32 (12) 617 (12) 30 (12) 

50 15 (12) 18 (12) 19 (12) 9 (12) 1 (12) 4 (11) 5 (12) 8 (12) 25 (12) 5 (12) 

PB3 
(3) 

1 72 (3) 4 (3) 107 (3) 29 (3) 2 (3) 10 (3) - 15 (3) 165 (3) 19 (3) 

5 10 (3) 4 (3) 10 (3) 5 (3) 0 (3) 2 (3) - 5 (3) 25 (3) 5 (3) 

50 0 (3) 0 (3) 0 (3) 0 (3) 0 (3) 1 (3) - 0 (3) 6 (3) 1 (3) 

PB4 
(46) 

1 1603 
(42) 

67 (40) 1544 (41) 516 (42) 50 (40) 227 (40) 171 (41) 163 (41) 831 (42) 146 (41) 

5 128 (41) 67 (40) 105 (41) 101 (40) 15 (39) 39 (39) 54 (40) 57 (41) 73 (40) 57 (40) 

50 23 (35) 27 (35) 23 (34) 14 (35) 5 (33) 13 (33) 13 (34) 23 (34) 21 (34) 19 (34) 
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Computational resource usage 
 
Finally, we analysed running time and memory usage for evaluated tools. Results are 

presented in Table 4. As expected, kmer-based tools, apart from CLARK-S, dominate in the 

running time. For our test datasets, Centrifuge has the lowest running time for most datasets. 

However, in comparison with mappers such as Minimap2 and especially Ram, the difference 

between best kmer-based tools and mappers is below one order of magnitude. MetaMaps and 

MEGAN are much slower. Ram uses the least amount of RAM memory. Kraken2, 

Centrifuge, Minimap2 and MEGAN, for most datasets, use 2-3 times more memory. CLARK, 

CLARK-S and MetaMaps use between 10-15 times more. 

Ram and Minimap2 execution times were additionally tested by mapping only one sequence 

to the whole database file. The execution time for both was around 1000 seconds, which 

suggests that the database parsing and indexing take about that much time. Both tools could 

have their execution time improved by storing and loading preprocessed database indexes to 

the disk.     

For Bracken, we analysed the running time and memory consumption for the database 

building procedure because that procedure needs to be executed for every dataset 

independently since datasets have a different average read lengths, a parameter required by 

this procedure. The abundance estimation script executes almost instantaneously.  

Additionally, we analysed the scalability of used tools on several different dataset sizes. The 

results are presented in Supplementary Table 1. Even for the largest datasets, Ram is still at 

most around 10x slower than Kraken2, the fastest kmer-based tool. Although Centrifuge is 

the fastest tool when analysing execution times presented in Table 4, Kraken2 is the tool that 

has the lowest execution times when tested on larger datasets. This happens because, for 

smaller datasets, index loading takes a great part of the execution time and Centrifuge has the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2020.11.25.397729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397729
http://creativecommons.org/licenses/by-nc/4.0/


smallest database index. On larger datasets, where the actual sequence classification takes a 

greater part of the execution time, Kraken2 outperforms other tools. 

All resource usage measurements were performed on a machine with sufficient disk space, 

775 GB RAM and 256 virtual CPUs. Measurements were performed using 12 threads. 

Between runs, we cleared RAM Memory Cache, file system buffer and swap space. 

Table 4. Resource usage. The table shows running time (in seconds) and memory usage 
(in GB) for all tools and datasets. 

