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Abstract

Non-additive genetic variance for complex traits is traditionally estimated from data on
relatives. It is notoriously difficult to estimate without bias in non-laboratory species,
including humans, because of possible confounding with environmental covariance among
relatives. In principle, non-additive variance attributable to common DNA variants can be
estimated from a random sample of unrelated individuals with genome-wide SNP data.
Here, we jointly estimate the proportion of variance explained by additive (hZyp),
dominance (6%,) and additive-by-additive (nZyp) genetic variance in a single analysis
model. We first show by simulations that our model leads to unbiased estimates and
provide new theory to predict standard errors estimated using either least squares or
maximum likelihood. We then apply the model to 70 complex traits using 254,679
unrelated individuals from the UK Biobank and 1.1M genotyped and imputed SNPs. We
found strong evidence for additive variance (average across traits h2y, = 0.207). In
contrast, the average estimate of 62, across traits was 0.001, implying negligible
dominance variance at causal variants tagged by common SNPs. The average epistatic
variance 7]2yp across the traits was 0.058, not significantly different from zero because of
the large sampling variance. Our results provide new evidence that genetic variance for
complex traits is predominantly additive, and that sample sizes of many millions of

unrelated individuals are needed to estimate epistatic variance with sufficient precision.
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Introduction

The total genetic variance of a trait can be partitioned into additive, dominance and
epistatic variance components?->. The role of non-additive genetic variation (dominance
and epistatic) in complex traits in human populations remains elusive, because it is difficult
to estimate and also because theory predicts it to be small relative to additive variance.
Traditionally, non-additive genetic variance has been estimated from pedigree or twin
studies, by contrasting the phenotypic covariance for different kinds of relatives. Non-
additive variance leads to closer relatives being more similar than expected from additive
genetic variance. However, shared environmental effects may also be expected to be strong
among closer relatives, and disentangling these and other sources of familial resemblance

remains challenging.

The amount of non-additive genetic variance disproportionally depends on the allele
frequencies at causal variants as compared to additive variance, and in general it is lower
when such frequency (and locus heterozygosity) is low. Non-additive genetic variance can
be estimated in model species, where both the environment and allele frequencies can be
controlled®. Theory and empirical evidence suggest that genetic variation in complex traits
is mainly additive’-® and that higher-order epistatic interactions, if present, are still mostly
expected to contribute to additive genetic variance®. For highly polygenic traits with
evidence of directional dominance (also known as inbreeding depression), the expected

dominance variance is also very small®.
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Variance components can also be estimated from genome wide SNP genotypes. In humans,
Zhu et al.19 extended the model of Yang et al.1! to estimate the proportion of phenotypic
variance explained by both additive (hZyp) and dominance variance (62yp) from common
SNPs in a sample of unrelated individuals using restricted maximum likelihood (REML).
Across 79 quantitative traits, in a sample of 6,715 individuals, they reported an average
dominance variance of 62y, = 0.03, approximately one-fifth of their estimated average
narrow sense SNP-based heritability (h2,), with a large standard error SE (6%,p) = 0.031
(computed using the reported standard errors of Zhu et al.1% and neglecting the covariance
between estimates). Therefore, these results are consistent with a small to negligible

contribution of dominance variance across these traits.

Epistatic variance attributable to common DNA variants (nZyp) can, in principle, also be
estimated from a random sample of unrelated individuals with genome-wide SNP data.
However, pairwise coefficients for epistatic variance between unrelated individuals are
very small, and a priori it is expected that non-additive variance contributes less than
additive variance. How large sample sizes need to be to reliably detect epistatic variance is
currently unknown. Therefore, having a theoretical expectation of the sampling variance of
estimators of n%yp would allow the quantification of statistical power and thus the required
sample size. Moreover, theory predicts that imperfect tagging of causal variants by SNPs
leads to a larger reduction in SNP-based estimates of non-additive genetic variance as
compared to SNP-based estimates of additive genetic variance. For example, if a causal

variant is tagged by a SNP with an linkage disequilibrium (LD) squared correlation r?, then
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estimates of additive variance are expected to be proportional to r?, whereas it is r# for

dominance and additive-by-additive variance!2.

Our study focuses on additive-by-additive epistatic variance as opposed to that generated
by higher-order interactions such as dominance-by-additive or dominance-by-dominance
components. We derive the theoretical sampling variance of ordinary least squares using
Haseman-Elston (HE) regression, and Restricted maximum likelihood (REML) estimators
of nZyp in a sample of unrelated individuals. We jointly estimate the genome-wide additive,
dominance, and additive-by-additive SNP-based genetic variances of 70 human complex
traits using a large sample of unrelated individuals (N = 254,679) from the UK Biobank!3

(UKB).

