bioRxiv preprint doi: https://doi.org/10.1101/2020.11.10.377440; this version posted November 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Precise Estimation of In Vivo Protein
Turnover Rates

Jonathon J. O’Brien#, Vikram Narayan, Yao Wong, Phillip Seitzer, Celeste M. Sandoval
Nicole Haste, Megan Smith, Ramin Rad, Aleksandr Gaun, Adam Baker, Matthew
Kukurugya, Baby Martin-McNulty, Chunlian Zhang, Ganesh Kolumam, Carmela
Sidrauski, Vladimir Jojic, Fiona McAllister, Bryson Bennett#*, Rochelle Buffenstein#*

*These authors jointly supervised this work

#Correspondence to Jonathon O’Brien, Bryson Bennett or Rochelle Buffenstein

Abstract (150 words)

Isotopic labeling with deuterium oxide (D,O) is a common technique for
estimating in vivo protein turnover, but its use has been limited by two long-
standing problems: (1) identifying non-monoisotopic peptides; and (2)
estimating protein turnover rates in the presence of dynamic amino acid
enrichment. In this paper, we present a novel experimental and analytical
framework for solving these two problems. Peptides with high probabilities
of labeling in many amino acids present fragmentation spectra that frequently
do not match the theoretical spectra used in standard identification
algorithms. We resolve this difficulty using a modified search algorithm we
call Conditional Ion Distribution Search (CIDS). Increased identifications
from CIDS along with direct measurement of amino acid enrichment and
statistical modeling that accounts for heterogeneous information across
peptides, dramatically improves the accuracy and precision of half-life
estimates. We benchmark the approach in cells, where near-complete labeling
is possible, and conduct an in vivo experiment revealing, for the first time,
differences in protein turnover between mice and naked mole-rats
commensurate with their disparate longevity.
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Main (3000 words)

Protein turnover rates describe cellular phenomena that play important roles
in the prevention of protein aggregation, damage reduction and preservation
of proteostasis’®. Mass spectrometry-based proteomics techniques have
enabled the measurement of proteome-wide turnover rates in vivo*. However,
these approaches present challenges not encountered when using techniques
for cell cultures, such as Stable Isotope Labeling by Amino acids in Cell
culture (SILAC)®. In a SILAC experiment, adding isotopic labels to the media
quickly leads to the near complete replacement of free-floating amino acids
with labeled counterparts. Similar procedures in vivo result in only partial
labeling® and the time until enrichment saturation varies across environmental
conditions.

Data analysis typically assumes stable amino acid enrichment and is
complicated by dynamic enrichment in both the beginning of an experiment
as amino acids are being replaced and at the end of an experiment as
degradation-driven recycling of amino acids alters enrichment levels’.
Furthermore, enrichment saturation at relatively low levels has a negative
impact on quantitative performance. This motivates the administration of
high doses of labeled amino acids, but even a flooding dose may achieve only
~30% enrichment on a short time scale® and the cost of isotopic labels for
larger organisms can be substantial.

Deuterium oxide (D,O) can be used as an inexpensive alternative labeling
strategy that results in the partial labeling of many amino acids®. However, in
addition to the above challenges, identifying deuterated peptides presents
unique challenges. Deuterated peptides often have isotopic distributions
spread across many masses and the location of the largest peak depends on
the amount of protein turnover that has occurred. Standard proteomics
identification algorithms® and modern machine learning models'®'" have been
designed and optimized to identify monoisotopic peptides. When a peptide
is isolated with an unknown number of heavy amino acids, two problems
occur. First, the precursor mass may not match the masses created during in-
silico digestion. Second, the resultant fragmentation spectra present non-
linear shifts in fragment ion masses. Consequently, protein turnover
experiments based on ubiquitous labeling strategies'>" inevitably result in
vanishing numbers of successful peptide identifications as the amount of
protein turnover increases.

In this paper, we describe an experimental and mathematical framework for
estimating protein turnover based on measured dynamic amino acid
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enrichment. From this framework, we derive an algorithm for identifying
peptides that contain an unknown number of heavy isotopes. This approach
effectively solves the problem of identifying highly deuterated peptides
resulting in larger and more information rich datasets. Our methodology is
then validated in cell culture by comparing our turnover rate estimates with
the gold standard in the field, SILAC. Finally, we apply our approach to an in
vivo study comparing mice and naked mole rats. Loss of proteostasis is one
of the hallmarks of aging® and these two species have widely divergent
longevity, so interspecific differences in turnover rates may illuminate
important features of the aging process.

Results

A framework for dynamic amino acid enrichment

Our objective is to estimate protein turnover rates from observed proportions
of peptide isotopes. As outlined in the principles of Mass Isotopomer
Distribution Analysis,'*'” determining the amount of turnover that has
occurred requires knowing an initial and a final isotopic distribution for each
peptide. The initial distribution can be derived from known natural isotopic
proportions of each element. However, the final distribution, which we
expect to see once a protein has been completely replaced with copies
generated after the introduction of isotopic labels, typically requires the
assumption of stable enrichment levels for each amino acid. When the
enrichment levels are dynamic, this assumption is violated and the
probability that the protein synthesis machinery will have selected a labeled
amino acid becomes dependent on time.

Using metabolomics to observe the uptake of deuterium into each free-
floating amino acid, we estimate the isotopic amino acid distributions for each
time interval on which proteomics samples are analyzed (Figure 1a). We then
estimate the marginal distribution of amino acid enrichment at each time
interval and use these to calculate the distributions for each peptide
synthesized during the interval. Thus, for each peptide at a given time we
obtain initial and final state distributions determined from metabolomics and
obtain one observed peptide distribution from proteomics. This framework
for monitoring amino acid enrichment, predicting peptide isotopic
distributions, and estimating protein turnover is the foundation for all of the
advances presented in this paper (Figure 1b).

In theory, absent any error, the isotopic proportions observed in the
proteomics experiment should be a convex combination of the old and new
distributions. Accordingly, we create a Bayesian Dynamic Enrichment Model
(BDEM) by treating observations as random variables from a Dirichlet
distribution centered around the convex combination of isotopic initial and
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final states. Separate final states exist at each time point (the final state
implies complete protein turnover, not the completion of sampling times) and
are treated as constant in BDEM. The change in the percentage of proteins
that existed prior to labeling is assumed to follow an exponential decay.

To inform both experimental design and data analysis, we consider two
potential problems with our framework, both of which are intuitively obvious
when the extreme cases are considered. If the old and new distributions are
identical (a labeled peptide prevalence of zero) then turnover cannot be
estimated. The consequences of low but non-zero labeling prevalence are less
obvious. A second failure mode occurs if the concordance between turnover
rates and sampling times is poor. At the extreme, if a protein has been
completely turned over before the first sampling time or has not been turned
over at all by the last time point, the ability to pinpoint the half-life with any
level of precision is lost. We achieve a more general understanding of how
concordance and prevalence impact quantitative performance through
simulation studies.

