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Abstr act

The effects of climate change on speciesrichnessis debated but can be informed by the past. Here, we
assess the impact of Holocene climate changes and nutrients on terrestrial plant richness across
multiple sites from northern Fennoscandia using new sedimentary ancient DNA (sedaDNA) data
quality control methods. We find that richness increased steeply during the rapidly warming Early
Holocene. In contrast to findings from most pollen studies, we show that richness continued to increase
through the Middle to Late Holocene even though temperature decreased, with the regional species
pool only stabilizing during the last two millennia. Furthermore, overall increase in richness was
greater in catchments with higher soil nutrient availability. We suggest that richness will rapidly
increase with ongoing warming, especially at localities with high nutrient availability and even in the

absence of increased human activity in the region, although delays of millennia may be expected.
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I ntroduction

Our ability to counter the current loss of biodiversity is dependent on how well we understand the
causes of its change through time. However, the trgjectory of biodiversity, especially in response to
ongoing climate change, is vigorously debated (1, 2), with discrepancy among short-term biodiversity
patterns at global, regional, and local scales, whereby local processes may compensate or even
counteract global trends (3). Our understanding of how species pools - the accumulated species
richness at a given spatiotemporal scale (sensu 4) - affect biodiversity patterns through timeis limited,
In part because constructing past species pools from present-day datais anon-trivial task (5).

The largest impact of ongoing climate change is expected to be at high latitudes (6). Field and
modelling analyses suggest plant species richness will increase at high latitudes in Europe as summer
temperature increases (7). Short-term observational studies, however, suggest that colonization by
terrestrial speciesislagging behind shiftsin temperature isotherms (8), which can be compensated in
the short term by local extinction lags (1). Therefore, studies addressing species pools and local
richness at high latitudes and at different spatiotemporal scales are warranted to increase our
understanding of biodiversity responses to ongoing climate change.

Changes in species richness by other drivers, such as nutrient levels, species introductions, and
dispersal lags, are often context-dependent and hence difficult to predict. For example, edaphic
variation, including variation in nutrient content, is hypothesized to strongly influence establishment,
ecological drift, and niche selection, which all affect the local species pool, and thisin turn affects
richness (9). Experimental approaches have shown a non-linear impact of fertilization on Arctic plant
richness and their ecosystem functions (10). An overall greater species richness has been reported from
calcareous as compared with siliceous bedrock areas in the European Alps and northern Fennoscandia,
whereby leaching of the former produces neutral to acidic microenvironments, providing a mosaic of

habitats that may promote species establishment and an increase local richness (11, 12). Human land
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use may also increase soil fertility and thereby richness (13), but the overall human impact at high
latitudes in Europeislow (14). Thereis also evidence that the trgjectory of succession, particularly soil
formation, after glacier retreat varies due to abiotic rather than biotic factors (15). Furthermore, it has
been found that regional plant species richness in previously glaciated regions may still be responding
to past deglaciation, whereas local richness may be determined by local habitat factors (16).

Thereis aclear need for long-term data at the regional and local scales to better understand
biodiversity trends (17). Paleoecological studies, especially those based on pollen (palynological)
analyses, provide direct long-term evidence of plant biodiversity change and have been widely used to
estimate effects of climate changes on richness (18-20). Contrasting richness patterns have been
observed in different regions over the Holocene (11.7 thousand calibrated years before present (ka) to
recent). In the European northern boreal region (Scotland, Fennoscandia, Iceland, Baltic States, NW
Russia) pollen richness shows an overall decrease from 11.7-7.0 ka, followed by an increase to nearly
peak levels by recent times (19). In the far north of Fennoscandia, however, a study spanning aforest to
shrub-tundra gradient shows an inconsistent richness pattern through the Holocene (21). If plant
dispersal had been slow, due to not being able to track a changing climate as it changes (dispersal 1ag)
for example, then diversity in previously glaciated areas would be expected to increase over time. Such
a scenario was not observed in central Sweden (22) but was inferred in Norway (20). These studies
highlight the challenges of comparing pollen richness across different vegetation zones, whichis
confounded by inferences based on pollen being impacted by over-abundance of a few taxa
(swamping), under-representation of other taxa, or low abundance of al taxa, the latter of whichisa
particular problem above the treeline (23).

An alternative, emerging proxy for examining long term, regional scale richness and species
pool trendsis sedimentary ancient DNA (sedaDNA). Compared to pollen, sedaDNA provides higher

taxonomic resolution, has fewer problems with swamping, and is considered to only represent the local
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plant community (24—26). In a small catchment, sedaDNA may, therefore, also register the effect of
drivers on alocal rather than regional scale (27). Ground truthing studies show a strong correlation
between modern sedimentary DNA-inferred richness and richness of modern vegetation around lake
catchments (28). However, in contrast to pollen, sedaDNA studies have focused almost exclusively on
single sites (but see 27, 29, 30), thereby limiting our spatial understanding of richness and species pool
patterns. A key challenge to combining multi-site sedaDNA datafrom lake coresis that data need to be
directly comparable, both within (temporal) and between (spatial) sites, otherwise biased richness
estimates resulting from data quality problems could potentially lead to erroneous local- and regional-
scale inferences.

Here, we generate the largest sedaDNA data set to date, consisting of 387 dated samples from
10 sites in northern Fennoscandia using vascular plant metabarcoding, and harmonize the entire data
set using standardized taxonomy and novel data quality control measures that will be highly applicable
to the wider environmental DNA community. Capitalizing on this harmonized high resolution
taxonomic data set, we estimate richness, local species pools (accumulated richness per catchment),
and the regional species pool (accumulated richness for all 10 sites) throughout the Holocene which we
compare to two potential drivers, climate and local edaphic conditions. We find that temperature and
soil nutrients are important drivers, but suggest that dispersal lags and habitat diversification also
provide an important mechanism for plant richness changes through time. By providing refined
paleoecol ogical insghts, sedaDNA data are well positioned to increase the precision of integrative

ecological models for predicting the consequences of ongoing climate change.

Results

Age-depth models

We constructed Bayesian age-depth models for 10 lake sites (Figs. 1, 2, S1) to estimate the age of each

individual sedaDNA sample. Since the cores were all central or near-central lake locations and the
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lakes were medium to small with in most cases only one depositional basin, the age-depth curves were
approximately linear or curvilinear with three exceptions (Figs. 2, S1). Kuutgarvi had adistinct
reduction in sedimentation rate from around 4.0 ka. Sandfjorddalen had stepped changesin the
sedimentation rate with possible hiatuses in the Early Holocene (11.0-8.0 ka) and Late Holocene
between 6.0 and 2.0 ka. This probably reflectsits position in the valley floor as a flow-through lake.
Lastly, Sierravannet had a distinct upturn in the accumulation rate around 0.6 ka to present, which
occurs after a putative flood event at ca. 48-40 cm composite depth (equivalent to ca. 0.6 ka). This8 -
cm layer is characterised by a dark band in the visible stratigraphy, a rapid decrease and then increase
in organic carbon (loss-on-ignition, LOI), and two older-than-expected dates, which were consequently
not included in the age-depth model. Given that this |ake has the largest catchment area and thereisa
changein lithology, thisis probably the result of flooding from the upstream lakes and fluvial network.
Theterrestrial plant taxonomic richness trends are unaffected by the removal of the four sedaDNA
samples that fall within thisflood event window (Fig. S2). For the interpretation of the sedaDNA
records, the age-depth models provided similar temporal resolution of 158-616 years per sample for all
lakes except Sierravannet, which had 63 years per sample. Six of the sedimentary records covered the
entire Holocene (Figs. 2, S1) and all except one (Sierravannet) covered the three periods of the
Holocene (Early, 11.7-8.3 ka; Middle, 8.3-4.25 ka; Late Holocene, 4.25-0.0 ka), although the usable
Nesservatnet record was reduced to the Late Holocene after removal of low quality sedaDNA samples
(see below). For two records that extend into the lateglacial (late Pleistocene; Langfjordvannet,
Nordvivatnet), the age-depth models are not well constrained in the lateglacial period. For
Langfjordvannet, three hiatuses were inferred by Ottera (31). We tentatively infer a single hiatus for
Nordvivatnet (Fig. 2), which could have been caused by arock slide, and is based on the recovery of
glacially-scarred stones (impressions shown in visible stratigraphy in Fig. S1H), low organic carbon

