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Abstract 
Marine plankton form complex communities of interacting organisms at the base of 
the food web, which sustain oceanic biogeochemical cycles, and help regulate 
climate. Though global surveys are starting to reveal ecological drivers underlying 
planktonic community structure, and predicted climate change responses, it is unclear 
how community-scale species interactions will be affected by climate change. Here 
we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton 
co-occurrence network – the community interactome – and used niche modeling to 
assess its vulnerabilities to environmental change. Globally, this revealed a plankton 
interactome self-organized latitudinally into marine biomes (Trades, Westerlies, 
Polar), and more connected poleward. Integrated niche modeling revealed biome-
specific community interactome responses to environmental change, and forecasted 
most affected lineages for each community. These results provide baseline 
approaches to assess community structure and organismal interactions under climate 
scenarios, while identifying plausible plankton bioindicators for ocean monitoring of 
climate change.   
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MAIN TEXT 

 

Introduction 

Marine plankton and associated processes are at the core of global biogeochemical 
cycles, shaping ecosystem structure and influencing climate regulation (1). While 
global biodiversity maps for viruses, prokaryotes and microbial eukaryotes are 
beginning to emerge (2-4), identifying and understanding the complex network of 
interactions between these organisms and their environment is in its infancy (5). 
These interactions are critical to establish the ecosystem trophic links that underpin 
biogeochemical cycles and feedbacks that drive climate regulation and response (6, 

7). While abiotic factors, such as temperature, can explain a large fraction of 
microbial community composition in the global ocean (8), biotic interactions can 
differentially shape ecosystem diversity (9), and can even influence the adaptation to 
new environments (10). Thus, determining how plankton ecological interactions are 
structured and affected by environmental change remains a significant challenge.  
 
Large-scale holistic marine ecosystem sampling facilitates conceptualization of 
plankton community interactomes as co-occurrence networks that are useful to model 
the complex community structure of ecological associations (11, 12). Such networks 
have enabled the detection of communities assembled through niche overlap across 
biomes (13), and also the prediction of putative interactions such as parasitism or 
symbioses (14). Likewise, plankton co-occurrence networks have been instrumental 
in detecting interrelated changes in community structure from surface to depth (15), 
as well as to identify specific communities of key lineages (e.g. Synechococcus, its 
phages, and Collodaria) associated with global open ocean processes such as carbon 
export (16). Community interactomes are also useful to identify central, highly 
connected lineages that may play significant ecological roles and confer stability to 
the community (17). These central lineages can correspond to keystone taxa that are 
good indicators of community shifts (18). Understanding the mechanisms affecting 
these central taxa may help us to predict responses of microbiome structure and 
functioning to perturbations (19). 
 
While community interactomes inferred from global-scale samplings summarize well 
the complexity and potential interactions within microbial assemblages (12), they 
usually do not reflect dynamic processes shaping the observed system, as measured 
by longitudinal high-frequency sampling (20). Thus, alternative strategies need to be 
developed to capture ecosystem dynamics and responses from spatial samplings. 
Indeed, plankton species display various ecological and evolutionary responses to 
global environmental change (21, 22). Within marine ecosystems, the interplay 
between species ecological niche and climate change can induce abrupt community 
shifts, which may lead to long-term reconfiguration of marine metazoan communities 
or biodiversity rearrangements (23, 24). Recently, environmental drivers of ocean 
plankton diversity were inferred from Tara Oceans data and used to predict the 
effects of severe warming on surface ocean biodiversity (3). While species niche 
distribution models combined with climate models are useful to project fine-scale 
future distributions of species (25, 26), species interactions are generally not included 
in these models (27), certainly due to our lack of knowledge about organismal 
interactions. Nevertheless, plankton network metrics can capture emergent properties 
(e.g. connectivity) relating to ecological characteristics of the community (28), which 
can serve as proxies of ecosystem and community-level resilience (29). Given that 
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biotic interactions can influence species distributions at macroecological scales (30), 
and that climate change may cause trophic cascading effects on plankton community 
structure by directly impacting the top and bottom of marine food webs (31), 
ecological interactions need to be considered for assessing plankton community 
stability under climate change scenarios. 
 
Here, we bridge the gap between ecological and climate modeling by combining 
network analyses (32) with species niche models (33) into a novel computational 
framework for predicting ecosystem-scale vulnerabilities to environmental change. 
By leveraging Tara Oceans data from all major oceanic provinces, including the 
Arctic Ocean, we inferred a comprehensive global-ocean cross-domain plankton co-
occurrence network from sequencing data. We built statistical niche models to predict 
realized niche widths of planktonic taxa, across kingdoms, and from pole-to-pole. 
These were then mapped onto the network and used to evaluate both local and global 
robustness of plankton community structures to simulated environmental changes. 
Noticeable efforts have used the ecological niche concept to identify open ocean 
physical conditions governing phytoplankton biogeography (34), and also to better 
formalize central biogeochemical processes through the definition of key plankton 
functional types (35). The niche representation of planktonic diversity affords a more 
effective integration of abiotic and biotic constraints to better predict perturbations of 
primary productivity under climate change scenarios (26, 36). 
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Results and Discussion 
 
