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Summary

The current SARS-CoV-2 pandemic has emphasized the vulnerability of human
populations to novel viral pressures, despite the vast array of epidemiological and
biomedical tools now available. Notably, modern human genomes contain evolutionary
information tracing back tens of thousands of years, which may help identify the viruses
that have impacted our ancestors — pointing to which viruses have future pandemic
potential. Here, we apply evolutionary analyses to human genomic datasets to recover
selection events involving tens of human genes that interact with coronaviruses,
including SARS-CoV-2, that likely started more than 20,000 years ago. These adaptive
events were limited to the population ancestral to East Asian populations. Multiple lines
of functional evidence support an ancient viral selective pressure, and East Asia is the
geographical origin of several modern coronavirus epidemics. An arms race with an
ancient coronavirus, or with a different virus that happened to use similar interactions as
coronaviruses with human hosts, may thus have taken place in ancestral East Asian
populations. By learning more about our ancient viral foes, our study highlights the
promise of evolutionary information to better predict the pandemics of the future.
Importantly, adaptation to ancient viral epidemics in specific human populations does
not necessarily imply any difference in genetic susceptibility between different human
populations, and the current evidence points toward an overwhelming impact of

socioeconomic factors in the case of COVID-19.

Introduction

In the past 20 years, strains of the beta coronavirus genus (family Coronaviridae; Richman et
al., 2020) have been behind three major zoonotic outbreaks with grave impacts for human
populations (Ou et al., 2020). The first outbreak, commonly known as SARS-CoV (Severe Acute
Respiratory Syndrome), originated in China in late 2002 and eventually spread to 30 additional
counties where it infected more than 8,000 people and claimed nearly 800 lives (Hoffmann and
Kamps, 2003). Four years later, MERS-CoV (Middle East respiratory syndrome coronavirus)
affected >2,400 people and caused over 850 deaths, mostly in Saudi Arabia (World Health


https://doi.org/10.1101/2020.11.16.385401
http://creativecommons.org/licenses/by/4.0/

42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.385401; this version posted January 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Organization, 2019). The most recent outbreak began in late 2019 when SARS-CoV-2 — a less
virulent but far more contagious strain than those behind the two previous epidemics — emerged
in mainland China before spreading rapidly across the rest of the world, triggering an ongoing
pandemic (COVID-19) that so far has infected 45 million people and resulted in over one million
deaths worldwide (Dong et al., 2020).

The devastation caused by SARS-CoV-2 has inspired a worldwide research effort to develop
new vaccines and strategies that aim to curb its impact by determining the factors that underlie
its epidemiology. The resulting research has revealed that socioeconomic (e.g. access to
healthcare and testing facilities or exposure at work), demographic (e.g. population density and
age structure), and personal health factors all play a major role in SARS-CoV-2 epidemiology
(Balogun et al., 2020; Sattar Naveed et al., 2020; Scarpone et al., 2020). Additionally, several
genetic loci that mediate SARS-CoV-2 susceptibility and severity have been found in
contemporary European populations (Ellinghaus et al., 2020; Roberts et al., 2020), one of which
contains a genetic variant that increases SARS-CoV-2 susceptibility that likely increased in
frequency in the ancestors of modern Europeans after interbreeding with Neanderthals ~40,000
years ago (Zeberg and Paabo, 2020). This historical admixture event has led to genetic
differences within and between contemporary human populations that directly impact COVID-19
epidemiology — the Neanderthal-derived variant haplotype is now carried by 8% of modern
Europeans, but at lower frequencies in African populations whose ancestors did not experience
this admixture event — and suggests that evolutionary analyses of human populations may help
reveal these genetic differences and ultimately assist in the development of novel drugs and

therapies to combat the negative impacts of SARS-CoV-2.

Throughout the evolutionary history of our species, positive natural selection has frequently
targeted proteins that physically interact with viruses — e.g. those involved in immunity, or used
by viruses to hijack the host cellular machinery (Barreiro et al., 2009; Enard et al., 2016; Sawyer
et al., 2005). In the ~6 million years since the ancestors of humans and chimpanzees
separated, selection has led to the fixation of gene variants encoding virus-interacting proteins
(VIPs) at three times the rate observed for other classes of genes (Enard et al., 2016; Uricchio
et al., 2019). Moreover, strong selection on VIPs has continued in human populations during the
past 50,000 years, as evidenced by VIP genes being enriched for adaptive introgressed
Neanderthal variants and also selective sweep signals (i.e. selection that drives a beneficial
variant to substantial frequencies in a population), particularly around VIPs that interact with

RNA viruses, a viral class that includes the coronaviruses (Enard and Petrov, 2018, 2020).
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75  The accumulated evidence suggests that ancient RNA virus epidemics have occurred frequently
76  during the history of our species; however, we currently do not know if selection has made a
77  substantial contribution to the evolution of human genes that interact more specifically with

78 coronaviruses.

79  Accordingly, here we investigate whether ancient coronavirus epidemics have driven past

80 adaptation within and across modern human populations, by examining if selection signals are
81  enriched within a set of 420 VIPs that interact with coronaviruses (denoted CoV-VIPs; Table S1)
82  across 26 worldwide human populations from the 1000 Genomes Project (1000 Genomes

83  Project Consortium, 2015). These CoV-VIPs comprise 332 SARS-CoV-2 VIPs that were

84  recently identified by high-throughput mass spectrometry (Gordon et al., 2020) and an additional
85 88 proteins that were manually curated from the coronavirus literature (e.g. SARS-CoV-1,

86 MERS, HCoV-NL63, etc; Table S1; Enard and Petrov, 2018), and form part of a larger set of

87 5,291 previously published VIPs (Sl; Table S1) from multiple viruses known to infect humans

88 (Enard and Petrov, 2018). Our focus upon host adaptation at VIPs is motivated by evidence

89 indicating that these protein interactions are the central mechanism that viruses use to hijack

90 the host cellular machinery, as shown by the strong focus of virologists on these interactions

91 (Enard and Petrov, 2018). Accordingly, VIPs are much more likely to have functional impacts on
92  viruses than proteins not known to interact with viruses (see Sl: Host adaptation is expected at
93  VIPs). Our enrichment-based approach is expected to be particularly powerful if the ancestors
94  of one or more of the 26 modern human populations were exposed to epidemics driven by

95  coronavirus-like viruses that resulted in selection upon multiple CoV-VIPs (see Discussion). An
96 alternative that we cannot exclude however is that a different type of virus that happens to use
97 similar VIPs as coronaviruses might instead create an enrichment in adaptation signals at CoV-
98 VIPs.

99  Our analyses of CoV-VIPs find a strong enrichment in sweep signals in these proteins across
100  multiple East Asian populations, which is absent from other human populations. This suggests
101  that an ancient coronavirus epidemic (or another virus using similar VIPs) drove an adaptive
102  response in the ancestors of East Asians, which is in agreement with the current geographic
103  range of the major known animal reservoirs of coronaviruses (Wong et al., 2019). Further, by
104  leveraging ancestral recombination graph approaches (Speidel et al., 2019; Stern et al., 2019)
105  we find that amongst the putatively selected CoV-VIPs, 42 first may have come under selection
106  around 900 generations (~25,000 years, most likely 20,000 years ago or more) ago and exhibit

107  a coordinated adaptive response that lasted until around 200 generations (~5,000 years) ago.
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108 By drawing upon other publicly available datasets, we show that the CoV-VIP genes are

109  enriched for anti- and proviral effects and variants that affect COVID-19 etiology in the modern

110  European British population (https://grasp.nhibi.nih.gov/Covid19GWASResults.aspx). We

111 nevertheless do not investigate in which particular direction, as we cannot expect the British

112  population to be representative of East Asian populations in that respect. We further show that
113  the inferred underlying causal mutations are situated near to regulatory variants active in lungs
114  and other tissues negatively impacted by COVID-19. Taken together, these independent lines of
115  evidence provide support for an ancient coronavirus (or another virus that was using similar

116  interactions) epidemic that emerged more than 20,000 years ago in the ancestors of

117  contemporary East Asian populations, whose genetic signature remains apparent in the

118 genomes of the present-day populations now living in this region.

119 Results

120 Signatures of adaptation to an ancient epidemic

121  Viruses have exerted strong selective pressures on the ancestors of modern humans (Enard
122  and Petrov, 2020; Uricchio et al., 2019). Accordingly, we use two population genetic statistical
123  tests that are sensitive to such genetic signatures (i.e. selective sweeps) — nSL (Ferrer-Admetlla
124  etal., 2014) and iHS (Voight et al., 2006) — and which are able to detect genomic regions

125 impacted by strong selection across a wide range of parameters (e.g. different starting and end
126  frequencies of the selected allele). Both statistics also have the advantage of being insensitive
127  to background selection (Enard et al., 2014; Schrider, 2020), thereby reducing the potential

128 impact of false positives in our analyses.