(LQI), and comparable radiocarbon dates.
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Sedimentary ancient DNA data quality assessment

Across our 10 lake sediment records, we generated 91.6 million raw sequence reads from 387 sediment
samples and 90 control samples. We observed notable differences in data quality between samples both
within and between lake records during preliminary data exploration. We therefore sought to develop
criteriato scrutinize the quality of samples and provide a cut-off for removing those considered
problematic and which may have been impacted by poor DNA quality or methodological issues, such
as extract inhibition. We developed two statistics based on the most read-abundant sequences, with the
rationale that if these sequences were not replicable, then we cannot exclude methodological problems.
We first developed a metabar coding technical quality (MTQ) score to assess metabarcoding success on
aper-sample basis. This score is the proportion of positive PCR detections across the 10 most read-
abundant sequences within a sample prior to any taxonomic identification. We next developed a
metabar coding analytical quality (MAQ) score to assess the success of recovering sequences of
interest. This scoreisthe same as the MTQ score, except that the 10 most read-abundant and
taxonomically-identified sequences, after removing those that matched the blacklists, were used.
Sources of MTQ and MAQ score divergence include the co-amplification of unidentified and/or
contaminant sequences. For all samples across the data set, we examined the distribution of MTQ and
MAQ scores and used these to infer that samples should require an MTQ score of >0.75 and MAQ score
of >0.2 to pass quality control (QC) and be included in downstream analyses (Figs. 3, S3, $4). This
cutoff excluded all negative controls, which had an MTQ score of <0.75 and MAQ score of <0.1.

After applying our QC thresholds and removing duplicates, we retained 316 samples (Fig. 3).
Thisresulted in 12-55 samples retained per record (Data sets 4, S8; Fig. S3). We retained 402
barcodes, which were collapsed to 346 taxa with between 89-200 taxa recorded from each lake record

(Table S1). Of these, 50% could be assigned to the species level (Data sets S6, S7). As our focus was
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on theterrestrial plant diversity, we excluded 13 algae and 36 aguatic plant taxa. Nine taxa were only
present in samples that failed QC. Thus, our final dataset retained 288 terrestrial plant taxa detected in
316 samples.

We next explored the relationship between observed taxonomic richness and/or sample age
against six measures of sedaDNA quality, with each measure calculated on a per sample basis.

MTQ and MAQ scores. Both scores correlate with richness when richnessis low (<25-30; Fig.
3), which islikely an artifact of the requirement that the 10 best represented barcodes are required to
calculate these scores. At higher richness values, both MTQ and MAQ scores are uniformly high. MTQ
scores are minimally impacted by sample age (Figs. 3, S4A), although samples older than ~8.0 katend
to have lowered MAQ scores (Fig. 3), which isdriven by the Eastorjavri South, Langfjordvannet,
Kuutgérvi, Nesservatnet, and, to alesser extent, Jokelvatnet records (Fig. $4B).

Raw read count summed across PCR replicates: Richness may be influenced by differencesin
total sequencing depth between samples, whereby we would expect increased total depth to correlate
with richness as the likelihood of detecting read-rare taxaisincreased (e.g. (32)). However, we do not
observe arelationship between richness and raw read count (Fig. 3), suggesting that differencesin
sequencing depth do not influence richnessin our data set. Thisis consistent with the results of the
rarefied richness analyses (Table S2). We also do not observe a relationship between sample age and
sequencing depth (Figs. 3, SAC), suggesting there is no temporal or stratigraphic biasin our ability to
generate raw reads. We note that samples that passed or failed QC had comparable total sequencing
depths.

Mean length of identified barcodes through time: As ancient DNA fragments into shorter
molecules over time (33), a reduction in mean barcode length with sample age may suggest that longer
barcodes are no longer preserved thus biasing estimates of temporal richness patterns. However, this

assumes that barcode length isindependent of taxonomic group and/or ecological community
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composition, which may not always be the case. We do not observe a decrease in mean barcode length
with agein samples that pass QC (Figs. 3, $4D). Samples that fail QC are often mean length outliers
that show no relationship to age, but are rather an artifact of small sample sizes. Minor decreases in
mean barcode length with sample age are observed for Kuutgarvi and Langfjordvannet (Fig. $4D).
Mean proportion of weighted PCR replicates (WtRep): The mean wtRep provides a measure of
mean taxon detectability in samples. If barcode template concentrations in sedaDNA extracts are low,
then we would expect recovered richness to be limited, due to dropout, with a corresponding reduction
in detectability of taxathat are observed. Consistent with this expectation, we find that mean wtRep
values are comparable for samples with richness >25-30 (Fig. 3), but that mean wtRep and richness are
correlated when richness is <25-30. However, we observe only a modest decrease in mean wtRep
values with sample age (Fig. 3), suggesting that taxon detectability is not affected by age. The greatest
age-related reductions in mean wtRep values are in samples from Langfjordvannet, Kuutgarvi,
Nesservatnet, and, to a lesser extent, Jekelvatnet (Fig. S4E). We note, a posteriori, that mean wtRep
and MAQ scores may not be independent measures, especially for samples with low richness (<25-30).
The proportion of raw reads assigned to terrestrial plant taxa: If there is co-amplification of
non-terrestrial plant, algae, contaminant, and/or other off-target molecules, then terrestrial plant
richness may be reduced by swamping. Interestingly, we observe that at least ~40% of reads are
required to be identified as terrestrial plant taxa for observed richness to exceed ~60 taxa (Fig. 3).
When richnessis <60, we observe that the proportion of readsidentified asterrestrial plant taxa
decreases with richness (Fig. 3). However, we note that there is large variance around this trend and so,
for example, samples from the Middle Holocene of Sandfjorddalen have comparable observed richness
to Early Holocene samples from Gauptjern (Fig. S3), even though reads from the former are swamped
by reads from aquatic plant taxa (Fig. S5). Across the entire data set, there is a gradual reduction in the

proportion of reads identified as terrestrial plant taxa with sample age, which isdriven by the
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Eastorjavri South, Kuutgjéarvi, and Nesservatnet records (Figs. 3, S4F, S5). Samples that failed QC
tended to have alower proportion of reads identified asterrestrial plant taxa (Figs. 3, $4F, S5).
Overall, we found that the MTQ and MAQ score QC thresholds removed the worst performing
samples. The records with the best sedaDNA quality are Gauptjern, Horntjernet, Nordvivatnet,
Sandfjorddalen, and Sierravannet. Samples from the Early Holocene should be treated with more
caution from the Eastorjavri South, Kuutgjarvi, Langfjordvannet, and Jekelvatnet records (Figs. $4,

S5).