Label Prevalence and Sampling Time Concordance

We perform two simulations to evaluate the factors that impact estimation
accuracy. Both studies simulate observations from a Dirichlet distribution
with precision parameters and amino acid distributions taken from our
validation experiment (Figure 2a). Labeled peptide prevalence manifests
visually as a gap between the distributions of old and new peptides. Consider
two tryptic peptides from the human mTOR protein,
FDAHLAQAENLQALFVALNDQVEFEIR and FDQVCQWYVLK (Figure 2b).
The larger peptide has a labeling prevalence of 86% while the smaller peptide
has a prevalence of just 17%. Simulating random values centered at 70%
between the boundaries, the difficulty in estimating turnover becomes
visually apparent (Figure 2b). To quantify the impact of labeled peptide
prevalence, we create an artificial situation where all of our simulated
observations come from only a single level of prevalence.

In the first simulation we vary sample size while keeping the true half-life of 7
days and the sampling time of 14 days fixed. After simulating 10,000 artificial
proteins, we used the same model to estimate half-lives and plot the root
mean squared error (RMSE; Figure 2c). Two observations from the peptide
with prevalence of 86% provides the same level of accuracy as approximately
68 observations from peptides with a prevalence of 17%, underscoring the
importance of peptide labeling prevalence.
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In the second simulation, we fix the sample size at 10 observations but vary
the simulated sampling times as two-fold multiples of the true half-life.
Plotting the RMSE from this simulation (Figure 2d) we see that error generally
remains lowest within a two-fold differential of the true half-life, with errors
converging to what we would obtain using only our prior half-life
distribution as the concordance decreases. This convergence occurs more
quickly for low information peptides, resulting in an inverted curve for the
peptide with a prevalence of 17%. This suggests that our Bayesian framework
recognizes the low information content of peptides sampled far away from
their true half-lives. In real experiments, samples will be collected at many
time points, increasing the chances that at least one sampling time will be
similar to the true half-life. Consequently, a well dispersed time course
should provide better quantitative performance, but it will also result in
heteroskedastic observations through time.

The peptides observed in a discovery proteomics experiment are not
controlled. Consequently, none of the factors in these simulation studies
(sample size, labeling prevalence, sampling time concordance) will be fixed
across observations. The Bayesian BDEM automatically accounts for the
heteroskedasticity (see Methods) but no statistical model will perform well if
we fail to observe any high information peptides. Unfortunately, these are
precisely the peptides that cause standard identification algorithms to fail.

Identification of Peptides with Heavy Isotopes of Unknown Location and
Quantity

Without a priori knowledge of the mass shift caused by the incorporation of
isotopically labeled amino acids, standard identification algorithms fail for
two reasons. First, the anticipated monoisotopic precursor mass will not
match the observed m/z. Second, the process of mass isolating a population of
ions that exclusively contain a fixed number of heavy isotopes, fundamentally
alters the isotopic distribution of the fragment ions (Figure 3a). This isolation
results in a non-linear shift along the m/z axis of the observed fragment
spectra.

The first problem of a misaligned precursor mass can be trivially corrected by
expanding the number of plausible masses that we search for. The second
problem of the non-linear shift is more complex, but the behavior can be
described according to the theory of conditional probability distributions (See
Methods). For each potential peptide-spectrum match (PSM), we know the
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number of heavy isotopes that the precursor must contain within the mass
tolerance of the instrument. Consequently, we can generate conditional
probability distributions for each b- and y- ion given the candidate peptide
and its number of heavy isotopes. Note that while this paper presents an
algorithm for identifying peptides with the b- and y- ions, the theory could be
extended to other fragmentation schemes. Substituting the isotopic
distributions in place of the usual theoretical b- and y- ion peaks creates
alternative theoretical spectra to use for peptide-spectrum matching (Figure
3b). We incorporated this approach into our installation of the open-source
identification package Comet™.

In 51 deuterated samples collected from three species (mice, naked-mole rats,
and human HEK293 cells) we consistently see the same pattern of the number
of PSMs decreasing with time (Figure 3c). However, when using our
Conditional Ion Distribution Search (CIDS), the number of PSM’s at the end of
each experiment are similar to counts observed before much turnover
occurred.

The gain in PSMs is only a small part of the advantage provided by CIDS. By
counting only peptides with a labeling prevalence greater than 50% we can
see that it is precisely the peptides that are most likely to be labeled that our
algorithm recovers (Figure 3c). The algorithm not only increases the number
of observations, it also recovers a set of peptides that are fundamentally more
valuable than the ones identified with a standard search algorithm.

It should be mentioned that the theory underlying CIDS is not exclusive to
isotope labeling protein turnover experiments. When a monoisotopic peak is
isolated, the algorithm will produce an MS2 identical to the standard
approach. This is why the PSM counts for the SILAC turnover data are only
slightly increased from the standard Comet search (Figure 3c). For the vast
majority of scans, the MS2 spectrum remains unaltered.

Methodological Comparison with SILAC

In order to validate the theoretical advances described above, we analyzed
protein turnover in HEK293 cells using both SILAC and D,O and applied our
novel methodologies to these data. When the media can be controlled, the
SILAC approach will result in peptides that are consistently labeled at nearly
100% prevalence on every peptide. In this sense, the SILAC measurements
are optimal and serve as a useful ground truth for evaluating the quantitative
performance of our D,O methodology.
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We compared turnover from cells in media containing 100% heavy lysine, to
the same cell line with the media replaced by 8% D,O, a commonly targeted
concentration in blood which is limited by toxicity concerns (Figure 4a).
Three replicates were collected at 0.5, 1, 2, 4, 8, 24 and 48 hours. The D,O data
were searched with both Comet and CIDS and the resultant datasets were
analyzed with BDEM and two previously described software packages used
routinely to analyze D,O data, Deuterator'” and d2ome®. Each of these
approaches removes outliers caused by errant peaks. Consequently, the
number of uniquely quantified protein half-lives varies substantially across
methodologies (Figure 4b). Filtering algorithms from d2ome and Deuterator
are far stricter than our own requirements. Accordingly, the BDEM+CIDS
approach results in 3,967 uniquely quantified proteins which represents a 99%
increase over Deuterator+Comet (1,991 proteins) and a 209% increase over
d2ome+Comet (1,285 proteins). However, the BDEM+CIDS approach still
quantifies fewer proteins than the SILAC methodology (3,967 to 4,507) which
did not utilize any quality control filtering.

Although CIDS alone provided only modest gains to the count of uniquely
estimated protein half-lives, the effect on deviation from the SILAC results
were profound. The full set of overlapping proteins across methods shows a
loss of both precision and accuracy when using the standard Comet search,
with a median absolute error of 9.17 hours. In contrast, the median absolute
error using CIDS is only 1.18 hours (Figure 4c). The gains in accuracy of
BDEM+CIDS compared with d2ome (median absolute errors of 18.92 and
25.33 hours for CIDS and Comet respectively) and Deuterator (median
absolute errors of 35.39 and 35.48 hours for CIDS and Comet respectively) are
greater still, and strongly suggest that the principles outlined in this
manuscript are essential for accurate half-life estimation.

