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Herbicides have revolutionised weed management, increased crop yields and improved 

profitability allowing for an increase in worldwide food security. Their widespread use, 

however, has also led to not only a rise in resistance but also concerns about their 

environmental impact. To help identify new, potent, non-toxic and environmentally safe 

herbicides we have employed interpretable predictive models to develop the online tool 

cropCSM (http://biosig.unimelb.edu.au/crop_csm). 

Developing herbicides, much like pharmaceuticals, involves a careful balance between 

efficacy and safety. In the pharmaceutical industry, drug development pipelines have tackled 

these challenges by modelling and optimising these important parameters early in the 

development process. This has led, in general, to increased hit rates and decreased attrition 

due to poor toxicity profiles and, in the process, reduced development time, costs, and 

animal testing
1-4

. Although many computer-guided approaches have proven invaluable for 

drug development, by contrast little has been done to aid the development of safe and 

potent agrochemicals. 

Using experimental information on the herbicidal activity of over 4,000 small molecule 

compounds (22% with herbicidal activity), we investigated what physicochemical properties 

of the compounds translate to herbicidal activity. Herbicidal molecules were enriched in 

saturated carbon chains and benzene substructures, compared to the inactive molecules 

(Fig. 1a). The majority (90%) of the active compounds tended to be less than 517 Da, up to 9 

acceptors and 4 donors, with fewer than 9 rotatable bonds and a logP between -1.7 and 6.1 

(Supplementary Fig. 1) (95% less than 700 Da, 11 rotatable bonds, 11 acceptors, 6 donors, 

and logP -3.0 to 6.1). This is similar, although slightly more lenient, than the widely used 

Lipinski Rule of Five for orally bioavailable drugs. Interestingly, but consistently, there was no 

significant distinction in physicochemical properties between herbicides and approved 

drugs, as illustrated in the t-SNE plot (Supplementary Fig. 2). Compared to all FDA approved 

drugs, however, herbicides were enriched in substructures involving chlorine. 

These insights were used as a platform to build a supervised machine learning predictive 

model, where the small molecule structure was represented as a graph-based signature, 

termed Cutoff Scanning Matrix (CSM, in which the atoms are represented as nodes, and 

covalent interactions between them as edges
5,6

 (Supplementary Fig. 3). Under cross-
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validation, we were able to correctly identify 82% of the active molecules with an overall 

accuracy of 87% and AUC of 0.85 (Fig. 1b and Supplementary Table 1). When the model was 

evaluated against a blind test set of 106 active and 345 inactive molecules, we achieved 

comparable performance (87% accuracy, AUC of 0.87). This provided confidence that the 

approach can be generalized and used with unknown sets of putative herbicidal molecules 

active against a target of interest.  

Agrochemicals have been linked to a range of unwanted negative effects on both health and 

the environment. To help identify safe herbicides, complementary models were developed 

to capture the impact of a small molecule on the honey bee (Apis mellifera), mallard (Anas 

platyrhynchos) and flathead minnow (Pimephales promelas) toxicity, in addition to measures 

of human health, including AMES toxicity, rat LD50 and oral chronic toxicity. While assessing 

molecular substructures enriched in toxic compounds, (Supplementary Fig. 4), we identified 

a prevalence of complex ring structures. Of note, structures rich in chlorine, while enriched 

in herbicides, were also enriched in compounds that were toxic for mallard and minnow, 

highlighting a potential inherent difficulty in optimising potency and safety when designing 

herbicides. 

We were also able to identify toxic molecules as classification and regression tasks with 

accuracies of up to 92% and Pearson’s correlations of up to 0.86, outperforming previous 

predictive approaches (Fig. 1b, Supplementary Fig. 5 and Supplementary Tables 2-3). These 

results add credence to the tool to rapidly identify potentially hazardous molecules early in 

the development process, which has the potential to significantly reduce costs and failure 

rates. 

The cropCSM models were then applied to a set of 360 commercial herbicides
7
. Over 97% 

were correctly identified as herbicidal (Fig. 2). Despite being outliers in terms of their 

physicochemical properties, cropCSM correctly predicted glyphosate and paraquat as 

herbicides. Of those that weren’t, however, they included the natural fatty acid oleic acid, 

and non-specific fragments like molecules such as dazomet and pentachlorophenol.  