129  After scanning each of the 26 populations for signals of selection, we apply an enrichment test
130 that was previously used to detect enriched selection signals in RNA VIPs in human populations
131 (Enard and Petrov, 2020). Briefly, for each population and selection statistic, we rank all genes
132  based on the average selection statistic score observed in genomic windows ranging from 50kb
133  to 2Mb (Methods). Different windows sizes are used because smaller windows tend to be more
134  sensitive to weaker sweeps, whereas larger windows tend to be more sensitive to stronger

135 sweeps (Enard and Petrov, 2020; Methods). After ranking the gene scores, we estimate an

136  enrichment curve (Figure 1) for gene sets ranging from the top 10 to 10,000 ranked loci

137  (Methods). The significance of the whole enrichment curve is then calculated using a genome

138  block-randomization approach that accounts for the genomic clustering of neighboring CoV-
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139  VIPs, and provides an unbiased false positive risk for the whole enrichment curve (FPR) by re-
140  running the entire enrichment analysis pipeline on block-randomized genomes (Enard and

141 Petrov, 2020; Methods). For our control gene set, we use protein-coding genes situated at least
142  500kb from CoV-VIPs to avoid overlapping the same sweep signals. Additionally, genes in the
143  control sets are chosen to have similar characteristics as the CoV-VIPs (e.g. similar

144  recombination rates, density of coding and regulatory sequences, percentage of immune genes,
145  percentage of genes that interact with bacteria; see Methods for the complete list of factors) to
146  ensure that any detected enrichment is virus-specific rather than due to a confounding factor
147  (Enard and Petrov, 2020). Choosing controls far away and that match multiple potential

148  confounding factors has the effect of shrinking the pool of potential control genes, which can
149  affect the variance and also the representativity of this pool as a null control. The possible

150 impacts of the size of the control pool are however fully taken into account in the FPR estimated
151  with block-randomized genomes (Enard and Petrov, 2020; Methods). Finally, we also exclude
152  the possibility that functions other than viral interactions might explain our results by running a
153  Gene Ontology analysis (Gene Ontology Consortium, 2015; SI; Tables S2, S3 and Figure S1).

154  Applying this approach to each of the 26 human populations from the 1,000 genomes dataset,
155  we find a very strong enrichment of sweep signals in CoV-VIPs across all top-ranked gene set
156  sizes that is specific to the five East Asian populations (whole enrichment curve for nSL and iHS
157  combined FPR=2.10"; Figures 1 & S2; Methods). No enrichment is observed for populations
158 from other continental regions, including in neighboring South Asia (whole enrichment curve for
159 nSL and iHS combined FPR>0.05 in all cases; Figures 1 & S2). Further, no enrichment is

160 detected for VIP sets for 17 other viruses in East Asian populations (whole enrichment curve for
161 nSL and iHS separately or combined, P>0.05 in all cases; Figures S3 & S4). Taken together,
162  these results suggest that coronaviruses, or another type of viruses that used similar

163 interactions with human hosts, have driven ancient epidemics in ancient human populations that
164  are ancestral to modern East Asians. This enrichment is unlikely to have been caused by any
165  other virus represented in our set of 5,291 VIPs, but we still cannot exclude that a currently

166  unknown type of virus that happened to use similar VIPs as coronaviruses could have been

167  involved instead (Table S1). The enrichment is most substantial for the top-ranked gene sets
168  ranging between the top 10 and top 1,000 loci (Figure 1; whole enrichment curve FPR=3.10° for
169 nSL, FPR=4.10" for iHS, FPR=6.10" for iHS and nSL combined), and is particularly strong for
170  the top 200 loci in large windows (1 Mb) where a four-fold enrichment is observed for both nSL

171  and iHS statistics (pertaining to between 10 to 13 selected CoV-VIPs amongst the top 200
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ranked genes; Table S4). This suggests that strong selection targeted multiple CoV-VIPs in the

common ancestors of modern East Asian populations. That the selected haplotype structures

are detected by both the iHS and nSL methods suggests that they are unlikely to have occurred

prior to 30,000 years ago, as both nSL and iHS have little power to detect adaptive events

arising before this time point in human evolution (Sabeti et al., 2006)
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Figure 1. Coronavirus VIPs nSL ranks enrichment
A,B,C,D,E are East Asian populations, F,G,H,| are populations from other continents. The y axis
represents the bootstrap test (Methods) relative fold enrichment of the number of genes in
putative sweeps at CoV-VIPs, divided by the number of genes in putative sweeps at control
genes matched for multiple confounding factors. The x axis represents the top rank threshold to
designate putative sweeps. Black full line: average fold enrichment over 5,000 bootstrap test
control sets. Fold enrichments greater than 20 are represented at 20. Grey area: 95%
confidence interval of the fold enrichment over 5,000 bootstrap test control sets. The rank
thresholds where the confidence interval lower or higher fold enrichment has a denominator of
zero are not represented (For example, graph B, top 10 rank threshold). Lower confidence
interval fold enrichments higher than 20 are represented at 20 (for example, graph B, top 30
rank threshold). Red dots: bootstrap test fold enrichment P<0.001. Orange dots: bootstrap test
fold enrichment P<0.05. Note that the bootstrap test p-values are not the same as the whole
curve enrichment false positive risk (FPR) estimated using block-randomized genomes on top of
the bootstrap test (Methods).
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195 An ancient epidemic in the ancestors of East Asians starting more than 20,000 years ago

196  To further test the existence of an ancient viral epidemic in the ancestors of East Asians, we use
197  arecent ancestral recombination graph (ARG)-based method, Relate (Speidel et al., 2019), to
198 infer the timing and trajectories of selected loci for the CoV-VIPs. If the selective pressure

199  responsible for the multiple independent selection events at CoV-VIPs was relatively sudden as
200 expect from a new epidemic, then these selection events should have started independently
201  around the same time. By estimating ARGs at variants distributed across the entire genome,
202 Relate can reconstruct coalescent events across time and detect genomic regions impacted by
203  positive selection, while explicitly controlling for historical variation in population demography.
204  To approximate the start time of selection, Relate estimates the first historical time point that a
205 putatively selected variant had an observable frequency unlikely to be equal to zero (Methods).
206  We use this approximation as the likely starting time of selection, although we note that this

207  method does not account for selection on standing variants that had non-zero frequencies at the
208 onset of selection (Methods). Additionally, we use the iISAFE software — which enables the

209 localization of selected mutations (Akbari et al., 2018) — along with a curated set of regulatory
210  variants (expression QTLs; eQTLs) from the eGTEXx Project (2017) to help identify the likely

211 causal mutations in the selected CoV-VIP genes. There is good evidence that the majority of
212  adaptive mutations in the human genome are regulatory mutations (Enard et al., 2014;

213  Kudaravalli et al., 2009; Nédélec et al., 2016; Quach et al., 2016) and, accordingly, we find that
214  iSAFE peaks are significantly closer to GTEx eQTLs proximal to CoV-VIP genes than expected
215 by chance (iISAFE peak proximity test, P<10?; Methods). Therefore, for each CoV-VIP gene, we
216  choose a variant with the lowest Relate p-value (<103; Methods) that is situated at or close to a
217  GTEx eQTL associated with the focal gene to estimate the likely starting time of selection for
218 that gene (Methods; Figure S5).

219  Using this approach, we observe 42 CoV-VIPs (Table S5 and Figure S5) with selection starting
220  times clustered around a peak 870 generations ago (~200 generations wide, potentially due to
221 noise in our estimates; Figure 2). While this amounts to about four times more selected CoV-
222  VIP genes than were detected using either nSL or iHS (both detected around ten CoV-VIPs
223  amongst the top 200 ranked genes; Table S4) this is not unexpected as Relate has more power
224  to detect selection events than nSL and iHS when the beneficial allele is at intermediate

225 frequencies at the point of measurement (typically <60%; Figure 3; Enard and Petrov, 2020;
226  Ferrer-Admetlla et al., 2014; Voight et al., 2006). The relatively tight temporal clustering of

227  starting times forms a highly significant peak (peak significance test P=2.3.10; Figure 2) when
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228 comparing the observed clustering of CoV-VIPs start times with the distribution of inferred start
229  times for randomly sampled sets of genes (Methods). Note that this peak significance test is
230 gene clustering-aware (Methods). Further, this significance test is not biased by the fact that
231  CoV-VIPs are enriched for sweep signals, as the test remains highly significant (P=1.10*) when
232  using random control sets with comparable high-scoring nSL statistics (Methods). This suggests
233  that the tight temporal clustering of selection events is a specific feature of the CoV-VIPs, rather

234  than a confounding aspect of any gene set similarly enriched for sweeps.
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237  Figure 2. Timing of selection at CoV-VIPs

238 The figure shows the distribution of selection start times at CoV-VIPs (pink distribution)

239  compared to the distribution of selection start times at all loci in the genome (blue distribution).
240  Details on how the two distributions are compared by the peak significance test, and how the
241 selection start times are estimated with Relate, are provided in Methods.

