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ABSTRACT

Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic
caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme.
However, considering allosteric sites, distant from the active or orthosteric site, broadens the search
space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the
allosteric communication pathways in the main protease dimer by using two novel fully atomistic
graph theoretical methods: Bond-to-bond propensity analysis, which has been previously successful in
identifying allosteric sites without a priori knowledge in benchmark data sets, and, Markov transient
analysis, which has previously aided in finding novel drug targets in catalytic protein families. We
further score the highest ranking sites against random sites in similar distances through statistical
bootstrapping and identify four statistically significant putative allosteric sites as good candidates for
alternative drug targeting.
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12 1 Introduction

13 The global pandemic of COVID-19 (coronavirus disease 2019) is caused by the newly identified virus SARS-CoV-2
14 [1, 2,3, 4], a member of the coronavirus family of enveloped, single-stranded ribonucleic acid (RNA) viruses that
15 also includes the virus responsible for the severe acute respiratory syndrome (SARS) epidemic of 2003 [5]. Since
16 coronaviruses have been known to infect various animal species and share phylogenetic similarity to pathogenic human
17 coronaviruses, the potential of health emergency events had already been noted [6]. However, their high mutation rate
18 similarly to other RNA viruses [7] made the development of long lasting drugs challenging. Developing therapeutics
19 against coronaviruses is of renewed interest due to the ongoing global health emergency.

20 One of the main approaches for targeting coronaviruses is to inhibit the enzymatic activity of their replication machinery.
21 The main protease (MP™), also known as 3C-like protease (3CLP™), is the best characterised drug target owing to its
22 crucial role in viral replication [8, 9, 10]. The MP™ is only functional as a homodimer and the central part of the active
23 or orthosteric site is composed of a cysteine-histidine catalytic dyad [!1] (see Fig. S1B) which is responsible for
24 processing the polyproteins translated from the viral RNA [12].

25 The MP™ of the new SARS-CoV-2 shares 96% sequence similarity with that of SARS-CoV, which also extends to
26 a high structural similarity (r.m.s deviation of 0.53 A between Ca positions) [11]. Moreover, many of the residues
27 which are important for catalytic activity, substrate binding and dimerisation are conserved between these species [13].
28 Nevertheless, focusing on the mutations from SARS-CoV to SARS-CoV-2, several are located at the dimer interface
29 (for a full list see Table S1) and it has also been suggested that the mutations Thr285Ala and Ile286Leu (see Fig. S1)
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30 are responsible for a closer dimer packing [ |]. Previous mutational studies on these positions in SARS-CoV MP™ have
31 revealed an impact on catalytic activity [14].

32 Currently, the development of SARS-CoV-2 MP™ inhibitors [ 1, 15, 16, 17], similarly to designing other coronavirus
33 MP™ inhibitors [18, 19, 20], focuses on blocking the orthosteric sites to disrupt viral replication (reviewed in Ullrich &
34 Nitsche [21]). Targeting the active site enables high affinity of the drug molecules but could result in off-target-based
35 toxicity when binding to proteins with similar active sites. Drug resistance is another major concern, especially when
36 the active site may potentially alter owing to mutations. Targeting an allosteric site which is distal from the main
37 binding site provides an alternative attractive solution by increasing both the range and selectivity of drugs to fine-tune
38 protein activity without the aforementioned disadvantages. (For reviews and recent successes see Wenthur ef al. and
39 Cimermancic et al. [22, 23]). To the best of our knowledge, there is to date no indication of such putative allosteric
40 sites of the coronavirus MP™s in the literature other than a recent implication of potential allosteric regulation of
41 SARS-CoV-2 MP™ [24] and simulated binding events to distant areas of the protein [25]. Encouragingly, however, there
42 have been indications of allosteric processes mediated by the extra domain in the SARS-CoV MP™ [26, 27, 28, 14].