A cross-kingdom plankton interactome from pole to pole 

To reconstruct a global marine plankton co-occurrence network across kingdoms of 
life, we analyzed data from 115 stations from the Tara Oceans expeditions (2009-
2013) covering several organismal size fractions and all major oceanic provinces 
(37) across an extensive latitudinal temperature gradient from pole to pole (Fig. 
1A). Via a dedicated probabilistic learning algorithm (38) (see M&M), we predicted 
ecological interactions between plankton taxa from compositional abundances 
inferred from sequencing data. The resulting integrated species association network 
(referred to as the Global Ocean Plankton Interactome – GPI) counts a total of 
20,810 nodes corresponding to Operational Taxonomic Units (OTUs) and 86,026 
edges corresponding to potential biotic interactions (Fig. 1A). In comparison to a 
previous plankton interactome generated from Tara Oceans data (14), GPI doubled 
the number of recovered known interactions from the literature (see supplementary 
text). A vast majority of positive associations (98.5%) were predicted, probably 
underlying a prevalent role for biotic interactions in shaping marine plankton 
communities (14). Very few direct associations between OTUs and environmental 
parameters were detected (n = 325, see supplementary text). However, by 
estimating robust ecological optima (or niche value) and tolerance ranges (or niche 
widths) (39) for each OTU and environmental parameter (see M&M and Table S3), 
we observed a strong influence of temperature in structuring predicted interactions 
(Fig. 1A). The GPI displayed a very high temperature optima assortativity 
coefficient (ACt=0.87), which quantifies the tendency of nodes being connected to 
similar nodes (here with similar temperature niche optima) in a network. Thus, it 
confirms that the latitudinal temperature gradient indirectly shaped the global ocean 
plankton interactome (3), and demonstrates the substantial effect of both 
environmental forcing and habitat filtering in structuring marine plankton 
communities at global scale. 

 
Abiotic factors differentially shape the plankton interactome structure 

To further investigate the influence of abiotic factors in shaping the GPI structure, 
we extracted local subnetworks corresponding to potential interactomes at each 
sampling site and computed graph topological metrics. These local metrics (see 
supplementary text for a detailed description) were then correlated to environmental 
parameters (see M&M). Globally, the GPI network connectivity assessed by these 
metrics was negatively associated with temperature and salinity (Fig. 1B and 
supplementary text), pointing towards their potential impact in altering the structure 
of predicted interactions (40). We also observed a differential association between 
temperature and interactome connectivity in polar (Fig. S1A, negative association 
with strength) versus non-polar regions (positive association with strength). This 
difference may be linked to the observation that community turnover, which 
dominates in polar versus non-polar prokaryotic communities (4), is accompanied 
by stronger biotic dependencies between species. It also suggests a potential role for 
temperature in reducing polar community size structure in response to ocean 
warming, which we modeled and discuss below. 
 
Given the observed differential association between temperature and community 
structure along the latitudinal axis, we compared local interactome topological 
metrics across biomes (Fig. 1C). The network stability (mean weight) and 
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connectivity (transitivity) were significantly higher for the polar biome compared to 
other marine biomes (Dunn’s test, FDR < 0.05 for all tests), and were associated 
with a lower mean (cross-domains) species diversity. This higher connectivity of the 
polar interactome further supports the more prevalent role of biotic interactions in 
structuring less diverse plankton communities in the extreme polar environment. It 
may also reflect the lower complexity and simpler structure of pelagic ecosystems 
in polar oceans, which are usually characterized by shorter pathways of energy flow 
in food webs (41). The lower diversity observed in polar ecosystems has also been 
linked to higher prokaryotic species turnover (42), which may translate into the 
higher connectivity observed between distinct species in the polar interactome. As 
recently proposed for a fluvial river system, environmental heterogeneity may 
determine the ecological processes assembling bacterial metacommunities (43). 
Here, the environmental heterogeneity of polar systems may cause the higher 
network connectivity through higher heterogenous selection and community 
turnover. 

 
Biome-specific communities emerge from the plankton interactome 

To further our understanding of the role of temperature in shaping the interactome 
structure along the latitudinal axis, we used an unsupervised approach to delineate 
network communities and test their association with specific biomes. Using a 
deterministic community detection algorithm (see M&M), five communities 
emerged from the GPI, which were enriched in OTUs assigned to specific biomes, 
and displayed distinct predicted biotic associations (Fig. 2). Through comparison of 
community abundance profiles, these five communities were indeed preferentially 
observed in specific biomes (Fig. 2A and Table S4). GPI Communities 0 and 3 
(TC0 and TC3) occurred preferentially in Trades stations, Community 2 (WC2) 
prevailed in Westerlies stations, while Community 1 (PC1) clearly emerged in Polar 
stations. Community 4 (UC4) was more abundant in Polar stations but displayed a 
clear ubiquitous distribution. This unsupervised approach to community detection 
demonstrates that the GPI is self-organized across marine biomes, and that it 
captures the biogeography of cross-domain plankton associations. It also indicates 
that Longhurst’s primary biomes partitioning (44), which is based on chlorophyll 
and phenology, is also biologically meaningful for planktonic associations across 
plankton domains and size spectra.  
 
All GPI communities (with the exception of the ubiquitous UC4) displayed mostly 
exclusive associations, even at the high taxonomic level of the main planktonic 
lineages considered (Fig. 2B). All GPI communities clearly differed in their 
associations (Fig. S3), which were enriched between distinctive taxa (Table S6). 
Most prevalent associations in communities TC0, TC3 and WC2 (see 
supplementary text) included radiolarians (e.g. Spumellaria, Acantharea and 
Collodaria) and Dinophyceae, detected in associations with parasitic organisms (e.g. 
MALV, see supplementary text for details). Both PC1 (Polar-like) and UC4 
(ubiquitous) communities clearly formed two distinct systems as compared to TC0, 
TC3 and WC2 with respect to co-occurring lineages (Fig. S3). The PC1 community 
displayed a significantly lower contribution of MALV and was particularly enriched 
in Bacillariophyta (diatoms) associations with several eukaryotic lineages, including 
Ciliophora, Cryomonadida, Choanoflagellatea and Mamiellophyceae, but also with 
bacterial lineages such as Bacteroidetes and Gammaproteobacteria, suggesting 
widespread diatom-bacteria interactions (45) in polar ecosystems. Notably, 
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Bacillariophyta – Cryomonadida associations may correspond to ecologically 
important interactions in sea-ice influenced waters. Several Cryomonadida in cold 
waters can feed on diatoms and some Cryothecomonas spp. are diatom parasitoids 
(46). The UC4 community was significantly enriched in associations involving 
heterotrophic bacterial lineages (Alphaproteobacteria, Gammaproteobacteria and 
Bacteroidetes) between themselves, and with major phytoplankton taxa such as 
Dinophyceae, Haptophyta, and Bacillariophyta, among the most abundant 
photosynthetic eukaryotes (47). Notable UC4 over-represented associations (Table 
S6) included Haptophyta with MAST and MALV lineages, emphasizing the 
promiscuous nature of MALV parasitic interactions, not only in tropical and 
temperate ecosystems (14), but also in polar regions. Several cross-domain 
associations were enriched in UC4, such as Bacillariophyta and Dinophyceae with 
Bacteroidetes, and Copepoda with Alphaproteobacteria, revealing the pervasive role 
of phytoplankton- and zooplankton-bacteria ecological interactions (48) shaping the 
plankton microbiome from pole to pole. Core associations detected across all GPI 
communities were also identified (n=56, Fig. 2B) and reflected strong dependencies 
between clades that have co-adapted to specific environmental conditions 
encountered in each biome. These core associations were dominated by MAST and 
MALV lineages, underlying their broad biogeography (49, 50), and very successful 
adaptation from pole to pole, through grazing and parasitism, respectively. 
 