Local richness and species poal

To evaluate how richness and the local species pool changed through time, we calculated the
accumulated and observed number of taxain each sample within each lake as measures of local species
pool and richness respectively. The local species pools increased over timefor al catchments (Fig. 4)
with the highest recorded at Jakelvatnet (200 taxa), which today drains a catchment that has a Late
Holocene glacier inits upper reaches (Fig. 1; Supplementary Materials, SI1). Rich species pools were
also found at Gauptjern, which is at the border between pine and birch forest, and at Nordvivatnet and
Langfjordvannet, which have a mixture of heathland, birch forest, and scree slope in their catchments.
Somewhat lower species pools were found at the two sitesin pine forest, Horntjernet and Kuutgérvi,
and at Sierravannet, a site with birch forest, and pine and larch plantations. The two shrub-tundra sites,
Eastorjavri South and Sandfjorddalen, had smaller species pools, similar to Nesservatnet, which is
surrounded by heathland/mires (93 taxa) and located on the small island of Argya.

There were clear differences among lakes, both in the overall levels of richness and in the
changein richness over the period (Fig. 4). The mean (£SD) taxonomic richness (Hill NO) ranged from
20.6 (+ 6.4) at Horntjernet to 65.5 (+ 24.5) at Jokelvatnet, whereas Hill N1 ranged from 14.9 (+ 7.8) at

Eastorjavri South to 52.4 (+ 20.5) at Jokelvatnet (Fig. 4; Table S1). The rarefied richness based on read

10


https://doi.org/10.1101/2020.11.16.384065
http://creativecommons.org/licenses/by/4.0/

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.384065; this version posted December 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

count showed a strong correlation with observed taxonomic richness (R=0.82-0.99; Table S2),
suggesting that the observed pattern was not affected by sequencing depth. The Hill N1 (common taxa)
showed temporal patterns that mirrored those of observed taxonomic richness for all the lakes except
Sierravannet (Fig. 4).

We observed a significant effect of the age of samples on taxonomic richness as indicated by
statistically significant smooth terms in generalized additive mixed models (Table S3), except for
Sierravannet, which only covered 2.6 ka, and where diversity suddenly dropped around 0.6 ka,
corresponding to a putative flood event (Fig. S2). For two of the lakes, Eadtorjévri South and
Nesservatnet, anear linear pattern of increase in taxonomic richness through time (edf=1) was
recovered. On the other hand, Langfjordvannet had the most complex pattern of increasein richness
(edf=5.93, Table S3). The stegpest increase was seen in the Early and Middle Holocene for most lakes.
Only at three sites, Nordvivatnet, Horntjernet and Gauptjern, did richness reach a plateau during the

Late Holocene; for most lakes no levelling off was observed suggesting that richnessis still increasing

(Fig. 4).

Regional richness and species pool

To assess temporal patterns of regional species pool and richness, we calculated the accumulated
number of detected taxa from the entire quality controlled data over the Holocene as a measure of the
regional species pool, and the number of taxa detected in each sample as a measure of richness (Figs.
5A, S6). During the Early Holocene, there was a strong increase in the regional species pool size. The
regional species pool increased monotonically from the Early Holoceneto ca. 7.0 ka, the rate Slowed in
the period ca. 7.0-5.0 ka followed by an uptick from 5.0-3.3 ka before stabilising. The regional species

pool levelled off over the last two millenniawith an increase of just 10 taxa (3.5% of the total).

11
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The mean (£SE) predicted taxonomic richness (Hill NO) based on a generalized additive model
showed a steep increase during the Early Holocene from 13.8+3.9 to 31.8+1.5 taxa per sample when
evaluated using 500-year time windows. Richness continued to increase during the Middle Holocene
(33.4£1.5t0 42.7+1.3), and showed only a minor increase during the Late Holocene (43.7+1.3 to

45.9+2.0).

Richnessin relation to local and regional species pools

To assess how local and regional species pool affects richness (beta-diversity) at respective scales, we
used the accumulated number of taxa within alake and 500-year time bin as measures of local and
regional species pools respectively, and mean number of taxa at respective scales as richness estimates.
There was a strong positive association between mean terrestrial plant richness and the local species
pool of lakes, where 82% of the variation in local richness was explained by local species pool
(Rzadj:0.82, p<0.001, df=8; Fig. 6A). The mean richness of lakes represented about 24% to 37% taxa of
the local species pool, except at Horntjernet, where richness represented only 18% taxa of the local
species pool. The mean local richness increased by nearly four taxa (regression slope=0.36) for every
10 taxa that were added in the local species pool. Similarly, we found a strong positive correlation
between mean richness per 500-year time period and total taxa available in the respective period, and
86% of the variation in richness was explained by the regional species pool (Rzadj:0.86, p<0.001,
df=21; Fig. 6B) where ~23% to 39% of the taxa from the regional species pool were represented by the
mean richness. The mean regional richness increased by more than two taxa (regression slope=0.23)

with the addition of 10 taxain the regional species pool.
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Impact of regional climate on plant richness

We used oxygen isotope (8*20) values from the North Greenland Ice Core Project (NGRIP) (Andersen
et al., 2004) as aproxy for temperature to assess the impact of regional climate on local richness during
different periods of the Holocene. Climate had a significantly positive effect on richness in the Early
Holocene (=0.23, SE=0.05, p<0.001), a marginal negative effect in the Middle Holocene (=-0.26,
SE=0.13, p=0.048), and a clear negative effect in the Late Holocene (p=-0.53, SE=0.12, p<0.001; Fig.
7A). In the Early and Late Hol ocene, temperature changed linearly through time at arate (+SE) of 0.92
(+0.07) and -0.13 (+0.01) §'®0/ka respectively, whereas there was no directional change in temperature

across the Middle Holocene (Fig. 5B).

Effect of nutrient availability on plant richness

We used a hew semi-quantitative nutrient index based on rock type and its weatherability to assess how
nutrient availability in the catchment area affects richness. We observed a positive correlation between
nutrient index and taxonomic richness for all three time periods (Fig. 7B) although this was not
significant for the Early Holocene (Rzad,-:O.36, F(1,6)=4.92, p=0.07), which also had the smallest
sample size. The nutrient index explained 51% and 35% of the variation in richness for the Middle
(R?%4=0.51, F(1,7)=9.22, p=0.02) and Late Holocene (R*x;=0.35, F(1,8)=5.92, p=0.04) respectively.
The nutrient-richness relationship was stronger for the Middle Holocene (p=0.21, SE=0.07, p=0.02)
than the Late Holocene (f=0.12, SE=0.05, p=0.04). The effect of nutrient index on taxonomic richness
was strongest when the impact of climate was negligible during the Middle Holocene. This suggests
that a significant cause of site-to-site variation and sub-regional richness patterns was soil nutrient

availability, which is dependent upon the bedrock and rate of weathering.
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Discussion

The ability of sedaDNA to capture plant taxonomic richness

The mean observed taxonomic richness of terrestrial plants per sample and site (~21-66) is higher than
that recovered for northern boreal sites based on pollen analyses (~20 taxa, 19), but smilar to pollen
estimates from the Alps and Mediterranean (~30 taxa, 19). The detected richness values are within the
range that has been found in other recent studies of sedaDNA from northern sites (20-70 taxa per
sample; 27, 34), although some shrub tundra (~13 per sample, 35) and High Arctic (5-30 per sample,
36) sites have notably lower estimates. Nevertheless, our results are consistent with other sedaDNA
analyses that detect more taxa than pollen counts (24, 25, 27). Together with improved geographic
fidelity due to alocal signal, sedaDNA thereby improves our understanding of the spatial patterns and
scale dependency of past plant diversity.

