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10 Abstract

11 Seed microbial community constitutes a primary inoculum for plant microbiota assembly.
12 Still, the persistence of seed microbiota when seeds encounter soil during plant emergence
13 and early growth is barely documented. Here, we characterized the interchange event or
14 coalescence of seed and soil microbiota and how it structured seedling bacterial and fungal
15 communities. We performed eight contrasted coalescence events to identify drivers
16 influencing seedling microbiota assembly: four seed lots of two Brassica napus genotypes
17 were sown in two soils of contrasted diversity. We found that seedling root and stem
18 microbiota were influenced by soil diversity but not by initial seed microbiota composition. A
19 strong selection on the two-source communities occurred during microbiota assembly, with
20 only 8-32% of soil taxa and 0.8-1.4% of seed-borne taxa colonizing seedlings. The
21 recruitment of seedling microbiota came mainly from soil (35-72% of diversity) and not from
22 seeds (0.3-15%). The outcome of seed and soil microbiota coalescence is therefore strongly
23 asymmetrical with a dominance of soil taxa. Interestingly, seedling microbiota was primarily

1


https://doi.org/10.1101/2020.11.19.390344
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390344; this version posted November 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

24

25

26

27

available under aCC-BY-NC-ND 4.0 International license.

composed of initially rare taxa (from seed, soil or unknown origin) and sub-dominant soil
taxa. Our results suggest that plant microbiome engineering success based on native seed or

soil microbiota will rely on rare and sub-dominant taxa in source communities.

Keywords: microbiota, coalescence, seed, root, stem, soil, Brassica napus


https://doi.org/10.1101/2020.11.19.390344
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390344; this version posted November 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

28 Introduction

29 Plants live in complex associations with a wide variety of microorganisms that can modulate

30 their fitness (1-3). The plant microbiota is mainly acquired horizontally through different

31 environmental sources including soil (4), air (5), rainfall (6) and insects (7). However, some
32 members of the plant microbiota are also acquired vertically through vegetative propagation
33 (8) or sexual reproduction via seeds (9).

34 In spermatophyte, seed-associated microbial community constitutes the primary
35 inoculum for the next plant generation (10). The seed microbiota can have a crucial role for

36 crop installation by modulating dormancy  (11,12), germination (13,14), seedling

37 development (15-17) and recruitment of plant symbionts (18). Seed transmission of some
38 specific plant-beneficial or phytopathogenic microbial strains is well documented (19-23).
39 However, little knowledge is available on the fraction of the plant microbiota that is acquired
40 through seeds. Pioneer studies indicate that a fraction of seed microbiota persists during
41 germination and emergence and actively colonizes seedlings (24-26). Still, most of these
42 studies have been carried out in gnotobiotic conditions in absence of other environmental
43 sources, like soil.

44 The encounter between two microbial communities and how they then evolve
45 together has been called community coalescence (27-29). The outcomes of community
46 coalescence can vary in a continuum between two categories from symmetric to asymmetric
47 outcomes (30). In symmetrical outcomes, the initial communities contribute quite equally to
48 the resultant coalesced community, whereas in asymmetrical outcomes one initial
49 community becomes dominant if considering the prevalence of the members. In the latter
50 case, the resident community is generally favored at the expense of the invasive community.
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51 This resident advantage can be explained by (i) a higher population size of the resident
52 community (i.e. mass effects) (31), (ii) prior use of resource and space (i.e. priority effects)
53 (32) or ({iii) local adaptation of the resident community to the reception niche (i.e.
54 community monopolization effect) (33).

55 To date, seed or soil microbiota have been extensively studied in isolation but their
56 coalescence, the assembly mechanisms at play remain broadly unexplored and their
57 coalescence type remains to be characterized. Seed and soil coalescence present a singular
58 situation if the seedling community is considered as the outcome community. The seed
59 community is extremely reduced in terms of abundance compared to soil community, but its
60 members have potentially a ‘home advantage’ as they have been selected by the plant. We
61 therefore hypothesized that despite its lower microbial richness and diversity, seed
62 microbiota being already present and more adapted to the plant environment, would
63 benefit from priority effects over soil microbiota for the colonization of plant compartments
64 (18). Nevertheless, adaptation to seed does probably not recover all features for adaptation
65 to a growing seedling. The initial soil microbial diversity level is probably another key driver
66 of seedling microbiota and persistence of seed-borne microbial taxa. Indeed, we propose
67 that a soil of high microbial diversity would induce a weaker colonization of the seed
68 microbiota on seedlings due to stronger competition and higher functional redundancy in

69 this soil (34).

70 In the present work, we monitored the outcome of seed and soil communities’
71 coalescence during early seedling growth. More specifically, we investigated (i) what is the
72 main source of microbial transmission to seedlings; (i) does seed microbiota composition
73 and soil diversity impact the assembly of seedling microbiota; and (iii) does the initial taxon
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74 abundance in the source influence its transmission success? To answer these questions, we
75 selected seed lots of different genotypes of the winter oilseed rape Brassica napus, which
76 harbored contrasting seed microbiota (35). We simulated a total of eight different
77 coalescence events by sowing the four seed lots in two soils of different microbial diversities.
78 Bacterial and fungal community structure was characterized by amplicon sequencing of the
79 source seed and soil communities and of the roots and stems sampled at different seedling
80 growing stages. This study gained new insights into the soil and plant drivers that influence
81 the coalescence of soil and seed microbiota during the first steps of seedling microbiota
82 assembly.

