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Duchenne Muscular Dystrophy (DMD) is a devastating genetic disease leading to 

degeneration of skeletal muscles and premature death. How dystrophin absence leads to 

muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate 

human induced Pluripotent Stem Cells (iPSC) to a late myogenic stage. This allows to 

recapitulate classical DMD phenotypes (mislocalization of proteins of the Dystrophin-

glycoprotein associated complex (DGC), increased fusion, myofiber branching, force 

contraction defects and calcium hyperactivation) in isogenic DMD-mutant iPSC lines in vitro. 

Treatment of the myogenic cultures with prednisolone (the standard of care for DMD) can 

dramatically rescue force contraction, fusion and branching defects in DMD iPSC lines. This 

argues that prednisolone acts directly on myofibers, challenging the largely prevalent view 

that its beneficial effects are due to anti-inflammatory properties. Our work introduces a new 

human in vitro model to study the onset of DMD pathology and test novel therapeutic 

approaches. 

 

 

Duchenne Muscular Dystrophy (DMD) is an X-linked muscular dystrophy (affecting 1 in 5000 

boys) caused by mutations in the dystrophin gene (aka DMD)(Rahimov and Kunkel, 2013). 

There is currently no cure for the disease and the only available treatment are glucocorticoids 

which can prolong the ambulatory phase (Matthews et al., 2016).  The dystrophin protein plays 

a key role in organizing a molecular complex (dystrophin associated glycoprotein complex 

(DGC)) spanning the sarcolemma at the level of costameres and linking the actin cytoskeleton 

to laminin and extracellular matrix. In DMD patients, fibers are more sensitive to mechanical 

stress and experience formation of membrane tears upon muscle contraction (Petrof et al., 

1993). DMD mutant myofibers exhibit abnormal calcium homeostasis, displaying higher resting 

calcium levels (Burr and Molkentin, 2015). The DGC also acts as an important scaffold necessary 

for the function of several signaling proteins such as the Nitric Oxide Synthase (nNOS) (Brenman 

et al., 1995). In the early stages of the disease, the degeneration of muscle fibers stimulates 

regeneration of new fibers from satellite cells, a physiological response that counterbalances 

fiber loss and maintains a normal muscle function. This increased generation of fibers is 

accompanied by structural defects such as branching of the newly generated fibers possibly 

resulting from fusion defects of the regenerating cells (Chan and Head, 2011; Schmalbruch, 

1984). As the disease progresses, satellite cell regeneration capacity decreases leading to tissue 

fibrosis. This myofiber degeneration and fibrosis are considered to be largely responsible for 

the decrease in muscle strength observed in patients.  There is also evidence suggesting 

intrinsic contractile dysfunction in zebrafish, mouse or dog lacking dystrophin (Lowe et al., 

2006; Widrick et al., 2016; Yang et al., 2012). Due to the difficult access to patient muscle fibers, 

evidence for such contraction defects and their cause and significance for the disease in 

humans has remained very limited (Fink et al., 1990). 

Much of the research on the etiology of DMD as well as preclinical tests for the validation of 

DMD therapeutic strategies have been carried out in the mdx mouse, a spontaneous dystrophin 

mutant (Partridge, 2013). In the mdx mouse myofibers, defects such as branching, and 

misalignment are detected as early as E13.5 at the beginning of the fetal period (Merrick et al., 
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2009). A significant limitation of the mdx model is that the dystrophy is much less severe and 

only partly phenocopies the human disease (Partridge, 2013). There is therefore a critical need 

for a better preclinical model in which the disease can be recapitulated with human myofibers. 

The recent development of protocols to differentiate human pluripotent stem cells such as 

iPSCs to skeletal myofibers in vitro (Chal and Pourquie, 2017) now offers the possibility to 

generate DMD models better reflecting the physiology of human cells. Several studies 

describing the establishment of DMD patient iPSC lines and their differentiation to skeletal 

muscles have been reported (Piga et al., 2019). However, only a limited set of phenotypes have 

been analyzed and the impact on skeletal muscle contractility has not been investigated. 

