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Abstract

We performed a comprehensive assessment of metagenomics classification tools on long
sequenced reads. In addition to well defined mock communities, we prepared various
synthetic datasets to simulate real-life scenarios. The results show that off-the-shelf mappers
such as Minimap2 or Ram are at least comparable with mapping-based classification tools in
most accuracy measures while not being much slower than kmer based tools and requiring
equal or less RAM. Magjority of tested tools are prone to report organisms not present in
datasets and underperform in the case of high presence of host’s genetic material.
Furthermore, longer read lengths make classification easier, but due to the difference in read
length distributions among species, the usage of only longest reads reduces the accuracy.
Finally, evaluation on a mock community shows the importance of careful isolation of genetic
material and sequencing preparation.

Availability and implementation: Python scripts used to generate all figures and tables in
this study, and all supplementary texts and figures are available via the Github repository
https://github.com/Ibcb-sci/M etagenomicsBenchmark. Datasets, supporting files, analysis
results and reports are available via Zenodo repository

https://doi.org/10.5281/zenodo.5203182.
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I ntroduction

Imagine that one is interested in the analysis of a sequenced metagenomics sample. The study
aims to provide information on present organisms and their quantity. However, the accuracy
of the final result depends on many factors such as contamination with other genetic material
(i.e. host’s DNA), material isolation, sequencing preparation, used sequencing technology and
classification tools. The recent improvement in both the length and accuracy of long-read
sequencing technologies promises a more precise analysis. In this manuscript, we evaluated
several tools for metagenomic sample analysis based on long-read whole metagenome de
novo sequencing. In addition, we investigated the performance of tools for classifying present

organisms using datasets that mimic routine experiments.

The advent of high-throughput sequencing has enabled a detailed analysis of microbial
communities and their hosts through metagenomics™. Together with genetic material
isolation, an essential component of metagenomic sequencing workflows is a computational
method for recognizing organisms present in a sample. The majority of current methods are
tailored to work with short, accurate reads from second-generation sequencing technologies.
However, due to an increase in accuracy and throughput, long-read sequencing technologies
are gaining popularity. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies
(ONT) are the most popular long-read sequencing technologies. Metagenomic sequencing
approaches can be divided into marker gene (typically 16S rRNA) sequencing® and whole-
metagenome shotgun sequencing. Since the 16S rRNA gene consists of both conserved and
variable regions, it is suitable for cost-effective bacteria and archaea profiling. On the other
hand, whole-metagenome shotgun sequencing covers all genomic information in a sample,
enabling additional analyses such as binning, antibiotic resistance gene profiling, and

metabolic function profiling. Metagenomic analysis pipelines often begin by detecting and
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guantifying the taxa in a sample. When most of the genomes present in the sample are
unknown, metagenomic de novo assembly methods (i.e.%) are used. Otherwise, the sequenced
data can be compared to a reference database that stores genomic information related to
various taxa. This work aims to analyze the performance of methods based on the comparison
of long-read sequencing data with a reference database. Although there are severa
benchmarking studies on long reads’”’, our analysis includes both PacBio (including HiFi
reads) and ONT sequencing technologies, incorporates an evaluation of the influence of the
database on the results and assesses tradeoffs between running time and memory

requirements in typical use cases with real sequencing data.

Results

We tested eight metagenomic classification tools, which could be roughly divided into (1)
kmer-based (Kraken2®, Centrifuge’, CLARK™, CLARK-SY) and (2) mapping-based
(MetaMaps'?, MEGAN-LR®; Minimap2**, Ram™). We also evaluated Bracken'®, a statistical
method that computes the abundance of species using taxonomy labels assigned by
Kraken/Kraken2. Minimap2 and Ram are off the shelf mappers whose outputs we adapted for
metagenomics classifications. Minimap2 was tested in two modes: full aignment mode
(calculating alignment path) and mapping mode (cal culating approximate aignments), giving
us 10 toolsin total.

We created datasets to highlight some common use cases in microbiology analysis using
reads sequenced by Oxford Nanopore Technologies or Pacific Biosystem devices.

There are two main goals for classification algorithms: to identify species and to evaluate
their abundances. Reaching these objectives highly depends on the community’s content and
the actual number of reads for each species. Therefore, using existing reads, we synthesised
several simple to complex communities containing 3 to 50 species, with highly abundant to

very sparse species.
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- Datasets ONT1, PB1, PB4 reflect acommunity of bacteria without eukaryotic species.
- Datasets ONT2 and PB2 reflect metagenomics datasets with one or more eukaryotic species
and many bacterial species.
- Dataset PB3 reflects a community with predominantly human reads (99 %) and two low
abundance bacterial species, reflecting what one might see in an infection setting.
- Datasets PB1+NEG and PB2 represent a situation where a significant portion of the reads
comes from an organism that is not present in the database and which has no similar
organisms in the database. For the PB1+NEG dataset, those reads were obtained by
generating “ shuffled” reads using the human genome, while for the PB2 dataset, those are the
reads belonging to D. melanogaster and human.
We also used three well defined mock community datasets PB Zymo, ONT Zymo and PB PB
ATCC. It is important to notice that for synthesized communities, we used reads sequenced
with older PacBio technologies, mock communities are sequenced using Sequel 2 hifi
technology.
The tools were tested in four different aress:

1. Read level classification —how accurately can they classify each read.

2. Abundance estimation — how well can they be used to estimate the abundance of

organismsin the sample.