Communities emerging from the GPI underline niche differentiation by biome and 
implies that community-specific ecologically central species may be identified. To 
identify species whose impacts appear to be particularly important compared to their 
abundances, we computed the integrative general keystone index for each GPI 
community (51). Focusing on the ubiquitous UC4 community, the top 10 OTUs 
delineated by the index (Table S7) included Eukarya (n=6), among which several 
Copepoda (Cyclopoida, Corycaeus sp.) and Dinophyceae (Phalacroma, HM581743 
sp.) taxa. It also included bacterial OTUs (n=4) belonging to AEGEAN-169, NS5 
marine group, Polaribacter and SAR116 lineages. The AEGEAN-169 group was 
previously shown to be abundant and ecologically important at the SPOT station 
(52). Polaribacter environmental genomes were recently shown to be prevalent and 
active in the euphotic zone at both poles (Royo-Llonch et al., submitted).  
 
Although each GPI community was more abundant in a given biome, their 
occurrence goes beyond these partitions, which probably reflects the importance of 
physical processes (e.g. advection by ocean currents) influencing their distribution 
through dispersal (53, 54). This is also reflected by the biogeography of the WC2 
community (Westerlies-like), and especially UC4 that is ubiquitous and appears to 
interface with other communities. The broader biogeography of these associations 
reflects the interconnected evolutionary history of phytoplankton- and zooplankton-
bacteria ecological interactions and their pervasive role in influencing fundamental 
processes such as primary production, nutrient regeneration and biogeochemical 
cycling (48), not only in low-nutrient regions of the ocean but from pole to pole. 

 
Community-specific vulnerabilities to environmental change 

Given that the GPI captured the global biogeography of cross-domain plankton 
associations, we sought to investigate the potential influence of environmental 
change on community stability across biomes. Unlike previous studies that mapped 
global biodiversity and investigated ecological drivers, we used the GPI as a basis 
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to develop a novel computational framework integrating OTU niche inference and 
community network analyses, to assess how plankton communities and lineages 
may be affected under environmental change. First, for each OTU, we calculated 
the ecological optimum and tolerance range for a selection of environmental 
parameters including salinity, nutrient concentrations (NO2+NO3, PO4), pH and 
temperature. These abiotic factors are projected to change significantly under on-
going climate change scenarios (36). For the temperature niche, we observed 
smaller OTU tolerance ranges towards the poles and the equator (Fig. S4), which 
supports the general assumption of higher environmental stability and narrower 
temperature ecological niches in both Polar and Trades biomes compared to the 
Westerlies (44). The environmental optima and tolerance ranges of OTUs inform us 
about the realized ecological niches of the taxa they represent and their potential 
sensitivity to environmental variations. OTUs from taxa with narrower tolerance 
ranges (i.e. specialists) are more likely to be affected by environmental changes, 
while OTUs from taxa with larger tolerance ranges (i.e. generalists) are more likely 
to be less sensitive to environmental changes. Based on this general assumption, we 
then simulated the effect of environmental changes on plankton interactome 
stability. Specifically, we perturbed GPI by progressively removing nodes ranked 
by their environmental tolerance ranges, from the narrower to the wider, for each 
parameter. We also attacked GPI’s nodes by their degree (i.e. from the most 
connected to the least connected nodes) to simulate the potentially most damaging 
perturbation of the network, and repeated random attacks to obtain a random 
expectation reference. The GPI perturbations were systematically performed at 
global scale, to study both global and community-specific impacts of these attacks 
on the stability of the network (see M&M). 
 
In response to in silico environmental perturbations, we observed an overall global 
robustness of the network (Fig. S5). However, at local scale, we found evidence for 
differential effects of specific abiotic factors on GPI communities (Fig. 3A). While 
the UC4 (ubiquitous) community was found to be the least sensitive to simulated 
environmental changes (Table S8, p > 1 x 10-2), community TC0 (Trades-like) 
displayed significant vulnerabilities (Fig. S6) to temperature (Wilcoxon-rank test, p 
= 3.8 x 10-10), salinity (p = 3.8 x 10-10) and PO4 (p = 4.5 x 10-6), as compared to 
random attacks. The TC3 community (Trades-like) also displayed a significant 
vulnerability to temperature (p = 1.7 x 10-3). The WC2 community (Westerlies-like) 
was predicted as being the most vulnerable (Fig. S6) to nutrient concentration 
changes (NO2+NO3, p = 6.7 x 10-9; PO4, p = 5.2 x 10-9), while the PC1 community 
(Polar-like) displayed a clear vulnerability (Fig. 3B) to temperature (p = 3.8 x 10-10). 
The PC1 community was also found sensitive to pH (data not shown), but with 
lower confidence given the higher amount of missing data for pH. These distinct 
predicted sensitivities of GPI communities imply that taxa represented by central, 
most connected OTUs display lower environmental tolerance ranges for distinct 
abiotic factors in each community. Thus, these findings suggest that the plankton 
interactome will be impacted differently by environmental change in specific 
ecological marine regions, which are themselves predicted to be impacted 
differently by warming and nutrient distributions (55). Both Trades communities 
(TC0 and TC3) appeared to be more sensitive to temperature, and to a lesser extent 
to salinity, which are both currently increasing in tropical ocean regions (56). On the 
other hand, the Westerlies community (WC2) appeared to be more vulnerable to 
nutrient concentration variations, which is a coherent scenario with climate change 
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projections (36). These predictions also confirm the vulnerability of the Polar 
community (PC1) to temperature changes that are currently occurring with the rapid 
warming of the Arctic over recent decades and that is projected to be amplified (57, 

58).  
 