Slower Protein Turnover in Naked Mole-Rats Compared to Mice

We next applied our new methodologies to evaluate interspecific differences
in protein turnover in the long-lived (~37y), cancer resistant naked mole-rat
and the similar-sized, cancer prone, short-lived (~4y) C57BL /6 mouse*..
Unlike laboratory mice raised on synthetic diets, captive naked mole-rats are
fed a low protein, vegetable-based diet mimicking their natural diet.
Moreover, as in the wild, captive naked mole-rats obtain water entirely from
their food and are not provided drinking water, making standard D,O
labeling strategies impossible. To circumvent these challenges, we
administered daily intraperitoneal (IP) injections of D,O for 16 days and
periodically collected liver samples for metabolomic and proteomic
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assessments (Figure 5a). C57BL/6 mice were subjected to the same protocol.
The IP administration successfully labeled free floating amino acids in the
liver, revealing both consistent patterns in protein turnover rates across
species and exceptions that coincide well with the literature on naked mole rat
biology.

Histograms of protein half-lives in the two species show a systemic shift in the
turnover rates, with a median half-life of 2.5 days in mice (3,547 proteins
quantified) and 9.6 days in naked mole-rats (3,200 proteins quantified, Figure
5b). This relationship was only slightly changed by restricting our analysis to
highly precise half-life measurements with coefficients of variation less than
10%. Slower turnover in naked mole-rats when compared to mice is
consistent with published studies conducted in cultured cells from these
species using a pulse-SILAC approach?. Despite the substantial overall
difference in turnover rates, we still see a significant correlation between half-
lives across species (Figure 5¢c). Moreover, in spite of different analysis
platforms, labeling strategies and even tissues being analyzed, we see a
slightly higher correlation when comparing our mouse liver turnover rates to
previously published findings on turnover in the heart* (Figure 5d).
Consistent interspecies patterns are also seen when grouping rates by
subcellular localization, with slower rates in the mitochondria and faster
turnover in the nucleus and endoplasmic reticulum (Figure 5e). These
patterns provide further validation of our methodology while also enabling
the identification of proteins that defy these typical relationships.

Many proteins with average turnover rates in mice are among the slowest to
turn over in naked mole rats (Figure 5f). All three cytosolic urea cycle
enzymes (argininosuccinate lyase [ASL], argininosuccinate synthase [ASS1]
and arginase [ARG1]) are more stable than we would expect based on the
results in mice. Living in sealed underground burrows with designated
latrines, naked mole-rat colonies commonly encounter gaseous atmospheres
low in oxygen and high in both carbon dioxide and ammonia®. The animals
are exceedingly tolerant of such hostile conditions and, strikingly, do not
avoid ammonia-saturated atmospheres. Since the urea cycle detoxifies
ammonia, naked mole-rats likely rely heavily on this pathway.

In addition to the urea cycle, the turnover of many proteins implicated in the
breakdown of harmful reactive oxygen species, such as peroxiredoxins
(PRDX), glutathione peroxidase (GPX1) and superoxide dismutases (SOD),
are markedly slower than expected (Figure 5f). Response to oxidative damage
is an active area of naked mole-rat research with previous studies reporting
enhanced cytoprotection in response to oxidative damage through
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upregulation of the cytoprotective molecule Nuclear Factor Erythroid 2-
related Factor 2 (NRF2) and concomitant upregulation of antioxidants,
detoxicants and molecular chaperones®.

Discussion (No Subheadings)

Our proposed methodology greatly increased the depth of discovery and the
precision of turnover rate estimation. These gains were validated in vitro and
in vivo, highlighting the importance of five fundamental properties of protein
turnover experiments.

First, quantitative performance depends on labeled peptide prevalence, which
can be altered either by increasing amino acid enrichment, or by selecting
peptides with increased opportunities for enrichment. The prevalence-
peptide selection dynamic should be considered when selecting labeling
strategies and digestion agents. Understanding the quantitative value of high
label prevalence should prove especially useful when applying targeted
proteomics techniques to prespecify peptides of interest*?.

Second, in the presence of dynamic amino acid enrichment, the probabilities
relevant to protein turnover vary with time. These probabilities can be
estimated by monitoring the enrichment of free-floating amino acids in the
tissue of interest. Dynamic enrichment resulting from either inconsistent label
administration or amino acid recycling has long been a concern even in the
context of bulk synthesis measurements. The dynamic enrichment model
presented here addresses this challenge.

Third, the concordance between sampling times and true half-lives alters
estimation precision, resulting in nothing more than reliable lower or upper
bounds when the deviation becomes extreme. Yet these bounds remain
highly informative, requiring careful assessment of uncertainty intervals
whenever the concordance is low.

Fourth, in a mass spectrometry experiment, the mass isolation of an unknown
number of heavy isotopes alters the isotopic distribution of each fragment ion.
Utilizing conditional probability distributions to describe this behavior
enables the collection of the peptides that were most likely to have been
labeled. While D,O labeling motivated the creation of the CIDS algorithm,
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any mass spectrometry experiment that isolates ions with an unknown
number of heavy isotopes could benefit from the approach.

Finally, heteroskedastic observations should be anticipated in protein
turnover studies. While some labeling approaches may keep labeled peptide
prevalence constant, no methodology can keep sampling time concordance
fixed through time. Statistical modeling that accounts for these factors should
be used to minimize estimation error.

Despite the seemingly noisy observations, D,O can be used to reliably study
protein turnover. Advances in the quantitative performance of D,O turnover
experiments are especially valuable considering the cost differential between
various isotopic labels. At the time of this writing we estimate the cost of
labeling with a heavy isotope of leucine® to be approximately 35 times more
expensive than our D,O labeling strategy. However, the above principles
offer more than cost savings, as many concepts apply to protein turnover
experiments regardless of the labeling strategy. In particular, labeled peptide
prevalence and sampling time concordance should always be taken into
account when designing experiments and creating statistical models.

Taken together, the present advances have dramatically enhanced our
capabilities for studying proteome-wide turnover rates. We have effectively
eliminated the requirement for stable amino acid enrichment while
simultaneously describing a strategy for extracting meaningful signals even
when overall enrichment levels remain low. This combination of
developments opens numerous possibilities for exploring currently unseen
aspects of in vivo biology.

Methods
Calculating Peptide Isotopic Distributions

We now consider the problem of deriving isotopic distributions both from the
perspective of a ribosome randomly retrieving individual amino acids from
the free-floating pool of available amino acids.