83


https://doi.org/10.1101/2020.11.19.390344
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.19.390344; this version posted November 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

84 Materials and Methods
85 Soil preparation
86 In 2014, soil was sampled at a depth of 10-30 cm in a 20-year wheat experimental plot (La

87 Gruche, Pacé, France, 48°08'24.5"N 1°48'01.0"W). Soil was sterilized and recolonized with

88 two levels of soil microbial diversity according to the experimental procedure described in
89 Lachaise et al. (36). In short, a fraction of the soil sample was ground and sieved at 2 mm.
90 Three sub-samples (900 g each) were soaked in 8L of sterile water. The resulting soil
91 suspensions were 1:10 serially diluted in sterile water up to the 10°®. Another fraction (~80
92 kg) of the soil sample was ground, sieved at 4 mm and mixed with 1/3 washed sand. This soil

93 was dispatched in 2.5 kg bags and gamma-irradiated (35 kGy, lonisos, France). Each bag was

94 inoculated with 320 mL of undiluted or 10°® or soil suspensions, therefore resulting in soil
95 with high and low microbial diversity, respectively. The soil recolonization was repeated 3
96 times (A, B, C). The bags were mixed and aerated in sterile conditions twice a week during
97 the 39 incubation days at 20°C, to homogenize gaseous exchanges and recolonization.
98 Microbial recolonization dynamics of soil was monitored by sampling 30g of soil at several
99 times. For bacteria, each sample was serial diluted and plated on 1/10 strength Tryptic Soy

100 Agar (17 g.L™" tryptone, 3 g.L'* soybean peptone, 2.5 g.L ™" glucose, 5 g.L™ NaCl, 5 g.L'* KHPO,
101 and 15 g.L'" agar) supplemented with Nystatin (0.025 g.L"), and the number of colony-
102 forming units was measured after 3 days of incubation at 27°C. For fungi, following the pour-
103 plate method, serial diluted samples were mixed with molten Acid Malt Agar (10 g.L"" malt
104 extract, 15 g.L™" agar and 0.25 g.L™ citric acid) supplemented with streptomycin (0.15 g.L™)
105 and penicillin (0.075 g.L'") and the number of colony-forming units was measured after 7

106 days of incubation at 20°C. After 39 days of incubation, a portion of each soil (high and low
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107 diversity) in three independent repetitions (A, B, C) was collected and stored at -80°C until
108 DNA extraction. Organic and mineral composition and pH of these samples were analyzed
109 (INRAE, Arras, France). Differences between soil composition were considered as significant
110 with T-test at a p-value <0.1.

111 Sowing and sampling

112 After 39 days of soil incubation, individual pots were filled with a 5 mm layer of sterile
113 vermiculite and 80g of soil of high or low microbial diversity. Soils were saturated with tap
114 water by sub-imbibition one day before sowing, in order to reach approximately 80% of
115 humidity (retention capacity) on the day of sowing. During the experiment, plants were
116 watered twice (at 5 and 12 days) with tap water.

117 Seed samples from two genotypes of Brassica napus (Boston and Major) collected
118 during two consecutive years (Y1 and Y2) were selected for this work, resulting in four
119 contrasted initial seed microbiota used for the coalescence experiment. At dO, seeds of each
120 genotype and year were individually sown at a depth of 5mm and grown under controlled

121 conditions (14h day/ 10h night period, 20°C). Seven days (d07) and fourteen days (d14) after

122 sowing, 10 and 20 plants were sampled per modality (2 genotypes x 2 harvesting years x 2
123 soils), respectively. Roots were cut from stems and gently soaked 10 seconds in sterile water
124 to remove residual soil. Otherwise, stems were size-equalized on 2cm from the root basis.
125 Therefore, the resulting sampled root habitat was composed of the inner root and
126 rhizoplane and the stem habitat was composed of inner stem and stem surface. The 10 (d07)
127 or 20 (d14) roots and stems were pooled separately and stored as root and stem
128 compartments at -80°C until DNA extraction.

129 Microbial DNA sample preparation
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130 Seed samples were prepared for extraction as previously detailed in Rochefort et al., (2019).
131 Briefly, seeds were soaked in phosphate-buffered saline (PBS, Sigma-Aldrich) supplemented

132 with Tween® 20 (0.05 % v/v, Sigma-Aldrich) during 2h30 at 4°C. DNA extraction was

133 performed with the DNeasy PowerSoil HTP 96 Kit (Qiagen) following manufacturers
134 procedure. Soil, root and stem samples were lyophilized before DNA extraction. Samples
135 were mixed with Imm and 3mm beads, and crushed 2 x 30s at 5m/s with FastPrep (MP

136 Biomedicals). DNA extraction was performed with the DNeasy PowerSoil HTP 96 Kit.

137 Library construction and sequencing

138 Amplicon libraries were constructed with the primer sets gyrB_aF64/gyrB_aR553 (24) and

139 ITS1F/ITS2 (37), following the experimental procedure previously described in Rochefort et
140 al. (35). A blank extraction kit control and a PCR-negative control were included in each PCR
141 plate. Amplicon libraries were mixed with 10% PhiX and sequenced with two MiSeq reagent

142 kit v3 600 cycles.