3. Organism detection — how accurately can they detect organisms in asample.

4. Computational resource usage - running time and consumption of RAM memory.
We focus our analysis on microbial species. Therefore, accuracy and abundance errors are
calculated only for the microbial species, ignoring reads assigned to the human.
Read level classification
In the first analysis, we assess the tools' read level classification accuracy on seven

synthesized datasets. We analysed both species and genus levels. Figure 1 shows that
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mapping-based tools dominate on amost all datasets and on both levels. Differences between
mapping-based and kmer-based tools vary up to 10 % at species levels. The only exception is
MEGAN which performs similarly to kmer-based tools. Minimap2 with alignment
overperforms other tools, followed by Minimap2 without alignment, Ram and MetaMaps. An
interesting case is the ONT1 dataset which contains reads of two species of the Vibrio genus
that are not in the database. Since there are other similar species of the Vibrio genus in the
database, some tools, such as MEGAN and Minimap2, tend to assign those reads to other
similar Vibrio species, while other tools, such as Clark-S and Ram, tend to leave those reads
unassigned. Therefore, the results on the ONT1 dataset are almost reversed when analysing
genus and species level of classification. Clark-S and Ram have the highest accuracy when
inspecting the ONT1 dataset at the species level and lowest when inspecting the dataset at the
genus level, while Minimap2 and MEGAN have the highest accuracy at the genus level but

perform worse at the species level.
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Figure 1. Read level classification accuracy, comparison between species and genus
level classification. Kmer-based and mapping-based tools are represented in red and blue,
respectively. Plot a) shows species level classification for which reads are considered
correctly classified if classified to a correct species. Plot b) shows genus-level classification
for which reads are considered correctly classified if classified to a correct genus. Results for
MEGAN are unavailable for the PB3 dataset.

Since there is an imbalance in the number of reads per species, we also calculated the F1
score for each class (organism in the sample) separately and averaged them (F1 macro
average). Using F1 macro average instead of accuracy shows a similar pattern for most
datasets with a clear domination of Minimap2 and a smaller distance between mapping-based

and kmer-based tools (Supplementary Figure 1).
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We further investigated the influence of the read length on classification. We present only
analysis for Minimap2 with alignment, the most accurate tool at the read level. As it is
evident from Figure 2, increasing the read length increases the level of classification.
However, due to different read length distributions per organism, we could not select only the
longest reads. Detailed analysis on how the read length impacts the results is provided in

Supplementary Table 2.

Median read length for true positive and false positive classifications
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Figure 2. Comparison between classification accuracy and read length. The figure
shows median read length for true positive and false positive read classifications for each
dataset. The results shown in the figure were obtained using Minimap2 with alignment.

The abundance estimation

The abundance estimation is arguably the most important assessment. In microbiology, the
abundance of a species is defined as the ratio of cells in the community. However, most
assessed tools report read counts instead, which does not take into account that larger
genomes will yield more reads for the same number of cells. Supplementary Table 3 shows
on real datasets that a measure that includes genome sizes performs similar or better than read

counts. Therefore, we used read-level classification output from each tool to calculate the
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abundances, which are then compared between tools. How the abundance measure is
calculated and compared is described in detail in the Methods section.

We analysed the abundances for seven synthesized and three real datasets on species level.
Table 1 shows the results. For species present in datasets, we calculate the mean and std of
the absolute difference between calculated and real abundance in percentages. Furthermore,
we present calculated cumulative abundances of species not present in the datasets. Minimap2
outperforms other tools in absolute differences between abundances of present organisms. In
most of the datasets, its mean difference is below 2%. However, other tools are not far away.
PB3 dataset is specific due to the high percentage of human reads (99%). For this dataset,
M etaM aps achieves the best results.

Regarding species not present in the dataset, CLARK-S surpasses others, followed by
MetaM aps, Ram and MEGAN. Minimap2 is more prone to reporting organisms not present in
the sample, and we deem there is space for improvement in the postprocessing analysis or by
changing its parameters such as kmer length or the percentage of filtered kmers.
Supplementary Figure 2 shows a more detailed analysis of abundance errors for each tool and
dataset.

Results on mock communities are similar among tools. Kraken2 and Bracken dlightly
overperform others in the abundance of species present in the database but usualy reports
more unexisting species in the sample. It is important to note that results for the PB_Zymo
dataset are significantly worse than for the other two real datasets. Since all tools report
similar results, we think that the problem for this dataset might have been in isolation of

genetic material and preparation of the sample for sequencing.
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Table 1. Abundance estimation error in percentages on species level. The abundance
estimation error is calculated by comparing the abundances calculated for each tool to the
ground truth. Errors are calculated separately within the dataset and outside the dataset. For
organisms within the sample, the mean and standard deviation of the abundance error are
displayed. For organisms outside the sample, the absolute value of the abundance error is
summed up and displayed in the table. Each dataset name is followed by the number of
species in that dataset in parentheses. Results for MEGAN are unavailable for datasets PB3,
PB_atcc and PB_zymo. The best (lowest) values are printed in bold.