242  The genes with clustered selection starting times around 900 generations ago are enriched in
243  strong nSL signals, as shown by running the peak significance test using only CoV-VIPs and
244  controls with strong nSL signals (Figure S6). Conversely, the peak disappears when restricting
245  this test to weaker nSL signals (P=0.53 when using the lowest 50% of nSL statistics; Methods).
246  Importantly, our estimates of the timing of selection are not biased by our use of methods that
247  rely on selected variants not being fixed in the population at the time of genome sampling (i.e.
248  Relate). When rerunning our analytical pipeline focusing only on strong candidate loci according
249 to Tajima’s D (Tajima, 1989), a statistic developed to detect recently completed sweeps (i.e.
250 fixed mutations), we observe the same clustering of selection events starting around 900

251  generations ago (Figure S7). Further, the remaining 382 CoV-VIPs that are not part of this
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252  temporal cluster around 900 generations ago are not more likely to have significant Tajima’s D
253  values than controls (whole enrichment curve P=0.07). Consequently, our results are consistent
254  with the emergence of a viral epidemic ~900 generations, or ~25,000 years (900 generations *
255 28 years per generation; Moorjani et al., 2016), ago that drove a burst of strong positive

256  selection in the ancestors of East Asians, which may represent a genetic record of a multi-

257  generational viral epidemic amongst the 26 human populations tested here.

258  Although selective pressures other than a coronavirus or another unknown type of virus with
259  similar host interactions might also contribute to these patterns, we note that the signal is

260 restricted specifically at CoV-VIPs and none of 17 other viruses that we tested exhibit the same
261  temporal clustering ~900 generations ago in East Asia (peak significance test P>0.05 in all

262 cases; Methods). Further, this test remained highly significant when retesting the temporal

263  clustering of CoV-VIPs using only other RNA VIPs as the control set (P=4.10"*; Table S1),

264  consistent with the clustered selection signals being a coordinated adaptive response to a

265  coronavirus or another virus using similar host interactions.

266

267  Strong selection drove coordinated changes in multiple CoV-VIP genes over 20,000 years

268 To learn more about the likely start and duration of the selection pressure acting on the

269  ancestors of East Asians, we use CLUES (Stern et al., 2019) to infer allele frequency

270 trajectories and selection coefficients for the inferred beneficial mutations proximal to the 42
271  CoV-VIP genes with selection starting 900 generations ago according to Relate (Figure 3).

272  CLUES uses the temporal variation in population size and coalescence rates inferred by Relate
273  to reconstruct frequency trajectories while taking demographic fluctuations into account. Our
274  observation of sweep signals at 42 CoV-VIP genes in the ancestors of East Asians suggests
275 that the putative underlying viral epidemic likely spanned many generations (i.e. the time

276  needed for selection to drive initially rare alleles to intermediate/high frequencies). Accordingly,
277  we anticipate that selection was probably strongest when the naive host population was first
278 infected by the virus, before gradually waning as the host population adapted to the viral

279  pressure (Hayward and Sella, 2019). Similarly, a decrease in the virulence of the virus over
280 time, a phenomenon that has been reported during the long term bouts of host-virus coevolution
281 (Best and Kerr, 2000), would also result in the gradual decrement of selection coefficients

282  across time. Hence, for each of the 42 CoV-VIPs predicted to have started coming under

283  selection ~900 generations ago, we use CLUES to estimate the selection coefficient in two

10
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284  successive time-intervals (between 1,000 and 500 generations ago, and from 500 generations
285  ago to the present), predicting that selection would be stronger in the oldest interval. We note
286 that a 500 generations interval was reported as the approximate timespan that CLUES provides
287  reliable estimates for humans (Stern et al., 2019); using smaller generations intervals, we would
288  run the risk of getting overly noisy selection coefficient estimates based on too few coalescent
289  events. However, 500 generations intervals are not adequate to obtain reasonable estimates of
290 the precise duration of the selective pressure (Stern et al., 2019), so we do not attempt to

291 estimate this parameter here, and we simply try to compare the two time periods with each

292  other. Also, because CLUES uses a computationally intensive algorithm when following the
293 recommendations of Stern et al. (2020), we base our estimates on only two of the five East

294  Asian populations (i.e. Dai and Beijing Han Chinese; Figure 3A, B and 3C, D, respectively).

295 CLUES infers frequency trajectories that are more complex than a simple, clear, abrupt jump in
296 frequency 900 generations ago. Instead, the estimated frequency trajectories (Figure 3A,B,C,D)
297  suggest that 900 generations ago is the approximate time when the bulk of the selected variants
298 reached a frequency of a few percent or more, and approximately when there is an acceleration
299 in the frequency increase (Figure 3B, D). This might correspond to the transition between the
300 establishment and exponential phases of the sweeps, and might imply that the selective

301 pressure is older than 900 generations. The initially flatter, slower increases in frequency,

302 lasting sometimes up to 600 generations ago for some variants, are compatible with either co-
303 dominant or recessive alleles, and likely exclude dominant alleles that would start increasing in
304 frequency more abruptly. Interestingly, this would be in good agreement with the rarity of

305 dominant eQTLs in GTEX, if selected variants were indeed regulatory (GTEx Project, 2017).
306  Although the flat, slow starts of frequency increases make it hard to pinpoint when selection

307  started exactly, the vast majority of the selected alleles appear to have reached 5% or higher
308 frequencies by 600 generations, thus making it highly unlikely that the selective pressure would
309 have started 600 or less generations ago. Frequency trajectories estimated in the Yoruba

310  African population (Figure 4A) or the British European population (Figure 4B) also show very
311 low frequencies 900 generations ago. The selected variants in East Asia are found nowadays at
312  very low frequencies especially in Africa (Table S6). This implies that they are substantially

313 older than when selection started in East Asia, which may then be described as selection on low
314  frequency standing variation. Intriguingly, some variants rise in frequency (up to 40% frequency
315  at most) in Europe mostly after 800 generations ago. A small number of variants in Africa

316  increase in frequency (up to 30% frequency at most) after 600 generations ago.
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317  The selected mutations are estimated to have continually increased in frequency in East Asia
318  until ~200 generations (approximately 5,000 years) ago, after which they remained relatively
319  stable (Figure 3A, C). Accordingly, CLUES estimates very high selection coefficients in the

320 interval between 1,000 and 500 generations ago (Dai average s = 0.034, Beijing Han average s
321 = 0.042; Figure 5A, B), but much weaker selection coefficients from 500 generations ago up to
322  the present (Dai average s = 0.002, Beijing Han average s = 0.003; Figure 5A, B). These

323  patterns are consistent with the appearance of a strong selective pressure that triggered a

324  coordinated adaptive response across multiple independent loci, which waned through time as

325 the host population adapted to the viral pressure and/or as the virus became less virulent.

326
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328  Figure 3. Selected CoV-VIPs allele frequency trajectories over time estimated by CLUES
329 in East Asia

330 Each frequency trajectory is for one of the 42 Relate selected mutations at CoV-VIPs within the
331 peak around 900 generations ago (Methods). A) Frequency trajectories in the Chinese Dai CDX
332 1,000 Genomes population. B) Same, but zoomed-in from frequencies 0 to 10%. C) Frequency
333 trajectories in the Han Chinese from Beijing CHB 1,000 Genomes population. D) Same, but
334  zoomed-in from frequencies 0 to 10%.
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339  Figure 4. Selected CoV-VIPs allele frequency trajectories over time estimated by CLUES
340 in Africa (Yoruba) and Europe (British)

341  Same as Figure 3. A) Yoruba population. The graph includes 17 frequency trajectories, the 25
342  other alleles selected in East Asia being absent in the Yoruba sample (but not Africa overall,
343  see Table Sx) B) British population. The graph includes 35 frequency trajectories, the other
344  seven alleles selected in East Asia being absent in the British sample.
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346  Figure 5. Coronavirus selected VIPs selection coefficients estimated by CLUES

347  This figure shows classic R boxplots of selected coefficients at the 42 Relate selected mutations
348  within the peak around 900 generations ago (Methods). A) Selection coefficients in the Chinese
349 Dai CDX 1,000 Genomes population. B) Selection coefficients in the Han Chinese from Beijing
350 CHB 1,000 Genomes population. Left: average selection coefficients between 0 and 500

351 generations ago. Right: average selection coefficients between 500 and 1,000 generations ago.