Let A;; be a random variable denoting the number of heavy isotopes
contained in an amino acid selected by the ribosome during the interval (0, t),
where, i = 1, ..., 20, indexes the standard DNA encoded amino acids. A;; is a
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discrete random variable mapping to a subset of the non-negative integers.
For the D,O labeling discussed in this paper the range is typically confined to
the set [0, 1, 2, 3], but other labeling strategies could look substantially
different. Note, that in forcing the range to take non-negative integers we are
ignoring small differences in isotopic masses. For example, an amino acid
containing a single heavy hydrogen and the same amino acid containing a
C13 isotope have distinct masses but, in our framework, both amino acids
take a value of A;; = 1. The ability to distinguish these masses in a mass
spectrometer is diminished for larger analytes, but in our framework, we
ignore the discrepancy throughout the entire mass range.

The probability that the ith amino acid, selected by the ribosome between
(0, t), contains x heavy isotopes can be written as p(4;; = x) and we refer to
the function defining these probabilities for all x as f,, (x). If the set of amino

acid distributions, f4,(x), is known, either through metabolomics
measurements or from a priori knowledge, and if the incorporation of heavy
labeled amino acids is mutually independent for all amino acids in the
sequence, then the isotopic distribution of a peptide can be modeled as the
distribution of a sum of discrete random variables.

Let H, be a random variable denoting the number of heavy isotopes contained
in peptide n, n = 1, ..., N, where N represents the total number of unique
peptides observed in an experiment. If peptide n consists of M amino acids

from the set [Ayy, ..., Azo¢] (drawn with replacement), then the isotopic
distribution of the peptide is

fu, () = p(Hy, = x) = f4, * fa, * ... * fa,,, where * denotes the discrete
convolution operation. In this way, we can quickly derive the isotopic
distribution of a randomly selected peptide once we know the isotopic
distributions of the constituent amino acids. This formula is not exactly
correct, as the process of binding two amino acids involves the loss of 2
hydrogens and 1 oxygen, each of which may have contained heavy isotopes.
Accordingly, we should deconvolve the natural isotopic distribution of H,O,
M-1 times from the peptide isotopic distribution.

When using the natural isotopic proportions of each amino acid the
convolution operation provides the isotopic distribution of a peptide prior to
any experimental perturbation. We will refer to this as the “old peptide

distribution” and use the shorthand notation for peptide n,
P, := p(H, = x | the sampled peptide was synthesized prior to labeling).

For peptides that were synthesized after t = 0, we rely upon direct
observation of the amino acid enrichment through time to estimate each
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probability. In this scenario the amino acid probabilities may change through
time, but we will still be able to estimate the probability that an amino acid,
selected during a specific time interval by the ribosome, contains x heavy
isotopes. In this case we use the shorthand

Qnt *= p(H, = x | the sampled peptide was synthesized between 0 and t).

Neither P, or @, define the isotopic distribution of a peptide sampled at time
t. Rather, they represent complementary subpopulations. To find the peptide
population distribution at time t we need to know the proportion of newly
synthesized peptides. Let the percentage of newly synthesized copies of
peptide n at time t be denoted as 6,; and for each sampled peptide let L, = o

‘" _ 77

if peptide was synthesized prior to labeling (“0” is for old) and L, = e, (“e” is
for new) if the peptide was synthesized between (0, t). Then the isotopic
distribution of peptide i at time ¢ is given by

p(Hn =x) = p(Hn =X |Ln = O)p(Ln =o0)+ p(Hn =X |Ln = e)p(Ln =e)
= P,(1—=6;) + Qnb;.

Deriving the Isotopic Distributions of the Fragment Ions Used for Peptide
Identification

Mass spectrometers collect ions and present a spectrum of mass-to-charge
(m/z) ratios on one axis, and intensities (more precisely, ion counts, measured
in arbitrary intensity units) on the other axis. This readout of many masses is
often referred to as an MS1 spectrum since it is the first in a sequence of scans.
Because peptide identifications cannot be uniquely determined by a mass
alone, mass spectrometers will select a peak from the MS1 scan, isolate ions
close to the corresponding mass and fragment them. The mass spectrum of
fragment ions (MS2) will then be compared against theoretical fragmentation
spectra from all of the peptides that are consistent with the mass of the
isolated precursor®?. The most common approach for fragmenting peptides
results in series of b- and y- ions*. Our goal is to create conditional isotopic
distributions for each b- and y- ion from a candidate peptide. For simplicity,
we assume a mass isolation window sufficiently narrow to select only
precursor ions from one isotopologue. (often only true for precursors with a
charge state of 2 since a standard isolation window has a width of 1 Da). If
the monoisotopic peak was selected, then no amino acids in the isolated set of
peptide ions contain any heavy isotopes. Likewise, the b and y fragment ions
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will not contain any heavy isotopes. This is also true for labeled monoisotopic
peaks. For example, in a SILAC experiment we might isolate a peptide with
isotopically labeled lysine and all fragment ions will contain exactly one mass
for lysine at a predictable offset. The fragment ion peak masses only become
difficult to predict when we isolate a precursor containing a heavy isotope at
an unknown position. For example, if we isolate ions containing a single *C
isotope, that isotope could have been present in any of the amino acids within
the peptide. The whole peptide must contain exactly one heavy amino acid,
but the location of the heavy amino acid will change throughout the
population of ions. Consequently, each b- and y- fragment ion will have a
predictable distribution of isotopes that can be helpful in identifying the
precursor.

Let H represent the number of heavy isotopes contained in an isolated
precursor peptide. For each candidate peptide, we know h, since only one
possibility will be within the mass tolerance of the instrument. We let 6
represent the percentage of peptides that, at the time of sampling, had been
synthesized after label administration. Marginal isotopic distributions of b-
and y- ions (the proportions we would expect to see if all peptides were
fragmented) can be generated using the concepts described for calculating
peptide isotope distributions. For a peptide of length M, let B; and Y;
represent random variables for the number of heavy isotopes contained in
randomly sampled b; and y; ions respectively (i = 1,...,M and j = 1, ..., M).

. B Y; .
Further, let P5i, PYJ, Qf ‘and Q,’ represent a shorthand for the marginal
isotopic probability distributions of each b and y ion where, as before, P
denotes a distribution prior to labeling and Q, represents the isotopic

distribution of fragments synthesized between (0, t). These are the
distributions of the respective populations as they would be seen in a cell,
without restricting the total number of heavy isotopes found in the precursor.
We present the derivations for the b ions (they are analogous for the y ions).
Mass isolation results in the following conditional probability distribution:

p(H=h|B;=b,0)p(B;=b|0)
p(H=h|0)

p(B;=b|H=h0) =

Both p(B; = b | ) and p(H = h | ) can be calculated using the standard
convolutions previously described. Calculating p(H = h | B; = b, 0) requires

once again separating out old and new peptides. If L defines the old versus
new status of the peptide, as before, then we have

p(B;|H,0) = p(B;|H,6,L = 0)p(L = 0) +p(B;|H,0,L = e)p(L = e)
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= p(B;|H,0,L =0)(1—-6)+ p(B;|H,6,L =e)b