Dataset |In/Out
(no of of |Kraken2| Bracken [Centrifugel CLARK [CLARK-S|M etamaps| MEGAN
species) |dataset

Minimap2[Minimap2

h Ram
align map

177+ 262+ 182+ 179+ 251+ 234+ 229+ 167+ 167+ 190+

ONT 1 In 3.07 3.04 3.05 3.09 3.16 3.04 3.04 3.08 3.08 3.02
18
(18) Out 211 20.5 21.8 18.2 493 |16.7 20.3 219 21.6 17.57
n 4.96 6.98 + 524 + 499 752+ 519+ 570+ 429+ 453+ 468+
(ONT 2 5.67 4.52 4.93 5.55 4.84 4.53 5.30 5.30 5.42 521
8
(®) Out 39.9 325 420 34.5 145 231 36.2 33.9 36.3 313
m 127+ 424+ 244 + 183+ 409+ 055+ 281+ 043+ 043+ 0.60+
PB1 0.95 2.04 2.54 1.66 2.57 0.25 181 0.31 0.36 0.41
8
() Out 6.16 6.35 6.68 5.46 0.45 117 1.66 2.28 274 1.92
m 225+ 431+ 260+ 183+ 409+ 0.55+ 382+ 043+ 176 + 0.60
PB1+NEG 0.94 2.00 2.74 1.66 2.57 0.26 2.13 0.31 0.55 0.41
8
(& Out 18.0 8.15 20.8 5.50 0.45 1.20 2.01 2.28 14.0 192
In 1.68 + 133+ 237+ 0.82+ 177+ 110+ 117+ 0.30+ 313+ 030+
PB2 154 0.71 2.30 144 1.70 1.79 0.98 0.49 3.66 0.48
13
(13) Out 21.8 522 30.7 5.59 0.18 115 2.30 3.90 40.7 2.60
In 139+ 7.37+ 416+ 121+ 101+ 9.06 + ) 9.89+ 231+ 234+
PB3 9.74 6.12 0.67 5.49 5.52 3.47 3.27 19.2 294
3
(3 Out 224 6.57 216 113 0.65 555 - 8.05 71.4 14.8
n 0.27 £ 0.75+ 0.30+ 0.27 049+ 0.26 + 050+ 021+ 023+ 024+
PB4 0.46 112 0.59 0.43 0.83 0.46 0.98 0.40 0.42 0.42
46
(46) Out 10.38 12.2 111 8.66 4.87 8.44 4.42 8.28 9.15 7.80
In 117+ 220+ 204+ 149+ 1.90+ 172+ 259+ 152+ 157+ 170+
ONT Zymo 0.84 1.68 2.68 131 2.55 1.68 2.04 1.27 1.33 1.46
10
(10) Out 7.11 5.05 6.11 4.56 0.16 0.34 131 1.32 122 159
m 120+ 0.94 + 128+ 1.06 + 1.05+ 1.05+ B 105+ 1.06 + 1.05+
PB ATCC 197 1.38 212 1.88 1.93 1.88 1.87 187 187
20
(20) Out 1.69 1.98 0.51 0.18 0.04 0.12 - 0.31 0.45 0.36
m 384+ 379+ 3.86+ 3.88+ 454+ 4.00 £ ) 396+ 390+ 407+
PB Zymo 5.10 4.98 5.13 5.08 5.46 5.07 5.07 5.08 5.09
17
(17) Out 44.8 41.5 45.4 437 16.0 40.6 - 41.7 43.6 40.4

Additionally, we analysed a cumulative abundance estimation error. We caculate it as a total
sum of absolute values of differences between true and calculated abundance for each
reported species independently, present or not present in the original sample. The main part of
the tests was performed on a database constructed for each tool from the same set of

seguences. NCBI-NR database with al bacterial and archaeal genomes, plus the human
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genome. We also tested the tools on a database without a human genome (containing only
bacterial and archaeal genomes). The comparison of the abundance estimation error for both
databasesisgivenin Table 2.

Table 2 shows that MetaMaps and Minimap2 with alignment outperform other tools,
followed by Ram. Kmer-based tools Kraken2, Centrifuge, CLARK and CLARK-S perform
similarly, and their results are near to those achieved by Ram. Datasets PB2 and PB3 have a
higher percentage of human reads (20% and 99%, respectively). Ram achieves the best results
on the PB2 dataset and MetaM aps on PB3. Results show that having a host genetic material
in a dataset significantly increases the abundance levels of taxa not present in the sample.
When the high proportion of reads belongs to the host, most tools struggled even when the
human genome was present in the database.

Comparing data from well-defined, accurately characterized mock communities ONT Zymo
and PB ATCC (hifi reads) difference in abundance estimation accuracy of tools between
datasets is not high. Unfortunately, we could not find ONT and PacBio data for the same
mock community, so we cannot conclude about the influence of the sequencing technology
on tools’ performances. Results on PacBio Zymo Gut Microbiome Standard dataset (PB

Zymo) were again worse for all tools.
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Table 2. Comparing abundance estimation error for the database with human genome
and database without human genome.