352  Selected CoV-VIPs are enriched for antiviral and proviral factors

353  To further clarify that an ancient viral epidemic caused the strong burst of selection we observe
354  in the ancestors of East Asians, and not another ecological pressure acting on the same set of
355 genes, we test if the 42 selected CoV-VIPs are enriched for genes with antiviral or proviral

356  effects relative to other CoV-VIPs (i.e. loci that are known to have a detrimental or beneficial
357  effect on the virus, respectively). Because the relevant literature for coronaviruses is currently

358 limited — which also applies to the relatively recent SARS-CoV-2 virus — we extend our set of
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359  anti- and proviral loci beyond those associated with coronaviruses to include loci reported for
360 diverse viruses with high confidence from the general virology literature (see Sl: Host adaptation
361 s expected at VIPs; Table S1). We find that 21 (50%) of the 42 CoV-VIPs that came under

362  selection ~900 generations ago have high-confidence anti- or proviral effects (vs. 29% for all
363 420 CoV-VIPs), a significant inflation in anti- and proviral effects (hypergeometric test P=6.10")
364 that further supports our claim that the underlying selective pressure was most likely a viral

365 epidemic. This overlap of antiviral and proviral effects between different viruses also implies that
366  an unknown virus that happened to use similar VIPs as coronaviruses could have indeed been

367  responsible.

368  Selected mutations lie near regulatory variants active in SARS-CoV-2 affected tissues

369  Coronavirus infections in humans are known to have pathological consequences for specific
370  bodily tissues, whereby we investigate if the genes targeted by selection in the ancestors of
371 East Asians are also enriched for regulatory functions in similar tissues. In light of our finding
372  that many putative causal mutations in CoV-VIPs were proximal to eQTLs, we investigate

373  whether selected mutations are situated closer to eQTLs for a given tissue than expected by
374  chance, as this would indicate that the tissue was negatively impacted by the virus (prompting
375 the adaptive response). Note that the GTEx eQTLs we use are not specific to a single tissue
376  (eQTLs are rarely so in general), and are shared between tissues. However, each tissue still
377  has its own specific combination of eQTLs, thus making the results at each tissue not

378  completely redundant. Briefly, we estimate a proximity-based metric that quantifies the distance
379  between the location of the causal mutation estimated by iSAFE and the tissue-specific eQTLs
380 for the 42 loci that likely started coming under selection ~900 generations ago, and compare
381  this to the same distances observed amongst randomly sampled sets of CoV-VIPs (Figure 6;
382  Methods).

383  Using this approach, we find that GTEx lung eQTLs lie closer to predicted causal mutations
384  amongst the 42 putative selected loci than for any other tissue (P=3.10°; Figure 6). Several
385  additional tissues known to be negatively affected by coronavirus — blood and arteries (Bao et
386 al., 2020; Grosse et al., 2020), adipose tissue (Michalakis and llias, 2020) and the digestive
387  tract (EImunzer et al., 2020) — also exhibit closer proximities between putative causal loci and
388 tissue-specific eQTLs than expected by chance (Figure 6). Interestingly, the spleen shows no
389 tendency for eQTLs to lie closer to selected loci than expected around 900 generations ago

390 compared to other evolutionary times, perhaps because the spleen is replete with multiple types
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of immune cells that might be more prone to more regular adaptation in response to diverse
pathogens over time, and less prone to adaptive bursts restricted over time in response to a
specific pathogen (Quintana-Murci, 2019). Note that tissues with more eQTLs tend to have
more significant p-values. For example skeletal muscle has a lower proximity ratio than stomach
but also a lower p-value due to the higher statistical power provided by more eQTLs. Our results
indicate that the tissues impacted in the inferred viral epidemic in ancestors of East Asians
match those pathologically affected by the SARS-CoV-2 infection in contemporary populations,
providing further evidence that this ancient infection might have been a coronavirus or another

type of virus that used similar host interactions.

Lung I ek
Testis I ke
Stomach I
Adipose subcutaneous I kekkk
Artery aorta I ek
Colon transverse I Fxx
Whole biood I
Adipose visceral I soxk
Breast mammary [
Pancreas I **
Esophagus gastroesophageal junction I #ox
Nerve tibial FEE T Hexkk
Artery tibial I ke
Brain cerebellum I x>
Esophagus muscuslaris I Ak
Skin I ke
Esophagus mucosa I sk
Muscle skeletal I sk
Cellfibroblasts I ®x
Heart atrial appendage I Sekekek
Heart left ventricle I T kekk
Colon sigmoid I **
Adrenal gland I ®
Thyroid Iy *
Spleen MY

0 0.5 1 1.5 2 2.5 3
GTEx eQTLs to iSAFE peaks proximity ratio

Figure 6. Proximity of selection signals to GTEx eQTLs at the 42 selected CoV-VIPs
compared to random CoV-VIPs

The histogram shows how close selection signals localized by iISAFE peaks are to the GTEx
eQTLs from 25 different tissues, at peak-VIPs compared to randomly chosen CoV-VIPs
(Methods). How close iISAFE peaks are to GTEx eQTLs compared to random CoV-VIPs is
estimated through a proximity ratio. The proximity ratio is described in the Methods. It quantifies
how much closer iISAFE peaks are to eQTLs of a specific GTEx tissue, compared to random
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408 expectations that take the number and structure of iISAFE peaks, as well as the number and
409  structure of GTEx eQTLs into account (Methods). Four stars: proximity ratio test P<0.0001.
410  Three stars: proximity ratio test P<0.001. Two stars: P<0.01. One star: P<0.05. Note that lower
411 proximity ratios can be associated with smaller p-values for tissues with more eQTLs (due to
412  decreased null variance; for example, skeletal muscle vs. pancreas).

413  Coronavirus VIPs are enriched for SARS-CoV-2 susceptibility and COVID-19 severity loci

414  Our results indicate that many of the selected CoV-VIPs now sit at intermediate to high

415 frequencies in modern East Asian populations. Accordingly, we anticipate that these

416  segregating loci should make a measurable contribution to the inter-individual variation in

417  SARS-CoV-2 susceptibility and (COVID-19) severity amongst contemporary populations in East
418  Asia, and predict that such loci would be readily detectable in a reasonably-powered genome
419  wide association study (GWAS) investigating these traits in East Asian populations. While such
420  ascan has yet to be reported for a large East Asian cohort, two GWASs were recently released
421  that used sizable British cohorts to investigate SARS-CoV-2 susceptibility (1,454 cases and
422 7,032 controls; henceforth called the susceptibility GWAS) and severity (325 cases [deaths]
423  versus 1,129 positive controls; henceforth called the severity GWAS) (data from the UK

424  Biobank; Sudlow et al., 2015; https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). Because

425 we use a different population than the ones where we found selection, we only ask, as a form of

426  functional validation of a viral pressure, if there is an overlap between the selected loci in East
427  Asia and stronger COVID-19 GWAS hits in the UK Biobank cohort. We do not look at all at the
428  directionality or the size of effects, as it is dubious that those would be transposable between
429  populations. This also means that we make no claim at all here about any decrease or increase
430  of virus susceptibility in any given human population compared to others. Furthermore, we use
431  the UK-Biobank cohort instead of the complete COVID-19 Host Genetics Initiative meta-GWAS
432  data (https://www.covid19hg.org/; The COVID-19 Host Genetics Initiative, 2020), to avoid

433  population stratification to the best extent possible (a legitimate concern with a trait clearly

434  affected by environmental factors).

435  While we are unable to precisely identify the causal variants for the selected CoV-VIP genes
436  observed in the ancestors of East Asians — nor would these variants necessarily occur as

437  outliers in a GWAS conducted on the British population — we note that it is possible that other
438 variants in the same CoV-VIP genes may also produce variation in SARS-CoV-2 susceptibility

439  and severity amongst modern British individuals.
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440 By contrasting variants in CoV-VIPs against those in random sets of genes, we find that variants
441 in CoV-VIPs have significantly lower p-values for both the susceptibility GWAS and severity
442  GWAS than expected (simple permutation test P<10° for both GWAS tests; Methods). More
443  importantly, the 42 CoV-VIPs from the selection event starting ~900 generations ago have even
444  lower GWAS p-values compared to other CoV-VIPs (P=0.0015 for susceptibility GWAS and
445  P=0.023 for severity GWAS; Methods). This result indicates that the selected genes inferred in
446  our study might contribute to individual variation in COVID-19 etiology in modern human

447  populations in the UK, providing further evidence that a coronavirus or another virus with similar
448 host interactions may have been the selection pressure behind the adaptive response we

449  observe in the ancestors of East Asians. Notably, the strongest GWAS hits identified by the
450 COVID-19 Host Genetics Initiative (listed at https://www.covid19hg.org/publications/) do not
451  overlap with the 42 CoV-VIPs selected in East Asia. We note however that we do not

452  necessarily expect the strongest GWAS hits in Europe to be strong hits in other populations. In
453  addition, although adaptation implies a functional genetic effect, a genetic effect does not

454  necessarily mean it has adaptive potential. The lack of overlap with the strongest COVID-19
455  Host Genetics Initiative hits is therefore not necessarily very surprising. It also does not take
456  away the fact that we found an enrichment in stronger GWAS hits on average at CoV-VIPs and

457  especially at selected CoV-VIPs.