143 Sequence processing

144 Primer sequences were removed with cutadapt version 1.8 (38). Fastq files were processed

145 with DADA2 version 1.6.0 (39), using the following parameters: truncLen=c(190, 200),

146 maxN=0, maxEE=c(1,1), truncQ=5 for gyrB reads. ITS1 reads were processed with the same
147 parameters, except that reads were not trimmed to a fixed length and that trunQ was set to
148 2. Chimeric sequences were identified and removed with the removeBimeraDenovo function
149 of DADA2. Taxonomic affiliations of amplicon sequence variants (ASV) were performed with
150 a naive Bayesian classifier (40) implemented in DADA2. ASVs derived from gyrB reads were
151 classified with an in-house gyrB database (train_set_gyrB v4.fa.gz) available upon request.

152 ASVs derived from ITS1 reads were classified with the UNITE v7.1 fungal database (41).
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153 Microbial community analyses

154 Analyses of diversity were conducted with the R package Phyloseq version 1.26.0 {42). Since
155 the primer set gyrB_aF64/gyrB_aR553 can sometimes co-amplify parE, a paralog of gyrB, the
156 gyrB taxonomic training data also contained parE sequences. Hence, ASV affiliated to parE or
157 unclassified at the phylum-level were removed. Sequences were aligned with DECIPHER

158 2.14.0 (43) and neighbor-joining phylogenetic trees were constructed with Phangorn 2.5.5

159 (44). Identification of sequence contaminant was assessed with decontam version 1.4 (45)
160 using the “prevalence” method at a threshold of 0.1. Fungal ASVs unassigned at the phylum
161 level were removed. For the ITS1 dataset, we created a hybrid-gene phylogenetic tree (i.e.

162 ghost tree) (46) based the 18S rRNA gene sequence database (Silva 132) and ITS database

163 (UNITE v8) in order to perform phylogenetic analyses.

164 Data were normalized based on sequencing depth. For soil analyses, data were

165 rarefied at 30 000 and 25 000 reads per sample for gyrB and ITS1, respectively. For plant

166 (root and stem) analyses, data were rarefied at 1 000 reads per sample for gyrB and ITS1
167 (Fig. S1), a validated choice to keep an optimal number of reliable samples. Faith’s
168 phylogenetic diversity was calculated on gyrB and ITS1 datasets with the R package picante
169 version 1.8 (47). Differences in alpha-diversity estimators were assessed with Analysis of
170 Variance. Differences were considered as significant at a p-value < 0.05.

171 Changes in microbial community composition were assessed on logio+1 transformed
172 values with Bray-Curtis (BC) index. Principal coordinate analysis (PCoA) was used for
173 ordination of BC index. Homogeneity of group dispersions was assessed with betadisper
174 function of vegan 2.5.3 (48). Difference in dispersion between groups was assessed with a
175 Wilcoxon non-parametric test. To quantify the relative contribution of seed microbiota, soil
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176 diversity, development stage and habitat in microbial community profiles, permutational
177 multivariate analysis of variance (PERMANOVA) (49) was performed with the function

178 adonis2 of the R package vegan 2.5.3 (48). The relative abundance of ASVs belonging to

179 ammonia-oxidizing bacteria (AOB) and nitric-oxidizing bacteria (NOB) according to their
180 taxonomic classification were investigated in soils of high and low microbial diversities.
181 These include Nitrosospira sp. and Nitrosovibrio sp. for AOB and Nitrobacter sp. and

182 Nitrospira sp. for NOB (50,51). Differences in relative abundance of AOB and NOB were

183 considered as significant with T-test at a p-value <0.1.

184 Transmission analyses

185 A prevalence matrix of common ASVs between seeds, soils, roots and stems was constructed
186 on non-rarefied data to have the most exhaustive presence-absence analysis of all taxa.
187 Owing to the microbial variability between individual seeds, an ASV was recorded as present
188 if detected in at least one of the 3 seed sample repetitions. Visualization of bacterial and
189 fungal ASVs shared between biological habitats or specific to one was assessed with the R

190 package UpSetR 1.4.0 (52).

191 The datasets supporting the conclusions of this article are available in the European
192 Nucleotide Archive under the accession number PRJEB41004.
193

10
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194 Results

195 Selected seed lots have distinct microbial communities

196 Harvesting year and plant genotypes are significant drivers of the diversity structure of the B.
197 napus seed microbiota (35). Two B. napus genotypes (Boston and Major) collected during
198 two harvest years (Y1 and Y2) were selected for this work. The most prevalent seed-borne
199 bacterial ASVs were affiliated to Sphingomonas and Frigoribacterium genera (Fig. S2A).
200 Fungal communities were dominated by ASVs affiliated to Cladosporium and Alternaria

201 genera (Fig. S2B).

202 Estimated bacterial richness (Chaol) was on average at least two times higher in Y2
203 (250 ASVs) than in Y1 (100 ASVs) for both genotypes, and phylogenetic diversity (Faith’s PD)

204 was also significantly (p < 0.05) higher in Y2 (Fig. 1A).

205 While estimated fungal richness was also higher in Y2 (~50 ASVs) than in Y1 (~35
206 ASVs), phylogenetic diversity was higher in Y1 (Fig. 1B). According to distance from centroid,
207 variation in bacterial and fungal community composition (BC index) was significantly lower (p
208 < 0.05) in Y2 in comparison to Y1 (Fig. 1C). Structure of microbial communities was

209 significantly (p <.001) impacted by harvesting year with 24% and 62% of variance explained

210 by this factor for bacteria and fungi, respectively (Fig. 1D). Moreover, seed genotype was
211 also significantly (p < 0.001, 13% of variance) impacting bacterial community composition
212 but not fungal community composition (Fig. 1D). In brief, the structure of microbial
213 communities was different between the seed lots selected for this study and harvest year
214 was the most important driver of these changes.