Execution time / s 

Dataset 
/ tool Kraken2 Bracken Centrifuge CLARK CLARK-S Metamaps MEGAN Minimap2 

align 
Minimap2 

map Ram 

ONT1 314 126166 275 974 3913 37839 67090 3145 1710 1482 

ONT2 315 147207 291 954 3917 39844 75214 2874 1808 1509 

PB1 312 137017 284 972 3942 54829 84852 3797 1890 1541 

PB1+NEG 321 145769 296 968 4100 68941 157526 3778 1799 1600 

PB2 326 191661 296 993 4114 58815 119849 2641 1647 1607 

PB3 320 224048 309 979 4075 145416 - 1904 1541 1591 

PB4 308 98826 267 963 3862 50180 58238 2843 1597 1511 

ONT zymo 327 144387 305 979 4084 70622 160225 4220 2283 1697 

PB atcc 317 68971 329 975 3957 76897 - 3044 1928 1303 

PB zymo 317 179206 292 953 3996 63142 - 2364 1604 1272 

Memory / GB 

Dataset 
/ tool Kraken2 Bracken Centrifuge CLARK CLARK-S Metamaps MEGAN Minimap

2 align 
Minimap2 

map Ram 

ONT1 43.04 45.31 37.00 119.56 271.24 205.67 26.87 39.82 34.18 14.05 

ONT2 43.12 25.38 36.91 119.39 271.46 208.46 78.91 47.40 31.34 14.06 

PB1 43.03 25.47 37.08 118.91 271.16 208.46 30.43 28.60 19.98 14.10 

PB1+NEG 43.01 25.39 37.02 119.15 271.17 208.46 30.94 27.52 21.04 14.20 

PB2 43.04 24.39 36.56 120.29 271.42 146.29 108.22 31.30 22.35 13.97 

PB3 42.99 25.38 36.09 120.61 271.32 208.45 - 24.02 21.47 14.26 

PB4 43.04 25.42 36.67 119.33 271.25 208.46 29.90 27.32 22.71 14.13 

ONT zymo 43.02 25.41 37.06 120.08 271.14 208.46 42.57 41.56 38.23 14.27 

PB atcc 43.01 24.37 36.00 120.05 271.25 208.46 - 28.77 19.77 9.07 

PB zymo 42.98 24.42 35.94 120.06 271.22 208.41 - 26.19 21.00 9.15 
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Discussion 

The results show that long-read mapper Minimap2 (with enabled alignment) overperforms 

other tools in read accuracy on most datasets at both species and genus levels.  

When comparing read accuracy on genus and species level, for some datasets (i.e. ONT1 and 

ONT2), the order of best-performing tools significantly differ. The reason is species in the 

sample missing from the database, but there are similar species in the database. While tools 

such as CLARK-S, Ram and MetaMaps tend to assign reads specifically to the original 

species, others, such as Minimap2 and kmer based tools, tend to assign reads to similar 

species if the original ones are not present in the database. Therefore, the former tools 

perform better at the species level, and the latter tools yield better results at the genus level. A 

useful upgrade to classification tools would be to provide some information about the 

confidence of whether the read belongs to a similar species or it doesn’t belong to any species 

in the database.  

Instead of read counts for the calculation of abundances we used a measure which involves 

lengths of reads and genomes. The results on real datasets show that this measure achieves 

similar or more precise abundance calculations. Therefore, we recommend using this measure 

for abundance estimation.  

Together with MetaMaps, Minimap2 with alignment exceeds other tools on abundance 

estimation, too. However, Minimap2 reports more false-positive organisms than some other 

tools, especially CLARK-S.  

Ram mapper, which uses just a portion of minimizers used by original Minimap, performs 

slightly worse or like MetaMaps and better than MEGAN on both read accuracy and 

abundance estimation while having fewer falsely detected species. In addition, it is usually 
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two orders of magnitude faster than these two tools and up to three times faster than 

Minimap2 with alignment. Finally, it and uses the least amount of memory among all tools. 

We deem that Ram might be a good compromise solution, especially since it can be run on a 

laptop even for the largest tested datasets (111 GB). It required less than 16 GB of RAM and 

finished in less than 4 hours using 12 threads. In addition, it shows in which direction new 

methods might be developed. 

MetaMaps achieves very good results in abundance calculation when we consider all reported 

species. It is less prone to error than other tools in the case of a high presence of host reads. 

Its major drawback is its long execution time.  

Kmer based tools such as Kraken2, Centrifuge and CLARK perform worse on read accuracy 

than mapping based tools, worse on abundance estimation for synthetic datasets, and report 

more false-positive species. On two real datasets, Kraken2 slightly surpasses other tools on 

abundance estimation of organisms present in the sample but still reports more false-positive 

organisms. On larger datasets, Kraken2 was the fastest. Using Bracken for the abundance 

calculation based on Kraken2 output achieved mixed results. On some datasets, such as those 

with the present human genome, it significantly improves Kraken2 results. On others, 

especially those sequenced by ONT, it performs worse. Bracken calculation of average read 

lengths substantially increases running time.  