Here we describe an optimized myogenic differentiation protocol resulting in significantly 

improved myofiber maturation from human pluripotent cells in vitro, as shown by the 

expression of all fast myosin isoforms. Using this optimized protocol, we show that muscle 

fibers derived from two human isogenic iPSC cell lines carrying different DMD mutations 

engineered in a healthy iPSC line, recapitulate most hallmarks of the DMD phenotype 

compared to the parental line. These include mislocalization of DGC proteins such as nNOS, 

branching/fusion defects, and calcium signaling hyperactivation. We also demonstrate that 

skeletal myofibers derived from the DMD mutant lines exhibit defective contractions, strongly 

supporting the notion that an intrinsic contractility defect also contributes to the muscle 

weakness phenotype in DMD patients. Remarkably, this contraction defect can be largely 

rescued by prednisolone treatment indicating that the drug directly acts on mutant fibers. 

Finally, these DMD phenotypes are also observed in an iPSC line derived from a DMD patient 

differentiated using the optimized protocol and they are rescued when restoring the DMD 

coding frame using CRISPR-Cas9, demonstrating their specificity. Thus, our work provides a 

novel in vitro platform to study the etiology of DMD in human myofibers. Our human DMD in 

vitro model will allow for exploration of the early contraction and branching defects caused by 

absence of Dystrophin at the origin of the pathology and offers a platform for preclinical testing 

of candidate therapies for this devastating disease. 

 

RESULTS 

 

Optimization of the maturation of human iPSC-derived muscle fibers 

 

We have developed a 2-step muscle differentiation protocol for human pluripotent stem cells 

which first recapitulates the early stages of paraxial mesoderm differentiation followed by 

myogenesis in vitro (Figure 1a) (Chal et al., 2016; Diaz-Cuadros et al., 2020). During the first step 

(primary differentiation), cells are cultured for 3-4 weeks in a series of different media, resulting 

in the formation of long striated myofibers interspersed with PAX7-positive myogenic 

precursors (Chal et al., 2016). To monitor progress through myogenic differentiation in these 

conditions, we performed RNA sequencing (RNA-seq) of the cultures at day 0, day 8, day 16, 

day 24 and day 32 of differentiation (Figure 1b). We observed a sequence of expression of 

myogenic markers starting with PAX3 at day 8 followed by PAX7 at day 16. At day 16, we first 

detected MYF5, MYOG and MYOD1 which peaked later between day 24 and 32 when the 
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marker for fetal (secondary) myogenesis NFIX was strongly expressed (Messina et al., 2010). 

mRNAs for sarcomeric proteins such as α-actinin (ACTN2) or titin (TTN) were first detected at 

day 16 and peaked at day 32. At day 32, we also detected expression of both embryonic 

(CHRND) and adult (CHRNE) subunits of the acetylcholine receptor. Overall, these data suggest 

that the primary differentiation protocol recapitulates embryonic and fetal myogenesis in vitro. 

In the second step, which can start after ~20-30 days in vitro, the myogenic cultures are 

dissociated and re-plated in proliferation medium (SKGM), resulting in enrichment in myogenic 

precursors (Figure 1a) (Chal et al., 2016). After 1-2 days, when the re-plated cells reach 

confluence, they can be switched to a basal differentiation medium (which contains the Wnt 

agonist CHIR and KSR (Knockout Serum Replacement)). This results in cultures highly enriched 

for long striated myofibers after 7 days (Figure 1c). We next analyzed the effect of 

supplementing the basal medium of these cultures with a TGFβ inhibitor (SB-431542) 

previously reported to enhance fusion efficiency of muscle fibers (Hicks et al., 2018; Sieiro et al., 

2019). When differentiated for 1 week in KSR/CHIR (KC) or in KSR/CHIR/ TGFβ inhibitor (KCTi), 

the replated cells elongated and rapidly acquired a myogenic phenotype, developing into 

multinucleated muscle fibers (Figure 1c-d). Fibers generated in KCTi medium appeared thicker 

with better organized sarcomeres compared to the KC medium (Figure 1c-d). During human 

fetal development, a burst of glucocorticoid signaling is observed around 7 to 14 weeks, when 

fetal myogenesis is ongoing (Busada and Cidlowski, 2017). To recreate conditions similar to that 

experienced by the developing human fetus, we treated the re-plated cultures differentiating in 

