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Environmental vulnerability of the global ocean plankton community interactome
Short title: Vulnerability of plankton communities to environmental change

Authors

S. Chaffron"?1*, E. Delage'?t, M. Budinich®?, D. Vintache', N. Henry*?, C. Nef>*, M.
Ardyna®S, A.A. Zayed’, P.C. Junger®, P.E. Galand®’, C. Lovejoy'’, A. Murray'', H. Sarmento®,
Tara Oceans coordinators, S. Acinas'>, M. Babin®'®, D. Iudicone'*, O. Jaillon", E. Karsenti**, P.
Wincker'®, L. Karp-Boss'®, M.B. Sullivan”!", C. Bowler**, C. de Vargas*® & D. Eveillard'*

Affiliations
! Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France.
2 Research Federation (FR2022) Tara Océan GO-SEE, Paris, France.
3 Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station
Biologique de Roscoff, 29680 Roscoff, France.
4Institut de Biologie de 1’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS,
INSERM, PSL Université Paris, 75005 Paris, France.
5 Stanford University, Department of Earth System Science, Stanford, CA 94305, United States.
¢ Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230,
Villefranche-sur-Mer, France.
7 Department of Microbiology, The Ohio State University, Columbus, OH 43210, United States.
8 Department of Hydrobiology, Universidade Federal de Sao Carlos (UFSCar), Rodovia Washington
Luiz, 13565-905 Sao Carlos, SP, Brazil.
® Sorbonne Université, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques,
LECOB, 66500, Banyuls-sur-Mer, France
10 Département de biologie, Faculté des sciences et Institut de biologie intégrative et des systémes
(IBIS) 1030, ave de la Médecine, Université Laval, Québec QC, Canada.
" Division of Earth and Ecosystem Science, Desert Research Institute, Reno, NV 89512, USA.
12 Department of Marine Biology and Oceanography, Institut de Ciéncies del Mar (CSIC), Barcelona,
08003, Spain.
13 Takuvik International Research Laboratory, Université Laval and CNRS, Québec QC, Canada.
14 Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy.
15 Génomique Métabolique, Genoscope, Institut Frangois Jacob, CEA, CNRS, Université Evry,
Université Paris-Saclay, Evry, France.
16 School of Marine Sciences, University of Maine, Orono, ME, USA.
17 Department of Civil, Environmental and Geodetic Engineering, The Ohio State University,
Columbus, OH 43210, United States.
1 These authors contributed equally to this work.
* Corresponding author. Email: samuel.chaffron@univ-nantes. fr

Abstract

Marine plankton form complex communities of interacting organisms at the base of
the food web, which sustain oceanic biogeochemical cycles, and help regulate
climate. Though global surveys are starting to reveal ecological drivers underlying
planktonic community structure, and predicted climate change responses, it is unclear
how community-scale species interactions will be affected by climate change. Here
we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton
co-occurrence network — the community interactome — and used niche modeling to
assess its vulnerabilities to environmental change. Globally, this revealed a plankton
interactome self-organized latitudinally into marine biomes (Trades, Westerlies,
Polar), and more connected poleward. Integrated niche modeling revealed biome-
specific community interactome responses to environmental change, and forecasted
most affected lineages for each community. These results provide baseline
approaches to assess community structure and organismal interactions under climate
scenarios, while identifying plausible plankton bioindicators for ocean monitoring of
climate change.
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MAIN TEXT

Introduction
Marine plankton and associated processes are at the core of global biogeochemical
cycles, shaping ecosystem structure and influencing climate regulation (/). While
global biodiversity maps for viruses, prokaryotes and microbial eukaryotes are
beginning to emerge (2-4), identifying and understanding the complex network of
interactions between these organisms and their environment is in its infancy (5).
These interactions are critical to establish the ecosystem trophic links that underpin
biogeochemical cycles and feedbacks that drive climate regulation and response (6,
7). While abiotic factors, such as temperature, can explain a large fraction of
microbial community composition in the global ocean (&), biotic interactions can
differentially shape ecosystem diversity (9), and can even influence the adaptation to
new environments (/0). Thus, determining how plankton ecological interactions are
structured and affected by environmental change remains a significant challenge.

Large-scale holistic marine ecosystem sampling facilitates conceptualization of
plankton community interactomes as co-occurrence networks that are useful to model
the complex community structure of ecological associations (//, 1/2). Such networks
have enabled the detection of communities assembled through niche overlap across
biomes (/3), and also the prediction of putative interactions such as parasitism or
symbioses (/4). Likewise, plankton co-occurrence networks have been instrumental
in detecting interrelated changes in community structure from surface to depth (15),
as well as to identify specific communities of key lineages (e.g. Synechococcus, its
phages, and Collodaria) associated with global open ocean processes such as carbon
export (/6). Community interactomes are also useful to identify central, highly
connected lineages that may play significant ecological roles and confer stability to
the community (/7). These central lineages can correspond to keystone taxa that are
good indicators of community shifts (/8). Understanding the mechanisms affecting
these central taxa may help us to predict responses of microbiome structure and
functioning to perturbations (/9).

While community interactomes inferred from global-scale samplings summarize well
the complexity and potential interactions within microbial assemblages (/2), they
usually do not reflect dynamic processes shaping the observed system, as measured
by longitudinal high-frequency sampling (20). Thus, alternative strategies need to be
developed to capture ecosystem dynamics and responses from spatial samplings.
Indeed, plankton species display various ecological and evolutionary responses to
global environmental change (27, 22). Within marine ecosystems, the interplay
between species ecological niche and climate change can induce abrupt community
shifts, which may lead to long-term reconfiguration of marine metazoan communities
or biodiversity rearrangements (23, 24). Recently, environmental drivers of ocean
plankton diversity were inferred from 7ara Oceans data and used to predict the
effects of severe warming on surface ocean biodiversity (3). While species niche
distribution models combined with climate models are useful to project fine-scale
future distributions of species (23, 26), species interactions are generally not included
in these models (27), certainly due to our lack of knowledge about organismal
interactions. Nevertheless, plankton network metrics can capture emergent properties
(e.g. connectivity) relating to ecological characteristics of the community (28), which
can serve as proxies of ecosystem and community-level resilience (29). Given that
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biotic interactions can influence species distributions at macroecological scales (30),
and that climate change may cause trophic cascading effects on plankton community
structure by directly impacting the top and bottom of marine food webs (37),
ecological interactions need to be considered for assessing plankton community
stability under climate change scenarios.