215

11
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216 Production of soils with contrasting levels of diversity

217 To obtain two soils with contrasted levels of microbial diversity, gamma-irradiated soil was
218 inoculated with undiluted and diluted soil suspensions (Materials & Methods). After 39 days
219 of incubation, a plateau of 10° bacterial CFU and 10° fungal CFU per gram of soil was reached

220 for each soil (Fig. S3). The acidity level of low-diversity soils significantly (p = 0.003) increased
221 by 0.65 pH unit compared to high-diversity soil. In addition the amount of nitric nitrogen was
222 twice as large in high-diversity soils (p < 0.001), whereas ammoniacal nitrogen significantly (p
223 < 0.001) decreased (Table 1). Relative abundance of AOB was significantly {p < 0.1) higher in
224 the soil of high diversity in comparison with the soil of low diversity. Moreover, no NOB was
225 detected in the soil of low diversity while the soil of high diversity was composed on average

226 of 0.25% NOB.

227 The most prevalent soil-borne bacterial ASVs were affiliated to Massilia, Nitrosospira
228 and Sphingomonas (Fig. S2A). The most prevalent soil-borne fungal ASVs were affiliated to

229 Mortierella, Trichoderma and Exophiala (Fig. S2B).

230 According to alpha-diversity indexes (Chaol and Faith’s index), high-diversity soils
231 presented a higher (p <0.05) bacterial richness (~800 ASVs) and phylogenetic diversity
232 compared to low-diversity soils (~500 ASVs) (Fig. 1A). With regard to fungal communities,
233 only phylogenetic diversity was greater in high-diversity soils (Fig. 1B). Variation in microbial
234 community composition was more important for low-diversity soils compared to high-

235 diversity soils (Fig. 1C). The initial level of dilution employed explained 40% and 39% of the

236 variance observed in bacterial and fungal communities, respectively (Fig. 1D). Hence, the
237 dilution approach employed in this work resulted in two soils with contrasted levels of
238 phylogenetic diversity and distinct community structure.

12
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239 Initial level of soil diversity impacted the diversity and structure of the plant microbiota

240 The outcome of community coalescence between seed and soil microbiota was investigated
241 on two plant compartments (stem and root) collected at two distinct plant developmental
242 stages (d07 and d14). On the seedling roots and stems, the most prevalent bacterial and
243 fungal ASVs presented abundance patterns clearly influenced by initial soil diversity (e.g.
244 Devosia or Fusicolla aquaeductuum, Fig. S2). Diverse bacterial (e.g. Afipia, Ensifer,
245 Fictibacillus, Nocardiodes) and fungal genera (e.g. Peziza, Fusicolla, Metarhizium) were
246 dominant on seedling roots. The stems were dominated by bacterial ASVs affiliated to
247 Bacillus, Nocardioides, Devosia and Fictibacillus, while the most prevalent fungal genera
248 were Fusarium, Fusicolla and Acremonium (Fig. S2).

249 Seed genotypes and harvest years did neither impact estimated richness nor

250 phylogenetic diversity in stem and root (Fig. 2).

251 In contrast, the initial level of soil diversity significantly (p <0.05) influenced microbial

252 richness (Fig. 2A and 2C) and phylogenetic diversity (Fig. 2B and 2D) in stems at d07 and d14,

253 with a higher richness and diversity in stems collected from high-diversity soils. No
254 significant change in bacterial richness and phylogenetic diversity was detected in roots
255 between the two soils (Fig. 2A and 2B) while fungal richness and phylogenetic diversity were
256 almost two times higher in roots from soil of high diversity at each development stage (Fig.

257 2C and 2D).

258 Moreover, there was a little but significant increase in bacterial richness and
259 phylogenetic diversity in stems at stage d14 compared to stage d07. No differences were
260 observed on fungal diversity across stages (Fig. 2).
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261 Composition of the plant microbiota was not influenced by the seed genotype and
262 the harvesting year (Fig. 2E-H and Table 2). In contrast, the initial soil diversity significantly
263 (p < 0.001) contributed to the variance observed in stem (14.6%) and root (36.8%) bacterial
264 communities (Fig. 2I-J) as well as the variance in stem (24.1%) and root (22.1%) fungal
265 communities (Fig. 2K-L and Table 2). Stem- and root-associated microbial community
266 compositions were also significantly impacted by the plant developmental stage (Table 2).
267 Relative contribution of seed-borne and soil taxa to seedling microbiota

268 To describe the outcome of community coalescence between seed and soil microbiota
269 during seedling growth, we characterized the proportion of bacterial and fungal ASVs from
270 seed, soil or unknown origin that composed the stem and root seedling microbiota. A total
271 of 39 bacterial ASVs and 16 fungal ASVs were shared between seeds, roots and stems (Fig.
272 3). Among these ASVs, 16 bacterial and 4 fungal ASVs were also found in soil samples.