KCTi with prednisolone (KSR/CHIR/TGFbi/Prednisolone (KCTiP)), a synthetic gluco-corticoid 

hormone previously shown to promote myogenic differentiation in wild type (WT) and mdx 

primary myoblast cultures (Braun et al., 1989). Even though expected myogenic markers were 

expressed in cultures differentiated in KC and KCTi, we noted a very significant improvement of 

the morphology of cultures treated with KCTiP with more organized myofibrils (Figure 1c-f, 

supplementary Figure 1).  

We next examined the expression of Myosin Heavy Chain isoforms mRNAs which are 

sequentially activated during skeletal muscle development (Schiaffino et al., 2015). Embryonic 

Myosin Heavy Chain (MYH3) was strongly expressed at day 16 while a weak expression of 

Neonatal myosin (MYH8) and slow myosin (MYH7) was observed at this stage (Figure 1b). 

Expression of MYH8 and MYH7 strongly increased at day 32 in the cultures. During primary 

differentiation, we only detected low levels of expression of the fast myosin IIa (MYH1), IIx 

(MYH2) and IIb (MYH4) which are respectively first expressed during fetal, late fetal, and early 

post-natal stages (Schiaffino et al., 2015). We also performed RNA-seq analysis of the secondary 

cultures differentiated following re-plating in KC and KCTi for 1 week and compared them to the 

non-differentiated myogenic progenitors grown in SKGM and to primary differentiation (Figure 

1 a-b). When compared to primary differentiation and to KC medium, KCTi induced a higher 

level of expression of the fast myosins IIa (MYH1), IIx (MYH2) and IIb (MYH4). RNA-seq analysis 

of cultures in KCTiP show a further increased expression of MYH1, MYH2 and MYH4 compared 

to cultures treated with KCTi only (Figure 1b). Thus, exposing differentiating human iPSC 

cultures to glucocorticoids promotes the maturation of skeletal myofibers. 

 

Generation and differentiation of isogenic DMD mutant iPSC cell lines 
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We used CRISPR-Cas9 mediated gene editing to establish isogenic cell lines in which DMD 

mutations were engineered into the wild-type human iPSC line NCRM1. We engineered a full 

deletion of exon 52 (hereafter named DMDI) and a point mutation introducing a stop codon in 

exon 52 (named DMDII). We could not detect any Dystrophin protein by western blot and 

immunohistochemistry in myofibers derived from the two mutant lines compared to the 

parental line (Figure 2a-d). We did not observe striking differences when comparing the 

expression of the myogenin, desmin, titin, and α-actinin proteins between skeletal muscle 

fibers formed from the parental WT cells and the two DMD mutant lines in re-plated cultures 

differentiated for a week in KCTiP medium (Figure 2e-h).  

Next, we used RNA-seq to compare the transcriptome of myogenic cultures of the two mutant 

lines with the parental line after SKGM amplification and differentiation for 1 week in KC 

medium. 532 genes were downregulated while 723 genes were upregulated in both DMD lines 

with a fold change >2 and an FDR< 0.01, when compared to the WT cells (Supplementary Table 

1). Gene Ontology (GO) analysis of the differentially expressed genes revealed that down-

regulated genes were primarily enriched in GO terms related to muscle including “striated 

muscle contraction” or “positive regulation of skeletal muscle development” as well as 

“regulation of protein kinase B signaling” (Supplementary Table 2 Figure 2i). Transcription 

factors found in these categories included MYOD1, MYF6, MYOG and MEF2C (Supplementary 

Table 3). GO terms primarily enriched in the upregulated genes in DMD cultures included 

“extracellular matrix organization”, “cytokine-mediated signaling pathways” and “fat cell 

differentiation”, which are in line with the inflammation and fibrosis and fat cell infiltration 

detected in patients (Supplementary Table 2, Figure 2j).  

 

Mislocalization of proteins of the Dystrophin-associated Glycoprotein Complex in DMD 

mutant iPSC lines 

When parental WT cells were differentiated in KCTiP medium, muscle fibers strongly expressed 

Dystrophin compared to cells cultured in KC or KCTi conditions (Supplementary Figure 2). 