Here, we bridge the gap between ecological and climate modeling by combining
network analyses (32) with species niche models (33) into a novel computational
framework for predicting ecosystem-scale vulnerabilities to environmental change.
By leveraging Tara Oceans data from all major oceanic provinces, including the
Arctic Ocean, we inferred a comprehensive global-ocean cross-domain plankton co-
occurrence network from sequencing data. We built statistical niche models to predict
realized niche widths of planktonic taxa, across kingdoms, and from pole-to-pole.
These were then mapped onto the network and used to evaluate both local and global
robustness of plankton community structures to simulated environmental changes.
Noticeable efforts have used the ecological niche concept to identify open ocean
physical conditions governing phytoplankton biogeography (34), and also to better
formalize central biogeochemical processes through the definition of key plankton
functional types (35). The niche representation of planktonic diversity affords a more
effective integration of abiotic and biotic constraints to better predict perturbations of
primary productivity under climate change scenarios (26, 36).
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Results and Discussion

A cross-kingdom plankton interactome from pole to pole
To reconstruct a global marine plankton co-occurrence network across kingdoms of
life, we analyzed data from 115 stations from the 7ara Oceans expeditions (2009-
2013) covering several organismal size fractions and all major oceanic provinces
(37) across an extensive latitudinal temperature gradient from pole to pole (Fig.
1A). Via a dedicated probabilistic learning algorithm (38) (see M&M), we predicted
ecological interactions between plankton taxa from compositional abundances
inferred from sequencing data. The resulting integrated species association network
(referred to as the Global Ocean Plankton Interactome — GPI) counts a total of
20,810 nodes corresponding to Operational Taxonomic Units (OTUs) and 86,026
edges corresponding to potential biotic interactions (Fig. 1A). In comparison to a
previous plankton interactome generated from 7ara Oceans data (/4), GPI doubled
the number of recovered known interactions from the literature (see supplementary
text). A vast majority of positive associations (98.5%) were predicted, probably
underlying a prevalent role for biotic interactions in shaping marine plankton
communities (/4). Very few direct associations between OTUs and environmental
parameters were detected (n = 325, see supplementary text). However, by
estimating robust ecological optima (or niche value) and tolerance ranges (or niche
widths) (39) for each OTU and environmental parameter (see M&M and Table S3),
we observed a strong influence of temperature in structuring predicted interactions
(Fig. 1A). The GPI displayed a very high temperature optima assortativity
coefficient (AC=0.87), which quantifies the tendency of nodes being connected to
similar nodes (here with similar temperature niche optima) in a network. Thus, it
confirms that the latitudinal temperature gradient indirectly shaped the global ocean
plankton interactome (3), and demonstrates the substantial effect of both
environmental forcing and habitat filtering in structuring marine plankton
communities at global scale.

Abiotic factors differentially shape the plankton interactome structure
To further investigate the influence of abiotic factors in shaping the GPI structure,
we extracted local subnetworks corresponding to potential interactomes at each
sampling site and computed graph topological metrics. These local metrics (see
supplementary text for a detailed description) were then correlated to environmental
parameters (see M&M). Globally, the GPI network connectivity assessed by these
metrics was negatively associated with temperature and salinity (Fig. 1B and
supplementary text), pointing towards their potential impact in altering the structure
of predicted interactions (40). We also observed a differential association between
temperature and interactome connectivity in polar (Fig. S1A, negative association
with strength) versus non-polar regions (positive association with strength). This
difference may be linked to the observation that community turnover, which
dominates in polar versus non-polar prokaryotic communities (4), is accompanied
by stronger biotic dependencies between species. It also suggests a potential role for
temperature in reducing polar community size structure in response to ocean
warming, which we modeled and discuss below.

Given the observed differential association between temperature and community
structure along the latitudinal axis, we compared local interactome topological
metrics across biomes (Fig. 1C). The network stability (mean weight) and
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connectivity (transitivity) were significantly higher for the polar biome compared to
other marine biomes (Dunn’s test, FDR < 0.05 for all tests), and were associated
with a lower mean (cross-domains) species diversity. This higher connectivity of the
polar interactome further supports the more prevalent role of biotic interactions in
structuring less diverse plankton communities in the extreme polar environment. It
may also reflect the lower complexity and simpler structure of pelagic ecosystems
in polar oceans, which are usually characterized by shorter pathways of energy flow
in food webs (41). The lower diversity observed in polar ecosystems has also been
linked to higher prokaryotic species turnover (42), which may translate into the
higher connectivity observed between distinct species in the polar interactome. As
recently proposed for a fluvial river system, environmental heterogeneity may
determine the ecological processes assembling bacterial metacommunities (43).
Here, the environmental heterogeneity of polar systems may cause the higher
network connectivity through higher heterogenous selection and community
turnover.

Biome-specific communities emerge from the plankton interactome
To further our understanding of the role of temperature in shaping the interactome
structure along the latitudinal axis, we used an unsupervised approach to delineate
network communities and test their association with specific biomes. Using a
deterministic community detection algorithm (see M&M), five communities
emerged from the GPI, which were enriched in OTUs assigned to specific biomes,
and displayed distinct predicted biotic associations (Fig. 2). Through comparison of
community abundance profiles, these five communities were indeed preferentially
observed in specific biomes (Fig. 2A and Table S4). GPI Communities 0 and 3
(TCO and TC3) occurred preferentially in Trades stations, Community 2 (WC2)
prevailed in Westerlies stations, while Community 1 (PC1) clearly emerged in Polar
stations. Community 4 (UC4) was more abundant in Polar stations but displayed a
clear ubiquitous distribution. This unsupervised approach to community detection
demonstrates that the GPI is self-organized across marine biomes, and that it
captures the biogeography of cross-domain plankton associations. It also indicates
that Longhurst’s primary biomes partitioning (44), which is based on chlorophyll
and phenology, is also biologically meaningful for planktonic associations across
plankton domains and size spectra.