273 Between 35 and 72% of seedling-associated bacterial ASVs were detected in the soil,

274 while 20 to 45% of seedling fungal ASVs came from the soil (Fig. 3). These soil-derived ASVs

275 represented between 40 and 98% of the total seedling microbiota. On the contrary, few
276 seedling-associated ASVs were detected in the seed (0.3-15%) representing less than 1% of
277 microbial relative abundance in roots and stems (Fig. 3). Lastly, a fraction of the seedling
278 microbiota was of undetermined origin as undetected in the initial seed and soil pools. ASVs
279 of undetermined origin either may correspond to unsampled taxa in soil or seed
280 compartments (i.e. rare taxa) or may derive from other environmental sources. The
281 proportion of bacterial ASVs of undetermined origin was higher for plants grown in the high-
282 diversity soil (approximately 45-65% of community membership and composition) than in

283 the low-diversity soil (20-30%) (Fig. 3 and Fig. S4A). This result suggests that seedlings are
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284 primarily colonized by rare soil taxa that were initially undetected. In contrast, fungal ASVs
285 not detected in soil and seeds represented approximately 40-60% of community
286 membership in plants but their impacts on community (i.e. their relative abundance) was

287 quite low with less than 20% regardless of the soil diversity (Fig. 3 and Fig. S4B).

288 Contrasting microbial taxonomic composition was observed between the initial soil
289 and seed pools. Concerning bacteria, Enterobacterales and Sphingomonadales were more
290 abundant in seeds, while Burkholderiales were more abundant in soils (Fig. 4A). Changes in
291 bacterial order relative abundance were also detected between stem and root, especially at
292 d07 where Bacillales dominated the bacterial fraction of the stem microbiota (Fig. 4A). The
293 taxonomic composition of the fungal fraction of the seed and soil microbiota was highly
294 contrasted at the order level. Seeds were mainly inhabited by Pleosporales, Capnodiales and
295 Tremellales, when soils were principally constituted of Mortierellales and Hypocreales (Fig.
296 4B). This latter order was however more prevalent in low-diversity soils in comparison to
297 high-diversity soils (Fig. 4B). As in soil, Burkholderiales remained the dominant order in roots
298 but were in part outcompeted by an increasing proportion of Rhizobiales. Xanthomonadales
299 were reduced in roots especially in low-diversity soil and more drastically after 14 days.
300 Bacillales were the transitory most dominant order at 7 days in stems before to regress at 14
301 days. On the opposite Pseudomonadales and Rhizobiales were transitory limited in stems
302 especially in low-diversity soil before to increase at 14 days (Fig. 4A). For fungi, Hypocreales
303 were highly prevalent in seedlings when Mortierellales were more or less prevalent at 7 days
304 in roots and stems, then disappeared in roots and were not represented in stems at 14 days
305 (Fig. 4B). These pools represented only a small proportion of transmitted ASVs from seed to

306 seedling compared to the pools originating from soil (Fig. 3). Mainly bacterial ASVs belonging
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307 to Bacillales, Burkholderiales and Pseudomonadales and many fungal ASVs belonging to
308 Hypocreales were transmitted from soil to seedlings.

309 Seedling transmission success of seed-borne and soil microbiota

310 The contrasted seed lots and soils employed in the experimental design enabled the
311 investigation in the influence of the initial diversity of the colonizing pools on the
312 transmission success to the seedling (Fig. 5).

313 For bacteria and fungi, we found no clear relationships between the level of diversity
314 of the initial pool (seed or soil) and the percentage of ASVs transmission in seedlings (Fig. 5).
315 Soil microbiota always presented the highest rates of ASVs transmission to seedlings with 10
316 to 30% of the initial ASV pool. Overall, the transmission of soil-borne microbiota to seedlings

317 was higher for the bacterial community (113-180 ASVs) than for the fungal community (3-18
318 ASVs, Fig. 5A, 5B). For bacteria, transmission to seedlings was higher in low-diversity soil
319 (32% + 0.84) compared to high-diversity soil (15.6% + 1.49, Fig. 5A). For fungi, the opposite
320 pattern was observed with a higher percentage of ASVs transmitted to seedlings from high-
321 diversity soils (19.8% + 3.24) compared to low-diversity soil (8.5% + 1.41, Fig. 5B). A low
322 percentage of ASVs transmission from seeds to seedlings was observed for bacteria (0.8% +

323 0.93) and fungi (1.45% + 1.44), with no clear influence of the genotype and harvest year (Fig.

324 5). Finally, overall ASV transmission to seedlings was similar on roots and stems, except for
325 the fungal pool of the high soil diversity where transmission rate in roots was higher (22.1%
326 + 3.18) than transmission rate in stems (17.7% + 1.2, Fig. 5).

327 Emergence of rare and sub-dominant taxa in seedlings

328 We next examined the influence of the initial ASV relative abundance on its seedling
329 transmission success and resulting abundance in roots and stems at d14. ASVs were grouped
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330 in three arbitrary abundance classes: rare (average relative abundance <0.01%), sub-
331 dominant (between 0.01 and 1%) and dominant (>1%). An interesting finding was that
332 dominant ASVs in the source pool (seed or soil) almost never became dominant in roots and
333 stems (below 1:1 line) or were not even transmitted to seedlings (Fig. 6). The majority of
334 transmitted seed-borne bacterial ASVs were initially rare taxa, with nine out 11 ASVs in roots

335 and 11 out of 16 ASVs in stems (Fig. 6A, 6C). Only one dominant seed ASV (out of 65 in the

336 initial pool) was found to be transmitted to roots and stems (Afipia). One sub-dominant ASV
337 was successfully transmitted to both roots and stems (Blastomonas) and three sub-dominant
338 ASVs to stems solely (Pseudomonas lurida, Cutibacterium acnes, Hyphomicrobium) (Table
339 S1). It should be noted that none of these dominant and sub-dominant transmitted seed-
340 borne bacterial ASVs became dominant in seedlings (relative abundance <0.3%).