Moreover, stronger expression of the components of the DGC complex dystroglycan (DAG1) 

and gamma-sarcoglycan was also detected when prednisolone was present in the 

differentiation medium (Supplementary Figure 2). In both DMD mutant lines, the DGC proteins 

nNOS, DAG1 and gamma-Sarcoglycan were largely absent from the sarcolemma of the 

myofibers, where they are localized in the parental WT line (Figure 2 k-m). Overall, proteins of 

the DGC were mis localized and downregulated in DMD mutant fibers whereas other 

membrane associated proteins such as NCAM1 were not affected (Supplementary Figure 3). 

Therefore, misexpression of DGC proteins reminiscent of the phenotype of DMD patients 

(Brenman et al., 1995; Janghra et al., 2016) is observed in DMD skeletal myofibers 

differentiated in vitro in KCTiP medium. 

Increased branching and fusion of differentiated Dystrophin-deficient fibers 

To test whether human DMD fibers generated in vitro exhibit a branching phenotype, myogenic 

cultures from the two DMD isogenic lines and from the WT parental line were dissociated at 3-

weeks and re-plated. After 24h, progenitors were transfected at low efficiency with membrane 

GFP and nuclear mCherry constructs. This allowed us to permanently mark isolated myofibers 

within the population, and then to quantify the number of branching points as well as nuclei 
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within individual fibers. After 1 week of differentiation in KC medium, fibers with no branches 

were observed in 77% of cases, with an average of 0.35 branching points per fiber for the entire 

WT population (Figure 3a, j-k). In contrast, in DMD-derived fibers, an average of 0.59 branching 

points per fiber were observed for both mutant lines, while around 65% and 62% of fibers 

remained unbranched for DMDI and DMDII respectively (Figure 3a-c, j-k). When fibers were 

differentiated in the presence of TGFβ inhibitor (KCTi), a markedly significant increase in 

branching points was observed when compared to KC medium (Figure 3d-f, j-k). WT fibers 

differentiated in KCTi contained an average of 0.94 branching points, with more than half of the 

fibers (53.2%) being bifurcated at least once. Dystrophin-deficient fibers averaged a significantly 

higher number of branching points when compared to wild-type cells (1.42 and 1.25 for DMDI 

and DMDII respectively) in KCTi. We then investigated the effect of prednisolone on myofiber 

branching. WT fibers grown in KCTiP medium contained no branching points in 79% of cases, a 

proportion higher than those of WT fibers grown in KCTi medium (Figure 3g-k). Interestingly, 

Dystrophin-deficient fibers differentiated in KCTiP also showed fewer branching points than 

those grown in KCTi media although they maintained a significantly higher number of branches 

when compared to WT (Compare Figure 3d-f and g-i).  

We also investigated how the absence of Dystrophin impacts the fusion of myofibers. Nuclei 

labeled by mCherry were counted in isolated fibers in cultures of WT and DMD mutant cells 

differentiated in KC, KCTi or KCTiP. In all three different conditions, we observed a significant 

increase in the number of nuclei in the DMD mutants compared to WT fibers (Figure 3l).  

To confirm the specificity of the branching and fusion defects in a different genetic background, 

we used a human patient-derived iPSC line harboring an intronic point mutation in intron 47 of 

the DMD gene (TX1-Unc) and an isogenic line in which the Dystrophin coding frame was 

restored by CRISPR-Cas9 editing (TX1-Cor) (Long et al., 2018). Both lines could differentiate 

efficiently into myofibers expressing sarcomeric proteins in KCTi and KCTiP (Supplementary 

Figure 4). No expression of Dystrophin and downregulation of DAG1 was observed in the TX1-

Unc line while expression of these proteins in the TX1-Cor line was similar to WT 

(Supplementary Figure 4).  The number of branching points and the number of nuclei per fiber 

was significantly higher in the uncorrected TX1-Unc line in KCTi than in the corrected line 

(Figure 3m-o). Remarkably, the number of branching points and of nuclei per fiber could be 

reduced in both lines by prednisolone treatment (Figure 3m-n). Strikingly, prednisolone 

treatment rescued the branching phenotype in the patient iPSC line to the level of the 

corrected line treated or not with prednisolone (Figure 3m). Thus, our data show that absence 

of Dystrophin leads to an increase in myofiber branching and fusion in three different DMD 

mutant isogenic lines in various differentiation conditions. Remarkably, excessive branching and 

fusion can be reduced by treating the differentiating cultures with prednisolone.  