The table shows the total abundance estimation error for each dataset and tool and for two
databases: database with the human genome and database without the human genome.
The error is calculated by calculating the absolute value of the difference between
abundance calculated for each tool and true abundance and summing it up across all
organisms (in and out of sample). Each dataset name is followed by the percentage of
human reads in that dataset in parentheses. Results for MEGAN are unavailable for datasets
PB3, PB_atcc and PB_zymo.

Dataset . Minimap2 | Minimap2

(% Database |Kraken2[Bracken [Centrifuge [ CLARK |CLARK-S[Metamaps | MEGAN . Ram
human) align map
ONT1 human 52.9 67.6 54.6 50.3 50.0 58.9 61.5 52.0 51.7 51.7
(©%) no human| 53.1 68.0 54.7 50.3 50.1 58.9 61.5 52.0 51.7 51.7
ONT2 human 79.8 88.3 84.0 74.5 74.7 64.6 81.8 68.2 72.5 68.7
(5.78%) no human| 83.7 88.2 90.6 76.0 74.3 64.7 84.2 72.3 75.9 69.6
PB1 human 16.3 40.2 27.2 20.1 33.1 5.5 24.2 5.8 6.1 6.7
©%) no human| 16.6 40.3 27.3 20.1 33.6 5.5 24.2 5.8 6.2 6.6
PB1+ human 36.0 42.6 41.6 20.1 33.1 5.6 32.6 5.8 28.1 6.7
z\(l)E/UG) no human| 39.4 43.0 45.7 20.1 33.6 5.6 32.6 5.8 311 6.6
PB2 human 43.7 22.5 61.5 16.3 23.2 25.8 17.6 7.8 814 6.4
(20%) no human| 89.2 54.2 98.3 63.8 23.3 26.0 38.9 49.0 106.8 8.8
PB3 human 50.1 21.3 104.8 35.5 20.8 23.7 63.7 37.8 117.7 61.6
(99%) no human| 145.7 145.1 145.7 145.7 140.1 96.0 145.7 145.5 145.5 140.3
PB4 human 23.0 46.7 24.9 21.0 27.3 20.3 27.2 18.0 19.6 18.9
©%) no human] 23.3 46.6 25.1 211 27.6 20.3 27.2 18.0 19.7 18.8
ONT human 18.8 27.1 26.5 19.5 19.2 17.5 27.2 16.5 16.9 18.5
8/‘;:)0 no human 18.8 27.1 26.6 195 19.2 17.5 27.2 16.5 16.9 17.4
PB human 25.8 20.8 26.1 21.4 21.1 211 - 21.4 21.6 215
?(;g/oc) no human] 25.8 20.8 26.1 21.4 21.1 211 - 21.4 21.6 215
PB human 110.1 106.0 111.0 109.7 93.1 108.6 - 109.1 109.9 109.6
(Zg‘;:)o no human| 110.2 106.0 111.0 109.8 93.1 108.6 - 109.1 109.9 109.6

Organism detection

We also assessed how well tools identify organisms present in a sample. Table 3 shows how
the number of correctly and incorrectly recognised organisms is related to a threshold -
minimal number of assigned reads for reporting an organism as present in the sample. For

most datasets, the number of incorrectly recognized species decreases while keeping the
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recognition of present organisms. However, if there are species with a very low number of
reads, such as in datasets PB4 (lowest proportion of reads - 0.005 %) and ONT1 (lowest
proportion of reads - 0.01 %), thresholds may also influence recognition of present organisms.
In accordance with the results in previous sections, CLARK-S surpasses other tools for all
datasets, followed by Ram. MetaMaps is the second best at PB3, confirming it as a good
choice in the case of the large presence of host genetic material. However, Minimap2 and
Ram are also close.

Table 3. True positive and false positive organism detection. The table shows true and
false positive organism detections for three different thresholds: 1, 10 and 50. A threshold
represents a number of reads that need to be assigned to that organism for it to be
considered present in the sample. The data is presented as the number of false-positive
detections (organisms incorrectly reported as present), followed by the number of true
positive detections in parentheses (organisms correctly reported as present). Each dataset
name is followed by the number of species in that dataset in parentheses. Results for
MEGAN are unavailable for dataset PB3.

Dataset | Thres

Minimap2|Minimap2

Kraken2|Bracken | Centrifuge | CLARK | CLARK-S [Metamaps | MEGAN Ram

(TP) hold align map
ONT1 1 2162(15)] 135 (14) | 2365 (15) (905 (15)| 51 (15) 596 (15) |547 (15)| 428 (15) | 592 (15) (127 (15)
(18)

5 |375(14)]135 (14)| 502 (14) |223(15)| 20(@15) | 78(15) |160(15)| 132 (14) | 154 (15) | 54 (15)

50 |33(14)]42@4) | 4224 |26(@5) | 3(14) 10 (15) | 18 (14) | 21 (14) | 21 (5) | 13 (15)

ONT2 1 |2033(6)| 87(6) | 2318(6) |596(6)| 62(6) | 323(6) | 216(6) | 170(6) | 247(6) | 102 (6)
(8)

5 |172(6)| 87(6) | 215(6) |125(6)| 17 (6) 45(6) | 69(6) | 69(6) | 79(6) | 43(6)

50 | 19¢6) | 26(6) | 30(6) | 15(6) | 6(6) 8 (6) 1206) | 12(6) | 13(6) | 9(s)