The temporal patterns evaluated here rely on the assumption that our ability to detect plant taxa
in sedaDNA is not impacted by differential preservation, due to sample age or methodol ogical
problems such as DNA extract inhibition. Here we discarded samples of poor quality, that had metrics
comparable to negative controls and thus may have been affected by methodological problems, and we
broadly examined the quality of the retained samples. Half of our sites showed no evidence of
declining sedaDNA quality with sample age, whereas the remainder had reduced quality in the Early
Holocene interval. That our samples generally exhibited good sedaDNA quality throughout the study
interval islikely due to a combination of excellent DNA preservation in the cold environments of high
latitudes (37) and the young age of the samples (<11.7 ka) relative to the known upper limit of aDNA
preservation (~560-780 ka, 38). As multi-site sedaDNA studies become common, it will be crucial that
data quality is scrutinized and, where possible, standardized to allow for biologically meaningful

comparisons between sites.
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Nutrient availability and plant richness

In considering the positive association between nutrient index and mean taxonomic richness of lakes
for different periods of the Holocene, we highlight that our nutrient index is based on bedrock
weathering, and the potential release of phosphorus, potassium, and calcium, which acts as a surrogate
for alkalinity. During the Early Holocene, it is likely that nutrient release started immediately after
deglaciation when liquid water was abundant (39) and light-demanding and disturbance-tolerant
pioneer species could have survived on the nutrient-poor microhabitats, and thus showed weak overall
association with the nutrient index. With continued warmer and possibly wetter conditions, leaching
and nutrient release would have increased, thereby promoting richnessin the Middle and Late
Holocene. Relevant here isthe fine spatial scale of the calcareous (alkaline) and siliceous (acidic)
bedrock in northern Fennoscandia, with small and often linear, outcrops of metamorphic carbonate.
This contrasts with the large cal careous limestone massifs found in younger geologies such as the
European Alps, which have been shown to have effects on diversity over both short and long
timescales (11). Given that there is also a positive association between nutrient index and total richness
(representing a subset of the regional species poal), it is reasonable to consider nutrient index as an
important driver for species pool development and hence regional richness (40). Indeed, it isthe
floristic variation between sites (beta-diversity) that accounts for the large difference between the local

and regional species pools even today (12, 41).

A steep Early Holocene increase in plant richness

The highest rate of increase in richness and in local and regional species poolsis observed in the Early
Holocene 11.7-8.3 ka. Dueto their significant correlation, we cannot distinguish the effect of dispersal
lags from temperature, and both factors likely contributed to the observed increase in diversity. Climate

was also the driver for deglaciation, which increased the area available for colonisation. Three of our
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records span a longer time period than examined here (Langfjordvannet: 16.7 ka, Nordvivatnet: 12.7
ka, Sandfjorddalen: 12.5 ka; Fig. S1F,H,1), and they, as well as macrofossils (14.5 ka, 42) and pollen
records (13.9 ka, 43) from other coastal sitesin northern Fennoscandia, show that an Arctic pioneer
vegetation established towards the end of the Y ounger Dryas period (12.9-11.7 ka) and into the Early
Holocene. Thus, a species pool already existed at least along the coast at the start of our study period,
which is not the case for some of the inland sites (Gauptjern, Horntjernet, Kuutgarvi) that were
deglaciated after the onset of the Holocene. Nevertheless, all sites exhibit a strong increase in richness
independent of location relative to deglaciation.

Especially during the rapid warming at 11.7-10 ka, we find a high increase in richness.
Additional factors other than climate and availability of land may have influenced richness in this
period. For example, biotic factors such as low levels of competition may have facilitated establishment
(44), and abiotic factors, particularly paraglacial processes, may have produced disturbance at the local
scale (45). On the other hand, dispersal lags may have limited richness and species pools, as for
example the 400-year time lag between climate and arrival of birch woodland which was estimated
based on plant macrofossils recovered from sediment cores (46). Nevertheless, the overall rapid
increase in diversity in an early phase of colonization is also recorded in pollen studies (19), and
expected given that they cover the development from pioneer to established vegetation communities.

Our richness patterns show a continued strong increase after ~11 ka, when the major expansion
of birch forest took place, and after ~10 ka when pine expanded into the region (21). Thus, in contrast
to the decrease in richness due to forest expansion observed in pollen studies (13, 19), we found a
general increase in richness through time. This may be because sedaDNA analyses are less sensitive to

swamping by trees than pollen analyses and therefore better reflect habitat complexity (25-27).
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Middle Hol ocene richness continues to increase

The moderate increase in local and regional species pools during the Middle Holocene (8.3-4.2 ka) was
marginally related to climate. The NGRIP record shows a temperature peak (end of the Holocene
Thermal Maximum) followed by slight cooling during this period. Richness levelled off in only two
lakes (Nordvivatnet and Sandfjorddalen) and one lake (Langfjordvannet) showed a hump in richness,
which we assume is dueto local factors. For Gauptjern, palynological richness fluctuates around e ght
taxafor this period (47), whereas our sedaDNA data show a clear increase. Pollen studies from
northern Fennoscandia have shown contrasting patterns through this period, including stable levels of
richness along a spruce-pine-birch tundratransect (21) and an overall increase in richness (20). The
closest sites previously studied for sedaDNA show stable richness at Varanger in Finnmark (35),
increasing richness in Svalbard (36), and fluctuating high richness in the Polar Urals (34). Seen from a
regional perspective, our richness curves are similar to those found in the temperate zone of Europe,
where a Middle Holocene richness increase is inferred to be due to human impact, but differ from those
of the boreal zone (19), probably due to lower influence of Holocene tree expansion in the sedaDNA
data. Thus, in contrast to many pollen studies, our sedaDNA data show an increase in richness and
species pool for the Middle Holocene. As the climate was relatively stable during this period, we
speculate that the increase in richness may have been mostly driven by dispersal lags, resulting in
delayed establishment of some taxa in the region, and/or early habitat diversification allowing for a

greater variety of niches, including the development of heathland, meadows, and mires (14).

Late Holocene richness nears a plateau

The regional species pool clearly levelled off during the past few millennia suggesting that a near
saturation point was reached. The slight cooling and well-known instability in this period (48)

negatively impacted richness, potentially as a consequence of the cooling-induced withdrawal of the
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forest in the region (14, 21). Palynological richness in northern Fennoscandia also increases slightly
(47) or isvariable (21) during this period. Richness also increases at sitesin the boreal and temperate
regions of Europe, mainly due to human land use impacts (19, 22). The reason for levelling off at the
regional scalein northern Fennoscandiais likely due to the near-saturation of the regional species pool
and the overall low impact of human land use within the catchments.

In contrast to the regional scale, our data suggest that the local species pools and richness are
not yet saturated. Thisisin contrast to what has been observed in studies of modern vegetation, where
there appears to be no effect of time since glaciation for local (plot level) richness, whereas a legacy of
theice ageisinferred for richness at the pan-Arctic (floristic region) scale (16). This apparent
contradiction may be the result of scale and environmental spatial variation. Our catchments are larger
than the plots studied by Stewart et al. (16), and therefore allow for co-existence of different vegetation
types. Soils develop slowly on hard felsic and mafic rocks and have low buffering capacity resulting in
nutrient loss and the partial development of oligotrophic vegetation types such as acid heaths and
ombrotrophic mires. These have their own floras and some species are restricted to these environments.
Indeed, mires and heath vegetation expanded in the region during the Late Holocene (14, 21).
Depending upon the local bedrock, a given area may thus gradually come to include additional
vegetation types, alowing more hardy species to grow and total richness to increase while retaining the
more demanding species in more favourable areas of the catchment. In addition, infilling of the lake
creates wetland zones that also may include terrestrial taxa. Thus, a continued increase in richness and

local species pools may be due to habitat diversification.