All GPI communities (with the exception of the ubiquitous UC4) displayed mostly
exclusive associations, even at the high taxonomic level of the main planktonic
lineages considered (Fig. 2B). All GPI communities clearly differed in their
associations (Fig. S3), which were enriched between distinctive taxa (Table S6).
Most prevalent associations in communities TCO, TC3 and WC2 (see
supplementary text) included radiolarians (e.g. Spumellaria, Acantharea and
Collodaria) and Dinophyceae, detected in associations with parasitic organisms (e.g.
MALYV, see supplementary text for details). Both PC1 (Polar-like) and UC4
(ubiquitous) communities clearly formed two distinct systems as compared to TCO,
TC3 and WC2 with respect to co-occurring lineages (Fig. S3). The PC1 community
displayed a significantly lower contribution of MALV and was particularly enriched
in Bacillariophyta (diatoms) associations with several eukaryotic lineages, including
Ciliophora, Cryomonadida, Choanoflagellatea and Mamiellophyceae, but also with
bacterial lineages such as Bacteroidetes and Gammaproteobacteria, suggesting
widespread diatom-bacteria interactions (45) in polar ecosystems. Notably,
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Bacillariophyta — Cryomonadida associations may correspond to ecologically
important interactions in sea-ice influenced waters. Several Cryomonadida in cold
waters can feed on diatoms and some Cryothecomonas spp. are diatom parasitoids
(46). The UC4 community was significantly enriched in associations involving
heterotrophic bacterial lineages (Alphaproteobacteria, Gammaproteobacteria and
Bacteroidetes) between themselves, and with major phytoplankton taxa such as
Dinophyceae, Haptophyta, and Bacillariophyta, among the most abundant
photosynthetic eukaryotes (47). Notable UC4 over-represented associations (Table
S6) included Haptophyta with MAST and MALYV lineages, emphasizing the
promiscuous nature of MALV parasitic interactions, not only in tropical and
temperate ecosystems (/4), but also in polar regions. Several cross-domain
associations were enriched in UC4, such as Bacillariophyta and Dinophyceae with
Bacteroidetes, and Copepoda with Alphaproteobacteria, revealing the pervasive role
of phytoplankton- and zooplankton-bacteria ecological interactions (48) shaping the
plankton microbiome from pole to pole. Core associations detected across all GPI
communities were also identified (n=56, Fig. 2B) and reflected strong dependencies
between clades that have co-adapted to specific environmental conditions
encountered in each biome. These core associations were dominated by MAST and
MALYV lineages, underlying their broad biogeography (49, 50), and very successful
adaptation from pole to pole, through grazing and parasitism, respectively.

Communities emerging from the GPI underline niche differentiation by biome and
implies that community-specific ecologically central species may be identified. To
identify species whose impacts appear to be particularly important compared to their
abundances, we computed the integrative general keystone index for each GPI
community (57). Focusing on the ubiquitous UC4 community, the top 10 OTUs
delineated by the index (Table S7) included Eukarya (n=6), among which several
Copepoda (Cyclopoida, Corycaeus sp.) and Dinophyceae (Phalacroma, HM581743
sp.) taxa. It also included bacterial OTUs (n=4) belonging to AEGEAN-169, NS5
marine group, Polaribacter and SAR116 lineages. The AEGEAN-169 group was
previously shown to be abundant and ecologically important at the SPOT station
(52). Polaribacter environmental genomes were recently shown to be prevalent and
active in the euphotic zone at both poles (Royo-Llonch et al., submitted).

Although each GPI community was more abundant in a given biome, their
occurrence goes beyond these partitions, which probably reflects the importance of
physical processes (e.g. advection by ocean currents) influencing their distribution
through dispersal (53, 54). This is also reflected by the biogeography of the WC2
community (Westerlies-like), and especially UC4 that is ubiquitous and appears to
interface with other communities. The broader biogeography of these associations
reflects the interconnected evolutionary history of phytoplankton- and zooplankton-
bacteria ecological interactions and their pervasive role in influencing fundamental
processes such as primary production, nutrient regeneration and biogeochemical
cycling (48), not only in low-nutrient regions of the ocean but from pole to pole.

Community-specific vulnerabilities to environmental change
Given that the GPI captured the global biogeography of cross-domain plankton
associations, we sought to investigate the potential influence of environmental
change on community stability across biomes. Unlike previous studies that mapped
global biodiversity and investigated ecological drivers, we used the GPI as a basis
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to develop a novel computational framework integrating OTU niche inference and
community network analyses, to assess how plankton communities and lineages
may be affected under environmental change. First, for each OTU, we calculated
the ecological optimum and tolerance range for a selection of environmental
parameters including salinity, nutrient concentrations (NO2+NOs, PO4), pH and
temperature. These abiotic factors are projected to change significantly under on-
going climate change scenarios (36). For the temperature niche, we observed
smaller OTU tolerance ranges towards the poles and the equator (Fig. S4), which
supports the general assumption of higher environmental stability and narrower
temperature ecological niches in both Polar and Trades biomes compared to the
Westerlies (44). The environmental optima and tolerance ranges of OTUs inform us
about the realized ecological niches of the taxa they represent and their potential
sensitivity to environmental variations. OTUs from taxa with narrower tolerance
ranges (i.e. specialists) are more likely to be affected by environmental changes,
while OTUs from taxa with larger tolerance ranges (i.e. generalists) are more likely
to be less sensitive to environmental changes. Based on this general assumption, we
then simulated the effect of environmental changes on plankton interactome
stability. Specifically, we perturbed GPI by progressively removing nodes ranked
by their environmental tolerance ranges, from the narrower to the wider, for each
parameter. We also attacked GPI’s nodes by their degree (i.e. from the most
connected to the least connected nodes) to simulate the potentially most damaging
perturbation of the network, and repeated random attacks to obtain a random
expectation reference. The GPI perturbations were systematically performed at
global scale, to study both global and community-specific impacts of these attacks
on the stability of the network (see M&M).