341 The most abundant root bacterial ASVs (>1%) originated from soil-borne ASVs

342 classified as sub-dominant ASVs (n=26 ASVs) and dominant ASVs (5 ASVs) (Fig. 6B, 6D). For

343 the stems, most of the abundant ASVs originated from sub-dominant soil ASVs (n=24), a few
344 dominant ASVs (n=6) and one rare ASV. When considering the entire seedling bacterial
345 microbiota and not only the most abundant taxa, we found that 95% of the dominant soil
346 ASVs, 40% of the sub-dominant ASVs and 28% of the rare ASVs were transmitted to roots.

347 For the stems, 86% of dominant ASVs, 40% of sub-dominant ASVs and 29% of rare ASVs

348 were transmitted.

349 For the fungal community, four seed-borne ASVs were transmitted to both roots and
350 stems, composed of two dominant ASVs (Alternaria infectoria, Cladosporium delicatulum),
351 one sub-dominant (Alternaria sp.) and one rare (Gibberella avenacea). In addition to these
352 four ASVs, three additional dominant ASVs, all affiliated to A. infectoria, were transmitted to
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353 the stems (Table S2). For soil-borne fungal ASVs, the most transmitted taxa to roots were

354 sub-dominant ASVs (19 ASVs, 12% of initial pool) with a few dominant taxa (9 ASVs, 53% of

355 initial pool) and seven rare ASVs (12% of initial pool) (Fig. 6E, 6F). Similarly, soil-borne ASVs
356 transmitted to stems were predominantly sub-dominant ASVs (15 ASVs, 10% of initial pool)
357 along with seven dominant ASVs (41% of initial pool) and six rare ASVs (11% of initial pool)

358 (Fig. 6G, 6H). It should be noted that some of these soil-borne fungal ASVs present

359 extremely high relative abundance in seedlings (>20% relative abundance) compared to
360 seed-borne ASVs (<2% relative abundance).

361 Altogether, these results indicate that seed-borne taxa transmitted to seedlings are
362 predominantly rare taxa, while transmitted soil-borne taxa are primarily sub-dominant and
363 dominant taxa. Moreover, this analysis shows that the transmission rates of fungi is two to
364 four times lower than bacteria for all ASV abundance classes (dominant: 41-53% vs 86-95%;

365 sub-dominant: 10-12% vs 40%; rare: 11-12% vs 28-29%).

366
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367 Discussion

368 Asymmetric outcome of seed and soil community coalescence in favor of soil microbiota

369 Soil microbiota had a great influence on the plant microbiota composition since 70% and
370 30% of soil-borne bacterial and fungal taxa were detected in seedlings, respectively. In
371 contrast, transmission of seed-borne microorganisms to roots and stems of B. napus was
372 lower than soil with on average 2% of bacterial ASVs and 12% of fungal ASVs detected in
373 seedlings. The remaining seedling-associated ASVs were not identified in both seed and soil
374 habitats. It is highly plausible that most of these taxa were soil-borne and were initially not
375 sampled due to the high heterogeneity of soil spatial structure (28). Indeed, there were on
376 average many more bacterial ASVs of undetermined origin in the seedlings growing in the

377 soil of high diversity (> 50%) than in those from a soil of low diversity (< 30%). These data

378 suggest that a large part of these ASVs come from the soil but that they were not sampled in
379 high-diversity soils. Overall, these results highlighted an asymmetric outcome of the
380 coalescence between the soil and the seed microbiota (30), where the soil microbiota take
381 precedence over the seed microbiota.

382 This asymmetric coalescence could be due the high population size of soil-borne taxa
383 in comparison to seed-borne microbial population, a process known as mass-effect (31).
384 Although seed microbial taxa can be considered as plant residents that are adapted to
385 available niches (53), the successful invasion of root and stem by soil-borne taxa is
386 undoubtedly facilitated by their population sizes. Alternatively, the dominance of soil
387 associated microbial communities in seedlings could be explained by the higher amount of
388 phylogenetic diversity in soil in comparison to seeds. Higher phylogenetic diversity could
389 indeed increase the functional capabilities of soil associated microbial communities and then
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390 limit niche overlap between microbial entities (54). The level of diversity of the initial seed
391 and soil pools were however not directly correlated to the number of seedling transmitted
392 ASVs (Fig. 5). In other words, the diversity of the regional species pool (i.e. soils and seeds)
393 were not a good predictor of the diversity of local communities (i.e. seedlings).

394 Weak transmission of seed-borne microorganisms to the rhizosphere has been
395 previously reported in Asteraceae (55), Cucurbitaceae (56,57) and Poaceae (25,58). Survival
396 on barley roots of seed-borne bacteria occurred in the non-growing part of the root system
397 but not in emerging roots that are colonized principally by soil-borne bacteria (58). While we
398 did not investigate the fate of seed-borne microorganisms in different parts of the root
399 system of B. napus, the same proportion of seed-borne taxa were detected within stems or
400 roots. Hence, the weak transmission of seed-borne taxa to seedlings was not a consequence
401 of microhabitat heterogeneity.