Conclusions
We are aware that our study has several limitations. First, one should be aware that sedaDNA analyses

based on p6-loop metabarcoding has taxonomic biases, as some species-rich families such as
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Salicaceae, Poaceae and Cyperaceae are poorly resolved due to haplotype sharing (30, 49). We have
used a local reference database to maximise taxonomic resolution and note that thisis also an issue for
traditional palynological proxies. Second, we acknowledge that the initial steep increase for our species
pool estimates at the start of the Holocene constitute a sampling probability artifact, as plant taxa are
known from the region in the late glacial (42, 43). However, we note that a consistent steep increase
continues throughout the Early Holocene interval, which we do not consider to be a sampling artifact.
Third, we assume that the NGRIP record is representative of the climate of northern Fennoscandia.
This record isin accordance with reconstructions of local climate in northernmost Fennoscandia based
on macrofossils and pollen, although local variation does exist especially due to the proximity of the
Norwegian Coastal Current, which is an extension of the Atlantic Gulf Stream (43). Lastly, we have
not considered human impact as a potential driver of richness or species pools, but emphasise that this
is considered to have been low in northern Fennoscandia as compared to other regions in Europe (14).
We present terrestrial plant richness and species pools inferred from 10 Holocene sedaDNA
records covering environmental gradients in northern Fennoscandia. Our development of new quality
control metricsto standardize data, together with improved taxonomic precision and known source
areas (hydrological catchments of the lakes) allows for meaningful estimates of taxonomic richness, its
gpatial variation, and temporal trends, which show a unique increasing pattern of terrestrial plant
richness over the Holocene. Our datareveal a steep increasein diversity in the Early Holocene related
to the concurrent increase in temperature at that time and abundant vacant niches. However, the
richness and the local and regional species pools continued to increase through the Middle and Late
Holocene, although at a slower rate, suggesting that dispersal lags and habitat diversification had a
major impact on diversity in these latter periods. In addition, we found that local nutrient levels,
calculated based on bedrock type, had a strong impact on the overall levels of richness. Individual

differences were observed among our sites, but our novel combined and standardized sedaDNA
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analyses of 10 sites provides a superior representation of the overall regional patternsin plant
taxonomic richness over the Holocene as compared to traditional approaches. We suggest that plant
diversity will continue to, and perhaps markedly, increase in northern Fennoscandia as a consequence
of the northward movement of warm adapted species due to ongoing climate warming (sensu 1).
Expanding human impacts, including niche construction and introductions, within the region would
further increase diversity. However, increases in diversity may be tempered by dispersal l1ags and the
time taken for habitatsto diversify asis suggested by our Holocene data set.

Integration of long-term paleo- and contemporary ecological datawill be key to understanding,
predicting, and managing the consequences of ongoing climate warming in northern ecosystems. Our
study showcases how regional scale sedaDNA data can provide refined paleoecological insightsinto
richness and species pools, as compared to traditional proxies, which will increase the precision of

integrative ecological models.

Materialsand Methods

Study area, site selection, and properties

The study area covers northernmost Fennoscandia above the Arctic Circle (at 67.75-70.43 N and 19.62-
30.02 E) with nine lakes in Norway and one in Finland (Fig. 1, Data set S1). Site climatic and
environmental properties are given below, whereas geology and vegetation descriptions are in the
Supplementary Materials, SI1 and SI2.

Site selection. We selected 10 sites with the aim of minimising variation in environmental and
potentially taphonomic variables (such as lake size and atitude), whilst covering the variation of
biogeographical variables and particularly intra-regional climate. All sites are therefore small to
medium sized lakes, with small catchments, no or minimal input streams, and a location above the

maximum marine limit. We aimed to cover the major vegetation types in the region including the
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northernmost spruce and pine forest, the more widespread birch forest as well as subarctic grassland
below the present-day treeline (Data set S1).

Climate. The Norwegian sites are located in the three most northerly Norwegian temperature regions
(TR4-TR6) and precipitation regions (RR11-RR13), as defined by Hansen-Bauer and Nordli (50).
Statistical analysis has established that these are the most homogenous sub-regions related to common
drivers of regional forcing, particularly sea-level pressure over the North Atlantic and North Atlantic
Oscillation (NAO) (51). The Finnish site (Kuutgarvi) is close to the easternmost part of Norway, with a
similar continental climate.

Environment. The site environmenta data was taken from published sources:. site altitude, lake area,
catchment area and climatic variables was generated from the NAVINA-NVE online tools

(https://www.nve.no/karttjenester/) and catchment geology from the Geological Survey of Norway

(NGU) online mapping system (https.//www.ngu.no/en). Given that the role of parent material is

particularly important for plant growth in both sub-arctic and Alpine environments (52) it was deemed
potentially valuable to classify the sites by the geologically derived nutrient resource environment (see
Equation 2). In most cases values from the bedrocks of the sites are not available so typical values
measured from a suite of rocks from the Caledonian-nappe metamorphic rocks from north Troms was
used (12) the values of which can be found in Data set S1. However, in the case of Nordvivatnet and
Sandfjorddalen values could be taken from studies of the alteration of Neoproterozoic tillites of the
Varanger region (53). The ma or methodological uncertainties with such an index isthe role of both the
moraine cover and the development of a soil organic matter store. The moraine cover istypically pre-
weathered to some extent and probably reduces the effect of the local bedrock. This approach is
appropriate for the geologically mediated plant nutrients and nutrient storage and cycling governed by

the devel opment of a soil organic matter (SOM) store.
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Fieldwork and lake sediment coring

We collected cores from seven of the ten lakes from northern Fennoscandia between February and
April 2017 (Fig. 1; Data set S1), whereas cores from three lakes were obtained from previous studies
(see below). For each of six of the lakes, we retrieved sediment in a single 10-cm diameter polyvinyl
chloride (PVC) pipe, using amodified Nege piston-corer (54) from the deepest and generally central
part of the lake. At Lake Gauptjern, two Nesje cores were retrieved (EG03, EG13). We monitored for
potential cross contamination using a DNA tracer mixed into Vasealine, which we applied to the piston
immediately prior to coring. Thistracer consisted of DNA extracted from a non-native plant, the
Christmas cactus (Schlumbergera truncata) (see Supplementary Materials, SI3). After coring, we cut
the pipeinto 1.0-1.2 m long sectionsin the field and immediately sealed the endsto minimize
contamination from modern environmental DNA (eDNA). For six of the lakes, we collected up to 1-m
long cores using a 4-cm diameter rod-operated Multisampler (Eijkelkamp 12.42; Giesbeek, The
Netherlands), which usually captured the water-sediment interface (Data set S2). At Sandfjorddalen,
two sequential Multisampler cores were taken from the same hole, resulting in a 149 cm core. All core
sections were kept cold during transport to and storage in a dedicated cold room (4 °C). During storage,
water from the majority of the Multisampler cores leaked out, which resulted in shrinkage of these

cores.