Kmer-based tools, apart from CLARK-S, are faster than mapping-based. Yet, modern 

mappers Minimap2 and especially Ram are only up to 10x slower on most of datasets. On 

many datasets kmer based tools were only up to three times faster than Ram while using more 

memory. However, we argue that due to their speed, kmer based tool can still be used in 

many applications, especially when the precision on genus level is good enough.  

CLARK-S is an outlier among kmer based tools. It is worse than other tools in the accuracy 

estimation on both read and abundance levels for present organisms in the sample, not faster 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2020.11.25.397729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397729
http://creativecommons.org/licenses/by-nc/4.0/


than modern mappers and uses more RAM than any other tool. However, it stands out in the 

organism's detection and performs well in abundance estimation when we include all reported 

organisms. 

Comparing reads’ length for correctly and incorrectly classified reads, we found that median 

read length for true positives is significantly higher than for false positives. Unfortunately, 

distributions of reads and the sparseness of particular species do not allow usage of only 

longer reads because it has a negative impact on species abundance calculation.  

It is important to emphasize that our analysis of the PB Zymo dataset shows how the results 

are sensitive to all wet lab steps which precede sequencing.  

Finally, this assessment shows that with long sequencing technologies, the boundary blurs 

between kmer-based and mapping based tools. Modern mappers use fewer kmers in the 

calculation of mapping candidate positions which makes them faster. We believe that with the 

further improvement in long-read sequencing technology, most methods will move to the 

detection of smaller numbers of kmers in combination with chaining matches. To reduce the 

number of false positives, they will probably need an additional postprocessing step using 

methods such as the EM algorithm. Finally, we believe there is probably space for the 

improvement in careful curation of existing databases with reference genomes.    
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Methods 
 
This chapter gives a description of used tools, how to test datasets were constructed, how the 

testing was performed, and testing metrics were calculated. 

Tools 

Tested tools can be classified into: 

- k-mer based: Kraken2, Centrifuge, CLARK and CLARK-S 

- mapping-based: MetaMaps, MEGAN-LR, Minimap2 and Ram 

Since Kraken2 usually uses Bracken16 for the calculation of abundances, we included it in the 

analysis.  

Tools start with the initial assignment of reads to genomes using in advance prepared 

databases of known organisms. Once when all reads are assigned, various methods are used to 

fine-tune the classification using information from assigned reads and taxonomy trees. The 

most popular post-processing approaches are Expectation-Maximization (EM) estimation 

(MetaMaps, Centrifuge), Bayesian estimation (Bracken) and read assignment using the least 

common ancestor approach (MEGAN-LR, Kraken2). 

The initial assignment of reads is based on aligning reads to a database of determined 

genomes. Aligning (Figure 3) might be divided into three steps: (1) Searching for exact or 

approximate matches of short substrings of length k (kmers) or longer in a previously 

prepared index which contains a list of kmers from genomes (2) Chaining kmer matches into 

a sequence, scoring the sequence, finding approximate positions of read in a genome 

(mapping), and choosing the best genome candidates (3) Alignment of a read and candidate 

genomes using exact dynamic programming algorithm. While kmer-based tools use only the 

first step, mapping-based tools use first and second or all three of them. Each additional step 

adds to accuracy but significantly increases the running time. 
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Usually, kmers are of a fixed size. The initial approach was to use all sliding windows of size 

k in a sequence. This might lead to high accuracy, but it is too slow. Therefore, modern tools 

usually use just a few discriminative kmers per genome, or they choose a lexicographically 

smallest kmer in a window of w consecutive kmers - minimizer17.  