Results

Overview of the method

Zhu et al.19 developed a linear mixed model (LMM) where the total genetic variance of a
trait attributable to SNPs is partitioned into additive and dominance variance and where
the effects of all genotyped or imputed SNPs are fitted together as random effects through
the use of additive and dominance genomic relationship matrices (GRM). The different
variance components of this multiple-GRM model were then estimated using REML. Here,

we extend this model by partitioning the total genetic variance of a trait that is attributable
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to SNPs into additive, dominance and additive-by-additive variance components. That can

be mathematically written as:
var(y) = 0407 + Opoj + 04,402, + o2 (D

with y a vector of phenotypic values for N diploid individuals and I an N X N identity
matrix. The three components of genetic variance o7, o and 62, are respectively the
additive, dominance and additive-by-additive variance explained by SNPs, and 62 is the
residual variance. ®, = G and @, are the additive and dominance GRMs computed from L
SNPs as previously described in Yang et al.1! and Zhu et al.1? (see Methods for details), and

0,44 is the additive-by-additive genomic relatedness matrix, defined as:

GOG

Ou4 = =G OO/N (2)

with G © G the Hadamard product (i.e. coefficient-wise matrix product) of the additive
GRM with itself, and tr(G © G) the trace of the matrix. The standardization by the average
of the diagonal elements ensures that the mean of the diagonal elements of @4, is
approximately one as for ®, and O, (Supplementary Table 1), leading to estimates of

genetic variances on the same scale as the residual variancel#15,

Under Hardy-Weinberg equilibrium, the model defined by Equation (1) is theoretically
orthogonal between the additive and dominance components (see Methods and Zhu et
al.19). By orthogonality, we mean that the estimates of one of the genetic variance
components when fitted as the only genetic component would be unbiased even in the

presence of the effects from the other components. Moreover, in a sample of unrelated
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individuals from an outbred population, the off-diagonal elements of ®, are expected to be
@Aij ~N (O, Var(Gij)), leading to an expected covariance Cov(G)Aij, OAAij) = E[@j”] = 0.
The latter property guarantees orthogonality between the additive and additive-by-

additive component. Orthogonality between the dominance and additive-by-additive

components is more complicated to prove and was investigated empirically.

Equation (1) defines a typical LMM, which variance components (¢Z, 63, 67, and 62) can
be estimated jointly or separately using REML1¢ as well as by HE regression’-19. The
proportion of phenotypic variance explained by additive (67), dominance (¢3) and
additive-by-additive (¢67,) variance at all SNPs are defined as hiyp = 62 /(0f + 05 + 0i4 +
02), 8%y p = 05 /(0% + 05 + iy + 02), and niyp = 0i4/(0F + 05 + 0i4 + 02). We define the
SNP-based broad sense heritability HZyp = hZyp + 82yp + n2yp- Details about the statistical

model and the computation of the different GRMs are provided in the Methods section.

Unbiased estimates when all GRMs are fitted simultaneously

We use simulation to quantify empirically the bias and precision of the HE and REML
estimators of genetic variances, as well as to assess consistency with theory. We first
validate our model using simulations from 254,679 unrelated participants of the UKB with
1.1M autosomal genotyped and imputed SNPs from the HapMap 3 (HM3) panel?? with
minor allele frequency (MAF) > 1%. In our simulations, we sampled putative causal

variants from a pool of 100,000 pre-defined HM3 SNPs (Methods). We used the same pool
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of causal variants across all simulation replicates from which we randomly sampled 1000
causal variants for each replicate. The phenotypes were simulated using Equation (5) (in
Methods) where the additive, dominance, and additive-by-additive effects were generated
from a standard normal distribution and adjusted to the expected variance of the additive,
dominance and additive-by-additive genome-wide effects (simulated hZyp, 52yp and nZyp).
The residuals were then generated from a normal distribution with mean 0 and variance

1 — (héyp + 82yp + N%yp)- The genotype data were used to calculate the three GRMs 6,, 6,
and @4, as defined above (summary statistics for each GRM are provided in

Supplementary Table 1 and 2).

We estimated hZyp, 82yp and nZyp either jointly (hereafter referred to as ADAA model) or
by including their corresponding GRM one at a time in the model. Variance components
were then estimated using REML and HE regression, which are both implemented in the
GCTA?® software. The full dataset of 254,679 individuals was analyzed using HE regression
with pairwise phenotypic cross-products. However, because of its heavy computational
burden, REML estimates were derived from 8 sub-datasets, each of =~ 32K individuals. We
meta-analyzed estimates from these 8 sub-datasets using inverse-variance weighting
(IVW) (Methods), recognizing that the standard errors of these meta-analysed estimates
are expected to be 2.8 fold higher than if analysis of a single combined dataset had been
possible for additive and dominance variance, and 1.3 fold higher for additive-by-additive
variance. Unless stated otherwise, simulations results are shown for analyses including the

causal variants.
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From REML analysis, the model shows good orthogonal properties (fitting all the three
GRMs together or only one at a time does not change the estimates) for A2y and 62yp.
However, we found a significant deviation from regressing %y p estimates from the ADAA
model and that from a univariate model fitting &4, only (intercept = 0.65, see Figure 1-A).
The same conclusion applies to HE analysis where 72, from the univariate model show an
even stronger deviation (intercept = 1.20) from the joint estimates (Figure 1-B), as
compared to REML. A lack of orthogonality is expected when using linked markers as
orthogonal estimates of epistatic variance are not possible?l. However, we observed a lack
of orthogonality in simulations using simulated unlinked markers and unrelated
individuals (Supplementary Figure 1). Although this observation was initially surprising,
we derived theoretically why this occurs, and reflects induced collinearity between the
GRM because allele frequencies are estimated with error from finite sample sizes
(Supplementary Note 1 and Supplementary Figure 9). The main and practical
conclusion from these simulations is that ®, and @), the additive and dominance GRMs,

should always be fitted when estimating additive-by-additive variance using 6, ,.