Core sampling

The Negje cores were split longitudinally, with one half used for destructive analyses (loss-on-ignition,
LOI; sedaDNA) and the other for high-resolution imagery. Sampling for destructive analyses was
conducted in the dedicated ancient DNA laboratory facility at The Arctic University Museum of
Norway (TMU), using sterile implements. We sampled all cores starting at the base and fully cleaned

the laboratory between sampling cores from different lakes. At each selected 1-cm layer, we first
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removed and discarded the top ~2 mm of exposed sediment surface. We then removed a further ~3 mm
(~5-10 g) of the underlying sediment surface, which we retained for LOI analysis. Finally, we then
sampled ~10-20 g of the remaining underlying sediment for sedaDNA analysis, taking care not to
sample sediment immediately adjacent to the PVC pipe. To detect contamination from exogenous
sources of environmental DNA, we took sampling negative controls that consisted of 100 uL of
exposed molecular biology grade water.

For the Multisampler cores with remaining water and highly liquid surface sediment, we first
siphoned off and discarded the water. We then siphoned and retained the liquid surface sediment at 1
cm intervals. For the remaining sediment, and for Multisampler cores that had shrunk due to water loss,
we extruded the cores at 1 cm intervals, starting at the base of the core. At each interval, the outer ~5
mm of sediment was removed and retained for LOI analysis. The remaining ~3 cm diameter sediment
was retained for sedaDNA analysis. Sampling conditions and controls were as described above.

We sampled sediment from three cores that had been previoudly collected and were available to
us. These consisted of records from Langfjordvannet (31), Jakelvatnet (55), and Kuutgérvi (56). For
the Langfjordvannet and Jekelvatnet cores, sampling was conducted within the clean labs of
GeoMicrobiology at the Department of Earth Science, University of Bergen, Norway following the
approach mentioned above. Sampling of the Kuutgarvi core was conducted in the Physical Geography
department at Stockholm University, Sweden using sterilized tools and with all surfaces cleaned with

bleach. We took negative sampling controls at both institutions as described above.

Core photography and loss-on-ignition analyses

The intact core halves were photographed at high resolution using a Jai L-107CC 3 CCD RGB Line
Scan Camera mounted to an Avaatech XRF core scanner at the Department of Geosciences, The Arctic

University of Norway in Tromsg. We calculated mass LOI, by first drying sasmples 105 °C overnight
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and then igniting the sample at 550 °C for 2 hours. We report the percentage of dry mass lost after
ignition (57). LOI data and high resolution core scanning imagery are presented in Data set S3 and Fig.

SL.

Composite core construction and age-depth modelling

We opportunistically collected macrofossils for radiocarbon (**C) dating during sampling for LOI and
sedaDNA, where possible. If additional macrofossils were required, we sieved sediment to concentrate
macroscopic plant remains suitable for dating. Two sieves of 500 and 250 pum were stacked while
sieving to catch plant macrofossil remains. Ultrapure water from the Milli-Q system was used for
sieving and cleaning, and samples were kept cool in Eppendorf tubes with water before shipping for
dating. We photographed and identified all macrofossils prior to their destruction during radiocarbon
dating. Samples were radiocarbon dated using Accelerator Mass Spectrometry (AMS) at the Poznan
Radiocarbon Laboratory of the Adam Mickiewicz University, Poland (58) (Data set S3).

For multiple-core records from the same site, we aligned cores based on combinations of LOI
values, visible stratigraphy, and/or radiocarbon dates to create composite core records (Fig. S1; Data
sets S2, S3). For Gauptjern, we used the LOI profile and radiocarbon dates produced by Jensen &
Vorren (47) to guide composite age-depth model construction (Fig. S1B; Data set S3). All reported
depths are based on the composite cores and begin at the water-sediment interface, which was
determined either by its successful capture, field notes, or previously published information (Data set
S2). We note that the composite depths reported here differ for two of three previously published
records (31, 47, 55) (Data set S3). For Langfjordvannet, we increased depths by 26 cm to account for
the amount of sediment reported missing from the top (31), whereas for Gauptjern, we removed 340 cm
(water depth) and adjusted remaining depths for differing deposition rates among all cores, due to an

uneven bedrock surface (47).
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We constructed Bayesian age-depth models using bacon v.2.3.4 (59) in R v3.4.4 (60), using the
IntCal 13 calibration curve (61). Each basal modeled age was <2 cm below the basal radiocarbon date,
with the exception of Langfjordvannet where the basal radiocarbon date falls within a slump that
extends to the base of the core. We were unable to confidently model the basal 31 cm of Jakelvatnet
and 22 cm of Kuutgarvi, as extrapolated ages were highly influenced by accumulation rate priors. We
fixed the top of each record to zero, based on the composite cores beginning at the water-sediment
interface. The default section thickness of 5 cm was used for all age-depth models, with the exception
of Sandfjorddalen, which shrank from the 149 cm collected to 92 cm analyzed. We therefore selected a
2 cm thickness for the Sandfjorddalen age-depth model. We excluded two dates (Poz-108675, Poz-

108983) from the Sierravannet age-depth model that occurred in a putative flood layer (Fig. S1J).

Sedimentary ancient DNA data generation

We performed all pre-PCR steps at the dedicated ancient DNA facilitiesat TMU, which arein a
separate building to post-PCR facilities. We homogeni zed Holocene-aged DNA samples by holding
samples on a pulse vortexer for ~1 min. We extracted DNA from 0.25-0.35 g of sediment (Data set $4)
using amodified form of the Qiagen DNeasy PowerSoil PowerLyzer (Qiagen Norge, Oslo, Norway)
protocol, following the Zimmermann et al. (62) protocol, as modified by Alsos et al. (63). We included
one negative extraction control, consisting of no input, for every 10 sediment extractions. We also
extracted DNA from 10 samples using the protocol 15 of Heintzman et al. (in prep) and six samples
using the carbonate protocol of Capo et al. (submitted).

We amplified DNA and control extractsusing ‘gh’ primers (64) that target the vascular plant
trnL p6-loop locus of the chloroplast genome (Data set S5). The gh primers were unique dual-tagged
with an 8 or 9 base pair tag, modified from Taberlet et al. (65). We used differing tag lengthsto ensure

that nucleotide complexity was maintained during amplicon sequencing runs. A total of eight PCR
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replicates were amplified per extract. We included negative PCR controls, consisting of water as input,
to monitor for contamination during the PCR. We additionally included negative and positive PCR
controlsin the post-PCR lab, the latter of which consisted of one of six synthetic sequences (available

at https://github.com/pheintzman/metabarcoding) (see also Supplementary Materials, SI4). These post-

PCR lab controls were added to wells without disturbing other sealed sample and control wells and
were used to monitor PCR reaction success. However, they are not comparable to other negative
controls and samples, due to exposure to the post-PCR lab atmosphere, and so they were excluded from
further analysis. We checked for successful amplification using gel electrophoresis (2% agarose).

We pooled up to 384 PCR products (the maximum number of available tags) and then cleaned
the resulting pool following Clarke et al. (35). Each amplicon pool was then converted into a DNA
library at either Tromsg or FASTERIS, SA (Switzerland). The Tromsg protocol used the Illumina
TruSeq DNA PCR-free protocol (Illumina, Inc, CA, USA) with unique dual-indexes, except that the
magnetic bead cleanup steps were modified to retain short amplicons, whereas FASTERIS used the
PCR-free MetaFast protocol to produce single-indexed libraries following Clarke et al. (35). Each
library was sequenced on ~10% of 2x 150 cycle mid-output flow cells on the Illumina NextSeq
platform at either FASTERIS or the Genomics Support Centre Tromsg (GSCT) at The Arctic
University of Norway in Tromsg, or on 50% of a 2x 150 cycle flow cell on the [llumina MiSeq

platform at FASTERIS. Full sample preparation metadata is provided in Data set S5.