458 Selected CoV-VIP genes include multiple known drug targets

459  Our analyses suggest that the 42 CoV-VIPs identified as putative targets of an ancient

460  coronavirus (or another virus using similar host interactions) epidemic might play a functional
461 role in SARS-CoV-2 etiology in modern human populations. We find that four of these genes
462 (SMADS3, IMPDHZ2, PPIB, GPX1) are targets of eleven drugs being currently used or

463 investigated in clinical trials to mitigate COVID-19 symptoms (Methods). While this number is
464  not higher than expected when compared to other CoV-VIPs (hypergeometric test P>0.05), we
465 note that most of the 42 genes identified here have yet to be the focus of clinical trials for SARS-
466  CoV-2-related drugs. In addition to the four selected CoV-VIP genes targeted by coronavirus-
467  specific drugs, five additional selected CoV-VIPs are targeted by multiple drugs to treat a variety
468  of non-coronavirus pathologies (Table S7). This raises the possibility that such drugs could be
469 repurposed for therapeutic use in the current SARS-CoV-2 pandemic. Indeed, an additional six
470  of the 42 selected CoV-VIPs have been identified by (Finan et al., 2017) as part of the

471  “druggable genome” (Table S7).
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472 Discussion

473 By scanning 26 diverse human populations from five continental regions for evidence of strong
474  selection acting on genes that interact with coronavirus strains (CoV-VIPs), we identified a set of
475 42 CoV-VIPs exhibiting a coordinated adaptive response that likely emerged more than 20,000
476  years ago (Figure 2). This pattern was unique to the ancestors of East Asian populations (as
477  classified by the 1,000 Genomes, including South East Asia with the Kinh in Vietham), being
478  absent from any of the 21 non East-Asian human populations tested here. By using ARG

479  methods to reconstruct the trajectories of selected alleles, we show that this selection pressure
480 produced a strong response across the 42 CoV-VIP genes that gradually waned and resulted in
481 the selected loci plateauing at intermediate frequencies. Further, we demonstrate that this

482  adaptive response is likely the outcome of a multigenerational viral epidemic, as attested by the
483  clustering of putatively selected loci around variants that regulate tissues known to exhibit

484  COVID-19-related pathologies, and the enrichment of variants associated with SARS-CoV-2
485  susceptibility and severity, as well as anti- and proviral functions, amongst the 42 CoV-VIP

486  genes selected starting around 900 generations ago.

487  Animportant limitation of our study is that some of our analyses rely upon comparative datasets
488 that were generated in contemporary human populations that have different ancestries than the
489 East Asian populations where the selected CoV-VIP genes were detected. In particular, both of
490 the eQTL and GWAS datasets come from large studies that are primarily focused on

491  contemporary populations from Europe, and none of the five European populations in our study
492  exhibit the selection signals observed in the genomes of East Asians. Accordingly, more direct
493  confirmation of the causal role of 42 CoV-VIP genes in COVID-19 etiology will require the

494  appropriate GWAS to be conducted in East Asian populations. The detection of genetic

495  associations amongst the 42 CoV-VIPs in a GWAS on contemporary East Asians would provide
496 further evidence that one or more coronaviruses, or another virus using similar interactions,

497  comprised the selection pressure that drove the observed adaptive response. Moreover, a high-
498 powered GWAS in East Asian populations would be required to identify the loci that currently
499  impact individual variation in COVID-19 etiology in East Asian individuals. Because of these
500 limitations, and because it would be extremely difficult to control for all the other factors that

501  differ across the world (including socioeconomic factors), our results do not represent evidence
502 for any difference in either increased or decreased genetic susceptibility in any human

503  population.
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504 Insights into ancient viral epidemics from modern human genomes

505 A particularly salient feature of the adaptive response observed for the 42 CoV-VIPs is that

506 selection appears to be acting continuously over a ~20,000 years period, with the caveat that
507 the start of selection is complex to pinpoint as shown by the analysis of the selected alleles

508 frequency trajectories (Figure 3). The activity of a viral pressure over such an extensive time
509 period is not consistent with epidemics that started in recorded human history, which tend to be
510 circumscribed to a few generations. A possible hypothesis is that the viral pressure remained
511 present throughout the 20,000 year period, but was only initially strong enough to qualify as a
512  full-blown pandemic in the commonly understood sense, before becoming less severe over time
513  as a consequence of host adaptation and/or a reduction in virulence. As this manuscript was in
514  the final stages of preparation, the first host-virus interactomes were published for SARS-CoV-1
515 and MERS-CoV, which exhibit an extensive overlap with the SARS-CoV-2 interactome used in
516 the present study (Gordon et al., 2020). This suggests that coronaviruses share a broad set of
517  host proteins that they interact with, which should also apply to ancient coronaviruses. These
518 patterns are consistent with one or more coronaviruses driving selection events in East Asian
519  prehistory that produced the signals that we report here. That said, and as already mentioned,
520 we cannot exclude that another, currently unknown type of viruses might have been

521 responsible, that used the same interactions as coronaviruses with human proteins. The

522  cumulated evidence in this study still clearly points towards an ancient viral selective pressure.

523  Further validation of the historical trajectories of the causal mutations at selected genes is still
524  needed, including more finely resolved temporal and geographic patterns that could be derived
525 from ancient DNA sampled from across East Asia that span the human occupation of this

526 region; however, the requisite ancient samples are lacking at the moment. Nonetheless, we
527  note the geographic origin of several modern outbreaks of coronaviruses in East Asia, point to
528 East Asia being a likely location where these ancient populations came into contact with the
529 virus. Given that multiple recently recorded coronavirus outbreaks have been traced to

530 zoonoses (direct or indirect with other animal intermediates) from East Asian bats (Wong et al.,
531  2019), our results suggest that East Asia might have also been a natural range for coronavirus

532  reservoir species during the last 25,000 years.

533 Applied evolutionary medicine: using evolutionary information to combat COVID-19

534  The net result of the ancient selection patterns on the CoV-VIPs in ancient human populations is

535 the creation of genetic differences amongst individuals now living in East Asia, and between
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536  East Asians and populations distributed across the rest of the world. As we demonstrate in this
537  study, this evolutionary genetic information can be exploited by statistical analyses to identify
538 loci that are potentially involved in the epidemiology of modern diseases — COVID-19 in the
539 present case. Such evolutionary information may ultimately assist in the development of future
540  drugs and therapies, by complementing information obtained from more traditional

541  epidemiological and biomedical research. For example, a recent study focusing on TMPRSS2 —
542  a gene encoding for a transmembrane protein that plays a key role in SARS-CoV-2 infection —
543  found that East Asian populations carry two protein coding variant that are correlated with low
544  fatality rate for COVID-19 cases (Jeon et al., 2020). While such studies provide high quality
545 information on a specific gene, the evolutionary approach adopted here is able to leverage
546  evolutionary information embedded in modern genomes to identify candidate genomic regions
547  of interest. This is similar to the information provided by GWAS —i.e. lists of variants or genes
548 that are potentially associated with a particular trait or disease — though we note that the

549 information provided by evolutionary analyses comes with an added understanding about the

550 historical processes that created the underlying population genetic patterns.

551 The current limitation shared by population genomic approaches such as GWAS and the

552  evolutionary analyses presented here, is that they identify statistical associations, rather than
553 causal links, between genomic regions and traits, thereby necessitating additional research to
554  confirm causality. In addition to the various forms of empirical information that we provide here,
555  further evidence of causal relationships between the CoV-VIPs and COVID-19 etiology could be
556  obtained by examining which viral proteins the selected CoV-VIPs interact with, thus

557  establishing the specific viral functions that are affected. As a preliminary observation, we find
558 that the 35 of the 42 selected SARS-CoV-2 VIPs tend to interact with more viral proteins than
559  expected by chance (13 instead of six expected, see Sl). Such information will help establish
560 genetic causality and will also improve our understanding of how hosts adapt in response to

561 viruses.

