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Herbicides have revolutionised weed management, increased crop yields and improved
profitability allowing for an increase in worldwide food security. Their widespread use,
however, has also led to not only a rise in resistance but also concerns about their
environmental impact. To help identify new, potent, non-toxic and environmentally safe
herbicides we have employed interpretable predictive models to develop the online tool
cropCSM (http://biosig.unimelb.edu.au/crop csm).

Developing herbicides, much like pharmaceuticals, involves a careful balance between
efficacy and safety. In the pharmaceutical industry, drug development pipelines have tackled
these challenges by modelling and optimising these important parameters early in the
development process. This has led, in general, to increased hit rates and decreased attrition
due to poor toxicity profiles and, in the process, reduced development time, costs, and
animal testing'™. Although many computer-guided approaches have proven invaluable for
drug development, by contrast little has been done to aid the development of safe and
potent agrochemicals.

Using experimental information on the herbicidal activity of over 4,000 small molecule
compounds (22% with herbicidal activity), we investigated what physicochemical properties
of the compounds translate to herbicidal activity. Herbicidal molecules were enriched in
saturated carbon chains and benzene substructures, compared to the inactive molecules
(Fig. 1a). The majority (90%) of the active compounds tended to be less than 517 Da, up to 9
acceptors and 4 donors, with fewer than 9 rotatable bonds and a logP between -1.7 and 6.1
(Supplementary Fig. 1) (95% less than 700 Da, 11 rotatable bonds, 11 acceptors, 6 donors,
and logP -3.0 to 6.1). This is similar, although slightly more lenient, than the widely used
Lipinski Rule of Five for orally bioavailable drugs. Interestingly, but consistently, there was no
significant distinction in physicochemical properties between herbicides and approved
drugs, as illustrated in the t-SNE plot (Supplementary Fig. 2). Compared to all FDA approved
drugs, however, herbicides were enriched in substructures involving chlorine.

These insights were used as a platform to build a supervised machine learning predictive
model, where the small molecule structure was represented as a graph-based signature,
termed Cutoff Scanning Matrix (CSM, in which the atoms are represented as nodes, and
covalent interactions between them as edges™® (Supplementary Fig. 3). Under cross-
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validation, we were able to correctly identify 82% of the active molecules with an overall
accuracy of 87% and AUC of 0.85 (Fig. 1b and Supplementary Table 1). When the model was
evaluated against a blind test set of 106 active and 345 inactive molecules, we achieved
comparable performance (87% accuracy, AUC of 0.87). This provided confidence that the
approach can be generalized and used with unknown sets of putative herbicidal molecules
active against a target of interest.

Agrochemicals have been linked to a range of unwanted negative effects on both health and
the environment. To help identify safe herbicides, complementary models were developed
to capture the impact of a small molecule on the honey bee (Apis mellifera), mallard (Anas
platyrhynchos) and flathead minnow (Pimephales promelas) toxicity, in addition to measures
of human health, including AMES toxicity, rat LDsg and oral chronic toxicity. While assessing
molecular substructures enriched in toxic compounds, (Supplementary Fig. 4), we identified
a prevalence of complex ring structures. Of note, structures rich in chlorine, while enriched
in herbicides, were also enriched in compounds that were toxic for mallard and minnow,
highlighting a potential inherent difficulty in optimising potency and safety when designing
herbicides.

We were also able to identify toxic molecules as classification and regression tasks with
accuracies of up to 92% and Pearson’s correlations of up to 0.86, outperforming previous
predictive approaches (Fig. 1b, Supplementary Fig. 5 and Supplementary Tables 2-3). These
results add credence to the tool to rapidly identify potentially hazardous molecules early in
the development process, which has the potential to significantly reduce costs and failure
rates.

The cropCSM models were then applied to a set of 360 commercial herbicides’. Over 97%
were correctly identified as herbicidal (Fig. 2). Despite being outliers in terms of their
physicochemical properties, cropCSM correctly predicted glyphosate and paraquat as
herbicides. Of those that weren’t, however, they included the natural fatty acid oleic acid,
and non-specific fragments like molecules such as dazomet and pentachlorophenol.

Overall, our cropCSM tool provides the first free and easy-to-use in silico platform to help
develop herbicides that are safe, effective and minimise impact on the environment. We
anticipate future iterations of cropCSM that will draw upon larger datasets and as a result
will have a higher predictor capability, allowing for a greater increase in accuracy and
correlation. The herbicidal and toxicity predictors are freely available via an integrated and
easy-to-use web interface (Supplementary Fig. 6; http://biosig.unimelb.edu.au/crop csm).
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ONLINE METHODS

Data for Herbicidal Activity

A dataset of 4,513 experimentally characterized, structurally diverse small molecules and their
herbicidal activity profiles”®. These were labelled either as active (997 molecules) or inactive (3,516
molecules). They had an average molecular weight of 380 Da and logP of 2.4 (Supplementary Fig. 1).
A database of 360 commercial herbicides was also used to evaluate cropCSM”®.