Overall, our cropCSM tool provides the first free and easy-to-use in silico platform to help 

develop herbicides that are safe, effective and minimise impact on the environment. We 

anticipate future iterations of cropCSM that will draw upon larger datasets and as a result 

will have a higher predictor capability, allowing for a greater increase in accuracy and 

correlation. The herbicidal and toxicity predictors are freely available via an integrated and 

easy-to-use web interface (Supplementary Fig. 6; http://biosig.unimelb.edu.au/crop_csm). 
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ONLINE METHODS 

Data for Herbicidal Activity 

A dataset of 4,513 experimentally characterized, structurally diverse small molecules and their 

herbicidal activity profiles
7,8

. These were labelled either as active (997 molecules) or inactive (3,516 

molecules). They had an average molecular weight of 380 Da and logP of 2.4 (Supplementary Fig. 1). 

A database of 360 commercial herbicides was also used to evaluate cropCSM
7,8

. 

Environmental and Human Toxicity 

We have developed new predictors based on six environmental and human toxicity data sets with 

experimentally characterised molecules. Environmental toxicity data sets included (i) honey bee (A. 

mellifera) toxicity, which was composed of 247 toxic and 353 atoxic molecules
9
; (ii) avian toxicity, 

composed of 461 small molecules and their effects on mallard duck (66 toxic and 395 atoxic)
10

 and 

(iii) flathead minnow toxicity, with lethal concentration values (LC50) for a diverse set of 554 

molecules
11

. Human toxicity data sets included (i) AMES toxicity, with compounds labelled based on 

their carcinogenic potential (4,632 carcinogenic and 3,470 not-carcinogenic)
12

; (ii) oral acute toxicity 

in rats, denoted as lethal dose (LD50) values for 10,145 compounds
13

 and (iii) oral chronic toxicity in 

rats values for 567 compounds
14

. 

Graph-based Signatures and Feature Engineering 

Graph modelling has an invaluable tool to model biological entities, including small molecules. Over 

the years we have proposed and developed the concept of graph-based signatures (based on Cutoff 

Scanning Matrix concept
15

) to represent physicochemical and geometrical properties of a range of 

macromolecules
5,16-18

 and their interactions
19-25

. These have also been successfully adapted to 

represent small molecules pharmacokinetics, toxicity and bioactivity
5,6

. Supplementary Fig. 3 depicts 

the main steps involved in feature engineering with graph-based signatures. Small molecules are 

modelled as unweighted, undirected graphs where nodes represent atoms and edges represent 

covalent bonds. Via pharmacophore modelling
5
, atoms are labelled based on their properties and all-

pairs shortest paths distances are calculated. Molecules are then represented as cumulative 

distribution functions of atom distances labelled based on their respective physicochemical 

properties (pharmacophores) and converted as a feature vector used as evidence to train and test 

predictive methods. Complementary physicochemical properties are calculated and included using 

the RDKit cheminformatics library
26

 and included in the feature vector. Frequent substructure mining 

was performed using MoSS
27

. 

Model Selection and Validation 

Different supervised learning algorithms available on the scikit-learn Python library
28

 were assessed 

with best performing models selected based on Matthew’s Correlation Coefficient (MCC) and the 

Area under the ROC curve (AUC) for classification tasks and Pearson’s correlation and Root Mean 

Squared Error (RMSE) for regression tasks. Performance was assessed under 10-fold cross validation 

as well as using non-redundant blind tests. A feature selection step was used to reduce 

dimensionality and improve performance via a Forward Greedy Selection approach. 

Web server 

The backend of the cropCSM web server was developed using the Python Flask framework version 

0.12.3 and the front end using Bootstrap framework version 3.3.7. The system is hosted by a Linux 

server running Apache. 
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FIGURES 

 

 
Figure 1. cropCSM: predicting safe and potent herbicides. Using chemical substructure mining we 

identified common enriched substructures in compounds with herbicidal activity (A-left). Active 

compounds presented similar molecular properties of approved drugs (A-right). Performance of 

herbicide and environmental-toxicity predictors is shown in (B). Our herbicide predictor was able to 

accurately identify active compounds with AUC>0.85 on cross-validation and blind test. Three 

environmental toxicity models have been developed and were capable of successfully measuring 

minnow toxicity (as a regression task, center graph) as well as identifying potentially harmful 

compounds for Bees and Mallard (right-hand side graph). 
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Figure 2. Performance of cropCSM on commercially available herbicides. Our method was able to 

correctly classify 97% of commercial herbicides (344 out of 356, top-left graph). The figure also shows 

the proportion of compounds predicted to be environmental or human toxic. Molecules were more 

frequently predicted as AMES toxic (17%, 60 out of 356) and Minnow toxic (20%, 70 out of 356). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.01.364240doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.01.364240
http://creativecommons.org/licenses/by-nc-nd/4.0/