After assessing the orthogonality properties of the model, we evaluated its performance
with respect to loss of information due to tagging and its sampling variance. Consistent
with Yang et al.??, we define unbiasedness as when the average estimates across simulation
replicates is not statistically different from the true expected value (t-test P-value>0.05).

Figure 2 shows that REML analysis performed with all observed HM3 SNPs including
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causal variants yields nearly unbiased estimates of the three variance components (hAZyp =
0.30, 6%yp = 0.30, 72y, = 0.29). A slight downward bias is expected when dealing with
missing genotypes that are imputed during the simulation process. Using simulation of
unrelated individuals and unlinked markers, we can show that h2yp = (1 — r)hZyp, withr
the missing genotype rate (Supplementary Figure 4). When the pool of causal variants
was excluded from the analysis, h2yp and §2yp both showed a downward bias with
respective mean estimates of 0.28 and 0.26 whereas %2, = 0.30 did not appear deflated.
However, we lacked power to detect a small bias because of the large sampling variance of
f2yp. To verify that the biases for h%yp and 82y, are consistent with loss of tagging, we
estimated the adjusted multiple correlation R? computed for the first 10K causal SNPs with
nearby SNPs in 1Mb windows (Methods). We found values of 0.96 and 0.86, for additive
and dominance effects, respectively, leading to expected values A2y, = 0.29 and 82y =
0.26, consistent with the estimated variance components. These results show that despite
incomplete LD we are still able to detect additive and dominance variation due to common
causal variants in the UKB data. Results from HE analysis imply the same conclusion
(Figure 2). Finally, we found the standard deviation (SD) of /2 across simulation
replicates to be one order of magnitude larger than that of h2y, and 62y . More specifically,
SD(hZyp) = 0.008, SD(82yp) = 0.014 and SD(2yp) = 0.16, in agreement with theoretical

expectations presented below.
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Standard error of the estimate of additive-by-additive variance

We next sought to derive the theoretical sampling variance of estimators of % p. Assuming
a sample of N unrelated individuals from an outbred population, the diagonal and off-

diagonal elements of the G matrix are respectively G;; ~ N(l, Var(Gl-i)) and G;; ~
N (O, Var(Gij)). Using results from Visscher et al.23 and Visscher and Goddard?4, we
derived different sampling variance for HE regression using phenotypic cross-products and

REML (Supplementary Note 2),

1

= NZVG.T(GL']')Z (3)

Var(ﬁ-%NPHE)

and

2
~ N(4Var(Gy) + 2Var(G;)? + 3(N — D)Var(G;;)?)

(4)

Var(ﬁgNP REML)

This result implies that statistical power to detect 2y is substantially larger when using
REML as compared to HE. Note that the sampling variance of 22y, and 62y, under REML or

Var(ﬁ.%NPHE) ~ 1 5

HE regression are approximately the same. For an infinite sample size, — =
var(snp L)

(Supplementary Note 2), while this ratio is in fact much larger for finite sample sizes

(Supplementary Figure 2).

From simulations of 35K unrelated individuals with simulated unlinked markers, we found
approximations from Equations (3) and (4) to be accurate. For REML analyses across 100

replicates, we observed SD (hZyp) = 0.012 (0.013 under HE), SD(62yp) = 0.013 (0.014

11
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under HE) and SD (H2yp) = 0.611 (2.817 under HE), as compare to theoretical standard
errors (SE) E(SE (h2yp)) = E(SE(6%yp)) = 0.013 (under REML and HE), and

E(SE(M5yp)) = 0.599 under REML (2.858 under HE). We then used simulations based on
actual genotypes from UKB participants to assess the accuracy of our theoretical
expectation on real data. For each replicate, we quantified the empirical SE of estimates of
variance components as the SD across 8 sub-datasets of 32K individuals. The observed
standard deviations were then averaged over replicates and compared to the theoretical
expectations. Overall, we found both our theoretical expectations to be accurate (Table 1).

We noticed a very small absolute bias downward for the theoretical SE in the order of 10-3
for E (SE(iAlpr)) and E(SE(82yp)), and upward in the order of 102 for E(SE (§2yp) ), both

under REML and HE.

We also re-assessed the validity of the SE reported by GCTA and found it to be accurate for
REML (Table 1). When performing HE analysis, GCTA reports two estimates of SE based on
OLS (SEo.s) or jackknife (SEj,«). Comparing the observed SD to the reported SE from
GCTA, we found SE s to be slightly biased downward for SE,,s(h2yp) and SEo,s(62vp)
and upward for SE,;s(fi2yp) as observed with the theoretical SE. However, the reported
SEjqck by GCTA is always more conservative. Therefore, we chose to use the latter and the

corresponding P-values for the real phenotype analysis.
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Finally, using our theoretical expectations, we computed the expected power to detect a
significant additive-by-additive effect from our UKB data. The sampling variance of 42y is
expected to be very large under HE for small sample sizes, when it is much smaller under
REML (Supplementary Figure 2), leading to a substantially larger power (Figure 3).
However, the increase of sample size reduces the gap between the two approaches and we

=2
Var(Msypyg)

expect ——
Var(Msnprpmi)

~ 2 for a sample size of 1M unrelated individuals (Supplementary

Figure 2). We show that even if we were to be able to analyze 254K individuals jointly with
REML, our power (at @ = 5%) to detect an additive-by-additive effect of 0.2 (which is

unlikely in real data) would only be ~0.45 under REML and =~0.17 under HE. Under the

SE3zK

V8

REML IVW meta-analysis, the expected standard error becomes SE;yy, = , Where

SE;,k is the expected SE for a sample of 32K individuals. Hence, our expected power under
REML slightly decreases because of the meta-analysis strategy (Supplementary Figure 3)
and we expect a power of ~0.29 (a = 0.05) for nZy, = 0.2. Comparing the expected SE
under the IVW-REML and the HE analysis of 254K individuals, we expect slightly larger

SE(A2np 1y ppns) = 0004 and SE(62yp 1y pgagy) = 0-005 as compared to SE (Ayp ) =
0.001 and SE(ngPHE) = 0.002. However, the meta-analysis under REML is expected to

produce a smaller SE(2xp 1y _ppar,) = 0-14 as compared to SE(A3yp ;) = 0.19.