_ p(HlBu G,L = 0)p(Bl|01L = O) _ p(HlBl' Q,L = e)p(Blle,L = e)
B p(HIL = 0) (1=6)+ p(HIL = o) f
_PWHIB;, L=0)pBiL =0) p(H|B;, L =e)p(B;|L = e)
- p(HIL = 0) (1=6)+ p(HIL = ©)

Each of the probabilities in this equation can be found using convolutions of
natural and observed amino acid sequences.

p(H|IL=0)=P
p(H|L =e) = Q,
p(Bl6,L = 0) = P
p(Bil6,L =e) = Q'
p(H=nh|B;=b, L =0) = PYM-d(h —b)
p(H=h|B;=b, L=e)= Q,™"(h—b)

The last two expressions follow from the complementary nature of b and y
ions and the observation that

p(H = h|B; = b) =p(B; + Yy_; = h|B; =b) = p(Yy_; =h—b)

A shorthand analytic expression for the conditional distribution of a b ion (as
will be observed in an MS2 spectra) is given by

PY (-0 (h — b) PP LMD (h — b) QP

(h=b)pRe LG -be
P Q¢

This expression is still dependent on the unknown parameter 6. A simple

solution to this problem is to treat 6 as a uniform random variable and to
integrate it out of our distribution.

p(B; =blH =h,0) =

LpYw-0 (h — b)PE: LMD (h — b)Q}!
p(Bi=b|H=h)=f ( ) (1-6)+ @ ), 0 do
0 p Q¢
_1(Proro(h—b)PE 0/ (h = b)Q;"
S 2 P Q: '

From these equations we are able to generate alternative theoretical spectra
for use in a proteomics search algorithm. Placing these distributions at their
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corresponding masses results in a new theoretical MS2 spectrum (See Figure
3b).

We modified the open source identification package Comet'® to allow for
conditional isotope distribution searches (CIDS). An R script for generating
the MS2 distributions has been included in the supplemental files.

All searches performed in this manuscript follow a standard identification
workflow using a reverse hit database?. Linear discriminant analysis was
used to reduce the protein level false discovery rate to 1%%.

When searching the SILAC data, the above equations are greatly simplified
since there is only one relevant set of amino acid isotopic distributions.
However, the benefits are also minimal which is to be expected since the vast
majority of MS2 scans will result from isolating a monoisotopic peak. We
have also observed that averaging the old and new fragment ion distributions
only results in minor improvement beyond what we obtain when using only a
single set of amino acid distributions. This suggests that, conditional on the
number of isotopes in the precursor, the amount of turnover has a relatively
minor impact on the isotopic distributions.

Statistical Modeling of Protein Turnover

For a unique protein w, (w = 1, ..., W), suppose that we observe N, peptides
attimet, (t =1,..,T) inreplicate k, (k = 1, ..., K). Further assume that for
each observation y, , (n = 1, ..., Ny ), the underlying isotopic distributions,
(P,, @1, ..., Qe ), are all known. In the rest of this section bold font will be
used for vectors. Then if 6,,, denotes the percent of newly synthesized copies
of protein w at time t, in the absence of any sampling or experimental error
we would expect the isotopic proportions observed in a mass spectrometer to
be given by P,,(1 — 6,,) + QpneOyye-

Unfortunately, there will be both sampling variability and experimental errors
that contribute to deviations from these expectations. For observations from a
single protein, we define each measurement, y,,, as a random draw from a
Dirichlet distribution centered around the convex combination of old and new
distributions.

ymk~Dirichlet(K(Pn(1 —0;) + Q,,tet))

In this parameterization of a Dirichlet distribution, the precision parameter k
is a scalar multiplier of the proportion vector defined by the convex
combination.

Further defining our data structure, we need to connect the percentage of
newly synthesized proteins to an overall turnover rate. To this end we use the
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standard exponential decay model, using a half-life, 1, to define the rate of
protein turnover.

t log(2)>
NMw

From this basic structure there are many possible approaches to estimation
and inference. We chose to fit a Bayesian model which offers a convenient
framework that synthesizes the complicated heteroskedastic data structure
into a single posterior distribution describing our updated beliefs about a
protein half-life. The full specification for a set of M proteins where peptide n
is nested within each protein-time-sample combination (m, t, k), is given by

Ywntk ~ Dirichlet(}cW(Pn(l —0,) + Qntewt))
tlog(2)

T )

K, ~ Gamma(2,1)

T ~ Gamma(2, 250)

Ot =1 —exp (—

Hwtzl—exp<

nw ~ Gamma (2;)

7 establishes an average precision throughout the dataset. Defining k,, as a
random variable with mean 27 results in a model that will “borrow”
information about the precision of measurements when sample sizes are low.
Similar strategies have been used for dealing with imbalanced data from
relative abundance proteomics experiments®.

The three gamma distributions all use a shape and scale parameterization.
The prior shape parameter of 2 was selected to avoid computational
difficulties related to sampling near zero®.

We fit the above model in the Rstan package for modeling with the Stan
programming language®. We report credible intervals taken as the 1% and 99
percentile of the posterior half-life distributions and we use the median of this
distribution as a point estimate for each half-life. A few comments about the
modeling and interpretation are necessary.

Recent applications of Bayesian modeling to mass spectrometry proteomics
data make use of weakly informative and non-informative priors**. These
priors are selected to make it highly unlikely that changes in the prior will
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have a noticeable effect on the final results, while simultaneously avoiding
problems caused by sampling from unrealistic regions of the parameter
space®. The Gamma(2, 250) distribution was chosen with the weakly
informative principle in mind. Across many datasets, the average precision
parameter always fell well within a Gamma(2, 250) distribution and given the
large number of observations contributing to this parameter it is unlikely that
reasonable changes to the prior would have a noticeable effect on the
posterior.

In our software, the hyper-parameter v, which represents the mean of the
half-life distribution, can be entered by the user. For each analysis in this
paper, the parameter was set to 10, but this will not always be an appropriate
choice. Unlike the other parameters, 1, has an informative prior. The mean
should be selected to create a prior that genuinely reflects what the
distribution of half-lives is believed to be. This belief should change
depending on the sampling times of the experiment, the model organism and
the tissue being analyzed.

The primary motivation for using an informative prior on the half-lives is the
problem of sampling time concordance. When a true half-life is far removed
from the last sampling time, the observations will be consistent with a range
of half-lives that are unbounded in one direction. Suppose that we have an
experiment with a final sampling time of 10 days, and we measure peptides
from a protein with a true half-life of 100 days. Intuitively, the measurements
will show that almost no turnover occurred. Such measurements are
consistent with a half-life of 100 days, but they are also consistent with a half-
life of 1,000 years. Itis simply impossible to pin down the exact half-life with
any level of precision. Although a precise point estimate for the turnover rate
cannot be obtained, the data still contain valuable information regarding the
lower bound of the rate. In our thought experiment, we can say with great
confidence that the half-life is greater than 10 days. A more exact estimate of
the lower bound will depend on both the sampling times and the
measurement variability. The Bayesian model provides a relatively
straightforward approach for establishing a lower bound, and an informative
prior on the half-lives helps to avoid problems caused by sampling values
from an unbounded domain.