402 Seedling microbiota assembly is driven by the level of soil diversity but not the structure of
403 the seed microbiota

404 The initial level of soil diversity was the key driver in the assembly of the stem and root
405 microbiota. Indeed, stem microbial diversity and root fungal diversity were lower in the low-
406 diversity soils compared to high-diversity soils (Fig. 2). Moreover, soil diversity explained
407 between 15% to 37% of variance in microbial community composition in stem and root (Fig.
408 2). The impact of soil diversity on plant microbiota composition increased over time in roots
409 and stems therefore confirming soil resident time and plant age in root microbiota dynamics

410 (59,60).

411 The soil recolonization approach employed in this work did result in two soils with

412 contrasted levels of bacterial and fungal diversity. This modification of soil microbial diversity
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413 also impacts the functional diversity and ultimately the soil physicochemical parameters.
414 Changes in NH;" and NO;™ concentrations and pH between low and high-diversity soils were
415 indeed monitored. A similar drastic switch in the net balance between mineral nitrogen
416 forms, from dominant nitrate forms in the high diversity soil to an altered N-cycle with
417 dominant ammonium forms in the low diversity soil is reported in another soil dilution
418 experiment (61). A lower NO3 amount is consistent with a reduced abundance of bacterial
419 and archaeal ammonia oxidizers. A higher NO;” amount is linked with a decrease in the
420 abundance of denitrifiers that can reduce NO;™ into N,. Nitrification process is associated
421 with pH reduction prior to NO, accumulation period, with a potential decrease of 0.75 pH
422 unit (62). Hence, the impact of soil diversity on seedling microbiota structure could not be
423 solely due to the level of microbial diversity but to local changes of physicochemical
424 parameters.

425 Contrary to what has been observed in the soil, we did not detect any significant
426 impact of the initial seed microbiota composition on the overall structure of the stem and
427 root microbiota. This observation reflected not only a low transmission of seed-borne taxa to
428 roots and stems of B. napus but also a weak, if not an absence, of historical contingency.
429 Historical contingency is mediated by priority effects that correspond to the impact of
430 species on one another depending on its order of arrival within the local community (32).
431 Importance of historical contingency in assembly of the plant microbiota was recently
432 highlighted in wheat, where the identity of seed-transmitted fungal taxa can modify
433 colonization of roots by dark septate endophytes, three weeks following germination (18).
434 While we cannot conclude there is an absence of priority effects between microbial species
435 within the root and stem microbial communities of B. napus, historical contingency is not
436 promoted during seedling community assembly.
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437 Seedling microbiota is primarily composed of initially rare and sub-dominant taxa in source
438 communities

439 The initial abundance of microbial taxa in the regional species pool was not positively
440 correlated to their seedling transmission. This was particularly marked for bacterial ASV
441 where rare seed-borne taxa and sub-dominant soil-borne taxa were mostly transmitted to
442 the seedling (Fig. 6, Fig. S5). An increase in the abundance of rare taxa in seedlings could be
443 explained by several attributes including more favorable environmental conditions for their
444 growth and awakening from dormancy (63). Many seed-borne bacteria enter a viable but
445 non-culturable (VBNC) state (64—66). Nutrient-rich environment, such as the spermosphere
446 (67), can elicit the resuscitation of VBNC cells (68). In any case, the rare taxa that are
447 selected on seedlings must carry specific genetic determinants that are responsible for their
448 higher fitness that deserve to be investigated further. The emergence of rare taxa seems to
449 be a shared coalescence outcome between different ecosystems, ie. for the mixing of
450 freshwater and marine microbiome (29), the unequal mixing of two soils with different
451 physicochemical and microbial compositions (69) or the mixing of soils for the outcome of
452 rhizobial communities on rooibos nodules (70). Rare taxa becoming dominant can provide
453 essential or new functions in nutrient cycling or plant growth, which replace or compensate
454 for the function deficiency of abundant species (71).

455 Interestingly, dominant taxa in the source pool (seed or soil) almost never became
456 dominant in roots and stems. None of the dominant seed taxa (e.g. P. agglomerans) is
457 transmitted maybe because these taxa are well adapted to ripe seed and low osmotic seed
458 environment and not to growing seedling in competition with soil microbiota. Conversely,
459 the better transmission of dominant and sub-dominant soil-borne taxa likely combines soil
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460 microbiota mass effect and a plant selective process among soil bacteria that are more
461 adapted to root and stem habitats.

462

463 Conclusion

464 In conclusion, we highlighted that the outcome of seed and soil microbiota
465 coalescence was strongly asymmetrical with a clear dominance of soil microbiota. The level
466 of soil diversity was an important driver of the structure of the seedling microbiota. Our
467 approach enabled us to quantify the relative contribution of seed-borne and soil-borne taxa
468 to seedling microbiota assembly and provided an estimation of transmission rates of each
469 source microbiota. Out of all soil taxa detected, only 8 to 32% were able to colonize
470 seedlings, while the proportion was of 0.8 to 1.4% for seed-borne taxa, which indicates a
471 strong selection during seedling microbiota assembly. We demonstrate a high transmission
472 of rare seed-borne and sub-dominant soil-borne taxa to seedlings, which is also a key feature
473 of this coalescence (Fig. S5). These results provide an important foundation for the
474 development of plant microbiome engineering through the modification of native seed or
475 soil microbiota. Particularly, we encourage future work using natural or synthetic
476 communities to integrate rare microbial taxa, as we showed that focusing only on dominant
477 taxa in the source-communities is not informative to understand future seedling microbiota
478 composition.