Plankton lineages potentially most impacted by environmental change 

By combining environmental tolerance range inference with network stability 
analyses, plankton communities most affected by environmental perturbations were 
predicted, as well as vulnerabilities of the respective plankton taxa and marine 
plankton groups (MPGs, see M&M). For temperature vulnerability predictions, we 
considered relatively abundant OTUs displaying a temperature niche width smaller 
than 2.1 ºC, which corresponds to the global mean sea surface temperature anomaly 
projected for the end of the century by the CMIP6 model scenario SSP2-4.5 (59). 
Marine plankton vulnerabilities to temperature, salinity and nutrient concentration 
changes were predicted for communities TC0 and WC2 (see supplementary text). 
Focusing on the PC1 polar community, which appeared the most sensitive to 
temperature change, we identified specific plankton lineages from all domains of 
life predicted to be impacted (Fig. 4A). The bacterial phyla Verrucomicrobia and 
Marinimicrobia were found most sensitive with a vulnerable fraction above 50%. 
Verrucomicrobia lineages are poorly characterized but are ubiquitous in the ocean, 
and may be essential for the biogeochemical cycling of carbon (60). Conversely, 
several Marinimicrobia clades have been shown to participate in the biogeochemical 
cycling of sulfur and nitrogen (61). Abundant Eukaryotic lineages for which the 
vulnerable fraction was above 50% included Dinophyceae, Bacillariophyta, and 
Ciliophora, which are all key planktonic groups in the ocean, considerably 
impacting global biogeochemical cycles. Notably, all MAST (Marine 
Stramenopiles) groups, some of which are heterotrophic and bacterivorous 
flagellates that interact with key photosynthetic picoplankton (62), are also 
predicted to be significantly impacted. When resuming PC1 community lineages 
into MPGs (Fig. 4B), we predicted a large impact from temperature changes on 
Archaea, phototrophs and phagotrophs, and in particular on gelatinous filter feeders. 
The critical role of gelatinous zooplankton within ocean trophic webs is increasingly 
being recognized as they may channel energy from picoplankton to higher trophic 
levels (63). The temperature sensitivity we predict for gelatinous filter feeders 
questions the paradigm that gelatinous zooplankton have been increasing in the past 
decades (64), and points toward the overall vulnerability of corresponding lineages 
to ocean warming in polar regions.  
 
PC1 polar lineages predicted to be most sensitive to temperature were also 
identified at a lower taxonomic level (Fig. 4C) to infer potential species indicators 
of polar ecosystem change in response to ocean warming (65). Predicted bacterial 
genera as being most vulnerable to temperature change in polar regions were 
Lentimonas and Methylotenera, along with several uncharacterized OTUs (n=30). 
Lentimonas spp. are specialized degraders of fucoidans and other complex 
polysaccharides (66). Their observed sensitivity to temperature variations may 
increase the recalcitrance of algal biomass to microbial degradation, which would 
affect the turnover of carbon sequestered in glycans that is vital for global carbon 
cycling (67). Methylotrophs of the family Methylophilaceae play a crucial role in 
the carbon cycle of aquatic habitats (68), and several Methylotenera spp. isolates are 
methylotrophic bacteria that can use a range of one carbon compounds in coastal 
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ocean ecosystems (69). Thus, these two genera appear to encompass rather 
specialist microbes with regard to their metabolism, and are predicted to be 
impacted by ocean warming in the polar ocean. Eukaryotic lineages predicted to be 
most sensitive to temperature included several abundant diatom genera: 
Chaetoceros, Porosira and Proboscia, and other genera belonging to Rhizosolenids 
and Mediophyceae. A single abundant genus of dinoflagellate was predicted to be 
impacted by temperature change: Protoperidinium. For copepods, the genus 

Pseudocalanus and genera from the family Paracalanidae were found to be the most 
vulnerable. Picomonadida was the only heterotrophic protist family predicted to be 
vulnerable to temperature change.  
 
Monitoring pelagic ecosystems under environmental stress due to ongoing climate 
change is challenging, but plankton species indicators may provide an accurate 
diagnosis of ecosystem health (70). Previous evidence suggests that genera we 
predict as being most sensitive to temperature in polar ecosystems may be good 
candidates for plankton indicators of ocean warming. Chaetoceros constitutes a very 
large genus of marine planktonic diatoms, and is a dominant component of 
phytoplankton communities contributing an estimated 20% of total oceanic primary 
production (71). Chaetoceros is abundant in polar oceans and is affected by 
temperature in lab experiments (72). A species distribution model previously 
showed that the annual median probability of occurrence of another diatom species 
Rhizosolenia stolterfothii was predicted to shift in the North Atlantic Ocean (21), 
suggesting that it too will be affected by anthropogenic climate change. Considering 
copepods, the abundance of the genus Pseudocalanus has continuously decreased 
within a decade (2003-2012) in East Greenland waters (73). Another line of 
evidence for the temperature sensitivity of the predicted genera comes from 
mesocosm experiments, in which the relative biomass of a diatom from the genus 
Proboscia (Proboscia alata) was negatively impacted by temperature (74). As for 
dinoflagellates, a species of the genus Protoperidinium was shown to be less 
tolerant to prolonged temperature shifts in laboratory experiments (75). 
 