Extra care is required when interpreting half-lives for proteins with poor
sample time concordance. When a posterior half-life distribution is imprecise
(we used a coefficient of variation (CV) > 10% as an arbitrary cutoff) and the
median falls above our sampling range, we are only interested in the lower
limit of the distribution. On the other side of the sampling range, if the
posterior has a CV > 10% and the median falls below our first sampling time,
then we only pay attention to the upper limit. In both cases, results must be
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interpreted with care since the prior will become increasingly influential as
sampling time concordance decreases.

Metabolomics

Cell culture samples were prepared for metabolomics by centrifugation at
14,000g for 5 min, followed by aspiration of the supernatant, followed by
evaporation of the supernatant under nitrogen gas. Samples were
resuspended in 200 uL of water by vortex mixing for analysis via the ion
pairing method described below. A 40 uL aliquot of the resuspension was
then diluted with 160 uL of acetonitrile, combined by vortex mixing, and
centrifugation at 14,000g for 5 min.

Metabolites in the supernatant were analyzed in positive ionization mode
using a Thermo Scientific QE-plus mass spectrometer coupled to a Thermo
Scientific Vanquish UHPLC, Amino acids were separated using a SeQuant®
ZIC®-pHILIC column, 5um particle size, 2004, 150 x 2.1 mm. Mobile phase A
was 20 mM ammonium carbonate in water (pH 9.2); mobile phase B was
acetonitrile. The flow rate was 150 uL /min and the gradient was t = -6, 80% B
t=0, 80% B; t=2.5, 73% B; t=5, 65% B, t="7.5, 57% B; t= 10, 50% B; t=15, 35% B
t=20; 20% B; t= 22, 15% B; t=22.5, 80% B; t= 24; 80% B. The mass
spectrometer was operated in positive ion mode using data-dependent
acquisition (DDA) mode with the following parameters: resolution = 70,000,
AGC Target = 3.00E+06, Maximum IT (ms) = 100, Scan Range = 70 to 1050.
The MS2 parameters were as follows: resolution = 17,500, AGC Target =
1.00E+05, Maximum IT (ms) = 50, Loop Count = 6, Isolation Window (m/z) =
1, (N)CE = 20, 40, 80; Underfill Ratio = 1.00%, Apex Trigger(s) = 3 to 10,
Dynamic Exclusion(s) = 25.

Liver samples were homogenized whole in 1.5mL microcentrifuge tubes in
750uL of -80°C 80% methanol, 20% water with one 7mm stainless steel bead
using a 2010 Geno/Grinder (SPEX) with a run time of 45 seconds at 1,750
strokes /minutes, followed by a 30 second rest, repeated twice. The
homogenization protocol was repeated until samples were fully homogenized
as determined by visual inspection, resting on dry ice between each cycle.
Samples were then spun at 4°C, 8,000RCF to pellet proteins. Supernatant was
processed for all amino acids except cysteine as follows: 300uL of supernatant
was evaporated under nitrogen at 4°C and resuspended in 600uL of 80%
acetonitrile, 20% water for LC-MS/MS analysis. For determination of cysteine,
cysteine was derivatized by combining 200uL of supernatant with 1.2mL of
80% methanol, 20% water, and 1.5mL of derivatization buffer consisting of
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80% methanol, 20% water, 10mM sodium bicarbonate, pH’ed to 7.4 using
formic acid, containing 100mg/mL N-Ethylmaleimide (NEM). Samples were
incubated for four hours, evaporated under nitrogen at 4°C and resuspended
in 600uL of water for LC-MS/MS analysis.

All amino acids were analyzed on a Thermo Scientific QE-plus mass
spectrometer coupled to a Thermo Scientific Vanquish UHPLC. All data were
acquired in profile mode. Non-cysteine amino acids were separated on an
Agilent Infinity Poroshell 120 HILIC-Z column (2.1mm x 100mm, 2.7 ym
particle size) as previously described* with the following modifications:
Mobile Phase A was 20mM ammonium formate at pH 3. Mobile Phase B was
90% acetonitrile, 10% water, with 20mM ammonium formate at pH 3. Total
run time was 15.7 minutes at 0.4mL /min with the following gradient, 100%
mobile phase B was ramped to 70% over 11.5 minutes, the column was
washed at 50% B for 1 minute, and re-equilibrated at 100% B for 3 minutes.
Mass spectrometry data were acquired in positive ion mode using data-
dependant acquisition (DDA) mode with an inclusion list. Full MS was
acquired at 70,000 resolution with an AGC target of 5e5 with 50 ms maximum
injection time. Data-dependent MS2 was collected at 17,500 resolution with an
AGC target of 1e5, max fill time of 50 ms, and stepped collision energy of 20,
40, 80.

Samples were analyzed for NEM-derivatized cysteine using a reverse phase
ion-pairing Chromatographlc method with an Agilent Extend C18 RRHD
column, 1.8um particle size, 80A, 2.1 x 150 mm. Mobile phase A was 10 mM
tributylamine, 15 mM acetic acid in 97:3 water:methanol pH 4.95; Mobile
phase B was Methanol. The flow rate was 200 L /min and the gradient was
t=-4, 0% B, t=0, 0% B, t=5; 20% B; t=7.5, 20% B, t=13, 55% B; t=15, 95% B
t=18.5, 95% B; t=19, 0% B; t=22, 0% B. The mass spectrometer was operated in
negative ion mode using data-dependent acquisition (DDA) mode with the
following parameters: resolution = 70,000, AGC Target = 1.00E+06, Maximum
IT (ms) = 100, Scan Range = 70 to 1050.The MS2 parameters were as follows:
resolution = 17,500, AGC Target = 1.00E+05, Maximum IT (ms) = 50, Loop
Count = 6, Isolation Window (m/z) =1, (N)CE = 20, 50, 100; Underfill Ratio =
1.00%, Apex Trigger(s) = 3 to 12, Dynamic Exclusion(s) = 20.

Metabolites were identified by matching fragmentation spectra and retention
times from chemical standards that were previously analyzed on the same
instrumentation. Identity, isotopic peaks, and peak integration were manually
verified and quantified using our modified version of MAVEN®.
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Proteomics

Water, HEPES, urea, organic solvents, Pierce Detergent Compatible Bradford
Assay Kit and Pierce High pH Reversed-Phase Peptide Fractionation Kit were
purchased from Thermo Fisher Scientific (Waltham, MA). Lys-C was
purchased from WAKO Chemicals (Richmond, VA). Oasis HLB 96-well
uElution Plate was purchased from Waters Corporation (Milford, MA).
Unless otherwise stated, all other chemicals were purchased from Sigma.