 

Figure 3. Read alignment. Read alignment consists of three steps (1) Indexing and kmer 

search, (2) Chaining and scoring (3) Alignment. Kmer-based tools use only the first step, and 

usually, they do not care about the position in the genome. Mapping based tools use the first 

and second steps, which increase accuracy but last much longer. The alignment step 

provides the exact alignment and the score but additionally increases the running time.  
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The output of various tools was processed to obtain read-level classifications and abundance 

of various species in a sample. We evaluated and analyzed the performance of all tools. Short 

descriptions and versions of each tool are available in Supplementary Materials 1. Specific 

parameters and scripts used to run each tool are given in Supplementary Materials 2. 

While the results for MEGAN are not as good as for other mapping-based tools, it should be 

noted that they might be better when used with a protein database for which the MEGAN-LR 

pipeline was designed. Furthermore, we were unable to successfully run our version of the 

MEGAN-LR pipeline on the PB3 synthetic dataset and on PB_zymo and PB_atcc real 

datasets. In the case of the PB3 dataset, the mapping phase using the LAST aligner would go 

on for several days, and after that, the CPU and memory usage would drop down to almost 

zero, but the process would not complete. Output produced in that way was corrupted and 

could not be used for testing. After three trials, we decided to drop the results. In the case of 

PB_zymo and PB_atcc datasets, the LAST aligner produced a very large MAF file with 

correct alignments, which we could not convert to an alignment out file (.DAA). This resulted 

in no classified reads. 

Since Minimap2 are Ram are not intended for metagenomic classifications and often prints 

several mapping results for a single sequence, the best classification for each sequence, for 

the paf output files, without the alignment, was determined with the following expression: 

2*(mapping_length * number_of_matches) / (mapping_length + number_of_mathces), 

where the mapping_length and number_of_matches are found in each row of the paf file. For 

the sam output files, with alignment, the best classification for each sequence was determined 

by the highest alignment score. 

Database 

We assessed six metagenomic classification tools that were either newly developed or 

modified to work with long reads. In addition, we added two mappers for long reads. Each 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2021. ; https://doi.org/10.1101/2020.11.25.397729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.397729
http://creativecommons.org/licenses/by-nc/4.0/


classification tool comes with a prebuilt default database and with instructions on how to 

build and use a custom database. To remove bias related to default databases, we built a 

database for each tool based on the same set of organisms. We used the NCBI-NR database 

with all bacterial and archaeal genomes, plus the human genome. Genome sequences were 

downloaded (April 5th 2020) along with the taxonomy files nodes.dmp and names.dmp. This 

allows the tools to be tested independent of the content of their default database. The details 

of how each database index was created for every tool is presented in Supplementary 

Materials 3. 

Test datasets 

To have realistic sequencing datasets while retaining control on our mock communities’ exact 

content and building the ground truth, we constructed in silico datasets by mixing real reads 

from isolated, sequenced species. Data was downloaded from multiple sources (details in 

Supplementary Table 5), including the European Nucleotide Archive (ENA18) and the 

National Center for Biotechnology Information (NCBI19). This in-silico approach provides a 

ground truth and great flexibility to create diverse datasets while offering real reads with their 

natural errors and length variance. Most of the datasets contain around 100,000 reads to allow 

all tools to classify them within a few days. We varied the proportion of species, some with 

even distributions, some with decreasing ratios with as little as five reads for one species 

(PB4 dataset). Seven test datasets were synthesized with the following composition: two 

ONT, four PacBio and one negative dataset containing PacBio and randomized reads.  

- ONT1: 18 bacterial species with a percentage of reads varying from 18% down to 

0.01%. 

- ONT2: Human (about 4000 reads) + 7 bacteria, 10,000 reads each. 

- PB1: 10 bacteria, 10% each (including two strains of E. coli). 
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- PB2: 20% human reads, 20% fruit fly (D. melanogaster), 10% archaea (M. labreanum 

Z), and ten bacteria, varying from 10% to ~1%. 

- PB3: 99% human reads, plus two bacteria: 0.9% E. coli and 0.1% S. aureus. 

- PB4: 46 bacterial species with the percentage of reads varying from 10% to 0.005%. 