Overall, these results underlie the differential responses of biome-specific plankton 
communities and associated functions to specific environmental changes. These 
findings provide new insights into community-specific environmental 
vulnerabilities of plankton lineages and associated functions. Plankton MPGs play 
central roles in the ecology and biogeochemistry of the polar (and global) oceans. 
Here, we predicted that specific plankton lineages and MPGs will be affected, 
which has substantial implications and may even worsen under currently projected 
scenarios of climate change (59) in the Arctic and in nutrient-rich oceanic regions.  

 

Conclusions 
This study provides a comprehensive cross-kingdom plankton interactome covering 
all major oceanic provinces, including the Arctic Ocean, a region that has lacked 
systematic standardized sampling. Our integrated network constitutes a unique 
resource providing putative key ecological associations among mostly uncultivated 
plankton taxa identified at the molecular level. Still, this resource is limited because 
predicted ecological associations do not demonstrate ecological interactions (76), 
and because it does not capture the dynamics of plankton interactions that are 
usually assessed using temporal or longitudinal samplings (77). Our knowledge of 
plankton microbiomes, symbioses, and host-parasite relationships remains limited 
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(78). While planktonic interactions remain challenging to validate, our predictions 
are useful to further our understanding of ecosystem functioning. Today, high-
throughput co-culture experiments using microfluidics (79) and fabricated synthetic 
microbial ecosystems may help fill this gap (80). Our resource constitutes useful 
guidance for co-culture experiments, as well as a database for hypothesis testing. 
 
Climate scenarios predict global changes in temperature, pH, and nutrient 
concentrations, which all greatly influence plankton physiology. Temperature can 
directly impact bacterial growth (81), grazing rates (82), and phytoplankton 
metabolism (83). Nitrogen availability is a primary limiting factor for marine 
phytoplankton (84). Ocean acidification caused by rising atmospheric CO2 can 
impact phytoplankton growth rates, and is predicted to have a greater impact than 
warming or reduced nutrient supply on plankton ecological functions (85). Herein, 
we identified and predicted distinct community vulnerabilities of the plankton 
interactome by studying its robustness to environmental perturbations. Overall, our 
findings imply differential effects of environmental change on biome-specific 
plankton communities resulting from biotic interactions and environmental stresses. 
While the influence of temperature is central, at the biome-specific community 
scale, salinity and nutrient concentrations were found to significantly influence 
plankton community structures as well. These associations support previous lines of 
evidence linking temperature and nutrient concentrations as the principal drivers of 
microbial plankton community variability (54).  
These findings further advocate for the development of novel modeling paradigms 
targeting multiple biological scales (86), from genes to species and community 
levels (87). Our computational framework combining network analyses with niche 
modeling is generalizable and can be applied to various microbial ecosystems for 
assessing and predicting robustness to environmental perturbations. Here, specific 
lineage vulnerabilities were identified, but it remains an open question whether 
taxonomy, rather than function, is essential or not for predictive models given the 
potential functional redundancy in open microbial systems (88). Similar studies 
should be performed at the genomic level given that the molecular functions rather 
than the microbes themselves sustain marine biogeochemical processes (89). 
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Materials and Methods 

 

Data description 
From 2009 to 2013, the Tara Oceans expedition collected samples at more than 200 
stations across all significant oceanic provinces from oligotrophic to polar regions. 
Sampling stations were selected to represent distinct marine ecosystems at global 
scale (90) describes the sampling strategy and the methodology applied, and sample 
provenance is described in Table S1. Environmental data measured or inferred at 
the depth of sampling are available in Table S2 and published at PANGAEA, Data 
Publisher for Earth and Environmental Science (http://www.pangaea.de). In this 
study, we limited our analyses to the euphotic zone, including only the samples 
from surface (SRF) and the Deep Chlorophyll Maximum (DCM). Two prokaryotes-
enriched size fractions (0.2-1.6 µm and 0.2-3 µm) were available and included in 
the analyses. For Eukaryotes, the following size fractions were included (and 
consolidated as described below) in the analyses: ‘0.8-5 µm and 0.8-2000 µm’, ‘3-
20 µm and 5-20 µm, ‘20-180 µm’ and ‘180-2000 µm. Because of these sampling 
constraints and the non-systematic sequencing of all available samples, the Tara 
Oceans dataset is heterogeneous. Specifically, at polar stations, fractions 0.8-5 µm 
and 5-20 µm are less represented. Conversely, in non-polar stations, sequencing 
data for the fraction 3-20 µm is nearly absent. To overcome this issue and increase 
sampling coverage, we considered that fractions 3-20 µm and 5-20 µm, and 
fractions 0.8-5 µm and 0.8-2000 µm were equivalent, as samples from these size 
fractions capture very similar diversity and community composition (data not 
shown). When both size fractions were available for the same sampling site, the 0.8-
5 µm size fraction was preferred. For the 3-20/5-20 µm size fractions, only one 
station (TARA_124_SRF) was found to be in conflict, and we discarded the 3-20 
µm sample. By doing so, we analyzed 115 sampling sites at which all considered 
size fractions were available. 
 

Data processing and taxonomic annotations 

For the prokaryotes-enriched size fraction (0.2-1.6µm and 0.2-3µm), taxonomic 
profiling was performed using 16S ribosomal gene fragments directly identified in 
Illumina-sequenced metagenomes (4). Extracted 16S reads, named miTags, were 
mapped to cluster centroids of taxonomically annotated 16S rRNA gene reference 
sequences from the SILVA database (59) (release 128: SSU Ref NR 99), that had 
been clustered at 97% sequence identity beforehand, using USEARCH v9.2.64. 
Additional methodological details are available in (4), and we used the OTU-level 
abundance matrix as provided by the authors. For the Eukaryotic taxonomic 
profiling, we used the same methodology as in (50) to define OTUs using 18S 
rRNA gene V9 amplicons with the Swarm2 algorithm (91), with an updated version 
of the PR2 reference database (3). 18S rRNA gene V9 region PCR primers also 
amplify some 16S rRNA gene V9, thus we decided to filter out prokaryotic OTUs 
in the Eukaryote data that had been assigned to the following taxonomic groups: 
'Bacteria' (35,448), 'nan' (31,406), 'Archaea' (1,806), 'root' (58) and ‘Organelle' 
(583). For the prokaryotic abundance matrix, we filtered out miTags assigned to 
'Eukaryota' (5,283), Chloroplast (468) and Mitochondria (74). After this filtering, 
we worked with six distinct matrices corresponding to each size fraction considered 
(see supplementary files online). 
Based on these taxonomic affiliations, we classified all taxa into marine plankton 
groups (MPGs) as in (3). For prokaryotes, photosynthetic bacteria (i.e. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.375295doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.09.375295
http://creativecommons.org/licenses/by/4.0/