In summary, our simulations and analytical results demonstrate that reliable inference of
non-additive variance components is achievable using REML and HE regression in large

samples, and therefore that these methods can be applied to real data.
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Estimation of non-additive genetic variation in human complex traits

We estimated hZyp, 82yp and nZyp for 70 quantitative traits of the UKB (Methods), with an
average number of phenotyped individuals =~ 200,550 (range: 36,990 to 251,805). For
REML analysis, IVW meta-analysis was applied when N > 60K. Otherwise, the entire set of
individuals was analysed (Methods). Estimates of hZyp, 82yp and nZyp using REML and HE
are reported in Supplementary Tables 4 and 5 and the distributions of REML and HE
estimates across traits are shown in Figure 4. The mean estimate of h%p across traits was

EgNPREML = 0.207 £ 0.001 (CI95% = [0.205;0.208]) for REML and slightly lower for HE
with hiyp, . = 0.194 + 0.001 (CI95% = [0.192;0.196]). The average estimate of 62y, across

traits was 82y, = 0.001 4 0.001 (CI95% = [-0.001;0.003]) for both REML and HE. This
result is in agreement with theory suggesting than ¢ is much smaller than ¢Z. Finally, we
found a mean estimate of ngy, equal to 75yp ., = 0.058 +0.032 (CI195% = [-

0.005;0.122]) for REML and 7i2yp ., = —0.054 + 0.112 (CI95% = [-0.278;0.171]) for HE.

Estimates are consistent between REML and HE analysis for hZy, and 82y, ( squared
correlations r2=0.97 and 0.43 respectively), but the two methods show poor agreement for
fzyp (squared correlation r2=0.04, see Supplementary Figure 5), consistent with their

high standard errors.

From the 70 traits analysed, we estimated an effective number of 43 traits (Methods) and

test for 3 variance components, however, because we ascertained traits with significant

14
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additive variance (Methods), we only included two variance components for multiple
testing correction. Therefore, our P-value threshold for declaring statistical significance at
an experiment-wise error rate « = 0.05is 0.05/(43 X 2) = 5.8e-4. After multiple-testing
correction, urate concentration (N = 238,773) was the only trait showing a small but
significant dominance variance (8§2yp = 0.012 + 0.003, P = 9.6e-5) under HE analysis.

However, significance was not obtained using REML (62, = 0.003 + 0.005, P = 5.1e-1).

We did not find significant evidence of epistatic variance. However, we unexpectedly found
two traits with an apparent negative 72, , but significant before multiple-testing correction
under REML, Bone mineral density (BMD) (Zyp = —0.58 &+ 0.176, P = 1.0e-3) and Corneal
resistance factor (A2yp = —0.80 + 0.233, P = 6.3e — 4). This unusual result implies that
close relatives would be disproportionally less phenotypically similar than distant
relatives. We therefore quantified phenotypic covariance in family data in the UKB as a
function of relatedness but found no evidence for “phenotypic repulsion”25
(Supplementary Figure 6). All these estimates of non-additive genetic variation are

implausibly large, so the most parsimonious explanation is the large sampling variance.

Discussion

The role of non-additive genetic variance in human complex traits has been a topic of much
discussion and debate”.26-30, In this study, we jointly estimate the proportions of phenotypic

variance of 70 traits that is explained by additive, dominance and additive-by-additive
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genetic variation tagged by common SNPs, in a large sample of 254,679 unrelated
individuals from the UKB. Using common variants, we found no evidence of significant non-
additive variance (82yp=0.001 and 72y, = 0.055) across traits while we confirm the
evidence for additive variance (hZyp, = 0.208). We also derived theoretical standard errors
for REML and HE regression estimators of additive-by-additive variance and validated our
theory through extensive simulations. Our theoretical and empirical results suggest that
REML should be preferred over HE regression for the same sample size, as the former

estimator leads to a substantially larger statistical power.