Bioinformatics

We followed a bioinformatics pipeline that uses a combination of the ObiTools software package (66)

and custom R scripts (available at https://github.com/YY -Lammers/M ergeAndFilter). Briefly, we merged

and adapter-trimmed the paired-end reads with SegPrep (https://github.com/|stjohn/SegPrep/rel eases,

v1.2). We then demultiplexed the merged data using an 8 bp tag-PCR replicate lookup identifier
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(provided in Data set S5), which ignored the non-informative terminal base for 9 bp tags, and collapsed
identical sequences. We removed putative artifactual sequences from our data, which may have derived
from Illuminalibrary index-swaps or PCR/sequencing errors. For each PCR replicate, we removed
sequences represented by <2 reads. We next identified barcode sequences that had 100% identity
agreement with alocal taxonomic reference database (ArctBor Bryo) containing 2445 sequences of 815
arctic and 835 boreal vascular plants, as well as 455 bryophytes (30, 49, 67). In addition, we matched
our data set to the EMBL (rl133) nucleotide reference database. We separately compared our barcode
data set against the barcode sequence of the DNA tracer, with the closest match consisting of 85%
identity (see Supplementary Materials, SI3). We therefore consider the DNA tracer not to be present in
our data set. We further removed identified sequences that 100% matched against two blacklists

(https://github.com/Y -Lammers/M etabarcoding_Blacklists) consisting of either synthetic sequences

(n=6), sequences that represented homopolymer variants of a more read-dominant sequence, a potential
random match, or food contaminants (n=111) (Data set S6). We further removed any sequences
represented by fewer than 10 reads and/or three PCR replicates within the entire data set, as well as 61
low-frequency sequences that were only retained by analysis of the entire data set but removed if
analyses were conducted on a per-lake basis (Data set S6). If multiple sequences were assigned to the
same taxon, then the data were merged using the sum of all assigned reads and the maximum number
of PCR replicates (Data set S7). The final taxonomic assignment of the retained sequences was
determined using regional botanical taxonomic expertise by Alsos and following the taxonomy of the
Panarctic Flora (68) and Lid’s Norsk Flora (69). We identified two species of Vacciniumbased on a
poly-A region at the 3’ end of the p6-loop locus. If there were <5 or >8 As, then barcodes were
respectively assigned to V. myrtillus or V. vitis-idaea. We further excluded barcodes that were
identified above the family level based on alignment to the local reference database, ArctBorBryo.

Among the identified plant taxa, only terrestrial vascular plants and bryophytes were retained for all
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downstream analyses (Data set S6). We only included Holocene-aged (11,700 kato present) samples
for downstream analysis. We note that we use the term taxonomic richness to include taxa identified to

various ranks from the speciesto family levels.

Assessment of sedimentary ancient DNA data quality

Our MTQ and MAQ score thresholds excluded all negative controls, which had an MTQ of <0.75 and
MAQ of <0.1. Across our entire data set, 16 samples were extracted more than once. We included data
from the DNA extract that yielded the greatest MAQ score. In three cases with equal MAQ scores, we
selected replicate one for inclusion (Data set $4).

After datafiltering, we found that there was often large variation in the counts of retained reads
between PCR replicates within a sample (from hundreds to tens of thousands). Although read-dominant
barcodes are likely to be detected in all PCR replicates, there islikely to be dropout of other barcodes
in replicates with lower counts of retained reads. In contrast, rare barcodes are more likely to be
detected in replicates with high retained read counts. We therefore developed a barcode detectability
measure - WtRep - to account for differences in relative counts of retained reads, by weighting PCR
replicates based on retained read count relative to the total retained read count across all PCR
replicates, on a per sample basis (see Equation 3). For example, if abarcode were detected in replicates

one and three, but undetected in the remaining six replicates, the wtRep would as shown in Equation 1.

Equation 1. Example definition of wtRep.

retained read count(rep.1) + retained read count(rep.3)

tRep =
wiitep X retained read count(reps.1 — 8)

If a PCR replicate were not represented in the retained read data, then it would not contribute to the

wtRep score. A limitation of the wtRep score isthat it will overrepresent detectionsin samples or
28
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negative controls with few barcodes and/or detections. For this reason, we only applied wtRep for a
sampleif the average proportion of replicates across the sample was >0.33 and there were >10
barcodes present after filtering. For samples that failed this threshold, we used a standard proportion of
PCR replicates as a measure of detectability (e.g. 0.25 for the above example).

We further explored the quality of our sedaDNA data by examining four measures. For each
sample, we calculated the (1) total count of raw reads (summed across PCR replicates), (2) mean
barcode length (in base pairs, bp) across all retained barcodes, (3) mean proportion of weighted PCR
replicates (WtRep; see above) across al final barcodes, and (4) proportion of raw reads assigned to
terrestrial plant taxa. We compared each of these four measures to both observed taxonomic richness

(Hill-NO) and/or time.

Numerical and statistical analyses

Using the proportion of weighted PCR replicates (WtRep), we measured taxonomic richness (diversity)
based on Hill numbers (NO and N1) (70), asthey are easily interpretable and provide information on
both the rare and common taxa within a community (13). Hill numbers have been widely used as
common metricsto link different ecological attributes (71) as well asincreasingly used in DNA-based
diversity analyses (72). For each sample, we calculated taxonomic richness as Hill NO (total number of
observed taxa), and number of abundant taxa as Hill N1 (see Equation 2), which is the exponent of the
Shannon index (13). To evaluate if the disproportionate sequencing depth has affected the taxonomic
richness estimates, we also calculated rarefied taxonomic richness based on the lowest number of reads
assigned to a sample within alake. We calculated Pearson’ s product-moment correlation between
rearefied and observed (Hill NO) taxonomic richness to evaluate the correspondence between

approaches (Table S2).
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Equation 2. Definition of Hill N1.

Hill N1 = exp (—Y.plogp)

Where p; isthe proportion of each species within asample.

We used generalized additive models (GAMSs) (73) to evaluate temporal biodiversity changes
during the Holocene. GAMs are very efficient at uncovering nonlinear covariate effects (74) and
handling non-normal datathat are typical in palaeoecology (75). We treated Hill NO and N1 asthe
response, and median calibrated age of the samples as predictor variables, and used the “poisson”
family with log link. The Hill N1 was rounded to the nearest whole number prior to GAM analysis. To
account for residual temporal autocorrelation between samples, we also included a continuous time
first-order autoregressive process (CAR(1)) in generalized additive mixed models (GAMM; (75)). For
both GAM and GAMM models, the fitted lines are based on the predicted values for 300 points
covering the entire range of sample age for each lake. We used a critical value from thet distribution to
generate a pointwise 95% confidenceinterval (75). We found near identical results for taxonomic
richness between GAM and GAMM models (Fig. S7; Table S3). In the cases of two shorter cores from
Nesservatnet and Sierrvatnet, the GAMM provided a reasonable fit to the data, and hence was included
in the main results.

We also evaluated how the local and regional species pools affected richness estimates at
respective scales. We define the local and regional species pool as the cumulative number of taxa
recorded within alake or the total region, respectively. First, we calculated the cumulative number of
detected taxa from the oldest to the youngest samples across all lakes as an indicator of the
development of the regional species pool, and compared that qualitatively to the taxonomic richness of
all samples through time. In addition, we generated a regional species pool of total species recorded

within each 500-year time bin. We extracted major trends of richness based on 500-year bins using
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GAM for the Early-, Middle-, and Late Holocene. We also used GAM to highlight the regional trend in
taxonomic richness through time. Then, we performed linear regression by considering the mean
number of taxa within alake, and within a 500-year time bin as the response variables, and the
respective species pools as the predictor variables to test whether observed richnessis correlated to the
species pools of respective scales.