12 
 

cyanobacteria) were distinguished from heterotrophic/chemotrophic bacteria and 
archaea. For protists, an extended version of the functional database of (50) was 
used. It encompasses a wide variety of protist taxa that are assigned to major 
functional groups: photosynthetic/mixotrophic protists, endophotosymbionts, hosts 
with endophotosymbionts (photohosts), parasitic protists, and free-living 
heterotrophs or phagotrophs (heterotrophic protists). For the mesozooplankton, the 
categories used corresponded to the most abundant taxonomic groups (such as 
copepods and chaetognaths) or feeding strategies.  
Shannon diversity indices were calculated for each sample and provided by (3). 
 

Data transformation and filtering 

All OTU abundance matrices were transformed using the centered log-ratio (CLR) 
transformation (92). The CLR transformation is widely used in microbiome data 
analysis, especially in association network reconstruction (93), as it copes with the 
compositional nature of microbiome data. As log transformation cannot be applied 
to zero values, we added beforehand a pseudo count of one to all elements of the 
matrix. Finally, to reduce the high dimensionality of our data, which may be the 
source of false-positive predicted associations, we filtered each abundance matrix 
using a top-quartile filtering approach. For each sample, the upper quartile (Q3) of 
its non-zero abundance values was computed. An OTU was retained when its 
observed abundance was higher than Q3 in at least 5 samples. 
 
Network inference and stability procedure 

The network inference was performed using FlashWeave (FW) v0.13.1 with default 
parameters (38). FW relies on the Local-to-Global learning framework and infers 
direct associations by searching for conditional dependencies between OTUs. 
Several heuristics are then applied to connect these “local” dependencies and infer a 
network. FW is significantly faster than other methods while achieving better or 
similar results, and gives the possibility to include meta-variables (such as the 
temperature). Although the latter feature seemed appealing, very few OTU-
environmental factor associations were detected which advocates for developing a 
complementary approach to study the environmental influence (see Network attack 
below). While FW includes a heterogeneous mode (FlashWeaveHE) and the Tara 
dataset is heterogenous itself, the low number of samples prevented its use. Thus, 
we used FW in ‘sensitive’ mode without its embedded normalization since it was 
performed upstream to comply to our network inference strategy designed to deal 
with the multiple size fractions context described below. 
We reconstructed graphs for each size fraction separately, running FW on the 
corresponding CLR-transformed abundance matrix. This first step only allows to 
discover intra-fraction edges. To connect together the 5 resulting graphs, and thus 
infer inter-fraction edges, we considered all 10 combinations of two size fractions 
and ran FW on the according concatenated matrices. This results in a meta-graph 

with OTUs from different size fractions being connected together. 
To assess the robustness of intra- and inter-fraction edges, and reduce the number of 
putative false-positive associations,  we implemented a stability procedure inspired 
by the STARS model selection approach (94). As we did for two size fractions 
matrices, we built every combination of three size fractions matrices and obtained 
10 three-fractions graphs. We then evaluated the stability of every meta-graph edge 
by computing its frequency in the three-fractions graphs. This procedure computes a 
relative stability metric reflecting a given edge robustness to variation in both the 
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number of samples and the number of OTUs. Edges with relative stability below 
50% were removed from the meta-graph. 
  

Estimation of false discovery rate 

Three null models were generated using two R packages (picante v1.7 and HMP 
v1.6). The HMP library provides the Dirichlet.multinomial function which allows 
data matrix generation of OTUs following a Dirichlet distribution. picante comes 
with a randomizeMatrix function and several methods to randomize the matrix. We 
used the frequency (that maintains OTUs occurrence frequency), and trialswap 
(maintaining OTUs occurrence frequency and sample OTUs richness) approaches. 
Then, networks were inferred from these matrices using FW and the same procedure 
as for the observed matrices. We then estimated a False Discovery Rate by 
comparing common edges between the observed and simulated networks. The 
highest FDR we obtained was 3.6% (with a number of iterations set to 10e8) using 
the trialswap method. 
 
Literature-based validation of predicted interactions 

To compare the performance and sensitivity of FW to similar co-occurrence 
network inference methods such as SPIEC-EASI (93), we estimated the graph 
accuracy by comparing edges with known (marine) biotic interactions. We limited 
our comparisons to Polar networks and compared edges with known interactions 
from the PIDA (78) (https://github.com/ramalok/PIDA) and GLOBI (95) databases 
(https://www.globalbioticinteractions.org/). We used the NCBI taxonomy for 
prokaryotes and PR2 taxonomy for eukaryotes to identify Superkingdom, Family, 
Genus, and Species levels. Then, we searched for known interactions from these 
databases in the networks by detecting all combinations of OTUs at the four 
taxonomic levels considered. Results are presented in Fig. S11. Conserved 
associations across taxonomy ranks were estimated as follows. First, taxonomic 
ranks were extracted from NCBI Taxonomy database for prokaryotes and from PR2 
database for eukaryotes. Next, for each pair of ranks, we counted the number of 
edges between nodes of each rank. Next, we repeated the procedure but now applied 
to the subnetwork induced by considering only nodes from a particular biome. 
Finally, we calculated the proportion of edges for each rank pair in each biome with 
respect to the total network. 
 