Alack of dominance variance is expected from theory” and for traits that are polygenic and
subjected to inbreeding depression.? However, most of our 70 traits do not show evidence
of inbreeding depression. Nevertheless, the argument of high degree of polygenicity could
be enough to expect a lack of dominance variance too3132. Indeed and as quoted by Crow3!
for continuous quantitative traits, “in general, the smaller the effects, the more nearly
additive they are” (see Supplementary Note 3). In a large sample, our average dominance
variance estimated across traits §2y, = 0.001, is much lower than the 0.03 previously
reported by Zhu et al.10 across 79 traits, although the two estimates are not significantly
different from each other. Therefore our findings are consistent with that from Zhu et al.10
as they confirm a negligible contribution of dominance variance for causal variants that are
tagged by common SNPs. By extrapolation, our results lead to the conclusion that
dominance variance is likely to contribute very little to the broad sense heritability of

human complex traits. Urate concentration was the only trait showing a significant
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dominance variance in our HE analysis (62yp, = 0.012 + 0.003, P = 9.6e-5), but the estimate
was lower and non-significant in our REML analysis (§2yp = 0.003 + 0.005, P = 5.1e-1).
Similarly, we observed that h%,, estimates for urate concentration were higher using HE
compared to REML (hZyp = 0.383 + 0.005 under HE and 0.304 + 0.004 under REML). If
REML and HE estimates are expected to converge under a classical polygenic model, the
genetic architecture of a trait can bias the estimates of the two methods in different ways33-
35, Previous studies3637 have suggested that urate concentration is a trait on the low
spectrum of polygenicity and controlled by three main genes and two large effect QTLs on
chromosome 4. Moreover, urate concentration also displays sex-specific effects and
heritability38. Analysis performed on each sex separately (with a 3 fold [IVW meta-analysis
for REML) confirmed a larger estimated heritability in females (hZyp, = 0.549 +

0.009 under HE and 0.354 + 0.005 under REML) than in males (hZyp, = 0.254 +

0.007 under HE and 0.237 + 0.006 under REML), and a significant dominance variance for
females only under HE analysis (62yp = 0.017 + 0.005, P = 1.4e-3 for females, and 62y =
0.005 £ 0.006, P = 3.9e-1 for males). Importantly, the significant dominance variance
estimate detected in females with HE vanishes when excluding SNPs on chromosome 4
from our analysis (62yp = 0.0004 + 0.006, P = 0.93 without chromosome 4). Similarly,
chromosome 4 also entirely accounts for the observed differences in A2y, estimates
between HE and REML analysis in females (hZyp = 0.175 + 0.005 under HE and 0.185 +
0.005 under REML), as well as the discrepancies between males and females (for males,
hZyp = 0.151 + 0.005 under HE and 0.165 + 0.006 under REML). Altogether, low
polygenicity of urate concentration combined with substantial sex differences in the

genetic architecture on chromosome 4 constitute strong departure from assumptions
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underlying the consistency of HE and REML estimators. There is also prior evidence of
female sex hormones effects on urate concentration38, which we did not accounted for in
our analysis, and further investigations of the sex-specific genetic architecture of the trait
are needed. Finally, we detected significant dominance deviation (P < 5e-8) at two SNPs on
chromosome 1 (top hit for rs12124078, a SNP associated with kidney function3?) and 4
(larger signal with top hit for rs9998811 located in SLC2A9 gene region3°),

(Supplementary Figure 7) although the total dominance variance explained by these two

SNPs remains very small (§2y, = 0.002).

The lack of evidence for the additive-by-additive variance in our analyses is mostly due to
the very large sampling variance of 77§y p. Therefore, potentially real effects on individual
traits cannot be ruled out. Nevertheless, we can provide an upper limit for the role of
epistatic variance associated with SNPs across the 70 traits of approximately 0.12 (upper
bound of the 95% CI from REML analysis, see Figure 4-A), based on the SE of the mean
12yp Of 0.032. This upper limit (across traits) remains smaller than the well-estimated
mean hZyp of 0.207. Our power calculations based on REML suggest that ~2 million
unrelated individuals would be necessary to ensure >76% statistical power to detect

nZyp = 0.05 at a = 0.05. The same calculations based on HE regression would only yield a
statistical power of 52%. Analysis of such a large sample raise new computational

challenges to be addressed in future research.
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Besides these limitations, theory and prior evidence also suggest that epistatic variance is
likely to be small”.821, with first order additive-by-additive epistasis expected to be the
largest contributor to epistatic variance. In this study, we therefore focused on the
additive-by-additive variance and did not estimate higher order interactions or epistatic
components involving dominance. Because epistatic GRMs result from the Hadamard
products of lower order GRMs, they will quickly tend to identity with increasing order of
interactions. It will lead to very large standard errors and estimates of genetic variance
indistinguishable from the residual (non-genetic) variance. The same argument holds for
any epistatic interaction involving dominance as it will result in even larger standard
errors, the variance of the off-diagonal elements of ®, in unrelated European individuals
being approximately 10-5, half of the variance of the off-diagonal elements of ©,. Finally,
Maiki-Tanila and Hill® showed for polygenic traits that when gene-gene interactions (aa)
are of same magnitude as single-locus effects (a), epistatic variance is expected to decrease
and eventually disappear with the increase number of causal variants. In this context,
epistatic variance lead to mainly additive variance, while dominance is expected to remain
the main contributor to non-additive genetic variance. Therefore, and in light of our results
showing a lack of dominance variance, that would suggest that epistatic variance is likely to

be extremely small in human complex traits.

Our findings can be directly applied to human diseases using a liability threshold model.
Yet, it is worth emphasizing that the observed 0-1 scale is expected to show non-additive

variance even when variance in liability is fully additive40. An analysis of non-additive
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variance on liability would require the use of generalized non-linear mixed models and
would be less powerful than the analysis of quantitative traits. For these reasons we have
not attempted to estimate dominance or epistatic variance for liability to common disease
in our study. Results for additive SNP-based heritability are by-and-large the same for
quantitative traits and common disease, so it seems reasonable to assume that there is

likely to be little non-additive variance for liability of disease.