In response to in silico environmental perturbations, we observed an overall global
robustness of the network (Fig. S5). However, at local scale, we found evidence for
differential effects of specific abiotic factors on GPI communities (Fig. 3A). While
the UC4 (ubiquitous) community was found to be the least sensitive to simulated
environmental changes (Table S8, p > 1 x 10-%), community TCO (Trades-like)
displayed significant vulnerabilities (Fig. S6) to temperature (Wilcoxon-rank test, p
= 3.8 x 10''9), salinity (p = 3.8 x 10"'%) and PO4 (p = 4.5 x 10°), as compared to
random attacks. The TC3 community (Trades-like) also displayed a significant
vulnerability to temperature (p = 1.7 x 10%). The WC2 community (Westerlies-like)
was predicted as being the most vulnerable (Fig. S6) to nutrient concentration
changes (NO,+NO3, p = 6.7 x 107; PO4, p = 5.2 x 10”), while the PC1 community
(Polar-like) displayed a clear vulnerability (Fig. 3B) to temperature (p = 3.8 x 10°19).
The PC1 community was also found sensitive to pH (data not shown), but with
lower confidence given the higher amount of missing data for pH. These distinct
predicted sensitivities of GPI communities imply that taxa represented by central,
most connected OTUs display lower environmental tolerance ranges for distinct
abiotic factors in each community. Thus, these findings suggest that the plankton
interactome will be impacted differently by environmental change in specific
ecological marine regions, which are themselves predicted to be impacted
differently by warming and nutrient distributions (55). Both Trades communities
(TCO and TC3) appeared to be more sensitive to temperature, and to a lesser extent
to salinity, which are both currently increasing in tropical ocean regions (56). On the
other hand, the Westerlies community (WC2) appeared to be more vulnerable to
nutrient concentration variations, which is a coherent scenario with climate change
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projections (36). These predictions also confirm the vulnerability of the Polar
community (PC1) to temperature changes that are currently occurring with the rapid
warming of the Arctic over recent decades and that is projected to be amplified (57,
58).

Plankton lineages potentially most impacted by environmental change
By combining environmental tolerance range inference with network stability
analyses, plankton communities most affected by environmental perturbations were
predicted, as well as vulnerabilities of the respective plankton taxa and marine
plankton groups (MPGs, see M&M). For temperature vulnerability predictions, we
considered relatively abundant OTUs displaying a temperature niche width smaller
than 2.1 °C, which corresponds to the global mean sea surface temperature anomaly
projected for the end of the century by the CMIP6 model scenario SSP2-4.5 (59).
Marine plankton vulnerabilities to temperature, salinity and nutrient concentration
changes were predicted for communities TCO and WC2 (see supplementary text).
Focusing on the PCI1 polar community, which appeared the most sensitive to
temperature change, we identified specific plankton lineages from all domains of
life predicted to be impacted (Fig. 4A). The bacterial phyla Verrucomicrobia and
Marinimicrobia were found most sensitive with a vulnerable fraction above 50%.
Verrucomicrobia lineages are poorly characterized but are ubiquitous in the ocean,
and may be essential for the biogeochemical cycling of carbon (60). Conversely,
several Marinimicrobia clades have been shown to participate in the biogeochemical
cycling of sulfur and nitrogen (67). Abundant Eukaryotic lineages for which the
vulnerable fraction was above 50% included Dinophyceae, Bacillariophyta, and
Ciliophora, which are all key planktonic groups in the ocean, considerably
impacting global biogeochemical cycles. Notably, all MAST (Marine
Stramenopiles) groups, some of which are heterotrophic and bacterivorous
flagellates that interact with key photosynthetic picoplankton (62), are also
predicted to be significantly impacted. When resuming PC1 community lineages
into MPGs (Fig. 4B), we predicted a large impact from temperature changes on
Archaea, phototrophs and phagotrophs, and in particular on gelatinous filter feeders.
The critical role of gelatinous zooplankton within ocean trophic webs is increasingly
being recognized as they may channel energy from picoplankton to higher trophic
levels (63). The temperature sensitivity we predict for gelatinous filter feeders
questions the paradigm that gelatinous zooplankton have been increasing in the past
decades (64), and points toward the overall vulnerability of corresponding lineages
to ocean warming in polar regions.

PC1 polar lineages predicted to be most sensitive to temperature were also
identified at a lower taxonomic level (Fig. 4C) to infer potential species indicators
of polar ecosystem change in response to ocean warming (65). Predicted bacterial
genera as being most vulnerable to temperature change in polar regions were
Lentimonas and Methylotenera, along with several uncharacterized OTUs (n=30).
Lentimonas spp. are specialized degraders of fucoidans and other complex
polysaccharides (66). Their observed sensitivity to temperature variations may
increase the recalcitrance of algal biomass to microbial degradation, which would
affect the turnover of carbon sequestered in glycans that is vital for global carbon
cycling (67). Methylotrophs of the family Methylophilaceae play a crucial role in
the carbon cycle of aquatic habitats (68), and several Methylotenera spp. isolates are
methylotrophic bacteria that can use a range of one carbon compounds in coastal
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ocean ecosystems (69). Thus, these two genera appear to encompass rather
specialist microbes with regard to their metabolism, and are predicted to be
impacted by ocean warming in the polar ocean. Eukaryotic lineages predicted to be
most sensitive to temperature included several abundant diatom genera:
Chaetoceros, Porosira and Proboscia, and other genera belonging to Rhizosolenids
and Mediophyceae. A single abundant genus of dinoflagellate was predicted to be
impacted by temperature change: Protoperidinium. For copepods, the genus
Pseudocalanus and genera from the family Paracalanidae were found to be the most
vulnerable. Picomonadida was the only heterotrophic protist family predicted to be
vulnerable to temperature change.

Monitoring pelagic ecosystems under environmental stress due to ongoing climate
change is challenging, but plankton species indicators may provide an accurate
diagnosis of ecosystem health (70). Previous evidence suggests that genera we
predict as being most sensitive to temperature in polar ecosystems may be good
candidates for plankton indicators of ocean warming. Chaetoceros constitutes a very
large genus of marine planktonic diatoms, and is a dominant component of
phytoplankton communities contributing an estimated 20% of total oceanic primary
production (71). Chaetoceros is abundant in polar oceans and is affected by
temperature in lab experiments (72). A species distribution model previously
showed that the annual median probability of occurrence of another diatom species
Rhizosolenia stolterfothii was predicted to shift in the North Atlantic Ocean (21),
suggesting that it too will be affected by anthropogenic climate change. Considering
copepods, the abundance of the genus Pseudocalanus has continuously decreased
within a decade (2003-2012) in East Greenland waters (73). Another line of
evidence for the temperature sensitivity of the predicted genera comes from
mesocosm experiments, in which the relative biomass of a diatom from the genus
Proboscia (Proboscia alata) was negatively impacted by temperature (74). As for
dinoflagellates, a species of the genus Protoperidinium was shown to be less
tolerant to prolonged temperature shifts in laboratory experiments (75).