Samples (liver, muscle, cells) were added to 80% methanol, 20% water (1 mL)
and centrifuged (15 mins, 25,830 x g) to pellet proteins. The supernatant was
subsequently processed for metabolomics as described below. The protein
pellets were frozen at -80 °C until ready for processing. The protein pellets
were resuspended in 8 M urea/50 mM HEPES (pH 8.5). Tissues were
homogenized in a TissueLyser II for 4 cycles at 29 Hz (Qiagen Hilden,
Germany). Cells were briefly sonicated to solubilize the proteins. The lysate
was centrifuged (16,000g, 15 min) to remove cellular debris. Proteins were
reduced with dithiothreitol (5 mM, 56°C , 30min) and alkylated with
iodoacetamide (15 mM RT, 30 min in the dark). Excess iodoacetamide was
quenched with dithiothreitol (5 mM, room temperature, 30 min in the dark).
The protein amount was quantified using Bradford (Pierce) and an aliquot of
50ug protein was digested using Lys-C (25 °C, 15 h) in a buffer comprising 50
mM HEPES (pH 8.5)/2 M urea. Following protein digestion, samples were
acidified to a final concentration of 0.1% Trifluoroacetic acid and desalted
using Oasis HLB 96-well uElution plate (Waters). Peptides were eluted with
50% acetonitrile/0.1% formic acid and dried overnight under vacuum at 30 °C
(Labconco CentriVap Benchtop Vacuum Concentrator, Kansas City, Mo).
Dried peptides were resuspended in 0.1% trifluoroacetic acid and fractionated
using HPRP (High pH Reversed-Phase) according to the manufacturer’s
instructions (Pierce). Four peptide fractions were collected per sample which
were eluted with 7.5, 12.5, 17.5 and 50% acetonitrile/0.1% triethylamine.
Samples were dried down under vacuum and reconstituted in 4%

acetonitrile /5% formic acid for LC-MS/MS analysis.

Peptides were analyzed on an Orbitrap Fusion Lumos mass spectrometer
(Thermo Fisher Scientific) coupled to an Easy-nLC (Thermo Fisher Scientific).
Peptides were separated on an Aurora UHPLC emitter column (75 um
internal diameter, 25 cm long, pre-packed with C18 resin, 1.6 um; IonOptiks).
The total LC-MS run length for each sample was 85 min comprising a 70 min
gradient from 6 to 25% acetonitrile in 0.125% formic acid. The flow rate was
300 nL /min and the column was heated to 60 °C.
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Data-dependent acquisition (DDA) mode was used for mass spectrometry
data collection. A high resolution MS1 scan in the Orbitrap (m/z range 375-
1,540, 120k resolution, AGC 4 x 10"5, max injection time 50 ms, RF for S-lens
30) was collected. Dynamic exclusion was modified to a 60 second duration
and excluded ion after 1 time. The MS2 scan was performed in the
quadrupole ion trap (HCD, AGC 1 x 1074, HCD collision energy 30%, max
injection time 35 ms). For the LC-MS/MS runs on the cell lysates, the data
were acquired in Profile mode.

Quality Control for Peak Interference

A downside to labeling many amino acids is that the signal intensity tends to
be distributed across a larger number of isotopologues, which increases the
opportunity for a single interfering ion peak to distort the entire set of
proportions. For this reason, quality control filters are commonly used in
algorithms for analyzing D,O turnover data, even though they often result in
a substantial loss of useable data. Our data confirm the need for an algorithm
to remove interference, but we have also seen the dangers associated with
biased filtering approaches.

Since our framework creates theoretical boundaries for each observation (the
proportions must fall between the initial and final states) it is tempting to use
these boundaries for quality control filtering. However, we have found that
this can result in a severe underestimation of the experimental variability. As
can be seen by a few simple simulations, valid observations frequently fall
outside theoretical boundaries (Figure 2b). Worse still, by forcing or filtering
for only observations within theoretical boundaries, we would be biasing our
results towards the center of the sampling time window. Yet, without using
the boundaries at all, the identification of outliers becomes very difficult.
With these considerations in mind we deploy three filters.

The first filter only considers the labeled peptide prevalence. When the
prevalence is less than a user-specified cutoff (10% by default) we remove the
observations. As emphasized throughout the manuscript and highlighted in
Figures 2c and 2d, low prevalence peptides provide very little value and may
complicate model fitting since the parameters are non-identifiable when
prevalence equals zero.

The second filter does not make use of any peptide sequence information.

After dividing through by the sum of X isotopomer intensities, we then find
the binomial distribution with size X that minimizes the Euclidean distance
from our observation. We expect that each observed distribution should be
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similar to a binomial since the underlying problem of adding isotopes at the
elemental level describes a binomial process, with zero or one denoting the
presence of a heavy element. If the absolute value of the difference between
any of the observed isotopologue proportions and associated binomial
probability exceed a user entered parameter, residCut, then the observation is
discarded. By default we set residCut to 0.2.

The residual cutoff from the binomial fit should remove most of the errant
peaks that distort the shape of the distribution. However, it is still possible for
the shape to be approximately correct while the observations remain
impossibly far away from the theoretical boundaries. To avoid this case we
create a second cutoff for the minimum absolute difference between either
boundary and each binomial probability. If this difference exceeds the
boundCut parameter (0.1 by default) then we remove the observation.

Through trial and error and visual inspection, we believe that these
parameters are largely successful at removing interference without artificially
reducing our estimate of experimental error. All analyses of real data
described in this manuscript used the default filters just described.

SILAC Validation (Experimental Methods)

For the SILAC validation experiment, growth media were prepared from a
powdered DMEM high glucose base lacking lysine (AthenaES). For SILAC
conditions, 13C6 15N2 L-lysine-2HCI (Thermo Fisher) was supplemented to
181 mg/L. For non-SILAC conditions, L-lysine-2HCI (Thermo Fisher) was
supplemented to 175 mg/L. For D,O conditions, 99.9% D,O (Sigma) was used
in the reconstitution of the powdered base, to a final D,O concentration of 8%.
All media were supplemented with dialyzed FBS (Thermo Fisher) to 10% v/ v.

HEK293T cells were grown in unlabeled media in 10 cm plates for all
conditions of the experiment. At t = 0, existing growth media were replaced
with media containing either heavy lysine or 8% D,O. Media in plates were
further refreshed att=1and t =4 hours. Att=0,0.5, 1, 2, 4, 8, 24 and 48
hours, 3 replicate plates were harvested from each of the heavy lysine and 8%
D,O conditions. To maintain sample integrity, all harvesting steps were
performed on an aluminum block cooled to -20°C. Plates were washed with
cold PBS. 3.5 mL of 80% methanol at -20°C was added to each plate and cells
were scraped into a 5 mL Eppendorf Lo-Bind tube. Samples were stored at -
20°C in preparation for metabolomic and proteomic workflows.