PB1 1 |o42() )| 738 | 999(8) |590(8)| 63(8) 111(8) | 101(8) | 91(8) | 427(8) | 83 (8)
(8)

5 |157(8)| 73(8) | 116(8) |124(8)| 13(8) 22@8) | 34@) | 38(8) | 50(8) | 39(8)

50 | 288 |318 | 228 |28 | 209 4@ | 8® | 100 | 11(8 | 13(8)
PB1+ 1 [3035(8)| 127(8) | 2877(8) |594(8)| 628 | 177(7) [116(8) | 91(8) | 2467(8) | 83(8)
('\zlgG 5 494 (8) | 127(8) | 476(8) |124(8) | 13(8) 23 (7) 40 (8) | 38(8) | 287(8) | 39(8)
50 |28 | 348 | 268 |23®) | 208 4 |10 | 108 | 138 | 138
PB2 1 |3005(12)| 83 12) | 3337 (12) |448 (12)| 42(12) | 119(12) |218 (12)| 108 (12) | 3556 (12) | 77 (12)
13) 5 [200012)|8312) | 300(12) |e8(12)| 9(12) | 16(12) |42(12) | 32(12) | 627 (12) | 30 (12)
50 [15012 182 | 19012 |92 | 102 | 40y |[s5012 | 812 | 252 | 5012
PB3 1 720 ] 4@ | 1000 | 200 | 203 10 (3) - 153) | 165(3) | 19(3)
@) 5 [10@ | 4@ | 100 |51@ | 0@ 2(3) - 53 | 251 | 5@)
50 | 03 | 003 0@ | 0@ | 0@ 13) - 0@ | 6@ | 103
(F;Be;l 1 1(22)3 67 (40) | 1544 (41) [516 (42)| 50 (40) | 227 (40) |171 (41)| 163 (41) | 831 (42) |146 (41)

5 |128(41)| 67 (40) | 105(41) |101 (40)| 15(39) | 39(39) |54 (40) | 57 (41) | 73 (40) | 57 (40)

50 |23(35)]27(35) | 23(34) |14(35)| 5(33) 13 (33) | 13 (34) | 23 (34) | 21(34) | 19 (34)
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Computational resource usage

Finally, we analysed running time and memory usage for evaluated tools. Results are
presented in Table 4. As expected, kmer-based tools, gpart from CLARK-S, dominate in the
running time. For our test datasets, Centrifuge has the lowest running time for most datasets.
However, in comparison with mappers such as Minimap2 and especially Ram, the difference
between best kmer-based tools and mappers is below one order of magnitude. MetaM aps and
MEGAN are much slower. Ram uses the least amount of RAM memory. Kraken2,
Centrifuge, Minimap2 and MEGAN, for most datasets, use 2-3 times more memory. CLARK,
CLARK-S and MetaM aps use between 10-15 times more.

Ram and Minimap2 execution times were additionally tested by mapping only one sequence
to the whole database file. The execution time for both was around 1000 seconds, which
suggests that the database parsing and indexing take about that much time. Both tools could
have their execution time improved by storing and loading preprocessed database indexes to
the disk.

For Bracken, we anaysed the running time and memory consumption for the database
building procedure because that procedure needs to be executed for every dataset
independently since datasets have a different average read lengths, a parameter required by
this procedure. The abundance estimation script executes almost instantaneously.
Additionally, we analysed the scalability of used tools on several different dataset sizes. The
results are presented in Supplementary Table 1. Even for the largest datasets, Ram is still at
most around 10x slower than Kraken2, the fastest kmer-based tool. Although Centrifuge is
the fastest tool when analysing execution times presented in Table 4, Kraken2 is the tool that
has the lowest execution times when tested on larger datasets. This happens because, for

smaller datasets, index loading takes a great part of the execution time and Centrifuge has the
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smallest database index. On larger datasets, where the actual sequence classification takes a
greater part of the execution time, Kraken2 outperforms other tools.

All resource usage measurements were performed on a machine with sufficient disk space,
775 GB RAM and 256 virtual CPUs. Measurements were performed using 12 threads.
Between runs, we cleared RAM Memory Cache, file system buffer and swap space.

Table 4. Resource usage. The table shows running time (in seconds) and memory usage
(in GB) for all tools and datasets.