Overall, these results underlie the differential responses of biome-specific plankton
communities and associated functions to specific environmental changes. These
findings provide new insights into community-specific environmental
vulnerabilities of plankton lineages and associated functions. Plankton MPGs play
central roles in the ecology and biogeochemistry of the polar (and global) oceans.
Here, we predicted that specific plankton lineages and MPGs will be affected,
which has substantial implications and may even worsen under currently projected
scenarios of climate change (59) in the Arctic and in nutrient-rich oceanic regions.

Conclusions
This study provides a comprehensive cross-kingdom plankton interactome covering
all major oceanic provinces, including the Arctic Ocean, a region that has lacked
systematic standardized sampling. Our integrated network constitutes a unique
resource providing putative key ecological associations among mostly uncultivated
plankton taxa identified at the molecular level. Still, this resource is limited because
predicted ecological associations do not demonstrate ecological interactions (76),
and because it does not capture the dynamics of plankton interactions that are
usually assessed using temporal or longitudinal samplings (77). Our knowledge of
plankton microbiomes, symbioses, and host-parasite relationships remains limited
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(78). While planktonic interactions remain challenging to validate, our predictions
are useful to further our understanding of ecosystem functioning. Today, high-
throughput co-culture experiments using microfluidics (79) and fabricated synthetic
microbial ecosystems may help fill this gap (80). Our resource constitutes useful
guidance for co-culture experiments, as well as a database for hypothesis testing.

Climate scenarios predict global changes in temperature, pH, and nutrient
concentrations, which all greatly influence plankton physiology. Temperature can
directly impact bacterial growth (817), grazing rates (§2), and phytoplankton
metabolism (83). Nitrogen availability is a primary limiting factor for marine
phytoplankton (84). Ocean acidification caused by rising atmospheric CO> can
impact phytoplankton growth rates, and is predicted to have a greater impact than
warming or reduced nutrient supply on plankton ecological functions (85). Herein,
we identified and predicted distinct community vulnerabilities of the plankton
interactome by studying its robustness to environmental perturbations. Overall, our
findings imply differential effects of environmental change on biome-specific
plankton communities resulting from biotic interactions and environmental stresses.
While the influence of temperature is central, at the biome-specific community
scale, salinity and nutrient concentrations were found to significantly influence
plankton community structures as well. These associations support previous lines of
evidence linking temperature and nutrient concentrations as the principal drivers of
microbial plankton community variability (54).

These findings further advocate for the development of novel modeling paradigms
targeting multiple biological scales (86), from genes to species and community
levels (87). Our computational framework combining network analyses with niche
modeling is generalizable and can be applied to various microbial ecosystems for
assessing and predicting robustness to environmental perturbations. Here, specific
lineage vulnerabilities were identified, but it remains an open question whether
taxonomy, rather than function, is essential or not for predictive models given the
potential functional redundancy in open microbial systems (88). Similar studies
should be performed at the genomic level given that the molecular functions rather
than the microbes themselves sustain marine biogeochemical processes (89).
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Materials and Methods

Data description

From 2009 to 2013, the Tara Oceans expedition collected samples at more than 200
stations across all significant oceanic provinces from oligotrophic to polar regions.
Sampling stations were selected to represent distinct marine ecosystems at global
scale (90) describes the sampling strategy and the methodology applied, and sample
provenance is described in Table S1. Environmental data measured or inferred at
the depth of sampling are available in Table S2 and published at PANGAEA, Data
Publisher for Earth and Environmental Science (http://www.pangaea.de). In this
study, we limited our analyses to the euphotic zone, including only the samples
from surface (SRF) and the Deep Chlorophyll Maximum (DCM). Two prokaryotes-
enriched size fractions (0.2-1.6 um and 0.2-3 um) were available and included in
the analyses. For Eukaryotes, the following size fractions were included (and
consolidated as described below) in the analyses: ‘0.8-5 um and 0.8-2000 um’, ‘3-
20 um and 5-20 pm, ‘20-180 um’ and ‘180-2000 um. Because of these sampling
constraints and the non-systematic sequencing of all available samples, the Tara
Oceans dataset is heterogeneous. Specifically, at polar stations, fractions 0.8-5 pm
and 5-20 pm are less represented. Conversely, in non-polar stations, sequencing
data for the fraction 3-20 um is nearly absent. To overcome this issue and increase
sampling coverage, we considered that fractions 3-20 um and 5-20 pm, and
fractions 0.8-5 um and 0.8-2000 um were equivalent, as samples from these size
fractions capture very similar diversity and community composition (data not
shown). When both size fractions were available for the same sampling site, the 0.8-
5 um size fraction was preferred. For the 3-20/5-20 pm size fractions, only one
station (TARA 124 SRF) was found to be in conflict, and we discarded the 3-20
um sample. By doing so, we analyzed 115 sampling sites at which all considered
size fractions were available.

Data processing and taxonomic annotations

For the prokaryotes-enriched size fraction (0.2-1.6pum and 0.2-3um), taxonomic
profiling was performed using 16S ribosomal gene fragments directly identified in
[llumina-sequenced metagenomes (4). Extracted 16S reads, named miTags, were
mapped to cluster centroids of taxonomically annotated 16S rRNA gene reference
sequences from the SILVA database (59) (release 128: SSU Ref NR 99), that had
been clustered at 97% sequence identity beforehand, using USEARCH v9.2.64.
Additional methodological details are available in (4), and we used the OTU-level
abundance matrix as provided by the authors. For the Eukaryotic taxonomic
profiling, we used the same methodology as in (50) to define OTUs using 18S
rRNA gene V9 amplicons with the Swarm?2 algorithm (97), with an updated version
of the PR2 reference database (3). 18S rRNA gene V9 region PCR primers also
amplify some 16S rRNA gene V9, thus we decided to filter out prokaryotic OTUs
in the Eukaryote data that had been assigned to the following taxonomic groups:
'Bacteria' (35,448), 'nan' (31,406), 'Archaea’ (1,806), 'root' (58) and ‘Organelle’
(583). For the prokaryotic abundance matrix, we filtered out miTags assigned to
'Eukaryota' (5,283), Chloroplast (468) and Mitochondria (74). After this filtering,
we worked with six distinct matrices corresponding to each size fraction considered
(see supplementary files online).