Station-specific network extraction 

To further explore the association between plankton community structures and 
abiotic factors, we extracted sampling station-specific subnetworks corresponding 
to local GPI interactomes containing only nodes of OTUs detected at a given 
sampling station. This procedure enabled the computation of graph topological 
metrics (mean degree, edge density, mean weight, mean strength and transitivity) 
for each sampling station and enabled us to directly associate environmental 
parameters to local community structures. 
 
Marine biome assignations to OTUs 

In the Tara Oceans data set, each sample is associated with one specific marine 
biome (Coastal, Trades, Westerlies or Polar). Using this information, we assigned 
each OTU to a biome or a combination of biomes according to its abundance 
profile. We did this by identifying biome(s) in which a given OTU is over-
represented, based on relative abundance, compared to other biomes using a 
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Kruskal-Wallis (KW) test implemented in the Python package SciPy (version 
1.2.1). Adjustments for multiple testing were performed using the Benjamini-
Hochberg (BH) procedure implemented in statsmodels (version 0.9.0). For 
significant tests (FDR < 0.05), a post hoc Dunn’s test implemented in scikit-
posthocs (version 0.6.1) was performed to determine in which biome(s) a given 
OTU was significantly over-represented (FDR < 0.05). To determine the direction 
of the over-representation, we compared the mean values to identify and discard the 
“lower mean biome(s)” from the list of the OTU-associated biomes. In the GPI we 
were able to assign biome(s) to a significant fraction of OTUs (41.1%). Numerical 
and categorical assortativities were determined with the corresponding functions 
from networkx 2.3. 
 
Network community detection and biome assignation to communities 

We detected five communities in the GPI using an eigenvector-based network 
community detection algorithm (96) implemented in the networkx 2.3 python 
package. To assign biomes to these communities, OTUs abundance tables were 
CLR transformed and aggregated by community for each size fraction. CLR values 
for each community were grouped by biome, and a KW test was run to verify mean 
differences of communities among biomes (KW test column in Table S4). As all p-
values were significant while controlling the FDR using the BH procedure, post hoc 
Dunn tests were performed to detect community pairwise differences between 
biomes (Dunn test p-value columns in Table S4). Biomes that were found 
significantly lower via the Dunn test were discarded from the biome assignation 
(Dunn test z-score column in Table S4). The five GPI communities were found 
prevalent in the Polar (n=2), Westerlies (n=1) or Trades (n=2) biomes. 
 
Environmental optimum and tolerance range inference 

Environmental optimum and tolerance range were calculated with the robust 
optimum (RO) method described in (39). For each OTU and a selection of 
environmental parameters, we determined the ecological optimum reflecting the 
optimal OTU living conditions relative to a given environmental parameter, and a 
tolerance range around this optimum defined by lower and upper bounds. Here, 
Total Sum Scaling (i.e. read count divided by the total number of reads in each 
sample) normalization was applied to raw matrices. For each OTU, the proportion 
of observed counts in a given sample is computed relatively to all samples. We use 
these proportions to fill a weighted vector of a fixed size (n = 10000) with 
environmental values accordingly (i.e. if the proportion of observed counts for 
OTU1 in sample 1 represents 5% of the OTU1 abundance across all samples, then 
the weighted vector will be filled at 5% with the environmental value measured for 
sample 1). The ecological optimum is then defined as the median value (Q2) of this 
vector, the lower and upper limits as the first (Q1) and third quartile (Q3) 
respectively, and the tolerance (niche) range is given by the interquartile range (Q3-
Q1). Some environmental parameter values are missing (non-available, NA) for 
some samples. To avoid inferring spurious ecological optima and tolerance ranges 
for OTUs for which many values are missing, we set a minimum threshold of 10 
OTU observations with non-NAs and overall with a minimum of 30% non-NAs 
values for it to be computed. 
 
General keystone index 
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The generalized keystone index (51) combines several centrality metrics in a single 
measure, which can then be used to rank nodes, revealing their topological 
importance in the network. Degree, betweenness, closeness and subgraph 
centralities have been calculated using the Python library networkx (version 2.3), 
capturing the relevance of each node at different topological scales. Factor analysis 
was performed with the Python library sklearn (version 0.20.3) on those centralities 
to get the generalized keystone index associated with each node. 
 
Network-based robustness analyses 

In order to simulate the effects of environmental change and predict their impact on 
the stability of plankton community structures, we designed a network attack 
procedure mimicking the potential effect of each environmental parameter’s 
variations onto the GPI. We progressively removed network nodes by bins (n = 200 
nodes until the 10000th node, then n = 1000 nodes) corresponding to environmental 
ranges, ordered from the smallest to the largest tolerance ranges for each parameter 
(within a given range, the nodes are randomly sorted). At each step we computed 
the graph natural connectivity (97), a graph robustness metric, for the global 
interactome and for subgraphs corresponding to communities extracted from the 
GPI (see M&M section ‘Biome assignment and network community detection’). By 
doing so we could evaluate the vulnerability (or loss of robustness / stability) of the 
GPI at the global and community levels, and detect OTUs and lineages that were 
actually targeted/impacted first in the process. 
Importantly, temperature and nutrient concentration changes are generally not 
independent; temperature increases metabolic rates, which may in turn increase 
nutrient uptake and cycling through the food web. Thus, both parameters may show 
a synergistic effect on plankton community structure (98). The potential for this 
abiotic synergy points toward a limitation of our in silico perturbation experiments 
since we did not integrate per se the whole set of environmental parameters that are 
necessary to properly define the ecological niche of a given OTU – nor the 
synergistic interactions between them. While an equal combination of different 
environmental tolerances can be assumed to define a niche (i.e. the cardinal product 
of limiting abiotic factors), we argue this would bias our predictions since plankton 
species are differentially adapted and respond to environmental conditions. Lineage-
specific adaptation may explain the differential sensitivity in the Polar biome where 
temperature is significantly lower compared to non-polar regions, and in the 
Westerlies biome where nutrients are usually not limiting factors as compared to the 
Trades biome. 
 