562  The ultimate confirmation of causality requires functional validation that the genes interact with
563 the virus, or that drugs targeting these genes have a knock-on impact for the virus. Notably,
564  several CoV-VIP genes are existing drug targets showing the functional importance of these
565 particular loci (Table S7), several of which are currently being investigated or used to treat

566  severe cases in the current COVID-19 pandemic. It remains to be established if the other genes
567 we have identified in this study might also help guide drug repurposing efforts and provide a

568 basis for future drug and therapeutic development to combat COVID-19 and related
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569 pathologies. It also remains to be established if population-specific past adaptation, and the
570 underlying selected changes at those genes, could imply different drug efficacies in different

571 human populations.

572 Conclusion

573 By leveraging the evolutionary information contained in publicly available human genomic

574  datasets, we were able to infer ancient viral epidemics impacting the ancestors of contemporary
575  East Asian populations, which initially arose likely more than 20,000 years ago, resulting in

576 coordinated adaptive changes across 42 genes. Importantly, our evolutionary genomic analyses
577 have identified several new candidate genes that might benefit current efforts to combat COVID-
578 19, either by providing novel drug targets or by repurposing currently available drugs that target
579 these candidate genes (Tables S4 & S6). More broadly, our findings highlight the utility of

580 thinking about the possible contribution of evolutionary genomic approaches into standard

581 medical research protocols. Indeed, by revealing the identity of our ancient pathogenic foes,
582  evolutionary genomic methods may ultimately improve our ability to predict — and thus prevent —

583  the epidemics of the future.

584

585

586

587
588
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Methods

Important note: for convenience, the 42 CoV-VIPs that we infer to have started coming

under selection around 900 generations ago are called peak-VIPs in the Methods.

Key resources table

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited Data

1000 Genome Project - Phase 3

(1000 Genomes Project
Consortium, 2015)

ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/release/20130502/

VIPs

—this manuscript

—Table S1

Relate-estimated coalescence
rates, allele ages and selection
P-values for the 1000GP

(Speidel et al., 2019)

https://zenodo.org/record/323
4689

GTEXx expression

(GTEXx Project, 2017)

https://gtexportal.org/home/d
atasets

Protein-protein interactions
(IntAct)

(Luisi et al., 2015)

https://www.ebi.ac.uk/intact

The density of conserved

segments (PhastCons)

(Siepel et al., 2005)

http://hgdownload.cse.ucsc.e
du/goldenPath/hg19/phastCo

ns46way/

The density of regulatory

elements

http://hgdownload.soe.ucsc.e
du/goldenPath/hg19/encodeD
CC/wgEncodeRegDnaseClus

tered

The recombination rate

(Hinch et al., 2011)

https://www.well.ox.ac.uk/~an

jali/AAmap/

Software and Algorithms
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selscan (compute nSL). (Szpiech and Hernandez, | https://qgithub.com/szpiech/sel
2014)
scan
hapbin (compute iHS) (Maclean et al., 2015) https://github.com/evotools/h
apbin

Gene Set Enrichment Pipeline (Enard and Petrov, 2020) | https://github.com/DavidPierr
eEnard/Gene_Set Enrichme

nt Pipeline

Relate (Speidel et al., 2019) https://myersgroup.github.io/r

elate/

CLUES (Stern et al., 2019) https://github.com/35ajstern/c

lues

iISAFE (Akbari et al., 2018) https://github.com/alek0991/i
SAFE

594

595 Coronavirus VIPs

596 We used a dataset of 5,291 VIPs (Table S1). Of these, 1,920 of these VIPs are high confidence
597  VIPs identified by low-throughput molecular methods, while the remaining VIPs were identified
598 by diverse high-throughput mass-spectrometry studies. For a more detailed description of the

599  VIPs dataset, please refer to SI: Host adaptation is expected at VIPs.

600 Genomes and sweeps summary statistics

601  To detect signatures of adaptation in various human populations, we used the 1,000 Genome
602 Project phase 3 dataset which provides chromosome level phased data for 26 distinct human
603  populations representing all major continental groups (1000 Genomes Project Consortium,

604 2015). To measure nSL separately in each of the 26 populations, we used the selscan software

605 available at https://github.com/szpiech/selscan (Szpiech and Hernandez, 2014). To measure

606 iHS, we used the hapbin software available at https://github.com/evotools/hapbin (Maclean et
607 al., 2015).
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608 Ranking of sweep signals at protein-coding genes and varying window sizes

609 To detect sweep enrichments at CoV-VIPs, we first order, separately in each of the 26 1,000
610  Genomes populations, human Ensembl (Cunningham et al., 2019) (version 83) protein-coding
611  genes according to the intensity of the sweep signals at each gene. As a proxy for the intensity
612  of these signals, we use the average of either iHS or nSL across all the SNPs with iHS or nSL
613  values within a window of fixed size, centered at the genomic center of genes, halfway between
614  the most upstream transcription start site and the most downstream transcription end site. We
615 then rank the genes according to the average iHS or nSL (more precisely their absolute values)
616 in these windows. We get six rankings for six different fixed window sizes: 50kb, 100kb, 200kb,
617  500kb, 1,000kb and 2,000kb. We do this to account for the variable size of sweeps of different
618  strengths. We then estimate the sweep enrichment at CoV-VIPs compared to controls over all
619 these different window sizes considered together, or at specific sizes, as described below and in
620 Enard & Petrov (Enard and Petrov, 2020).

621 Estimating the whole ranking curve enrichment at CoV-VIPs and its statistical

622  significance

623 To estimate a sweep enrichment in a set of genes, a typical approach is to use the outlier

624  approach to select, for example, the top 1% of genes with the most extreme signals. Here we
625 use a previously described approach to estimate a sweep enrichment while relaxing the

626 requirement to identify a single top set of genes. Instead of, for example, only estimating an

627  enrichment in the top 100 genes with the strongest sweep signals, we estimate the enrichment
628 over a wide range of top X genes, where X is allowed to vary from the top 10,000 to the top 10
629  with many intermediate values. This creates an enrichment curve as in Figure 1. Figure 1 shows
630 the estimated relative fold enrichments at CoV-VIPs compared to controls, from the top 1,000 to
631 the top 10 nSL. The statistical significance of the whole enrichment curve can then be estimated
632 by using block-randomized genomes, as described in Enard & Petrov (Enard and Petrov, 2020).
633 In brief, block-randomized genomes make it possible to generate a large number of random
634  whole enrichment curves while maintaining the same level of clustering of genes in the same
635 candidate sweeps as in the real genome, which effectively controls for gene clustering.

636  Comparing the real whole enrichment curve to the random ones then makes it possible to

637  estimate an unbiased false-positive risk (also known as False Discovery Rate in the context of
638  multiple testing) for the observed whole enrichment curve at CoV-VIPs. A single false positive
639 risk can be estimated for not just one curve but by summing over multiple curves combined,

640 thus making it possible to estimate a single false positive risk over any arbitrary numbers of rank
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thresholds, window sizes, summary statistics, and populations. For instance, we estimate the
false-positive enrichment risk of P=2.10"* at CoV-VIPs for rank threshold from the top 10,000 to
top 10, over six window sizes, for the five East Asian populations in the 1,000 Genomes data,
and for both nSL and iHS, all considered together at once. This makes our approach more
versatile and sensitive to selection signals ranging from a few very strong sweeps, to many,
more moderately polygenic hitchhiking signals. The entire pipeline to estimate false-positive
risks with block-randomized genomes is available at
https://github.com/DavidPierreEnard/Gene_Set Enrichment Pipeline (Enard and Petrov, 2020).

Building sets of controls matching for confounding factors

To estimate a sweep enrichment at CoV-VIPs, we compare CoV-VIPs with random control sets
of genes selected far enough (>500kb) from CoV-VIPs that they are unlikely to overlap the
same large sweeps. We do not compare CoV-VIPs with completely random sets of control
genes. Instead, we use a previously described bootstrap test to build random control sets of
genes that match CoV-VIPs for a number of potential confounding factors that might explain a
sweep enrichment, rather than interactions with viruses. The bootstrap test has been described
in detail (Enard and Petrov, 2020), and is available at

https://qgithub.com/DavidPierreEnard/Gene Set Enrichment Pipeline.

We include 11 different potential confounding factors in the bootstrap test:

- average GTEx expression in 53 GTEx V6 tissues.

- GTEx expression in lymphocytes.

- GTEx expression in testis.

- the number of protein-protein interactions from the Intact database, curated by Luisi et al.
(Luisi et al., 2015).

- the Ensembl (v83) coding sequence density in a 50kb window centered on each gene.

- the density of conserved segments identified by PhastCons (Siepel et al., 2005)
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons46way/).