43 Here, we focus on investigating the allosteric properties of the protease and in particular whether there are indeed any
44 strongly connected allosteric sites to the active site that may offer alternative ways to inhibit the virus reproduction.
45 Despite being an attractive drug alternative approach, the identification of allosteric sites remains challenging and is
46 still often done serendipitously. Computational prediction and description of allosteric sites has become an active field

47 of research for allosteric drug design (for reviews see [29, 30]) as it does not require the laborious and time-consuming
48 compound screening process. For example, molecular dynamics (MD) simulations model proteins at the atomic level
49 and the communication pathways detected can be exploited for allosteric residue and site identification [31, 32]. To

so alleviate the substantial computational resources required by MD simulations and the inability to explore all the required
51 scales involved, variations of normal mode analysis (NMA) of elastic network models (ENM) are widely applied and

52 have achieved moderate accuracy in allosteric site detection when tested on known allosteric proteins [33, 34, 35, 36].
53 The field of methods for allosteric pathway or site prediction is continuously growing, with new methods ranging from
54 statistical mechanical models [37, 38] to methods based on graph theory [39]. However, even if they overcome the

55 computational resource requirement of atomistic MD, they do so at the cost of resolution by looking at coarse-grained
56 structure representations.

57 To overcome these limitations, we recently introduced a range of methods based on high resolution atomistic graph
58 analysis which are computationally efficient while at the same time provide insights into the global effects on a protein
59 structure without a priori guidance. These computational frameworks retain key physico-chemical details through the
60 derivation of an energy-weighted atomistic protein graph from structural information which incorporates both covalent
61 and weak interactions which are known to be important in allosteric signalling (hydrogen bonds, electrostatics and
62 hydrophobics) through interatomic potentials [40, 41, 42]. Based on this atomistic graph, Bond-to-bond propensity
63 analysis quantitatively shows how an energy fluctuation in a given set of bonds significantly affects any other bond
64 in the graph and provides a measure for instantaneous connectivity. Unlike most graph or network approaches, it is
65 formulated on the bonds or edges of the graph and thus makes a direct link between energy and flow through bonds of
66 the system [43]. It has been shown that Bond-to-bond propensities are capable of successfully predicting allosteric
67 sites in a wide range of proteins without any a priori knowledge other than the active site [43]. Of particular relevance
68 to the homodimeric protease studied here, it has been subsequently used to show how allostery and cooperativity
69 are intertwined in multimeric enzymes such as the well studied aspartate carbamoyltransferase (ATCase) [44]. A
70 complementary methodology, Markov transient analysis, further sheds light on the catalytic aspects of allostery and
71 obtains the pathways implicated in allosteric regulation through the transients of the propagation of a random walker
72 on the node space of the atomistic graph [41]. Crucially, while most methods obtain the shortest or optimal path, the
73 method takes into account all possible pathways, as allosteric communication is known to involve multiple paths [45].
74 In doing so, Markov transient analysis has been successful in identifying allosteric paths in caspase-1 [41] as well as
75 previously unknown allosteric inhibitor binding sites in p90 ribosomal s6 kinase 4 (RSK4) which complemented drug
76 repurposing in lung cancer [46]. These two methods are complementary in their application as they have been shown
77 to provide different insights based on the underlying allosteric mechanisms: Bond-to-bond propensity analysis gives
78  insights into the structural connectivity while Markov transient analysis is better suited for the catalytic and time scale
79 dependent aspects of a protein.

go  We here showcase the application of these methodologies in the setting of COVID-19. We analysed the SARS-CoV-2
st main protease and obtained Bond-to-bond propensities for all bonds as well as Markov transient half-times ¢, /5 for
g2 all atoms. Our results shed light on the allosteric communication patterns in the MP™ dimer. They further highlight
83 the role of the interface and capture how the subtle structural changes between SARS-CoV and SARS-CoV-2 affect
84 their dimerisation properties. By applying a rigorous scoring procedure to our results, we identify four statistically
85 significant hotspots on the protein which are strongly connected to the active site and propose that they hold potential
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g6 for allosteric regulation of the main protease. By providing guidance for allosteric drug design we hope to open a new
g7 chapter for drug targeting efforts to combat COVID-19.