We showed by simulation that we were able to capture a large proportion of the genetic
variation from common SNPs in our data even when causal variants were not included.
However, because the expected loss of non-additive variance is disproportionally larger
than additive variance with the decay of linkage disequilibrium between causal and tagging
variants, the contribution of rare variants poorly tagged in our study is expected to be
missed. There is evidence that rare variants contribute to narrow sense heritability4142.
However, using simulations, Zhu et al.19 showed that the observed difference between the
additive and dominance variance across traits was unlikely to be explained by a
disproportionally missing contribution of rare variants to dominance variation. Moreover,
because the amount of non-additive variance also disproportionally depends on allele
frequencies as compared to additive variance, with the largest amount expected for
intermediate frequencies®, contribution of rare variants to the non-additive genetic

variance is expected to be minute.
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Importantly, the absence of evidence for epistatic variance does not imply the absence of
functional epistasis#344. In addition, any significant signal of epistatic variance should be
investigated in depth due to potential inferential problems. Indeed, phantom epistasis, that
is a non-additive signal generated from incomplete linkage between variants,*>46¢ can
induce a bias in the estimates of epistatic variance. A recent study suggested that the effect
of phantom epistasis is likely to increase for low density markers which is not necessarily
relevant for human data. However, the genetic architecture of a trait, such as local
polygenicity (i.e. the non-random spatial distribution of small effect loci) and large effects

QTL, could also favor phantom epistasis.

To conclude, the analysis of 70 human complex traits from a large sample of unrelated
individuals provides new evidence that genetic variance for complex traits is
predominantly additive and suggests negligible dominance variance due to causal variants
that are associated with common SNPs. Because of a large standard error, we cannot draw
firm conclusions regarding additive-by-additive variance for individual traits, but we can
conclude that its upper value is about half of the additive genetic variance captured by
common SNPs. We showed that REML lead to substantially larger power as compared to
HE at a given sample size, and that sample sizes of many millions of unrelated individuals

will be necessary to estimate epistatic variance with sufficient precision.
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Methods
Genetic model

We assume a model with additive, dominance and epistatic interaction effects (ADAA
model). For epistatic variance, we only focus on additive-by-additive interactions. Consider

one diploid individual genotyped at L loci, each with major and minor alleles A and B

respectively. Let a; = (uq4)/2 and d = pyp — (Upp + Uas)/2, with pugg, pap and puy, being

the phenotypic means in the three genotypic classes at one locus. Let p; be the allele

frequency of A atlocus i, a; the additive effect, d; the dominance effect, aq;; the additive-
by-additive interaction effect between locus i and j. Under the Hardy-Weinberg equilibrium
assumption, we can define the average effect of allele substitution, i.e,, f; = a; + (1 —

2p;))d; + Z?# 2 pjaa;j, which contains the additive effect, a term due to dominance

interaction between two alleles, and a term due to additive-by-additive interactions

between pairs of loci®. Then, the additive variance at locus i (aj(i)) is2p;(1 —p))la; + (1 —
2p;))d; + Z?# 2pjaa;;]?, the variance of the average effect of allele substitution, dominance
variance (05;) is [2p;(1 — p;)d?], and additive-by-additive variance (7, ;) is

Y e 2pi(1 = p)2p;(1 — p;)(aa;;)?. Hence, the genotypic variance (o7 ;) is o7y +

2 2
04yt Oaa(i)

Let us define the additive genotype coding x,(;, as 0,1 or 2 for genotypes BB, AB and AA
respectively , and dominance coding xp ;) as 0, 2p; or (4p; — 2). This parametrization of

Xq(i) following Zhu et al.1% ensures the orthogonality with x,;), compare to the classical 0,
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1, 0 code use for the different genotypes, which lead to Cov(x,;, Xpi)) = 2p;(1 — 2p;).
Now including all L biallelic loci, we can fit the additive, dominance and additive-by-

additive effect of all SNPs as random effects in a mixed linear model:

L L-1

L
y=u+ Z[WA(i)uA(i) + wpiyUp] + Z W) Wa(j)Uaagj) T € (5)

i=1 i=1 j>i

with wyey = (Xaqy — 2P:)/+/2p:(1 — p;) and wp iy = (xpy — 2p7)/(2pi(1 — p;)) are
respectively the standardized form of x4, and xp. uy, up and u,, are the additive, dominance
and additive-by-additive random effects of the standardized genotypes, i is the mean term

and e~N (0, 02) is the residual.

This model can be expressed as an individual based model for a sample of N diploid

individuals and the presence of fixed covariates, written in matrix form as:
y = Cb + WAuA + WDUD + WAAuAA +e

where y isa N X 1 vector of individuals phenotypes, W, and Wj, are N X L matrices with

one row per individual containing the corresponding wy;y and wp;y vectors. Wy, is a

L(L-1)

N X matrix with one row per individual containing all the pairwise w,;,w,(;). us and

L(L-1)
2

X 1

up are L X 1 vectors of locus specific additive and dominance effects, uy, is a

vector of additive-by-additive effects, e isan N X 1 vector of residuals. Cisan N X ¢ matrix

of ¢ covariates, and b is a ¢ X 1 vector of corresponding covariate effects.
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If we define g4, = Wyu,, gp = Wphup and g44 = Wyuy,, then we have:
y=Cb+g,tgptgante
The (co)variance matrix of phenotypes becomes:

var(y) = var(g,) + var(gp) + var(gss) + var(e)
= 0,07 + Op0% + 04,407, + o2

!