Execution time /s

}Dt%tglset Kraken2| Bracken [ Centrifuge | CLARK | CLARK-S | Metamaps | MEGAN Migliin;:pz Mir:ri]r:;pz Ram
ONT1 314 126166 275 974 3913 37839 67090 3145 1710 1482
ONT2 315 147207 291 954 3917 39844 75214 2874 1808 1509
PB1 312 137017 284 972 3942 54829 84852 3797 1890 1541
PB1+NEG 321 145769 296 968 4100 68941 157526 3778 1799 1600
PB2 326 191661 296 993 4114 58815 119849 2641 1647 1607
PB3 320 224048 309 979 4075 145416 - 1904 1541 1591
PB4 308 98826 267 963 3862 50180 58238 2843 1597 1511
ONT zymo] 327 144387 305 979 4084 70622 160225 4220 2283 1697
PB atcc 317 68971 329 975 3957 76897 - 3044 1928 1303
PB zymo 317 179206 292 953 3996 63142 - 2364 1604 1272
Memory / GB
}Dt%tglset Kraken2| Bracken [ Centrifuge | CLARK | CLARK-S | Metamaps | MEGAN Mzir;ilzgip Mir:ri]r:;pz Ram
ONT1 43.04 45.31 37.00 119.56 271.24 205.67 26.87 39.82 34.18 14.05
ONT2 43.12 25.38 36.91 119.39 271.46 208.46 78.91 47.40 31.34 14.06
PB1 43.03 25.47 37.08 118.91 271.16 208.46 30.43 28.60 19.98 14.10
PB1+NEG | 43.01 25.39 37.02 119.15 27117 208.46 30.94 27.52 21.04 14.20
PB2 43.04 24.39 36.56 120.29 271.42 146.29 108.22 31.30 22.35 13.97
PB3 42.99 25.38 36.09 120.61 271.32 208.45 - 24.02 21.47 14.26
PB4 43.04 25.42 36.67 119.33 271.25 208.46 29.90 27.32 22,71 14.13
ONT zymo] 43.02 25.41 37.06 120.08 271.14 208.46 42.57 41.56 38.23 14.27
PB atcc 43.01 24.37 36.00 120.05 271.25 208.46 - 28.77 19.77 9.07
PB zymo 42.98 24.42 35.94 120.06 271.22 208.41 - 26.19 21.00 9.15
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Discussion

The results show that long-read mapper Minimap2 (with enabled alignment) overperforms
other toolsin read accuracy on most datasets at both species and genus levels.

When comparing read accuracy on genus and species level, for some datasets (i.e. ONT1 and
ONT2), the order of best-performing tools significantly differ. The reason is species in the
sample missing from the database, but there are similar species in the database. While tools
such as CLARK-S, Ram and MetaMaps tend to assign reads specificaly to the original
species, others, such as Minimap2 and kmer based tools, tend to assign reads to similar
species if the origina ones are not present in the database. Therefore, the former tools
perform better at the species level, and the latter tools yield better results at the genus level. A
useful upgrade to classification tools would be to provide some information about the
confidence of whether the read belongs to a similar species or it doesn’t belong to any species
in the database.

Instead of read counts for the calculation of abundances we used a measure which involves
lengths of reads and genomes. The results on real datasets show that this measure achieves
similar or more precise abundance calculations. Therefore, we recommend using this measure
for abundance estimation.

Together with MetaMaps, Minimap2 with alignment exceeds other tools on abundance
estimation, too. However, Minimap2 reports more false-positive organisms than some other
tools, especially CLARK-S.

Ram mapper, which uses just a portion of minimizers used by original Minimap, performs
slightly worse or like MetaMaps and better than MEGAN on both read accuracy and

abundance estimation while having fewer falsely detected species. In addition, it is usualy
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two orders of magnitude faster than these two tools and up to three times faster than
Minimap2 with alignment. Finally, it and uses the least amount of memory among all tools.
We deem that Ram might be a good compromise solution, especially since it can be run on a
laptop even for the largest tested datasets (111 GB). It required less than 16 GB of RAM and
finished in less than 4 hours using 12 threads. In addition, it shows in which direction new
methods might be developed.

M etaM aps achieves very good results in abundance cal culation when we consider all reported
species. It is less prone to error than other tools in the case of a high presence of host reads.
Its major drawback is its long execution time.

Kmer based tools such as Kraken2, Centrifuge and CLARK perform worse on read accuracy
than mapping based tools, worse on abundance estimation for synthetic datasets, and report
more false-positive species. On two real datasets, Kraken2 slightly surpasses other tools on
abundance estimation of organisms present in the sample but still reports more false-positive
organisms. On larger datasets, Kraken2 was the fastest. Using Bracken for the abundance
calculation based on Kraken2 output achieved mixed results. On some datasets, such as those
with the present human genome, it significantly improves Kraken2 results. On others,
especially those sequenced by ONT, it performs worse. Bracken calculation of average read
lengths substantially increases running time.

Kmer-based tools, apart from CLARK-S, are faster than mapping-based. Yet, modern
mappers Minimap2 and especially Ram are only up to 10x slower on most of datasets. On
many datasets kmer based tools were only up to three times faster than Ram while using more
memory. However, we argue that due to their speed, kmer based tool can till be used in
many applications, especially when the precision on genus level is good enough.

CLARK-S s an outlier among kmer based tools. It is worse than other tools in the accuracy

estimation on both read and abundance levels for present organisms in the sample, not faster
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than modern mappers and uses more RAM than any other tool. However, it stands out in the
organism's detection and performs well in abundance estimation when we include all reported
organisms.

Comparing reads’ length for correctly and incorrectly classified reads, we found that median
read length for true positives is significantly higher than for false positives. Unfortunately,
distributions of reads and the sparseness of particular species do not allow usage of only
longer reads because it has a negative impact on species abundance calculation.

It is important to emphasize that our analysis of the PB Zymo dataset shows how the results
are sensitive to all wet lab steps which precede sequencing.