¢ 2 Results

go The first step in our graph analysis approach is the construction of an atomistic graph from a protein data bank (PDB)
90 [47] structure. This process takes into account strong and weak interactions like hydrogen bonds, electrostatic and
91 hydrophobic interactions (see Methods and Fig. 4). Additionally, we can incorporate water molecules, which in the
92 case of the MP™ are catalytically important and known to expand the catalytic dyad to a triad [1 1] (see Fig. SIB). In
93 this analysis, we use the structures of the apo form of the SARS-CoV-2 and SARS-CoV main proteases which are
94 deposited with PDB identifier 6Y2E [1 1] and 2DUC [48], respectively. Once the atomistic graph is constructed, we
95 use Bond-to-bond propensities and Markov transients to complementary explore the connectivity within the proteins
96 when sourced from relevant residues. To achieve this, Bond-to-bond propensity explores the instantaneous strength
97 of communication of a perturbation to every bond in the protein which allows to identify allosteric sites [43] and
98 investigate concepts like cooperativity in multimeric proteins [44]. Markov transients exploit the time evolution of
99 a diffusion process on the atomistic graph to identify groups of atoms which are reached the fastest (i.e. allosteric
100 sites) or form a communication pathway [41]. By applying quantile regression we are able to quantitatively rank all
101 bonds, atoms and subsequently residues. This allows to score the hotspots we identified and statistically prove their
102 significance.

103 2.1 Bond-to-bond propensities validate molecular mechanism of MP™.

104 Figure | provides detailed insights into the Bond-to-bond propensity analysis of the SARS-CoV-2 MP™ when sourced
105 from the active site residues histidine 41 and cysteine 145 in both monomers. The top scoring residues (see Table S2)
106 reveal two main areas of interest in the MP™. The hotspot on the back of the monomer opposite to the active site (Fig.
107 1A) is described in more detail in the paragraphs below. Hotspot two is located in the dimer interface and contains
108 four residues which form salt bridges between the two monomers. Serine 1 and arginine 4 from one monomer connect
109 to histidine 172 and glutamine 290 from the other one, respectively. Interestingly, these bonds have been found to be
110 essential for dimer formation which in turn is required for MP™ activity [49, 27].

111 2.2 Protease dimerisation is under influence of mutated residues.

112 To further clarify the interactions between the dimer halves (Fig.

113 S1A) and how the dimer connectivity changed for the new SARS- Taple 1: Comparison of Top 20 residues between
114 CoV-2 protease, we ran Bond-to-bond propensity analysis sourced Covid-19 and SARS main protease. Highlighted in
115 from two mutated residues. Alanine 285 and leucine 286 are blue are residues which are in the dimer interface.

116 involved in the dimer interface and have been shown to lead to

117 a closer dimer packing when mutated from threonine 285 and SAslg{'ICZV'Z Sﬁé{ g;‘g?
118 isoleucine 286 in SARS-CoV [14, 11]. ARG4 A SERI123 A
119 Hence, we chose these residues as source when looking into pro- ARG40 A GLU166 A
120 tease dimer connectivity in comparison between SARS-CoV-2 and PRO122 A ASP187 A
121 SARS-CoV. Table 1 shows the top 20 residues in both structures SER1 B PHE305 A
122 when sorted by quantile score. We can report a strong connectivity ARG4 B ARG40 B
123 towards dimer interface residues which is more apparent in the ARG40 B ASNO95 B
124  SARS-CoV-2 protease than in the SARS-CoV one. This can be PROI122 B PRO122 B
125 attributed to a closer dimer packing due to the two smaller side GLN306 B ARGI131 B
126 chains of 285/286 in the new protease [ 1 |]. In a mutational study PHE3 A ASP187 B
127 in SARS-CoV, this closer dimer packing led to an increased activ- SER10 A ILE281 B
128 ity [14], however this could not be confirmed in the SARS-CoV-2 GLU14 A TYR54 A
129 protease [ 1]. This was further validated when we calculated the ASNO5 A ILE281 A
130 average residue quantile score of the active site in these runs. For GLU166 A SER1 B
131 the active site in SARS-CoV-2 MP™ the score is 0.26 which is PHE305 A PHE3 B
132 below a randomly sampled site score of 0.48 (95% CI: 0.47-0.49) GLN306 A ARG4 B
133 and makes the active site a coldspot in this analysis. In SARS-CoV PHE3 B SER10 B
134 MP™ we detect a higher connectivity with a score of 0.50 for the SER10B ASP56 B
135 active site which is nevertheless slightly above a random site score ASN95 B ARG60 B
136 of 0.48 (95% CI: 0.47- 0.48). Although we could not identify GLU166 B TRP207 B

137 the direct link between the extra domain and the active site on an
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Figure 1: Bond-to-bond propensities of MP™ sourced from the orthosteric sites. The source sites have been chosen as the
catalytically active residues His41 and Cys145 in both chains of the homodimer and are shown in green (front A) and top B) view).
All other residues are coloured by quantile score as shown in the legend and reveal two main areas of interest with important residues
labelled. C) The propensity of each residue, I1r, is plotted against the residue distance from the orthosteric site. The dashed line
indicates the quantile regression estimate of the 0.95 quantile cutoff used for identifying relevant residues.