 

Force contraction defects displayed in Dystrophin-deficient iPSC derived fibers 

To measure the impact of loss of Dystrophin on force contraction, we engineered contractile 

myogenic tissues from the WT and DMD mutant lines (Figure 4a)(Chal et al., 2016; Nesmith et 

al., 2016). Myogenic cultures of the WT and the DMDI and DMDII mutant iPSC lines were 

dissociated and seeded onto thin elastomeric gelatin substrates, which were micro-molded 

with line patterns to promote cell alignment (Supplementary Figure 5). The re-plated cells were 

first cultured for 1-2 days in SKGM until they reached confluence and then were differentiated 
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for a week in KCTi medium. In these conditions, myocytes self-organized into continuous multi-

nucleated myofibers, forming muscular thin films (MTFs) with an average myofiber thickness of 

~15 µm (Figure 4a-d, Supplemental Figure 6). Immunofluorescence staining of α-actinin 

revealed highly aligned sarcomeres in both wild-type and DMD mutant muscle fibers (Figure 4b-

d).  

Muscle constructs were field stimulated using a frequency sweep over 2-99Hz, transitioning 

between twitch stresses to tetanic contractions. Film deformation was recorded using a 

stereomicroscope (Figure 4e-g) and changes in tissue radius, r, were mapped to contractile 

stresses. For WT cultures, greater stimulation frequencies lead to increased sustained 

contractile stresses between 1,000-2,000 Pa (Figure 4h). For DMDI and DMDII, increases in 

stimulation frequency produced only a mild, non-statistically significant increase in contractile 

stress between 500-900 Pa (Figure 4i-j). For WT cells, stimulation at 99Hz yielded an 

approximate specific tensile strength of 180 ±82 kPa, which is on par with human in vivo muscle 

measurements (Maganaris et al., 2001). Thus, the DMD cell lines showed overall lower 

contractile stresses and a minimal force-frequency response as compared to WT muscle 

differentiated in vitro (Figure 4k).  

DMDI and DMDII cultures were next differentiated in the presence of prednisolone in KCTiP 

medium (Supplementary Figure 7). After one week, DMD-derived muscle fibers showed a 

restored contractile function, yielding positive force-frequency relationships with contractile 

stresses between 1,000-2,000 Pa and 850-1,400 Pa for DMDII and DMDI respectively (Figure 4e-

g, l-n). These levels were comparable to those of control WT cantilevers, cultured with or 

without prednisolone (Figure 4l, Supplementary movie 1).  

Additionally, we compared force contraction between the TX1-Unc and TX1-Cor isogenic pair. 

MTFs derived from the TX1-Unc and TX1-Cor lines formed aligned myofibers (Supplemental 

Figure S7) but displayed distinct contractile phenotypes, with greater contraction stress 

generated by the corrected line (700-1,400 Pa) compared to the parental line (150-650 Pa) 

(Figure 4o-r). Furthermore, prednisolone treatment of the parental TX1-Unc line rescued force 

contraction to the level of the corrected TX1-Cor line (950-1950 Pa) (Figure 4o-q, 

Supplementary movie 2). These data demonstrate that DMD mutation leads to defects in force 

contraction in myofibers differentiated in vitro, and that these contractile defects can be largely 

rescued by prednisolone treatment. 