Environmental and Human Toxicity

We have developed new predictors based on six environmental and human toxicity data sets with
experimentally characterised molecules. Environmental toxicity data sets included (i) honey bee (A.
mellifera) toxicity, which was composed of 247 toxic and 353 atoxic molecules’; (ii) avian toxicity,
composed of 461 small molecules and their effects on mallard duck (66 toxic and 395 atoxic)™® and
(iii) flathead minnow toxicity, with lethal concentration values (LC50) for a diverse set of 554
molecules™. Human toxicity data sets included (i) AMES toxicity, with compounds labelled based on
their carcinogenic potential (4,632 carcinogenic and 3,470 not-carcinogenic)™; (i) oral acute toxicity
in rats, denoted as lethal dose (LD50) values for 10,145 compounds® and (iii) oral chronic toxicity in
rats values for 567 compounds™.

Graph-based Signatures and Feature Engineering

Graph modelling has an invaluable tool to model biological entities, including small molecules. Over
the years we have proposed and developed the concept of graph-based signatures (based on Cutoff
Scanning Matrix concept™) to represent physicochemical and geometrical properties of a range of
macromolecules®®*® and their interactions®?®. These have also been successfully adapted to
represent small molecules pharmacokinetics, toxicity and bioactivity>®. Supplementary Fig. 3 depicts
the main steps involved in feature engineering with graph-based signatures. Small molecules are
modelled as unweighted, undirected graphs where nodes represent atoms and edges represent
covalent bonds. Via pharmacophore modelling®, atoms are labelled based on their properties and all-
pairs shortest paths distances are calculated. Molecules are then represented as cumulative
distribution functions of atom distances labelled based on their respective physicochemical
properties (pharmacophores) and converted as a feature vector used as evidence to train and test
predictive methods. Complementary physicochemical properties are calculated and included using
the RDKit cheminformatics library®® and included in the feature vector. Frequent substructure mining
was performed using MoSS?’.

Model Selection and Validation

Different supervised learning algorithms available on the scikit-learn Python library®® were assessed
with best performing models selected based on Matthew’s Correlation Coefficient (MCC) and the
Area under the ROC curve (AUC) for classification tasks and Pearson’s correlation and Root Mean
Squared Error (RMSE) for regression tasks. Performance was assessed under 10-fold cross validation
as well as using non-redundant blind tests. A feature selection step was used to reduce
dimensionality and improve performance via a Forward Greedy Selection approach.

Web server

The backend of the cropCSM web server was developed using the Python Flask framework version
0.12.3 and the front end using Bootstrap framework version 3.3.7. The system is hosted by a Linux
server running Apache.


https://doi.org/10.1101/2020.11.01.364240
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.01.364240; this version posted November 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

FIGURES

Approved Drugs Herbacide

A Chemical Substructure Mining

Mal. Weight (Da)
Surface Area [A')

g 5 @ 20
% g .
. . e als :
| f * r RO 210
" I ; 5 %5 .
s { ! ! 0 :
4 'I Approved Drugs Herbicide Approved Drugs Herticide .
. i Irl P ﬁz_-s 15
! | {.l 2 20 - ]
: ovy g 15 E 0 E
Q! & g
¥ YA z 2 :
i Yd ® 0 0 ]
: .- X ,;': Approved Drugs Herbicide App: i Drugs Herbicic !

B Herbicidal Activity Prediction
1.0 . 7
P ,_.r"'/_’_J
= a—
E
(=]
= £
> z
B 0.5 2
o £ 04
%] =
AUC = AUC
- CV {0.85) &-21, ® — Bee(0.81)
Test087) | r:0.86 Avian(0.83)
0.0 . r:093 0.0+
0.0 05 10 2 0 2 4 0.0 05 10
1-Specificity Pred. Minnow (log mM) 1-Specificity

Figure 1. cropCSM: predicting safe and potent herbicides. Using chemical substructure mining we
identified common enriched substructures in compounds with herbicidal activity (A-left). Active
compounds presented similar molecular properties of approved drugs (A-right). Performance of
herbicide and environmental-toxicity predictors is shown in (B). Our herbicide predictor was able to
accurately identify active compounds with AUC>0.85 on cross-validation and blind test. Three
environmental toxicity models have been developed and were capable of successfully measuring
minnow toxicity (as a regression task, center graph) as well as identifying potentially harmful
compounds for Bees and Mallard (right-hand side graph).
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Figure 2. Performance of cropCSM on commercially available herbicides. Our method was able to
correctly classify 97% of commercial herbicides (344 out of 356, top-left graph). The figure also shows
the proportion of compounds predicted to be environmental or human toxic. Molecules were more
frequently predicted as AMES toxic (17%, 60 out of 356} and Minnow toxic (20%, 70 out of 356).
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