138 atomistic level here, we assume that studying the dimer interface residues in a systematic manner would help elucidate
139 the link between domain III and the catalytic activity of the MP™.

140 2.3 Identification and scoring of putative allosteric sites.

141 Bond-to-bond propensities have been shown to successfully detect allosteric sites on proteins [43] and we here present
142 the results in the SARS-CoV-2 MP™ to that effect. By choosing the active site residues histidine 41 and cysteine 145 as
143 source, we can detect areas of strong connectivity towards the active centre which allows us to reveal putative allosteric
144 sites. We could detect two hotspots on the protease which might be targetable for allosteric regulation of the protease
145 (Fig. 2). Most of the residues present in the two putative sites are amongst the highest scoring residues which are listed
146 in Table S2. Site 1 (Fig. 2A shown in yellow) which is located on the back of the monomer in respect to the active
147 site and is formed by nine residues from domain I and II (full list in Table S4). The second hotspot identified with
148 Bond-to-bond propensities is located in the dimer interface and contains 6 residues (Tab. S5) which are located on both
149 monomers (Fig. 2B shown in pink). Two of these residues, Glu290 and Arg4 of the respective second monomer, are
150 forming a salt bridge which is essential for dimerisation [27]. Quantile regression allows us to rank all residues in the
151 protein and thus we can score both sites with an average residue quantile score as listed in Table 2. Site 1 and 2 have a
152 high score of 0.97 and 0.96, respectively and score much higher than a randomly sampled site would score with 0.53
153 (95% CI: 0.53-0.54) for a a site of the size of site 1 or 0.52 (95% CI: 0.51-0.53) for a site of the size of site 2.

154 Our methodologies further allow to investigate the reverse analysis to assess the connectivity of the predicted allosteric
155  sites. For this purpose, we defined the source as all residues within the respective identified sites (Tables S4 and S5).
156 After a full Bond-to-bond propensity analysis and quantile regression to rank all residues, we are able to score the active
157 site to obtain a measure for the connectivity towards the catalytic center (Tab. S8). For site 1 the active site score is 0.64
158 which is above a randomly sampled site score of 0.47 (95% CI:0.47-0.48). However, for site 2 the active site score is
159 0.49 which is only marginally above a randomly sampled site score of 0.48 (95% CI:0.47-0.48). As site 2 is located in
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160 the dimer interface, this is in line with the above described suggestion that the allosteric effect is not directly conferred
161 from the dimer interface towards the catalytic centre. Nonetheless, this site might provide scope for inhibiting the MP™
162 by disrupting the dimer formation at these sites.

Quantile
Score

1.0
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0.6
04
0.2
0.0

Figure 2: Putative allosteric sites identified by Bond-to-bond propensities. Surface representation of the MP™ dimer coloured by
quantile score (as shown in the legend). A) Rotated front view with site 1 (yellow) which is located on the opposite of the orthosteric
site (coloured in green). B) Top view with site 2 (pink) located in the dimer interface. A detailed view of both sites is provided with
important residues labelled.