In vivo protein turnover in naked mole-rats and C57BL/6 mice
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Animal use and experiments were approved by the Buck Institute
institutional animal care and use committee (IACUC) protocol number
A10208. In total, 18 young C57BL /6 mice (11-13 weeks old, virgin males) and
18 young naked mole-rats (25-27 months old, non-breeding males) were used
for this study. The selected age groups comprised young, healthy adults from
both species that were physiologically age-matched (approximately 5-6% of
observed maximum life span). Mice were purchased from the Jackson
Laboratories (Bar Harbor, ME) and maintained in the vivarium for at least
two weeks prior to use; naked mole-rats were from the captive colonies of
Rochelle Buffenstein®.

For protein turnover studies, animals were injected intraperitoneally with a
bolus of 99.9% D,O (1 ml1/100 g body weight; Sigma Aldrich #151882) twice
on the day of initiation of the experiment (Day 0; injections at 0 h and again at
8 h). Following this, the animals received a daily maintenance dose of D,O (0.5
ml/100 g body weight) by intraperitoneal injection. No dietary changes were
made i.e. mice were allowed ad libitum access to (unlabeled) drinking water
and chow, and naked mole-rats had ab libitum access to food (which is also
their source of water). On days 1, 2, 4, 8 and 16, three animals from each
species were anesthetized with isofluorane and euthanized by cardiac
puncture. Following this, liver tissue was promptly harvested, cut into small
pieces on ice and snap-frozen in liquid nitrogen. The snap-frozen tissues were
subsequently used for metabolomics and proteomics experiments as
described above. Note that sacrificed animals did not receive the maintenance
dose of D,O on the day of sacrifice. Euthanization and organ collection was
performed between 8 am and 11 am.

Comparison of CIDS/BDEMS to existing proteomics tools

We sought to evaluate the performance of our BDEM-CIDS approach to
estimate protein turnover. We generated a dataset of HEK293 human HeLa
cells, and subjected these cells to isotopically labeled water containing 8%
D20. 3 extractions were collected after each of 4, 8, 24, and 48 hours following
introduction of D20. To compare the efficacy of our approach, we conducted
a benchmark SILAC experiment and calculated protein turnover from these
SILAC results as described below. We also evaluated two alternative existing
tools for estimating protein turnover in D20 experiments, DeuteRater” and
d2ome®.

We retrieved the DeuteRater source code from https:/ / github.com /JC-
Price/DeuteRater. To execute this software, we followed the instructions
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provided in the user’s guide. In doing so, we uncovered a number of
incompatibilities in the code that prevented successful execution. We
corrected these issues and offer our modified source code in the forked
repository https:/ / github.com /PMSeitzer / DeuteRater. DeuteRater requires
as input a list of identified peptides and proteins. We reformatted search
results obtained by running both Comet and our CIDS approach into a
DeuteRater-readable format (supplemental scripts X and Y). DeuteRater
returned protein turnover rate estimates for all identified peptides and
proteins associated with both Comet and CIDS, which we collected and
analyzed further in a custom analysis script (script Z). Deuterator half-lives
were taken from the output file named Final_Combined_Rates.csv. These
results tables have been included in the supplementary files.

We downloaded the d2ome executables from

https:/ /github.com /rgsadygov/d2ome. d2ome is designed to intake raw,
unsearched mzML files into a Mascot server, and calculate protein turnover
rates based these search results. In our case, we were interested in evaluating
our search engine results instead of Mascot, and so we created custom scripts
to reformat our search results into mzIdentML files resembling the output of
Mascot searches (Scripts X1, Y1). We produced two sets of results, one
corresponding to Comet search results, the other to CIDS, and applied d2ome
to both sets. Rates were taken from the output file named
“Analyzed_Proteins_and_Their_Rates.csv” and were converted to half-lives.

In total, we generated protein turnover estimates for our data using eight
different approaches: for each of SILAC, DeuteRater, d2ome, and BDEM, a
regular Comet search and our CIDS search algorithm. To compare these
approaches, we first reduced the datasets to overlapping proteins quantified
in all methods. For each remaining protein we then subtracted the SILAC
half-life estimate from each of the other results. These differences are the
errors plotted in Figure 4c.

Data availability

RAW files and other data tables will be made available at the time of
publication.

Code availability

Code for generating CIDS spectra and modeling protein turnover can be
found at https:/github.com/calico/D20
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Figure 1: Experimental Framework for
Turnover Estimation with Dynamic
Enrichment
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a, Experimental design. Isotopic envelopes are measured with both metabolomics (free-floating
amino acids) and proteomics (peptides). Observing the uptake of amino acid labeling through
time allows us to calculate the probability that a randomly selected amino acid, over a specific
time frame, would have contained a heavy isotope. We use these probabilities to determine the
theoretical isotopic distribution of a peptide synthesized during that interval. In this way we
avoid assumptions about stable amino acid labeling, degradation and extracellular transport. b,
A visual summary the problems solved with our strategy.

Figure 2: Peptide Labeling Prevalence and
Sampling Time Concordance Largely
Determine Quantitative Performance
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a, The basic parameters of our simulation study including precision and amino acid enrichment
were taken from the SILAC validation data. b, 100 simulated observations from small and large
mTOR tryptic peptides with equivalent experimental error. Looking at the observations from the
large peptide, six or seven isotopologues suggest that 70% of the protein had been turned over
from visual inspection alone. For the small peptide, only the MO peak provides much
information. ¢, Peptide isotopes were simulated from the BDEM model with varying numbers of
observations from a single peptide sequence for each protein. Half-life root mean squared error
from 10,000 simulated estimates is plotted on the y-axis. Following the dashed horizontal line
shows that two peptides with a label prevalence of 86% provide as much accuracy as
approximately 68 observations with a prevalence of 17%. d, The sampling time was varied as
two-fold multiples of the true half-life. As the sampling time deviates from the true half-life, in
either direction, error converges to the error obtained when using the median of our prior as an
estimate.

Figure 3: A New Algorithm for Identifying
Labeled Peptides
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Figure 4: Evaluating Performance with a
SILAC Ground Truth Experiment
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a. Design of a ground truth experiment. In a HEK293 cell culture we compare SILAC labeling
(100% replacement of lysine with a heavy isotope) against D,O labeling (8% D>O in the media).
b. Counts of uniquely quantified proteins across quantification and identification algorithms.
Data are comprised of three replicates at each timepoint (4, 8, 24 and 48hrs). All half-life
estimation algorithms have filtering criteria that result in different total counts even on the same
data. c¢. Boxplot of errors. Using the SILAC turnover data as ground truth, we show the
deviation across algorithms. Error was calculated for each protein quantified by all of the
algorithms (N=957).
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Figure 5: Comparative Biology of Protein
Turnover in Mice and Naked Mole Rats
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a. Design of a comparative biology experiment. b. Distribution of half-life estimates for each
species. All quantified proteins are included. e¢. Scatterplot and correlation of precisely (CV <
0.1) estimated half-lives between species. d. Scatterplot between half-life estimates from our
mouse liver data compared with previously published turnover data from young mouse hearts.
Only proteins with a reported coefficient of variation less than 0.1 are shown. e. Subcellular
localization of precise half-lives. f. 99% posterior half-life distributions for select proteins.
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