Finally, this assessment shows that with long sequencing technologies, the boundary blurs
between kmer-based and mapping based tools. Modern mappers use fewer kmers in the
calculation of mapping candidate positions which makes them faster. We believe that with the
further improvement in long-read sequencing technology, most methods will move to the
detection of smaller numbers of kmers in combination with chaining matches. To reduce the
number of false positives, they will probably need an additional postprocessing step using
methods such as the EM algorithm. Finally, we believe there is probably space for the

improvement in careful curation of existing databases with reference genomes.
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Methods

This chapter gives a description of used tools, how to test datasets were constructed, how the
testing was performed, and testing metrics were calcul ated.
Tools
Tested tools can be classified into:

- k-mer based: Kraken2, Centrifuge, CLARK and CLARK-S

- mapping-based: MetaMaps, MEGAN-LR, Minimap2 and Ram
Since Kraken2 usually uses Bracken'® for the calculation of abundances, we included it in the
analysis.
Tools start with the initial assignment of reads to genomes using in advance prepared
databases of known organisms. Once when all reads are assigned, various methods are used to
fine-tune the classification using information from assigned reads and taxonomy trees. The
most popular post-processing approaches are Expectation-Maximization (EM) estimation
(MetaMaps, Centrifuge), Bayesian estimation (Bracken) and read assignment using the least
common ancestor approach (MEGAN-LR, Kraken2).
The initial assignment of reads is based on aligning reads to a database of determined
genomes. Aligning (Figure 3) might be divided into three steps. (1) Searching for exact or
approximate matches of short substrings of length k (kmers) or longer in a previously
prepared index which contains a list of kmers from genomes (2) Chaining kmer matches into
a sequence, scoring the sequence, finding approximate positions of read in a genome
(mapping), and choosing the best genome candidates (3) Alignment of a read and candidate
genomes using exact dynamic programming algorithm. While kmer-based tools use only the
first step, mapping-based tools use first and second or all three of them. Each additiona step

adds to accuracy but significantly increases the running time.
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Usually, kmers are of afixed size. The initial approach was to use al sliding windows of size
k in a sequence. This might lead to high accuracy, but it is too slow. Therefore, modern tools
usualy use just a few discriminative kmers per genome, or they choose a lexicographically
smallest kmer in awindow of w consecutive kmers - minimizert’.

Index creation and kmer search

References
—
kmers
= Indexing kmer organism | position
— |:> ATGC.... % 565
Query
| 1 ATGG..... % 43
Searching
ATGT.... »ﬁ 346
kmers
ATGT..... % 113
Chaining and scoring
Mapping start Mapping end

Reference

Matched kmers

Query

Mapping start Mapping end
Alignment

GAACTCTAGGGTGGTCAGCACTTGGATTCTCGGGCT
GCACCCAAGGGTGATCAGC----G--T--TCGGGAT
Figure 3. Read alignment. Read alignment consists of three steps (1) Indexing and kmer
search, (2) Chaining and scoring (3) Alignment. Kmer-based tools use only the first step, and
usually, they do not care about the position in the genome. Mapping based tools use the first
and second steps, which increase accuracy but last much longer. The alignment step

provides the exact alignment and the score but additionally increases the running time.
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The output of various tools was processed to obtain read-level classifications and abundance
of various species in asample. We evaluated and analyzed the performance of all tools. Short
descriptions and versions of each tool are available in Supplementary Materials 1. Specific
parameters and scripts used to run each tool are given in Supplementary Materials 2.

While the results for MEGAN are not as good as for other mapping-based tools, it should be
noted that they might be better when used with a protein database for which the MEGAN-LR
pipeline was designed. Furthermore, we were unable to successfully run our version of the
MEGAN-LR pipeline on the PB3 synthetic dataset and on PB_zymo and PB_atcc real
datasets. In the case of the PB3 dataset, the mapping phase using the LAST aligner would go
on for severa days, and after that, the CPU and memory usage would drop down to almost
zero, but the process would not complete. Output produced in that way was corrupted and
could not be used for testing. After three trials, we decided to drop the results. In the case of
PB_zymo and PB_atcc datasets, the LAST aligner produced a very large MAF file with
correct alignments, which we could not convert to an alignment out file (DAA). This resulted
in no classified reads.

Since Minimap2 are Ram are not intended for metagenomic classifications and often prints
several mapping results for a single sequence, the best classification for each sequence, for
the paf output files, without the alignment, was determined with the following expression:

2* (mapping_length * number_of matches) / (mapping_length + number_of mathces),
where the mapping_length and number_of matches are found in each row of the paf file. For
the sam output files, with alignment, the best classification for each sequence was determined
by the highest alignment score.

Database

We assessed six metagenomic classification tools that were either newly developed or

modified to work with long reads. In addition, we added two mappers for long reads. Each
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classification tool comes with a prebuilt default database and with instructions on how to
build and use a custom database. To remove bias related to default databases, we built a
database for each tool based on the same set of organisms. We used the NCBI-NR database
with all bacterial and archaeal genomes, plus the human genome. Genome sequences were
downloaded (April 5th 2020) along with the taxonomy files nodes.dmp and names.dmp. This
allows the tools to be tested independent of the content of their default database. The details
of how each database index was created for every tool is presented in Supplementary
Materials 3.
Test datasets
To have realistic sequencing datasets while retaining control on our mock communities’ exact
content and building the ground truth, we constructed in silico datasets by mixing real reads
from isolated, sequenced species. Data was downloaded from multiple sources (details in
Supplementary Table 5), including the European Nucleotide Archive (ENA) and the
National Center for Biotechnology Information (NCBI®). This in-silico approach provides a
ground truth and great flexibility to create diverse datasets while offering real reads with their
natural errors and length variance. Most of the datasets contain around 100,000 reads to allow
all tools to classify them within a few days. We varied the proportion of species, some with
even distributions, some with decreasing ratios with as little as five reads for one species
(PB4 dataset). Seven test datasets were synthesized with the following composition: two
ONT, four PacBio and one negative dataset containing PacBio and randomized reads.