163 Overall, this missing bi directional connectivity hints to a more complex communication pattern in the protein and gave
164 us reason to utilize another tool which has been shown to be effective in catalytic frameworks [4 1] like the protease.
165 Markov transients reveal fast signal propagation which happens often along allosteric communication pathways within
166 the protein structure. The top scoring residues with a QS > 0.95 in a Markov transient analysis sourced from the active
167 site residues are shown in Figure 3A and a full list can be found in Table S3. In the SARS-CoV-2 MP™, this analysis
168 subsequently led to the discovery of two more putative sites as shown in Figure 3C. Both hotspots are located on the
169 back of the monomer in relation to the active site. Site 3 (shown in turquoise in Figure 3C) is located solely in domain
170 1T and consists of ten residues as listed in Table S6. One of which is a cysteine at position 156 which might provide
171 a suitable anchor point for covalent drug design. Site 4 (orange in Figure 3C) is located further down the protein in
172 domain I with 11 residues as listed in Table S7. Both sites were scored as described above and in the Methods section.
173 Both sites have high average residue quantile scores of 0.87 (Tab. 2) which are significantly higher than the random site
174 scores of 0.50 (95% CI: 0.49-0.50) and 0.49 (95% CI: 0.49-0.50), respectively.

175 Following the same thought process as described for site 1 and 2, we can investigate the protein connectivity from the
176 opposite site by sourcing our runs from the residues in site 3 and 4. We then score the active site to measure the impact
177 of the putative sites on the catalytic centre (Tab. S8). For site 3, the active site has an average residue quantile score
178 of 0.66 in comparison to a random site score of 0.53 (95% CI: 0.52-0.53) which indicates a significant catalytic link
179 between site 3 and the active site. For site 4 (as for site 2) the scores are similar to a randomly sampled score, which
180 means that we do not detect a significant connectivity from this site to the active site. Judging from previous experience
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Figure 3: Markov transient analysis of MP™ sourced from the orthosteric sites. The orthosteric sites are shown in green and
include His41 and Cys145 in both chains of the homodimer (front A) view). B) The ¢, /5 values of each residue are plotted against
their distance from the orthosteric site. The dashed line indicates the quantile regression estimate of the 0.95 quantile cutoft used for
identifying significant residues. The quantile scores of all residues are mapped onto the surface of the MP® dimer (front A) view),
coloured as shown in the legend. C) Surface representation of a rotated front view the MP" dimer coloured by quantile score. Site 3
(turquoise) and 4 (orange) are located on the opposite site of the active site (coloured in green). A detailed view of both sites is
provided with important residues labelled.

Table 2: Scoring of the 4 identified putative allosteric sites. Included is a structural bootstrap score of 1,000 randomly sampled
sites with 95% confidence interval (CI).

181

Site Average Residue Quantile Score Random Site Score [95% CI]
Site 1 0.97 0.5310.53, 0.54]
Site 2 0.96 0.52 [0.51, 0.53]
Site 3 0.87 0.50[0.49, 0.51]
Site 4 0.87 0.49 [0.49, 0.51]

in multimeric proteins this might be due to another structural or dynamic factor which we did not yet uncover between

182 site 4 and the active site.

183 Overall we see a similar pattern of hot and cold spots in the SARS-CoV MP™ (results not shown). We find a high
184 overlap for the identified four sites which gives us confidence, that a potential drug effort would find applications in
185 COVID-19 as well as SARS. To provide a first indication of the druggability of the identified sites, we chose to align the
186 fragments identified in the Diamond Light Source XChem fragment screen [50] with our sites. The screen identified 25
187 fragments which bind outside of the active site and 15 of these bind within 4 A of any of the four putative allosteric sites.
188 Due to the computational efficiency of our methodologies we were able to conduct a full analysis of all 15 structures
189 and ran our methods from the fragments as source sites. We subsequently scored the active sites in each run (full data in
190 Table S9) and found that the fragment deposited with the PDB identifier SRE8 might be of particular interest as it has
191 the highest connectivity to the active site. Moreover, one of the fragments within 4 A of site 1 with the PDB identifier
192 5RGIJ, has been shown to inhibit the proteolytic activity of the MP™ [24] and possesses a relatively high connectivity to
193 the active site.
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194 3 Discussion

195 During the global pandemic of COVID-19 that has started in January 2020, we have seen an increase of research
196 activities to develop new drugs against the disease causing virus SARS-CoV-2. A wide range of approaches from
197 chemistry, structural biology and computational modelling have been used to identify potential protease inhibitors.
198 However, most of these initiatives focus on investigating the active site as a drug target [ |, 16], high-throughput
199 docking approaches to the active site [ | 5] or re-purposing approved drugs [5 1] and protease inhibitors [52] which bind
200 at the active site.