- the density of regulatory elements, estimated by the density of Encode DNase | V3 Clusters

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/)

in a 50kb window centered on each gene.
- the recombination rate in a 200kb window centered on each gene (Hinch et al., 2011).

- the GC content in a 50kb window centered on each gene.
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672 - the number of bacteria each gene interacts with, according to the Intact database (as of June
673  2019; https://www.ebi.ac.uk/intact/).
674 - the proportion of genes that are immune genes according to Gene Ontology annotations

675 (G0:0006952 (defense response), GO:0006955 (immune response), and GO:0002376 (immune
676  system process) as of May 2020.

677  Estimating adaptation start times at specific genes with Relate

678 As times of emergence of adaptive mutations, we use the publicly available estimates from

679 Relate (hitps://myersgroup.github.io/relate/). Relate estimates mutation emergence times while

680 controlling for fluctuations of population size over time, based on the coalescence rates it

681 reconstructs after inferring ancestral recombination graphs at the scale of the whole genome
682  (Speidel et al., 2019). Relate provides two times of emergence of mutations, one low estimate
683  (less generations ago), and one high estimate (more generations ago). The low time estimate
684  corresponds to the time when Relate estimates an elevated probability that the frequency of the
685 mutation is different from zero. The high time estimate corresponds to the time when Relate
686 estimates that the probability is not too small that the frequency of the mutation is different from
687  zero. For our purpose of estimating when selection started, the low time estimate is the best
688  suited, because it provides an estimate of when the frequency of a selected mutation was

689 already high enough to distinguish from zero, for those mutations where selection started from a
690 very low frequency. For cases where selection started with standing genetic variants that were
691  already distinguishable from zero, the Relate low time estimates for the emergence of mutations
692 do not provide a good proxy for when selection actually started. Thus, if we were able to

693  estimate when selection started for standing genetic variants, we might be able to observe an
694  even stronger peak than the one we see when just relying on those variants where selection

695  started from low frequencies.

696 Using the low Relate time estimates is also justified due to the fact that the sweep establishment
697  phase can take very variable amounts of time before the start of the sweep exponential phase.
698  During the establishment phase, selected alleles are still mostly governed by drift which makes
699  pinpointing the actual starting time of selection difficult. In this context, the low Relate time

700 estimates provide an estimate of the time when the selected alleles were no longer at very low
701  frequencies not statistically different from zero, and closer to entering the exponential phase,

702  which provides a more certain time estimate for when selection started for certain.
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703  Animportant step is then to choose at each CoV-VIP locus, and all the other control loci, which
704  Relate mutation to use to get a single time estimate for each locus. Note that here we make an
705 assumption that each locus has experienced only one single adaptive event. Given our finding
706 thatiSAFE peaks at CoV-VIPs are much closer to GTEx V8 eQTLs than expected by chance, it
707 s likely that the selected adaptive mutations are regulatory mutations at, or close to annotated
708 eQTLs for a specific gene. They are not necessarily exactly located at eQTLs, because current
709 eQTLs annotations may still be incomplete, and in our case we use eQTLs identified in GTEX
710 V8 using mostly European individuals, even though we analyse selection signals in East Asian
711 populations. Because of these limitations, we use the Relate estimated time at the mutation
712  where Relate estimates the lowest positive selection p-value within 50kb windows centered on
713  eQTLs. We also only consider variants with a minor allele frequency greater than 20%, given
714  the signals detected by iHS and nSL that only have some power to detect incomplete sweeps
715  above 20% frequencies (Ferrer-Admetlla et al., 2014; Voight et al., 2006). This also excludes a
716  potential risk of confounding by low frequency neutral or weakly deleterious variants, that can
717  show selection-like patterns when their only way to escape removal early on is through a

718 chance, rapid frequency increase that can look like selection. The Relate selection test is based
719  on faster than expected coalescence rates given the population size at any given time, and its

720  results are publicly available at https://myersgroup.github.io/relate/. Note that the mutation with

721  the lowest Relate p-value does not always overlap with an iISAFE peak (Figure S5), which is not
722  entirely surprising if the haplotype signals exploited by both Relate and iSAFE partly

723  deteriorated due to recombination since the time selection at CoV-VIPs was strong (Figures 3
724  and 5). Both of these methods are indeed designed to locate the selected variant right after, or

725  during, active selection.

726  Because we work with five different East Asian populations, we more specifically select the
727  variant with the lowest Relate selection test p-value on average across all the five East Asian
728  populations. Then, we also use the corresponding average low Relate mutation time estimate
729  across the five East Asian populations. We do not attempt to estimate the selection time and p-
730  value by considering all 1,000 Genomes East Asian individuals tested together by Relate,

731 because then the Relate selection test is at a greater risk of being confounded by population
732  structure. Finally, we only consider CoV-VIPs and other control genes with an average Relate
733  selection test p-value lower than 107, to make sure that we indeed use estimated times at

734 selected variants.
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735 The peak significance test

736  To test if the peak of Relate time estimates around 900 generations ago at CoV-VIPs (Figure 2)
737  is expected simply by chance or not, we designed a peak significance test. The test compares
738  the peak at CoV-VIPs, with the top peaks obtained when repeatedly randomly sampling sets of
739  genes. We first identify the most prominent peak at CoV-VIPs by visual inspection of the pink
740  distribution of Relate times for CoV-VIPs compared to the blue distribution of Relate times for all
741 protein-coding genes with an estimated Relate time (Figure 2). To build these distributions, top
742  Relate selected mutations shared between multiple neighboring genes (CoV-VIPs or controls)
743  are counted only once, to avoid a confounding effect of gene clustering (152 selected variants at
744  CoV-VIPs, 1771 selected variants for all protein coding genes). The peak around 900

745  generations ago (870 generations more exactly) spans approximately 200 generations, where
746  the pink distribution is clearly above the blue one. We then use a 200 generations-wide window,
747  sliding every generation from 0 to 6,000 generations to verify the peak more rigorously. Sliding
748  one generation after another, each time we count the difference between the number of Relate
749  selected variants at CoV-VIPs that fall in the sliding 200 generations window, and the number of
750 Relate selected variants at all other genes that are not CoV-VIPs, weighted by the percentage
751 of variants found at CoV-VIPs, to correct for the different size of the two sets of variants. Using
752  this sliding window approach, the top of the peak is found at 870 generations, with a difference
753  of 19.5 additional Relate selected variants between 770 and 970 (870 plus or minus 100) at

754  CoV-VIPs compared to the null expectation.

755  We then repeat the sliding of a 200 generations window to identify the maximum peak and
756  measure the same difference, but this time for random sets of Relate selected variants of the
757 same size (152 selected variants out of the 1,771 selected variants). To estimate p-values, we
758  then compare the actual observed difference with the distribution of differences generated with

759  one million random samples.

760  As mentioned in the Results, one potential issue is that we run the peak significance test after
761  we already know that CoV-VIPs are enriched for iHS and nSL top sweeps, and especially

762  enriched for nSL top sweeps. This enrichment may skew the null expectation for the distribution
763  of Relate times at CoV-VIPs. In other words, there is a risk that any set of genes with the same
764  sweep enrichment might exhibit the same peak as CoV-VIP. As a result, comparing CoV-VIPs
765  with randomly chosen non-CoV-VIPs may not be appropriate. To test this, we repeat the peak
766  significance test, but this time comparing the peak at CoV-VIPs with the peaks at random sets
767  of non-CoV-VIPs that we build to have the same distribution of nSL ranks as CoV-VIPs. To do
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768 this, we define nSL bins between ranks 1 and the highest rank with a rank step of 100 between
769  each bin, and we count how many Relate selected variants fall in each bin (each gene has one
770 nSL rank and one Relate selected variant). To build the random set, we then fill each of the 100
771 bins with the same number of random non-CoV-VIPs, as long as their nSL rank falls within that
772  bin. We use the average nSL rank over the five East Asian populations, and the lower

773  population-averaged rank of either 1 Mb or 2Mb window sizes (where we observe the strongest
774  enrichment at CoV-VIPs, see Results). The results of the peak significance test are unchanged
775  when using the matching nSL distribution (peak significance test P=1.10-4 vs. P=2.3.10-4

776  without matching nSL distribution).

777  In further agreement with the fact that the sweep enrichment does not confound the peak

778  significance test, the peak at CoV-VIPs stands out more when repeating the peak significance
779  test using a smaller nSL top rank limit (Figure S6). In this case, we compare sets of CoV-VIPs
780  and sets of controls both enriched in stronger sweep signals. Thus, if stronger sweep signals at
781  CoV-VIPs biased the peak significance test, we would expect the peak to fade away when

782  comparing only CoV-VIPs and controls both with stronger nSL signals. Conversely, we observe
783  that half of the CoV-VIPs with the weaker nSL signals (population-averaged nSL rank higher
784  than 7,200 for both 1Mb and 2Mb windows) do not show a significant peak (peak significance
785  test P=0.53).