Based on these taxonomic affiliations, we classified all taxa into marine plankton
groups (MPGs) as in (3). For prokaryotes, photosynthetic bacteria (i.e.
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cyanobacteria) were distinguished from heterotrophic/chemotrophic bacteria and
archaea. For protists, an extended version of the functional database of (50) was
used. It encompasses a wide variety of protist taxa that are assigned to major
functional groups: photosynthetic/mixotrophic protists, endophotosymbionts, hosts
with endophotosymbionts (photohosts), parasitic protists, and free-living
heterotrophs or phagotrophs (heterotrophic protists). For the mesozooplankton, the
categories used corresponded to the most abundant taxonomic groups (such as
copepods and chaetognaths) or feeding strategies.

Shannon diversity indices were calculated for each sample and provided by (3).

Data transformation and filtering

All OTU abundance matrices were transformed using the centered log-ratio (CLR)
transformation (92). The CLR transformation is widely used in microbiome data
analysis, especially in association network reconstruction (93), as it copes with the
compositional nature of microbiome data. As log transformation cannot be applied
to zero values, we added beforehand a pseudo count of one to all elements of the
matrix. Finally, to reduce the high dimensionality of our data, which may be the
source of false-positive predicted associations, we filtered each abundance matrix
using a top-quartile filtering approach. For each sample, the upper quartile (Q3) of
its non-zero abundance values was computed. An OTU was retained when its
observed abundance was higher than Q3 in at least 5 samples.

Network inference and stability procedure

The network inference was performed using FlashWeave (FW) v0.13.1 with default
parameters (38). FW relies on the Local-to-Global learning framework and infers
direct associations by searching for conditional dependencies between OTUs.
Several heuristics are then applied to connect these “local” dependencies and infer a
network. FW is significantly faster than other methods while achieving better or
similar results, and gives the possibility to include meta-variables (such as the
temperature). Although the latter feature seemed appealing, very few OTU-
environmental factor associations were detected which advocates for developing a
complementary approach to study the environmental influence (see Network attack
below). While FW includes a heterogeneous mode (FlashWeaveHE) and the Tara
dataset is heterogenous itself, the low number of samples prevented its use. Thus,
we used FW in ‘sensitive’ mode without its embedded normalization since it was
performed upstream to comply to our network inference strategy designed to deal
with the multiple size fractions context described below.

We reconstructed graphs for each size fraction separately, running FW on the
corresponding CLR-transformed abundance matrix. This first step only allows to
discover intra-fraction edges. To connect together the 5 resulting graphs, and thus
infer inter-fraction edges, we considered all 10 combinations of two size fractions
and ran FW on the according concatenated matrices. This results in a meta-graph
with OTUs from different size fractions being connected together.

To assess the robustness of intra- and inter-fraction edges, and reduce the number of
putative false-positive associations, we implemented a stability procedure inspired
by the STARS model selection approach (94). As we did for two size fractions
matrices, we built every combination of three size fractions matrices and obtained
10 three-fractions graphs. We then evaluated the stability of every meta-graph edge
by computing its frequency in the three-fractions graphs. This procedure computes a
relative stability metric reflecting a given edge robustness to variation in both the
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number of samples and the number of OTUs. Edges with relative stability below
50% were removed from the meta-graph.

Estimation of false discovery rate

Three null models were generated using two R packages (picante v1.7 and HMP
v1.6). The HMP library provides the Dirichlet. multinomial function which allows
data matrix generation of OTUs following a Dirichlet distribution. picante comes
with a randomizeMatrix function and several methods to randomize the matrix. We
used the frequency (that maintains OTUs occurrence frequency), and trialswap
(maintaining OTUs occurrence frequency and sample OTUs richness) approaches.
Then, networks were inferred from these matrices using FW and the same procedure
as for the observed matrices. We then estimated a False Discovery Rate by
comparing common edges between the observed and simulated networks. The
highest FDR we obtained was 3.6% (with a number of iterations set to 10°8) using
the trialswap method.

Literature-based validation of predicted interactions

To compare the performance and sensitivity of FW to similar co-occurrence
network inference methods such as SPIEC-EASI (93), we estimated the graph
accuracy by comparing edges with known (marine) biotic interactions. We limited
our comparisons to Polar networks and compared edges with known interactions
from the PIDA (78) (https://github.com/ramalok/PIDA) and GLOBI (95) databases
(https://www.globalbioticinteractions.org/). We used the NCBI taxonomy for
prokaryotes and PR2 taxonomy for eukaryotes to identify Superkingdom, Family,
Genus, and Species levels. Then, we searched for known interactions from these
databases in the networks by detecting all combinations of OTUs at the four
taxonomic levels considered. Results are presented in Fig. S11. Conserved
associations across taxonomy ranks were estimated as follows. First, taxonomic
ranks were extracted from NCBI Taxonomy database for prokaryotes and from PR2
database for eukaryotes. Next, for each pair of ranks, we counted the number of
edges between nodes of each rank. Next, we repeated the procedure but now applied
to the subnetwork induced by considering only nodes from a particular biome.
Finally, we calculated the proportion of edges for each rank pair in each biome with
respect to the total network.

Station-specific network extraction

To further explore the association between plankton community structures and
abiotic factors, we extracted sampling station-specific subnetworks corresponding
to local GPI interactomes containing only nodes of OTUs detected at a given
sampling station. This procedure enabled the computation of graph topological
metrics (mean degree, edge density, mean weight, mean strength and transitivity)
for each sampling station and enabled us to directly associate environmental
parameters to local community structures.

Marine biome assignations to OTUs

In the Tara Oceans data set, each sample is associated with one specific marine
biome (Coastal, Trades, Westerlies or Polar). Using this information, we assigned
each OTU to a biome or a combination of biomes according to its abundance
profile. We did this by identifying biome(s) in which a given OTU is over-
represented, based on relative abundance, compared to other biomes using a
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Kruskal-Wallis (KW) test implemented in the Python package SciPy (version
1.2.1). Adjustments for multiple testing were performed using the Benjamini-
Hochberg (BH) procedure implemented in statsmodels (version 0.9.0). For
significant tests (FDR < 0.05), a post hoc Dunn’s test implemented in scikit-
posthocs (version 0.6.1) was performed to determine in which biome(s) a given
OTU was significantly over-represented (FDR < 0.05). To determine the direction
of the over-representation, we compared the mean values to identify and discard the
“lower mean biome(s)” from the list of the OTU-associated biomes. In the GPI we
were able to assign biome(s) to a significant fraction of OTUs (41.1%). Numerical
and categorical assortativities were determined with the corresponding functions
from networkx 2.3.