201 To increase the targetable space of the SARS-CoV-2 main protease and allow a broader approach to inhibitor discovery,
202 we provide a full computational analysis of the protease structure which gives insights into allosteric signalling and
203 identifies potential putative sites. Our methodologies are based on concepts from graph theory and the propagation of
204 perturbations and fluctuations on a protein graph. We have previously demonstrated the applications of Bond-to-bond
205 propensities and Markov transients in identifying allosteric sites and communication pathways in a range of biological
206 settings [41, 43, 44, 46]. Applying Bond-to-bond propensities on the SARS-CoV-2 MP™ gave us important insights into
207 connectivity of the protein and highlighted residues at the dimer interface. We further explored the interface residues in
208 comparison with the SARS-CoV protease as dimerisation is known to be essential for the proteolytic activity [14] and
209 might provide scope for inhibitor development [53]. Important for the dimer packing and mutated in SARS-CoV-2
210 are residues 285 and 286 [11]. When sourced from these residues, we find a higher proportion of dimer interface
211 residues within the top 20 scoring residues for SARS-CoV-2 which confirms a stronger dimer connectivity as described
212 in literature [ 1 1]. Although we could not identify the direct link between the mutated residues and the active site on an
213 atomistic level here, we assume that further systematic studies of the residues at the dimer interface would provide
214 clarity.

215 This gave us confidence to further explore the SARS-CoV-2 protease with our methodologies. Using the above described
216 approaches we have identified four allosteric binding sites on the protease. We describe the location of the sites and
217 possible implications for the proteolytic activity of the protein. Site 1 and 2 have been identified using Bond-to-bond
218 propensities and hence have a strong instantaneous connectivity to the active site. Sourced from both sites, we noticed
219 that site 1 is directly connected to the active site, which is detected with a score above a randomly sampled site score
220 (0.64 > 0.47) while site 2 is indirectly connected to the active site with a active site score only slightly above that of
221 arandom site (0.49 > 0.48). This suggests that site 1 might be a functional site and any perturbation at site 1 would
222 induce a structural change of the protease thereby impacting the active site directly. Indeed, a fragment near site 1 has
223 been shown to exhibit some inhibitory effect on the MP™ in a recent study [24]. Notably, site 2, although not directly
224 coupled to the active site as a functional site, is located in the dimer interface (Fig. 2B) and provides a deep pocket for
225 targeting the protease and maybe disrupting dimer formation. Targeting site 2 could result in a conformation change of
226 the protease and inhibition of dimerisation.

227 The sites identified with Markov transients are reached the fastest by a signal sourced from the active site and are both
228 located at the back of each monomer in relation to the active site. Site 3 is assumed to be directly coupled to the active
229  site as seen from the score of the active site (0.66 > 0.53) and perturbation at site 3 would thus affect the catalytic
230 activity of MP™. Besides, Site 3 (Fig. 3C) contains a cysteine residue (Cys156) which provides an anchor point for
231 covalently binding inhibitors [54]. Similar to site 2, site 4 is not directly connected to the active site. Effects exerted at
232 site 4 could affect other parts of the protein which in turn lead to an altered activity of MP™.

233 We also include the analysis of 15 structures containing small fragments from a recent Diamond Light Source XChem
234 fragment screen [50] which bind in proximity to the putative sites. We scored the active site (His41 and Cys145) using
235 these fragments as the source. The active site score is analysed rigorously with a structural bootstrap to compare the
236 effect of each fragment on the protease. Some fragments have a direct link to the active site and have been recently
237 investigated in experimental studies [24] and might provide a first starting point for rational drug design.

238 Together our methods provide in depth insights into the global connectivity of the main protease. By taking our results
239 into consideration we hope to broaden the horizon for targeting the main protease of SARS-CoV-2. This will aid in the
240 development of effective medications for COVID-19.

21 4 Methods

242 Protein Structures. We analysed the X-ray crystal structures of the apo conformations of the SARS-CoV-2 (PDB ID:
243 6Y2E [11]) and the SARS-CoV (PDB ID: 2DUC [48]) main proteases (MP™). All residues of the MP™ proteins that are
244 mutated between the two viruses are listed in Table S1. Both structures contained a water molecule in proximity to
245 the catalytic dyad formed by histidine 41 and cysteine 145. These water molecules were kept while all other solvent
246 molecules were removed. Atom and residue, secondary structural names and numberings are in accordance with the
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247 original PDB files. The dimer interface was investigated using the online tool PDBePISA [55] (for a full list of the
248 resulting dimer interface residues see https://doi.org/10.6084/m9.figshare.12815903).