To examine the relationship of climate and diversity estimates, we used oxygen isotope (5'°0)
values from the North Greenland Ice Core Project (NGRIP) (Andersen et al., 2004) as a proxy for
temperature. This has limitations as a regional record for northern Fennoscandia because of geographic
distance, but its advantage is that it isindependent of vegetation-based reconstructions and it covers the
whole period of interest. It shows similar trends in annual temperature as both proxy-based and
simulated reconstructions for the northern North Atlantic region (Marsicek et al., 2018). Because
summer temperature and growing degree days (GDD) are strong drivers of vegetation response to
climate in the north, we note that Holocene GDD sums probably remained higher than present through
much of the Holocene, as patterns of both seasonality and season length changed (Marsicek et al.,
2018). The Early Holocene temperature change was steeper than the Middle- and Late Holocene, and
we expect the richness pattern to differ among those periods. Thus, we assigned §'%0 data of 50 years
resolution to the nearest age estimate of samples, and split diversity estimates and 60 valuesinto
three periods (Early:11.7-8.3 ka, Middle: 8.3-4.25 ka, and Late Holocene: 4.25-0.0 ka) following
Walker et al. (76). To evaluate how changes in temperature affected the richness pattern of the different
Holocene periods, we compared regression slopes of the Middle and the Late Holocene to the Early
Holocene using alinear mixed mode with taxonomic richness as the response and an interaction
between %0 and the Holocene period as predictor along with lakes as the random variable.

We used a new semi-quantitative nutrient index derived from the sum of the phosphorus (P),

potassum (K), and calcium (Ca) content of the rocks modified by a measure of weatherability, in this
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case the extended Moh’ s hardness of the least resistant mgor mineral in the rock type (Hnmin) (see
Equation 3). The natural logarithm of Ca content was used as this has been shown to have a strong
relationship with pH, which is critical to the availability of nutrients especialy P (12). We performed
linear regression treating mean taxonomic richness of different periods of the Holocene as the response
and nutrient index as the predictor. The richness data were log transformed while evaluating the impact

of temperature and nutrients.

Equation 3. Definition of Nutrient Index.

(P+ K + In(Ca))
Hmin

Nutrient index (NI) =

Where P, K and Ca are total phosphorus, potassium and calcium in ppm, and Hpi, the hardness of the

most easily weathered principal mineral in the local bedrock.

Unless otherwise stated, all the analyses were performed using the vegan package (77) in R and

base R (60). The library mgcv (73) was used for GAM model building. All plots were created using

ggplot2 (78).

Supplementary Materials

Supplementary Information 1. Site geology.

Supplementary Information 2. Site vegetation.

Supplementary Information 3. DNA tracer.

Supplementary Information 4. Positive control synthetic sequences.

Fig. S1. Alignments of core LOI, high-res. imagery, and Bayesian age-depth models.

Fig. S2. A potential flood event does not impact the Sierravannet diversity trend.
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Fig. S3. Observed taxonomic richness in each sample by lake and time including samples not passing
quality controls.

Fig. $4. Six measures of sedaDNA data quality by lake and time.

Fig. S5. The assignments of reads processed by the bioinformatic pipeline.

Fig. S6. The accumulated regional species pool and taxonomic richness of each sample across the
Holocene of northern Fennoscandia excluding two temporally-short records from Nesservatnet (EG02)
and Sierravannet (EG07).

Fig. S7. Comparison between GAM and GAMM (CAR(1)) models of taxonomic richness through time.
Table S1. Summary of all data used or generated in this study.

Table S2. Correlations between observed and rarefied taxonomic richness for each lake.

Table S3. Summary of generalized additive models (GAMSs), and generalized additive mixed models
(GAMM ) with a continuous time first-order autoregressive (CAR(1)) process.

Data set S1. Geographic and site metadata for the ten lakes.

Data set S2. Composite core construction and Bayesian age-depth modelling.

Data set S3. Sample metadata, including depths, LOI values, dates, and modelled ages.

Data set 4. Full sample metadata including QC and bioinformatic sequence processing.

Data set S5. Primer tag to sample lookup, library preparation, and sequence accession data.

Dataset S6. List of all identified barcodes, including those blacklisted, and their taxonomic
assignments and functional groups.

Data set S7. Read counts and PCR replicate detections for all retained taxa across all samples.
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Fig. 1. Geographical setting of the study area and images of the ten lakes. The extent of the
Scandinavian ice sheet (the most credible extent of 79) at 21.0 (inset only), 15.0, 12.0, 11.0, and 10.0
ka are indicated by semi-transparent layers. Lake names are followed by mean taxonomic richness and
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Sandfjorddalen, Leif Einar Stevern; Langfjordvannet & Eadtorjavri South, Dilli P. Rijal; Kuutgarvi,

Karin Helmens; all others, Inger G. Alsos.
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1070 technical quality (MTQ) and metabarcoding analytical quality (MAQ) scores, total raw read count,
1071  mean barcode length, and the mean proportion of weighted PCR replicates (WtRep) across the entire
1072  dataset, although the proportion of readsidentified asterrestrial plant increases through time. Datain
1073  black, samples that passed quality control (QC); blue, samplesthat failed QC; red, negative controls.
1074  Fitted loess-smoothed lines along with one standard error envelope are for samples that passed QC.

1075 Datafor individual lakes are presented in Fig. $4.
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Fig. 4. Holocene patterns of local terrestrial plant richnessin 10 lake catchments from northern
Fennoscandia. The predicted values for observed taxonomic richness (Hill NO) are based on the
generalized additive mixed models (GAMM; solid red line) along with 95% confidence intervalsin
pink shading. Numbersin the top-left corner of each plot represent adjusted R-square values for the
GAMMSs. Thefitted lines for Hill N1 are indicated by a dashed brown line. The development of local
species pools are expressed in terms of detected cumulative count of taxa (blue dot-dashed line)
through time. The Early (11.7-8.3 ka), Middle (8.3-4.25 ka), and Late Holocene (4.25-0.0 ka) periods

areindicated by vertical dotted lines. Note difference in scale on the y-axes.
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Fig. 5. The accumulated regional species pool, taxonomic richness of each sample, and NGRIP
temper atur e proxy across the Holocene of northern Fennoscandia. (A) accumulation of the
detected regional species pool (defined as cumulative number of taxa; double-dashed line) aswell as
number of taxa detected per sample (n=316) along with the 95% confidence interval (pink shading) of
thefitted line (solid red line) based on a generalized additive model, and (B) variation in temperature
reflected by North Greenland Ice Core Project (NGRIP) §'20 values (80), with temperature being

positively correlated with §*°0 values. The overall patterns remain the same if two shorter cores
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spanning only the Late Holocene are excluded (Fig. S6). The Early (12.0-8.3 ka), Middle (8.3-4.25 ka),

and Late Holocene (4.25-0.0 ka) periods are indicated by dotted vertical lines.
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Fig. 7. Impact of climate and nutrient index on observed terrestrial plant taxonomic richness. (A)
Linear mixed effect model showing the impact of regional climate on taxonomic richness of terrestrial
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samples with NGRIP 520 lower than -39 were not included in the analysis. Note differencein scale on
x-axes. (B) Linear models showing spatial patterns of mean taxonomic richness of terrestrial plants

with the nutrient index for three periods of the Holocene.
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