786  The iSAFE peaks/eQTL proximity test

787  Adaptation in the human genome was likely mostly regulatory adaptation through gene

788  expression changes (Enard et al., 2014; Kudaravalli et al., 2009; Nédélec et al., 2016; Quach et
789  al., 2016). To test if positive selection at CoV-VIPs likely involved regulatory changes, we ask
790  whether the signals of adaptation around CoV-VIPs are localized closer than expected by

791  chance to GTEx eQTLs that affect the expression of CoV-VIPs in present human populations.
792  Indeed, the genomic regions at or close to CoV-VIP GTEx eQTLs are likely enriched for CoV-
793  VIP regulatory elements, and therefore the most likely place to find CoV-VIP-related adaptations
794  in the genome. To localize where adaptation occurred, we use the iSAFE method that was

795  specifically designed for this purpose (Akbari et al., 2018). iISAFE scans the genome and

796  estimates a score that increases together with proximity to the actual selected mutation. The
797 higher the score, the higher the odds that the scored variant is itself the selected one, or close
798  to the selected one. An important caveat is that iISAFE is designed to localize where selection

799  happened right after it happened, or as selection is still ongoing. In our case, we have evidence
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that selection was strong at CoV-VIPs only more than 500 generations (~14,000 years) ago,
and then much weaker more recently (Figure 5). This could be an issue, because we expect
that recombination events that occurred after the strong selection might have deteriorated the
iISAFE signal that relies on haplotype structure. This is because recombination mixes together
the haplotypes that hitchhiked with the selected mutation, with those that did not. In line with
this, we often do not observe simple, clean iSAFE score peaks, but instead, iSAFE score
plateaus and more rugged peaks (Figure S5). For this reason, we designed an approach to not
only identify the top of simple iISAFE peaks, but also more rugged peaks or plateaus. First, to
measure iISAFE scores, we combine all the haplotypes from the five East Asian populations
together as input, since we found that the selection signal at CoV-VIPs is common to all these
populations (iISAFE parameters: --IlgnoreGaps --MaxRegionSize 250000000 --window 300 --
step 100 --MaxFreq .95 --MaxRank 15). We then use a 500kb window sliding every 10kb to
identify the highest local iISAFE value in the 500kb window (Figure S8). Once we have the
highest local iISAFE value and coordinate, we define a broader iSAFE peak as the region both
upstream and downstream where the iISAFE values are still within 80% of the maximum value
(Figure S8). This way, we can better annotate iSAFE plateaus and rugged peaks, and take into

account the fact that they can span more than just a narrow local maximum (Figure S5).

Once the local iSAFE peaks are identified, we can ask how close GTEx eQTLs are to these
peaks compared to random expectations. We first measure the distance of each CoV-VIP GTEx
eQTL to the closest iISAFE peak. To avoid redundancy, we merge eQTLs closer than 1kb to
each other into one test eQTL at the closest, lower multiple of 1,000 genomic coordinates (for
example 3,230 and 3,950 would both become 3,000). We then measure the average of the log
of the distance between all CoV-VIPs and their closest iSAFE peak. We use the log (base 10) of
the distance, because it matters if the eQTL/ISAFE peak distance is 100 bases instead of
200kb, but it does not really matter if the distance is 200kb or 600kb, because the iSAFE peak
at 300kb is likely not related to the eQTL more than the peak at 600kb. Once we have the
average of log-distances, we compare it to its random expected distribution. To get this random
distribution, we measure the log-distance between each CoV-VIP eQTL and the iSAFE peaks,
but after shifting the iISAFE scores left or right by a random value between 1Mb and 2Mb (Figure
S8; less, or no shift at all if this falls within telomeres or centromeres). We shift by at least 1Mb
to make sure that we do not rebuild the original overlap of iISAFE peaks with eQTLs again and
again (some iSAFE peaks, or more precisely rugged peaks and plateaus can be wide and

include several hundred kilobases; see Figure S5). The random shifting effectively breaks the
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833 relationship between eQTLs and iSAFE peaks, while maintaining the same overall eQTL and
834  peak structure (and thus variance for the test). The random log-distance distribution then
835 provides an overall random average log-distance to compare the observed average long-

836  distance with, as well as estimate a p-value.

837  Then, to more specifically ask if lung eQTLs at CoV-VIPs or the eqTLs of other specific tissues
838  are closer to iISAFE peaks than expected by chance, we can do the same but only using the
839  eQTLs of that specific tissue. The analysis represented in figure 6 is however more complicated
840 than just testing if CoV-VIP eQTLs for a specific tissue are closer to iISAFE peaks than expected
841 by chance by randomly sliding iISAFE values. Instead, what we ask is whether the 42 peak-VIPs
842  have eQTLs for a given tissue that are even closer to iISAFE peaks than the eQTLs of all CoV-
843  VIPsin general. To test this, for example with lung eQTLs, we first estimate how close lung

844  eQTLs are to iSAFE peaks at peak-VIPs, compared to random expectations, by measuring the
845  difference between the observed and the average random log-distance, just as described

846  before. We then count the number of peak-VIPs with lung eQTLs (19 out of 25 peak-VIPs with
847  GTEx eQTLs), and we randomly select the same number of any CoV-VIP (which may randomly
848 include peak-VIPs) as long as the random set of CoV-VIPs has the same number of lung eQTLs
849  (plus or minus 10%) as the set of peak VIPs with lung eQTLs (the same gene can have multiple
850 eQTLs for one tissue). We make sure that the tested and the random sets have similar numbers
851 of genes and eQTLs so that the test has the appropriate null variance. We then measure the
852  difference between the observed log-distance, and the randomly expected average log-distance
853  for the random set of CoV-VIPs, exactly the same way we did before for the actual set of peak-
854  VIPs. We then measure the ratio of the observed difference in log-distance between peak-VIPs
855 and the random expectation after many random shiftings (1,000), divided by the average of the
856 same difference measured over many random sets of CoV-VIPs. The final ratio tells us how
857  much closer lung eQTLs are to iSAFE peaks at peak-VIPs compared to CoV-VIPs in general,
858  and still takes the specific eQTLs and iISAFE peak structures at each locus into account, since
859  we compare differences in log-distances expected while preserving the same eQTL and iSAFE
860  peak structure (see above the description of the random coordinate shifting). One important last
861  detail about the test is that because we already found that the 50% of loci with the lowest nSL
862  signals do not show a peak of selection at CoV-VIPs around 900 generations ago (see Results),
863  we do not use these loci in this test since any iISAFE peak there is much more likely to represent
864 random noise, not actual selection locations, and thus likely to dilute genuine signals. Using this

865 test, we find that lung and other tissues’ eQTLs at peak-VIPs are much closer to iISAFE peaks
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866 than they are at CoV-VIPs in general. This test thus specifically tells that adaptation happened
867  closer to lung eQTLs, specifically around 900 generations ago compared to other evolutionary
868 times. By estimating the same ratio for 24 other tissues with at least 10 peak-VIPs with the

869  specific tested tissue eQTLs, we can finally rank each tissue for its more pronounced

870 involvement in adaptation ~900 generations ago, as done in figure 6. It is particularly interesting
871 in this respect that the tissue with least evidence for being more involved in adaptation at that
872  time more than other evolutionary times is spleen. Spleen indeed likely represents a good

873  negative control as a tissue strongly enriched in immune cell types and likely to have evolved

874  adaptively for most of evolution.

875 UK Biobank GWAS analysis

876  To compare the UK Biobank GWAS p-values at different loci, we assigned one p-value for each
877  gene, either CoV-VIPs, peak-VIPs or other genes, even though each gene locus can have many
878  variants with associated GWAS p-values. To assign just one single GWAS p-value to each

879  gene, we selected the variant with the lowest p-value at or very close (<1kb) to GTEx eQTLs for
880  a specific gene, in line with the fact that GWAS hits tend to overlap eQTLs (Hormozdiari et al.,
881  2016), and to remain consistent with the rest of our manuscript. We then compared the average

882  p-value between different sets of genes using classic permutations (one billion iterations).

883  Drug targets identification

884  We queried the databases DGIdb (Cotto et al., 2017), and PanDrugs (Pifeiro-Yanez et al.,
885  2018) for drugs targeting CoV-VIPs and peak-VIPs. For hits from PanDrugs we limited the
886  results to only genes that are in direct interaction with the designated drug. Drugs targeting
887  peak-VIPs are presented in Table S7. In addition, we present a list of peak-VIPs that are not
888  currently drug targets, but have been previously identified in (Finan et al., 2017) as viable drug

889  targets (druggable genome).
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