249 Atomistic Graph Construction. In contrast to most network methods for protein analysis, we derive atomistic
250 protein graphs obtained from the three-dimensional protein structure and parameterise with physico-chemical energies,
251 where the nodes of the graph are the atoms and the weighted edges represent interactions, both covalent bonds and
252 weak interactions, including hydrophobic, hydrogen bonds and salt bridges (See Fig. 4). Details of this approach can be
253 found in Refs [40, 41, 43]. We summarise the main features below and note three additional improvements, namely, in
254 the stand-alone detection of edges without need of third-party software, the many-body detection of hydrophobic edges
255 across scales, and, the computational efficiency of the code. For further details for the atomistic graph construction used
256 in this work see [56, 42].

257 Figure 4 gives an overview of the workflow where we start from atomistic cartesian coordinates from PDB files. Since
258 X-ray structures do not include hydrogen atoms and NMR structures may not report all of them , we use Reduce [57] to
250 add any missing hydrogens. Hydrophobic interactions and hydrogen bonds are identified with a cutoff of 8 A and 0.01
260 kcal/mol respectively. The edges are weighted by their energies: covalent bond energies from their bond-dissociation
261 energies [58], hydrogen bonds and salt bridges by the modified Mayo potential [59, 60] and hydrophobic interactions
262 are calculated using a hydrophobic potential of mean force [61].

Add
hydrogens
Reduce

Edge Edge 3 Covalent
detection weighting == Hydrogen
: Salt bridge
Hydrophobic

Atomic Atomic
coordinates coordinates
(no Hs) (with Hs)

Unweighted Weighted
graph graph

Figure 4: Atomistic Graph Construction. We showcase the general procedure here on the main protease of SARS-Cov-2: Atomic
coordinates are obtained from the PDB (ID: 6Y2E [11] and hydrogens are added by Reduce [57]. Edges are identified and the
weights are assigned, as described in the methods section, by taking into account covalent bonds as well as weak interactions:
hydrogen bonds, electrostatic interactions and the hydrophobic effect which are coloured as indicated.

263 Bond-to-bond Propensities. Bond-to-bond propensity analysis was first introduced in Ref. [43] and further discussed
264 in Ref. [44], hence we only briefly summarise it here. This edge-space measure examines and exhibits the instantaneous
265 communication of a perturbation at a source towards every bond in the protein. The edge-to-edge transfer matrix M
266 was introduced to study non-local edge-coupling and flow redistribution in graphs [62] and an alternative interpretation
267 of M as a Green function is employed to analyse the atomistic protein graph. The element M;; describes the effect that
268 a perturbation at edge ¢ has on edge j. M is given by

1
M = 5WBTLTB )]

269 where B is the n x m incidence matrix for the atomistic protein graph with n nodes and m edges; W = diag(w;;) is an
270 m X m diagonal matrix which possesses all the edge interaction energies with w;; as the weight of the edge connecting
271 nodes i and j, i.e. the bond energy between the atoms; and L is the pseudo-inverse of the weighted graph Laplacian
272 matrix L [63] and defines the diffusion dynamics on the energy-weighted graph [64].

273 To evaluate the effect of perturbations from a group of bonds b (i.e., the source), on bond b of other parts of the protein,
274 we define the bond propensity as:

H: Z |Mbb'| 2)
b

’
b’ € source
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275 and then calculate the residue propensity of a residue R:

I1=> 3)

R beR b

276 Markov Transient Analysis (MTA). A complementary, node-based method, Markov Transient analysis (MTA)
277 identifies areas of the protein that are significantly connected to a site of interest, the source, such as the active site, and
278  obtains the signal propagation that connects the two sites at the atomistic level. The method has been introduced and
279 discussed in detail in Ref. [4 1] and has successfully identified allosteric hotspots and pathways without any a priori
280 knowledge [4 1, 46]. Importantly, it captures all paths that connect the two sites. The contribution of each atom in the
281 communication pathway between the active site and all other sites in a protein or protein complex is measured by the
282 characteristic transient time 2, /o,

) ) (4)
tgz/)Q = arg min {pgl) > ﬂ-} 4)
¢ 2

283 where tgi/)Q is the number of time steps in which the probability of a random walker to be at node 7 reaches half the

284 stationary distribution value. This provides a measure of the speed by which perturbations originating from the active
285 site diffuse into the rest of the protein by a random walk on the above described atomistic protein graph. To obtain the
286 transient time ¢, 5 for each residue, we take the average t, /5 over all atoms of the respective residue.