W W, WpWp

L

where ®, = G = and O, = are the additive and dominance genomic relatedness

matrices (GRM) as described in Yang et al.1® and Zhu et al.19, and ©®,44 is the additive-by-

additive genomic relatedness matrix define as:

0 __ GOG
447 (6 O G)/N

Genotype data

We analyze a large dataset of 347,849 unrelated (genomic relatedness < 0.05) individuals
of European descent (188,088 females and 159,761 males), from the UK Biobank (UKB).
Informed consent was obtained from all the subjects and those who expressed the which to
be withdrawn have been removed from analysis. We used the release 3 of the UKB where
individuals were genotyped on the Affymetrix UK Biobank Axiom array before imputation
using the HRC and UK10K reference panel and IMPUTE247. SNPs were filtered for quality
control by removing those with missing genotyping rate > 0.05, Hardy-Weinberg
equilibrium test P < 107° and minor allele frequency (maf) < 0.01. After filtering, we

extracted autosomal HapMap phase 3 (HM3) markers, resulting in 1,130,561 SNPs.
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The Additive and Dominance GRM were computed using the standard algorithm of GCTA
software!® version 1.93.0b as previously described, and the additive-by-additive GRM was
computed using R version 3.6.248 from the additive GRM as described in Equation (2). In
order to remove any cryptic relatedness, we trimmed the GRMs by removing one individual
for each pair with an additive genomic relatedness > 0.025. This resulted in a final dataset

of 254,679 unrelated individuals (138,196 females and 116,483 males).

Phenotypes selection and quality control

We chose 70 continuous trait from the UKB (listed in the Supplementary Table 3) with a
total number of phenotyped individuals in the all UKB > 60,000, a significant SNP
heritability hZyp = 0.05 (at @ = 0.05 level, based on Neale’s lab hZ, estimates
https://nealelab.github.io/UKBB_ldsc/h2_browser.html) and a square pairwise phenotypic
correlation 7% < 0.8. First assessment data only were used, and for phenotypes with left
and right measure, only one was chosen randomly. Outlier individuals were removed
following Tukey’s method*° separately for males and females in every phenotype. This step
resulted in a mean and minimum number of phenotyped individuals across traits of
200,550 and 36,690 respectively (among a total of 254,679 individuals). Each sex-specific
dataset has been further corrected for age, as well as month of assessment for blood
biochemistry traits only, and standardized to z-score. The first 20 eigenvectors of the

principal components (PCs), estimated from the 254,679 individuals genotype data using
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flashPCA2 software>?, were included as fixed covariates in the REML analyses and the

phenotypes were pre-corrected for HE analysis.

Effective number of phenotypes

For multiple testing correction purpose, we computed the effective number of phenotypes

(Pgss) from a general purpose estimator5! using the Shannon entropy:

P Aj

Ao\ =P
o1t ™
SN RV YE

j=1

where P is the total number of phenotypes and 4; the jt" eigenvalue of the phenotypes’
correlation matrix. Using the correlation matrix of our 70 traits, we found Pgfr = 43 and
used it for Bonferroni corrections. Because we tested for three variance components but
chose only traits with significant SNP-based heritability, we also used two components for

the Bonferroni corrections, resulting in a threshold P-value of 0.05/(43x2) =5.8e-4 ata =

5%.

Estimation of genetic variance components

Genetic variance components were estimated using HE regression with phenotypic cross-
products and REML. As stated in the main text, HE regression analyses were performed on
the full dataset as well as REML when the number of phenotyped individuals was smaller

or equal to 60K. Otherwise, we used an inverse-variance weighted (IVW) meta-analysis of 8
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sub-datasets of 232K individuals. For a single trait, the genetic variance estimate from the
IVW meta-analysis of i sub-datasets and its associated standard error are:

)

HIVW == ( ) al’ld SEIVW =

HCD)

5g!

Q
N

[

5g!

2
g
0;

where 6 is the genetic variance estimate from the sub-dataset i, and O-QZL, the associated

sampling variance. Indications on whether we use a single or meta-analysis for each
phenotype can be find in the Supplementary Table 3. To obtain unbiased estimates of the
variance components, we did not constrain REML estimates to be non-negative. For REML,

P-values of the estimates were computed as the probability of the likelihood ratio test
Estimate

LRT =~ (T)2 in a Chi-square distribution with one degree of freedom. For HE analysis,

we used the reported jackknife SE and P-values by GCTA.

. . . A 1 a~
We estimated the mean of each variance component estimate 8, u = ;Zf;l 0, across our P

traits, as well as its standard error SE (u) = Pl—z f=1[092i + i Cov(8;; 6;)] where

Cov(8;; 6;) accounts for the non-independence of the traits. We can show from simulations
(Supplementary Figure 8) that a good approximation of the covariance between genetic
estimates is Cov(6;; 6;) = 17 X Tg, X Op; with 77 the squared phenotypic correlation
between traits i and j, and oy, the standard error of the estimate which can be approximate

from our analysis (using the reported SE by GCTA). Dominance variance explained by
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genome-wide significant SNPs was calculated as Y(p; (1 — pl-)c?i)z with p; the empirical

allele frequency at SNP i and d; the estimated dominance effect from the genome-wide

association analysis. We used R version 3.6.248 to perform the analysis of GCTA outputs.