Predicting most vulnerable community lineages and MPGs  

In order to predict community-specific groups (phyla, PMGs and MPGs) most 
vulnerable to environmental change, we focused on most “abundant” OTUs, for 
which the total mean abundance was above 0.001. This cutoff corresponds to the 
mean relative abundance of all groups. The proportion of affected groups was 
computed as the factor between the total mean abundance and the affected mean 
abundance of a given group. For computing these affected proportions we limited 
ourselves to environmental ranges corresponding to global mean anomalies 
projected for the end of the century by the CMIP6 model scenario SSP2-4.5 (59). 
Thus, environmental ranges considered here were 2.1ºC for temperature, 0.5 PSS-78 
for salinity, 0.7 µmol/L for NO2 and 1.0 µmol/L for PO4. 
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Statistical analyses 

Spearman correlations, followed by BH procedure (FDR < 0.01), were performed to 
test associations between network topology metrics and environmental parameters 
(Fig. 2A). KW tests followed by Post-hoc Dunn’s tests were performed using R 
(version 3.2.2) to determine significant differences across biome-specific 
interactome topological metrics (Fig. 2C). A Pearson's Chi-squared test was 
performed to detect taxa associations enriched in each interactome community (Fig. 
S3). Here, only pairs of taxa which co-occur in at least 3 communities and occur at 
minimum 50 times in total were tested. For these pairs, we performed a post hoc 
analysis for Pearson’s Chi-squared test on the residuals (99) using the 
chisq.posthoc.test R package (https://chisq-posthoc-test.ebbert.nrw/) to identify 
within each community taxa pairs with a number of associations significantly 
diverging from random expectation. Wilcoxon’s rank sum tests were performed to 
compare distributions of natural connectivity for network environmental 
perturbations versus random perturbations (Fig. 3). 
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Figures 
 
 

 
 
 Fig. 1. Abiotic factors shape the pole-to-pole cross-domain plankton 

interactome structure. (A) The Tara Oceans circumnavigation (2009-2013) 
included a comprehensive metabarcoding and metagenomics sampling along with 
physico-chemical parameters measurements covering a wide pole-to-pole latitudinal 
gradient of temperature. The global ocean plankton interactome (GPI) covers the 
three domains of life including Eukaryotes, Bacteria and Archaea and is highly 
structured along the latitudinal gradient of temperature from the equator to the 
poles. It counts 20,810 nodes (and 86,026 edges) colored according to their 
optimum niche temperature. (B) The plankton interactome topology is significantly 
associated to diversity, temperature, salinity, light (PAR), nutrient concentrations 
and pH (Spearman correlations FDR < 0.01, empty boxes correspond to non-
significant correlations). (C) The polar interactome displays stronger associations 
(Mean edge weight) and clustering coefficients (transitivity) compared to other 
biomes (Dunn’s test, FDR < 0.05) despite its overall lower diversity. 
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 Fig. 2. Biome-specific communities and associations emerge from the plankton 

interactome. (A) The global ocean plankton interactome (GPI) can be decomposed 
into 5 communities that are preferentially observed in specific marine biomes: 
Communities TC0 and TC3 are Trades-like, community WC2 is Westerlies-like, 
community PC1 is Polar-like and community UC4 is ubiquitous. Distinct main 
plankton lineage compositions are observed in each community along the latitudinal 
axis (stations are ordered by absolute latitude), disrespect of the ocean region (SPO: 
South Pacific Ocean, NPO: North Pacific Ocean, SAO: South Atlantic Ocean, 
NAO: North Atlantic Ocean, IO: Indian Ocean, RS: Red Sea, MS: Mediterranean 
Sea, SO: Southern Ocean, AO: Arctic Ocean). (B) Most plankton associations 
between main plankton lineages are community-specific, with communities WC2 
(Westerlies-like) and PC1 (Polar-like) displaying the highest number of 
discriminant associations, while community UC4 displays fewer ubiquitous 
associations. Shared associations between communities are indicated with black 
filled circles and connecting lines. 
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Fig. 3. Predicting ecological vulnerabilities via network-based simulations. (A) 

Environmental change simulations are performed through tolerance range 
perturbations, that is progressively removing nodes of the GPI ranked by their 
environmental niche width (from smaller to larger), to predict ecological 
vulnerabilities of GPI communities. Significant vulnerabilities to environmental 
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changes were determined by comparing distributions of the network natural 
connectivity (a graph robustness measure) evolution for each abiotic factor, as 
compared to a random perturbation. The ecological vulnerability of each GPI 
community was then quantified by the statistical significance (-log(P)). GPI 
communities TC0, TC3 (Trades-like) and PC1 (Polar) were predicted vulnerable to 
temperature change, while community WC2 (Westerlies-like) was predicted 
vulnerable to nutrient concentration variations. (B) The polar community (PC1) is 
predicted to be particularly vulnerable to temperature variations (Wilcoxon-rank 
test, p = 3.8 x 10-10). 
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Fig. 4. Polar marine plankton lineages and groups predicted to be most 

vulnerable to temperature change. (A) Environmental tolerance range 
perturbations of the GPI predicted polar marine plankton lineages (community PC1) 
potentially most impacted by temperature variations. (B) Grouping these lineages 
into MPGs predicted associated functions potentially most impacted by temperature 
variations in the polar ecosystem. (C) Genera most impacted by temperature 
variations are also identified and are potential species indicators of ocean warming 
in the polar ecosystem. In all panels, the fraction of lineages, MPGs, and genera 
(from 1 for most impacted, to 0 for not impacted) predicted to be impacted by 
temperature variations are depicted within each size fraction. Plankton lineages 
(Prokaryotes and Eukaryotes), MPGs and genera are ordered according to the 
cumulative mean relative abundance of the corresponding OTUs across size 
fractions (note that these relative abundances are not directly comparable between 
size fractions). 
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