- PB1+NEG: It contains all the reads from PB1 datasets with additional 20000 

“randomized” reads that should not be assigned to any organism. Randomized reads 

were obtained by shuffling the human genome (GRCH38.p7) using esl-shuffle script 

from the hmmer3 20 package (version 3.3.2) as described by Lindgreen et al.21.  

All datasets that do not contain human reads are mapped to the human reference with 

minimap2 to check if there are contaminations with human reads in any of the datasets. No 

sequences that belong to non-human species mapped to the human genome with a significant 

quality.   

In addition to synthetic datasets, the tools were also tested on three real datasets obtained by 

sequencing mock metagenomic communities. The results reported by the tested tools were 

used to calculate abundances and compared to standard specifications obtained from 

manufacturer pages. 

- ONT_zymo: obtained by GridION sequencing of a Zymo Community Standard, 

consists of 8 bacteria and 2 yeasts with the expected abundance varying from 0.37% 

to 21.6% (downloaded from LomanLabs 

https://lomanlab.github.io/mockcommunity/). 

- PB_atcc: obtained by PacBio HiFi sequencing of an ATCC MSA-1003 standard, 

consists of 20 different bacterial species with the expected abundance varying from 

0.02% to 18% (download from NCBI archive, SRA run identifier: SRR11606871).  

- PB_zymo: obtained py PacBio HiFi sequencing of a Zymo D6331 Gut Microbiome 

Standard, consists of 16 bacteria and one yeast, with the expected abundance varying 
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from 0.0001% to about 20% (download from NCBI archive, SRA run identifier: 

SRR13128014). However, for this dataset, the results obtained by all tools differed 

significantly from the specification. 

 

 

Testing procedures 

The tools’ output was processed to obtain percentages of DNA reads and species’ abundances 

in the sample. We evaluated the correctness of DNA read classification at species and genus 

level, i.e., only classifications that were assigned to a tax id which belongs to the species or 

lower-level were used in the species-level analysis; and only classifications assigned to the 

genus or lower levels were used in the genus-level analysis. Outputs of the tools, which 

contain classification of reads to taxons, were processed. Taxonomic ids and ranks were 

extracted from the nodes.dmp file downloaded from the NCBI website.  

Read-level classification 

To evaluate the quality of read level classification, we calculate four basic values first: 

- True positives (TP): the number of reads that were classified to a correct species. 

- False positives (FP): the number of reads that were classified as an incorrect species. 

- True negatives (TN): the number of reads that remained unclassified and belonged to 

an organism not present in the database. 

- False negatives (FN): the number of reads that remained unclassified but belonged to 

an organism present in the database. 

These four values are then used to calculate more complex and useful evaluation metrics. The 

first metric used is classification accuracy – the percentage of reads that were correctly 

classified. 

Accuracy = (TP+TN) / (TP+FP+TN+FN) 
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Since accuracy does not consider the proportion of each species in the dataset, we also used 

the F1 score. F1 score is calculated from precision and recall values: 

Precision (PR) = TP / (TP+FP) 

Recall (RC) = TP / (TP+FN) 

F1 = 2* PR*RC / (PR+RC) 

To make the F1 measure less biased towards larger classes, we calculate the F1 score for each 

class (organism in the sample) separately and average them (F1 macro average). Because the 

F1 score is zero for classes not in the database (as the number of true positives is zero), those 

classes are omitted from the calculation. 

Abundance 

Abundance represents the percentage of genomes of a specific taxon in the sample. 

Abundances calculated by benchmarked tools significantly differ due to differences in 

definitions and calculations. Furthermore, most of them does not consider the genome sizes 

and differences in the distributions of reads lengths among species. Therefore, we calculate 

the abundance of a species as the sum of the lengths of assigned reads divided by its average 

genome length from the database. Obtained values are normalized in a manner that the total 

sum of abundances is 1. Genome lengths that were used were obtained from the NCBI 

database. For abundance estimation, we tested species or lower-level classification only and 

considered all classifications to higher-level taxa as incorrect. It is important to note that 

Bracken produces only read counts assigned to species. To compare it with other tools, 

abundances - the percentage of genomes of species in the sample, were calculated by 

normalising read counts with the average genome length of the species to which 

corresponding read counts were assigned.  
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