Simulation studies

We performed simulation studies to validate our model and theoretical sampling variance
of the estimates. We performed simulations based on the real genotypes observed on the
1,130,561 autosomal HM3 SNPs of the 254,679 unrelated European individuals from UKB.
Following Zhu et al.1%, we randomly sampled 100,000 SNPs (across autosomes) as a pool of
causal variants and used the remaining SNPs as the observed SNPs. To measure at which
extent we were able to capture the additive and dominance variation of causal variants that
are associated with common SNPs, we computed the multiple regression R? for the first

10K causal SNPs by regressing the x,;) (xp(;) under dominance) of the target SNPs with the

Xa(iy (Xp) under dominance) of the neighboring SNPs in a 1Mb window.

We generated the phenotypes using a custom C++ program following Equation (5) where
the additive, dominance, and additive-by-additive effects were generated from a standard
normal distribution and adjusted to the expected variance of the additive, dominance and
additive-by-additive genome-wide effects (hZyp, 82yp and nZyp). The residuals were then
generated from a normal distribution with mean 0 and variance 1 — (h2yp + 8%yp + Nénp).

The simulated phenotypes were standardized to z-scores. We chose h2yp = 82yp = Niyp =
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0.3 and simulated 100 replicates, each with 1000 randomly sampled causals SNPs from the
pool of 100,000 putative causal variants. Missing genotypes were imputed to the mean
genotype during the simulation process. The different variance components were
estimated using Equation (1) under REML and HE regression, including or not causal

variants.

To compare results from simulations based on observed genotypes of UKB participants
with those under Hardy-Weinberg and linkage equilibrium, we used R v3.6.248 to generate
a sample of 35K unrelated individuals genotyped at 100K unlinked markers with uniform
allele frequency distributions in the range [0.01;0.99]. Phenotypes were then simulated as
described above with the same setting (hZyp = 82yp = nZyp = 0.3). Causal markers were
randomly sampled among the 100K unlinked SNPs and all variants were included in the

analysis.
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Figure 1: REML and HE estimates from simulations based on observed genotypes of

UKB participants (simulated h2y, = 6%yp = n%yp = 0.3). We compared (A) IVW-REML

(meta-analysis of 8 sub-datasets of 32K individuals) and (B) HE estimates (analysis of

254,679 individuals) for 100 replicates of simulations including the pool of causal variants

when we jointly estimate the different variance components (ADAA) or only one at a time

for h2yp, 62yp and n2yp. Simulated values are depicted by a black cross, the black dashed
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line depicts the Y=X line while the solid grey line depicts the linear regression between the
corresponding ADAA and single component model. The squared correlation r? is close to 1

for all the variance components and n? is the only one showing a large intercept.
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Figure 2: Distributions of REML and HE estimates from simulations based on
observed genotypes of 254,679 UKB participants (simulated h2yp = 6%,p = n%yp =
0.3). IVW-REML (analysis of 8 sub-datasets of 32K individuals) and HE estimates (analysis

of 254,679 individuals) for 100 replicates of simulations are shown for the three different
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variance components including all variants (all SNPs) or excluding the causal variants

(without causal). The black dashed line indicates the simulated value of 0.3.

37


https://doi.org/10.1101/2020.11.09.375501
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.375501; this version posted November 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(@) [}
1_' — }
[}
}
I
Q. :
}
I
© | :
o I
g I
O [}
o
< | ]
o |
I 2
- Nsnp
}
g | ) — 0.01
— 0.05
— 0.1
S s R — 0.2
g ] ! 0.4

I I I I
500,000 1,000,000 1,500,000 2,000,000
Sample size

Figure 3: Statistical power to detect additive-by-additive variance as a function of
sample size for REML (solid lines) and HE regression (dashed lines) on additive-by-
additive GRMs computed on UKB data. Results are shown for an additive-by-additive
heritability equal to 0.01, 0.05, 0. 1, 0.2 and 0.4. The current sample size of 254,679

unrelated individuals is depicted by the vertical black dashed line.
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Figure 4: Distributions of the (A) REML and (B) HE estimates of SNP-based
h%,p, 82yp and n%yp for 70 continuous traits in the UK Biobank. For each distribution of
variance components estimates, we indicate the mean estimate as well as the 95%

confidence interval (CI195%).
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Table 1: Observed standard deviations (SD) from the analysis of simulations based
on observed genotypes of 254,679 UKB participants (simulated h2,, = 6%, =

n%yp = 0.3), as well as theoretical and reported standard errors (SE) by GCTA.

Analysis  Variance Observed Theoretical reported SE
component SD SE

REML,, | B2 0.011 0.010 0.012
52 0.015 0.014 0.016
n? 0.37 0.399 0.393

HE3;k h2 1.4x10-2 9.9x103 9.9x10-3 (1.8x10-2)
52 1.8x102 1.4x10-2 1.5x10-2 (2.2x10-2)
n? 1.45 1.57 1.55 (2.19)

We performed 100 replicates of simulations based on observed genotypes of 254,679 UKB
participants. In order to assess the accuracy of the theoretical and reported SE, 8 sub-
datasets of 32K individuals were analyzed for each replicate both with REML (REML3,x)
and HE (HE;,x). The observed SD have been computed within a replicate and averaged
across them for each variance component. Reported SE by GCTA were averaged within and

across replicates and the format for HE analysis is SEo s (SEjgckknife)-
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