Network community detection and biome assignation to communities

We detected five communities in the GPI using an eigenvector-based network
community detection algorithm (96) implemented in the networkx 2.3 python
package. To assign biomes to these communities, OTUs abundance tables were
CLR transformed and aggregated by community for each size fraction. CLR values
for each community were grouped by biome, and a KW test was run to verify mean
differences of communities among biomes (KW test column in Table S4). As all p-
values were significant while controlling the FDR using the BH procedure, post hoc
Dunn tests were performed to detect community pairwise differences between
biomes (Dunn test p-value columns in Table S4). Biomes that were found
significantly lower via the Dunn test were discarded from the biome assignation
(Dunn test z-score column in Table S4). The five GPI communities were found
prevalent in the Polar (n=2), Westerlies (n=1) or Trades (n=2) biomes.

Environmental optimum and tolerance range inference

Environmental optimum and tolerance range were calculated with the robust
optimum (RO) method described in (39). For each OTU and a selection of
environmental parameters, we determined the ecological optimum reflecting the
optimal OTU living conditions relative to a given environmental parameter, and a
tolerance range around this optimum defined by lower and upper bounds. Here,
Total Sum Scaling (i.e. read count divided by the total number of reads in each
sample) normalization was applied to raw matrices. For each OTU, the proportion
of observed counts in a given sample is computed relatively to all samples. We use
these proportions to fill a weighted vector of a fixed size (n = 10000) with
environmental values accordingly (i.e. if the proportion of observed counts for
OTUI1 in sample 1 represents 5% of the OTU1 abundance across all samples, then
the weighted vector will be filled at 5% with the environmental value measured for
sample 1). The ecological optimum is then defined as the median value (Q2) of this
vector, the lower and upper limits as the first (Q1) and third quartile (Q3)
respectively, and the tolerance (niche) range is given by the interquartile range (Q3-
Q1). Some environmental parameter values are missing (non-available, NA) for
some samples. To avoid inferring spurious ecological optima and tolerance ranges
for OTUs for which many values are missing, we set a minimum threshold of 10
OTU observations with non-NAs and overall with a minimum of 30% non-NAs
values for it to be computed.

General keystone index
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The generalized keystone index (5/) combines several centrality metrics in a single
measure, which can then be used to rank nodes, revealing their topological
importance in the network. Degree, betweenness, closeness and subgraph
centralities have been calculated using the Python library networkx (version 2.3),
capturing the relevance of each node at different topological scales. Factor analysis
was performed with the Python library sklearn (version 0.20.3) on those centralities
to get the generalized keystone index associated with each node.

Network-based robustness analyses

In order to simulate the effects of environmental change and predict their impact on
the stability of plankton community structures, we designed a network attack
procedure mimicking the potential effect of each environmental parameter’s
variations onto the GPI. We progressively removed network nodes by bins (n =200
nodes until the 10000™ node, then n = 1000 nodes) corresponding to environmental
ranges, ordered from the smallest to the largest tolerance ranges for each parameter
(within a given range, the nodes are randomly sorted). At each step we computed
the graph natural connectivity (97), a graph robustness metric, for the global
interactome and for subgraphs corresponding to communities extracted from the
GPI (see M&M section ‘Biome assignment and network community detection’). By
doing so we could evaluate the vulnerability (or loss of robustness / stability) of the
GPI at the global and community levels, and detect OTUs and lineages that were
actually targeted/impacted first in the process.

Importantly, temperature and nutrient concentration changes are generally not
independent; temperature increases metabolic rates, which may in turn increase
nutrient uptake and cycling through the food web. Thus, both parameters may show
a synergistic effect on plankton community structure (98). The potential for this
abiotic synergy points toward a limitation of our in silico perturbation experiments
since we did not integrate per se the whole set of environmental parameters that are
necessary to properly define the ecological niche of a given OTU — nor the
synergistic interactions between them. While an equal combination of different
environmental tolerances can be assumed to define a niche (i.e. the cardinal product
of limiting abiotic factors), we argue this would bias our predictions since plankton
species are differentially adapted and respond to environmental conditions. Lineage-
specific adaptation may explain the differential sensitivity in the Polar biome where
temperature is significantly lower compared to non-polar regions, and in the
Westerlies biome where nutrients are usually not limiting factors as compared to the
Trades biome.

Predicting most vulnerable community lineages and MPGs

In order to predict community-specific groups (phyla, PMGs and MPGs) most
vulnerable to environmental change, we focused on most “abundant” OTUs, for
which the total mean abundance was above 0.001. This cutoff corresponds to the
mean relative abundance of all groups. The proportion of affected groups was
computed as the factor between the total mean abundance and the affected mean
abundance of a given group. For computing these affected proportions we limited
ourselves to environmental ranges corresponding to global mean anomalies
projected for the end of the century by the CMIP6 model scenario SSP2-4.5 (59).
Thus, environmental ranges considered here were 2.1°C for temperature, 0.5 PSS-78
for salinity, 0.7 pmol/L for NO; and 1.0 pmol/L for PO4.
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Statistical analyses