479 The community coalescence framework just started to emerge in the field of
480 microbial ecology and we show here that this approach accelerates discoveries related to
481 plant microbiota assembly and microbiome engineering. In this dynamic, further studies are
482 needed to understand the ecological processes involved in this coalescence between seed
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and soil and how direct inoculation of microorganisms or modification of environmental

conditions might alter its outcome.
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694 Figure legend

695 Figure 1 Diversity of initial seed and soil microbial community pools before coalescence. (A)

696 Bacterial alpha-diversity. (B) Fungal alpha-diversity. (C) Microbial dispersion to centroid. (D)

697 Microbial beta-diversity. Bacterial and fungal richness were estimated with Chao1l. Bacterial
698 and fungal phylogenetic diversities were calculated with Faith’s phylogenetic diversity (PD).
699 PCoA ordination of Bray-Curtis index was calculated for bacteria and fungi. Seed microbiota
700 (blue) was described in two B. napus genotypes (Boston, Major) harvested during two
701 consecutive years (Y1, Y2). Soil microbiota (green) was described in two soils originating
702 from dilution-extinction serials (High-, Low-diversity).

703 Figure 2 Structure of seedling microbiota after coalescence with contrasted seed and soil

704 microbiota. (A, B) Bacterial alpha-diversity. (C, D) Fungal alpha diversity. (E, F, |, J) Bacterial

705 beta-diversity in stems and roots. (G, H, K, L) Fungal beta-diversity in stems and roots. Open
706 and closed dots are B. napus genotypes. Dots are colored either by harvest year (A-H) or by
707 soil diversity (I-L). Bacterial and fungal richness were estimated with Chaol. Bacterial and
708 fungal phylogenetic diversities were calculated with Faith’s phylogenetic diversity. PCoA
709 ordination of Bray-Curtis index was calculated for bacteria and fungi.

710 Figure 3 Origin of microbial taxa within stem and root assemblages. Bacterial (A) and fungal
711 (B) ASVs shared between seeds, soil, roots and stems at each harvesting stage (d07 or d14)
712 and soil diversity {High or Low). For each plot, upper-right bar charts summarize the
713 proportion and relative abundance of plant-associated ASVs that were detected in soil
714 and/or seeds or not detected (unknown) within these habitats.
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715 Figure 4 Taxonomic profiles of microbial communities associated with initial B. napus seeds
716 and soil and with seedlings at 7 or 14 days after sowing. The 15 most abundant bacterial (A)
717 and fungal (B) orders detected in seeds, soils, roots and stems are displayed.

718 Figure 5 Influence of the initial bacterial (A) and fungal (B) diversity of the colonizing pools
719 (seed or soil) on the transmission success to the seedling at d14. Nature of the initial pool
720 (seed (Genotype/Year) or soil diversity (High-, Low- diversity)) is mentioned and separated
721 with dashed lines. Colors represent the receiving seedling compartment (root or stem).

722 Figure 6 Relationship between relative abundance of transmitted bacterial (A-D) and fungal
723 (E-H) ASVs in the source (seed or soil) and in seedling roots and stems. Each dot represents
724 one ASV and is colored according to its relative abundance in the source (seed or soil).

725

726

727
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Table 1: Soil physicochemical analyses and relative abundance of bacterial nitrifiers. Values for high
and low soil microbial diversities are the average of the 3 replicates + standard errors. T-test was
performed on data, and significant p-values are indicated with an asterisk. AOB = Ammonia-oxidizing

Nitric

Total nitrogen Ammoniacal
Soil Organic ‘Total Orgamc C/N calcium (N of NO3) nitrogen AOB NOB
. . pH carbone nitrogen material ) carbonate (N of NH4)
diversity ratio on extract (%) (%)
(C) g/kg (N) g/kg o/kg (CaCo03) 110 on extract
g/kg mofkg 1/10 mg/kg
High 6.24 7.30 0.84 12.6 8.65 <1 72.2 1.96 57 0.25
+0.03 +0.32 +0.04 +0.56 +0.20 +0.44 +0.42 +2.7 +0.03
Low 6.89 7.26 0.84 12.6 8.61 <1 29.03 32.57 0.5 0
+0.09 +0.17 +0.02 +0.31 +0.05 +1.68 +0.93 +0.11
T-test 0.003* 0.87 1 0.93 0.73 1 0.0002* 2.97.10°* 0.08* 0.005*

bacteria. NOB = Nitrite-oxidizing bacteria.
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Table 2: Permutational multivariate analysis of variance on seedling roots and stems microbial beta-
diversity. Linear model was built with the adonis2 function on data separated by root or stem compartment,
integrating soil diversity (high and low), sampling stages (d07 and d14), GxY (interaction between plant genotype

and year), and interaction between soil and GxY Significant values and their associated percentage of variance

Bacteria Fungi
P-value % of e_xplained P-value % of e_xplained
variance variance
Root Soll 0.001 * 36.8 0.001 * 22.1
Stage 0.001 * 10.2 0.003 * 8.0
GxY 0.955 - 0.999 -
Soil:GxY 0.990 - 0.996 -
Stem Soll 0.001 * 14.6 0.001 * 24.1
Stage 0.001 * 46.5 0.002 * 8.6
GxY 0.394 - 0.986 -
Soil:GxY 0.695 - 0.878 -

(R®) are in bold and followed by an asterisk (p <0.05).
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