- ONT1: 18 bacterial species with a percentage of reads varying from 18% down to

0.01%.
- ONT2: Human (about 4000 reads) + 7 bacteria, 10,000 reads each.

- PB1: 10 bacteria, 10% each (including two strains of E. coli).
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- PB2: 20% human reads, 20% fruit fly (D. melanogaster), 10% archaea (M. |abreanum
Z), and ten bacteria, varying from 10% to ~1%.

- PB3: 99% human reads, plus two bacteria: 0.9% E. coli and 0.1% S. aureus.

- PB4: 46 bacteria species with the percentage of reads varying from 10% to 0.005%.

- PB1+NEG: It contains all the reads from PB1 datasets with additional 20000
“randomized” reads that should not be assigned to any organism. Randomized reads
were obtained by shuffling the human genome (GRCH38.p7) using esl-shuffle script
from the hmmer3 ° package (version 3.3.2) as described by Lindgreen et al.*".

All datasets that do not contain human reads are mapped to the human reference with
minimap2 to check if there are contaminations with human reads in any of the datasets. No
seguences that belong to non-human species mapped to the human genome with a significant
quality.

In addition to synthetic datasets, the tools were also tested on three real datasets obtained by
seguencing mock metagenomic communities. The results reported by the tested tools were
used to calculate abundances and compared to standard specifications obtained from
manufacturer pages.

- ONT_zymo: obtained by GridiION sequencing of a Zymo Community Standard,
consists of 8 bacteria and 2 yeasts with the expected abundance varying from 0.37%
to 21.6% (downloaded from LomanLabs

https://lomanlab.qgithub.io/mockcommunity/).

- PB_atcc: obtained by PacBio HiFi sequencing of an ATCC MSA-1003 standard,
consists of 20 different bacterial species with the expected abundance varying from
0.02% to 18% (download from NCBI archive, SRA run identifier: SRR11606871).

- PB_zymo: obtained py PacBio HiFi sequencing of a Zymo D6331 Gut Microbiome

Standard, consists of 16 bacteria and one yeast, with the expected abundance varying
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from 0.0001% to about 20% (download from NCBI archive, SRA run identifier:
SRR13128014). However, for this dataset, the results obtained by all tools differed

significantly from the specification.

Testing procedures

Thetools' output was processed to obtain percentages of DNA reads and species’ abundances
in the sample. We evaluated the correctness of DNA read classification at species and genus
level, i.e, only classifications that were assigned to a tax id which belongs to the species or
lower-level were used in the species-level analysis; and only classifications assigned to the
genus or lower levels were used in the genus-level analysis. Outputs of the tools, which
contain classification of reads to taxons, were processed. Taxonomic ids and ranks were
extracted from the nodes.dmp file downloaded from the NCBI website.

Read-level classification

To evauate the quality of read level classification, we calculate four basic values first:

True positives (TP): the number of reads that were classified to a correct species.

False positives (FP): the number of reads that were classified as an incorrect species.

True negatives (TN): the number of reads that remained unclassified and belonged to

an organism not present in the database.

False negatives (FN): the number of reads that remained unclassified but belonged to
an organism present in the database.

These four values are then used to calculate more complex and useful evaluation metrics. The
first metric used is classification accuracy — the percentage of reads that were correctly
classified.

Accuracy = (TP+TN) / (TP+FP+TN+FN)
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Since accuracy does not consider the proportion of each species in the dataset, we also used
the F1 score. F1 scoreis calculated from precision and recall values:

Precision (PR) = TP/ (TP+FP)

Recall (RC) =TP/(TP+FN)

F1=2* PR*RC/ (PR+RC)

To make the F1 measure less biased towards larger classes, we calculate the F1 score for each
class (organism in the sample) separately and average them (F1 macro average). Because the
F1 scoreis zero for classes not in the database (as the number of true positives is zero), those
classes are omitted from the calculation.

Abundance

Abundance represents the percentage of genomes of a specific taxon in the sample.
Abundances calculated by benchmarked tools significantly differ due to differences in
definitions and calculations. Furthermore, most of them does not consider the genome sizes
and differences in the distributions of reads lengths among species. Therefore, we calculate
the abundance of a species as the sum of the lengths of assigned reads divided by its average
genome length from the database. Obtained values are normalized in a manner that the total
sum of abundances is 1. Genome lengths that were used were obtained from the NCBI
database. For abundance estimation, we tested species or lower-level classification only and
considered all classifications to higher-level taxa as incorrect. It is important to note that
Bracken produces only read counts assigned to species. To compare it with other tools,
abundances - the percentage of genomes of species in the sample, were calculated by
normalising read counts with the average genome length of the species to which

corresponding read counts were assigned.
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