Spearman correlations, followed by BH procedure (FDR < 0.01), were performed to
test associations between network topology metrics and environmental parameters
(Fig. 2A). KW tests followed by Post-hoc Dunn’s tests were performed using R
(version 3.2.2) to determine significant differences across biome-specific
interactome topological metrics (Fig. 2C). A Pearson's Chi-squared test was
performed to detect taxa associations enriched in each interactome community (Fig.
S3). Here, only pairs of taxa which co-occur in at least 3 communities and occur at
minimum 50 times in total were tested. For these pairs, we performed a post hoc
analysis for Pearson’s Chi-squared test on the residuals (99) using the
chisq.posthoc.test R package (https://chisq-posthoc-test.ebbert.nrw/) to identify
within each community taxa pairs with a number of associations significantly
diverging from random expectation. Wilcoxon’s rank sum tests were performed to
compare distributions of natural connectivity for network environmental
perturbations versus random perturbations (Fig. 3).
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Fig. 1. Abiotic factors shape the pole-to-pole cross-domain plankton
interactome structure. (A) The Tara Oceans circumnavigation (2009-2013)
included a comprehensive metabarcoding and metagenomics sampling along with
physico-chemical parameters measurements covering a wide pole-to-pole latitudinal
gradient of temperature. The global ocean plankton interactome (GPI) covers the
three domains of life including Eukaryotes, Bacteria and Archaea and is highly
structured along the latitudinal gradient of temperature from the equator to the
poles. It counts 20,810 nodes (and 86,026 edges) colored according to their
optimum niche temperature. (B) The plankton interactome topology is significantly
associated to diversity, temperature, salinity, light (PAR), nutrient concentrations
and pH (Spearman correlations FDR < 0.01, empty boxes correspond to non-
significant correlations). (C) The polar interactome displays stronger associations
(Mean edge weight) and clustering coefficients (transitivity) compared to other
biomes (Dunn’s test, FDR < 0.05) despite its overall lower diversity.
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Fig. 2. Biome-specific communities and associations emerge from the plankton
interactome. (A) The global ocean plankton interactome (GPI) can be decomposed
into 5 communities that are preferentially observed in specific marine biomes:
Communities TCO and TC3 are Trades-like, community WC2 is Westerlies-like,
community PCl1 is Polar-like and community UC4 is ubiquitous. Distinct main
plankton lineage compositions are observed in each community along the latitudinal
axis (stations are ordered by absolute latitude), disrespect of the ocean region (SPO:
South Pacific Ocean, NPO: North Pacific Ocean, SAO: South Atlantic Ocean,
NAO: North Atlantic Ocean, IO: Indian Ocean, RS: Red Sea, MS: Mediterranean
Sea, SO: Southern Ocean, AO: Arctic Ocean). (B) Most plankton associations
between main plankton lineages are community-specific, with communities WC2
(Westerlies-like) and PC1 (Polar-like) displaying the highest number of
discriminant associations, while community UC4 displays fewer ubiquitous
associations. Shared associations between communities are indicated with black
filled circles and connecting lines.
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Fig. 3. Predicting ecological vulnerabilities via network-based simulations. (A)
Environmental change simulations are performed through tolerance range
perturbations, that is progressively removing nodes of the GPI ranked by their
environmental niche width (from smaller to larger), to predict ecological
vulnerabilities of GPI communities. Significant vulnerabilities to environmental
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changes were determined by comparing distributions of the network natural
connectivity (a graph robustness measure) evolution for each abiotic factor, as
compared to a random perturbation. The ecological vulnerability of each GPI
community was then quantified by the statistical significance (-log(P)). GPI
communities TCO, TC3 (Trades-like) and PC1 (Polar) were predicted vulnerable to
temperature change, while community WC2 (Westerlies-like) was predicted
vulnerable to nutrient concentration variations. (B) The polar community (PC1) is
predicted to be particularly vulnerable to temperature variations (Wilcoxon-rank
test, p=3.8 x 10°19),

26


https://doi.org/10.1101/2020.11.09.375295
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.375295; this version posted November 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A sizefractions: W 022-16/3pm M 0.8 -5/2000 pm 3/5-20um [ 20-180um M 180 —2000 um
X Prokaryotes ranked by . Eukaryotes ranked by
2 0.2 relative abundance - relative abundance
T 01 i =
S 100%
=
8 75%1 ; i
= | :
L 50% H _— —
e} L
| | |II |‘ |
5 %
= O%JI l I 1 I [ l I ) I
>
> 2 o2 3P 'o .80 >~ ,\\ N >
§ e‘:@‘;c"{\\o‘?;@:@‘\ ? 0‘)\*(,% SN X \\o‘ Q\e:" 6\6 g\\ ‘(\‘! (,?f%*\g \e AQ‘\ &\\b \’é‘?’ &b *\0‘\6\6
\0‘0 TN «\“ ({@\0 ) @ oﬂ‘“\ Q
R St “0\0 (/% e& \\o \c °<<\L0<<‘ \?@ Qo N ‘b%o%e N
PRI \‘ S 0‘ o er e a0 (’c,x\%\@\“\i
& \Q 0\ A xe'
IS S\P‘S o“ée
B MPGs ranked by relative abundance
r ;
b
®
c
o
=
1%
o
&
QL
o
ol
Q
f =4
B
>

\?\e
C Genera ranked by relative abundance
_r%' 0.4: -
< 021 i
[ H
= 0.0 mm l Gy st
S 100% ‘
2
8 75%1 ‘
=
2 50% —_—— _ : ——
©
=
E 0% ]I I l [ .
\)‘: 6 O \y»*(,\ Q2 0 & Y+ F F < \s+<o<\b
9 6<\e <\ s\ 022 DL, o<\\> (/ee <<\ N
<\o“*'?{ S Q\o %ﬁ@%:ﬁ B \(\Q}o\\é\\\(‘éQ S 056 %6\@}3 ;’Q ,bbtb(’\c‘(‘(\\ 0\0 02 Q_){:\e\ﬂa ;;\o"e\de’@g)&
2\ % e Q’b Oxo ‘ e\O ot \?> (‘\(‘L
N A 7,\‘ 9 <<‘ OO S Qo Nu™® °©
%2,6@ . @2 X & ‘6 o \’5“0 P (,“ SN «o‘?é e\ac) @&q/giﬂs
‘:
W

Fig. 4. Polar marine plankton lineages and groups predicted to be most
vulnerable to temperature change. (A) Environmental tolerance range
perturbations of the GPI predicted polar marine plankton lineages (community PC1)
potentially most impacted by temperature variations. (B) Grouping these lineages
into MPGs predicted associated functions potentially most impacted by temperature
variations in the polar ecosystem. (C) Genera most impacted by temperature
variations are also identified and are potential species indicators of ocean warming
in the polar ecosystem. In all panels, the fraction of lineages, MPGs, and genera
(from 1 for most impacted, to 0 for not impacted) predicted to be impacted by
temperature variations are depicted within each size fraction. Plankton lineages
(Prokaryotes and Eukaryotes), MPGs and genera are ordered according to the
cumulative mean relative abundance of the corresponding OTUs across size
fractions (note that these relative abundances are not directly comparable between
size fractions).

27


https://doi.org/10.1101/2020.11.09.375295
http://creativecommons.org/licenses/by/4.0/