287 Quantile Regression (QR). To determine the significant bonds with high bond-to-bond propensity and atoms with
288 fast transient times ¢, /o at the same geometric distance from the source, we use conditional quantile regression (QR) [65],
289 a robust statistical measure widely used in different areas [66]. In contrast to standard least squares regressions, QR
290 provides models for conditional quantile functions. This is significant here because it allows us to identify not the
291 "average" atom or bond but those that are outliers from all those found at the same distance from the active site and
292 because we are looking at the tails of highly non-normal distributions.

293 As the distribution of propensities over distance follows an exponential decay, we use a linear function of the logarithm
294 of propensities when performing QR while in the case of transient times which do not follow a particular parametric
295 dependence on distance, we use cubic splines to retain flexibility. From the estimated quantile regression functions, we
296 can then compute the quantile score for each atom or bond. To obtain residue quantile scores, we use the minimum
297 distance between each atom of a residue and those of the source. Further details of this approach for Bond-to-bond
298 propensities can be found in Ref. [43] and for Markov Transient Analysis in Ref. [67].

299  Site scoring with structural bootstrap sampling. To allow an assessment of the statistical significance of a site of
300 interest, we score the site against 1000 randomly sampled sites of the same size. For this purpose, the average residue
301 quantile score of the site of interest is calculated. After sampling 1000 random sites on the protein, the average residue
302 quantile scores are calculated. By performing a bootstrap with 10,000 resamples with replacement on the random sites
303 average residue quantile scores, we are able to provide a confidence interval to assess the statistical significance of the
304 site of interest score in relation to the random site score.

305 Residues used when scoring the active site. For scoring the active site as a measure of the connectivity towards the
s06 main binding site, we use all non-covalent hits bound in the active site from the XChem fragment screen against the
307 SARS-CoV-2 MP™ [50] . The 22 found structures were further investigated using PyMol v.2.3 [68] for residues which
308 have atoms within 4A of any of the bound fragments. These residues are Thr25, Thr26, His41, Cys44, Thr45, Ser46,
so9  Met49, Tyr54, Phel40, Leul41, Asnl42, Ser144, Cys145, Met162, His163, His164, Met165, Glu166, Leul67, Pro168,
310 Aspl87, Argl88, GIn189, Thr190 and constitute the active site as a site of interest in all scoring calculations.

311 XChem fragment screen hits selection. From the above mentioned XChem fragment screen against the SARS-
s12 CoV-2 MP™ [50], 25 hits were found at regions other than the active site. The 15 fragments which contain atoms that
s13  are within 4A from any of the putative allosteric site residues we obtained were selected as candidates for further
314 investigation as shown in Table 3.

315 For each of these fragment-bound structures, we performed Bond-to-bond propensity and Markov transient analyses to
ste evaluate the connectivity to the active site. The active site was scored as described above.
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Table 3: XChem fragments in 4 A proximity to the identified allosteric sites.

Site | Fragment PDB ID

Site 1 5RGJ, 5RES, 5RF4, 5RF9, SRFD, 5RED, 5REI, 5RF5, SRGR
Site 2 SRFO0, SRGQ

Site 3 5RF9

Site 4 5SRGG, 5RES, SRE7, SRFC, SRES, 5SRF4, SRFD

317 Visualisation and Solvent Accessible Surface Area. We use PyMol (v.2.3) [68] for structure visualisation and
318 presentation of Markov transient and Bond-to-bond propensity results directly on the structure. The tool was also used
319 to calculate the residue solvent accessible surface area (SASA) reported here, with a rolling probe radius of 1.4 and a
320 sampling density of 2.
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