 

Dystrophin-deficient fibers show Ca2+ hyper-excitability 

We next combined optogenetics and Ca2+ imaging to study the dynamics of Ca2+ handling in our 

DMD mutant myofibers differentiated in vitro. We used a lentivirus to infect proliferating 

myogenic precursors in SKGM (Figure 1a), to express a blue-light sensitive channel-rhodopsin 

CheRiff (Figure 5a)(Hochbaum et al., 2014). After 7-10 days of differentiation in KCTi medium, 

we incubated the myofiber cultures with the Ca2+-sensitive dye CaSiR-1 AM. We next mapped 

Ca2+ responses across large (4 mm x 4 mm) cultures of myofibers using a custom-built ultra-

widefield microscope (Figure 5b-c). In all experiments, we observed a Ca2+ ‘hyperexcitability’ 

phenotype for myofibers lacking Dystrophin, in which the amplitude of Ca2+ responses was 

considerably higher for the mutant fibers than for healthy controls across the range of stimulus 

frequencies (Figure 5d-f, Supplementary movie 3). For isogenic cultures, we observed 

statistically significant differences between WT and DMDII samples for all tested stimulus 
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frequencies, and between WT and DMDI samples for stimulus frequencies between 2 and 20 Hz 

(Figure 5d). Notably, DMD fibers showed slower relaxation kinetics than did healthy fibers. The 

patient-derived line similarly showed statistically significant differences in Ca2+ responses at 

each frequency tested (Figure 5e, Supplementary movie 4), with greater Ca2+ responses in the 

parental TX1-Unc line compared to the CRISPR-corrected TX1-Cor line. We further validated the 

patient-derived cell line results by repeating the experiment using a different Ca2+-sensitive dye 

(BioTrack 609), and by normalizing responses relative to an ionomycin treatment (Figure 5f, 

Supplementary movie 5). This experiment again showed elevated Ca2+ responses in Dystrophin-

deficient fibers, consistent with the Ca2+ hyperexcitability phenotype. Each experiment was 

consistent with pathophysiological elevated and sensitized Ca2+ responses in dystrophic fibers. 

Notably, observation of elevated “gain” of Ca2+ signaling in response to a frequency ramp, as 

well as differences in relaxation kinetics, suggest an involvement of Ca2+ handling feedbacks 

beyond an increase in leakage Ca2+ currents across the plasma membrane. These results 

demonstrated that iPSC-derived skeletal myofibers can recapitulate phenotypes of Ca2+ 

handling in both isogenic and patient derived cell lines.   

DISCUSSION 

Previous in vitro models based on myofibers differentiated from DMD patient iPSC lines have 

led to discordant results (Piga et al., 2019). A limitation of several of these studies is the 

comparison of iPSC lines from patients to lines from healthy subjects. The inherent variability in 

the differentiation potential of individual lines (Osafune et al., 2008) is highly problematic as it 

can confound phenotypical studies. This problem can be circumvented by using isogenic lines in 

which a disease-causing mutation is introduced in a healthy parental line whose differentiation 

properties are well characterized. Here, we report for the first time the engineering of human 

DMD mutant iPSC isogenic lines from a healthy WT line. We generated a deletion of exon 52 

and a point mutation in exon 52 using CRISPR-Cas9 editing in the NCRM1 WT iPSC line. Thus, 

the phenotype of the engineered lines can be directly compared to the WT parental line whose 

myogenic differentiation has been well characterized (Chal et al., 2016).  

A second limitation from previously reported iPSC-based DMD models lies in the immature 

status of the myofibers generated in vitro using current myogenic differentiation protocols. 

Here, we describe a novel method which significantly increases myofiber maturation over 

existing protocols. While current strategies can result in differentiation of myogenic cells up to 

the embryonic to fetal transition (Al Tanoury et al., 2020; Xi et al., 2020), our improved method 

results in well-organized myofibers with significant activation of the fast myosin IIa (MYH1), IIx 

(MYH2) and IIb (MYH4), which are respectively first expressed during fetal, late fetal, and early 

post-natal stages (Schiaffino et al., 2015). While most of DMD pathological landmarks have 

been defined during post-natal stages, the primary events leading to these defects likely 

happen during fetal development. The macroscopic architecture of fetal DMD muscles appears 

similar to normal fetal muscle, but myofiber defects and abnormal Ca2+ signaling are already 

observed in DMD fetuses (Emery, 1977; Emery et al., 1979; Farini et al., 2016). Signs of 

degeneration and regeneration of the myofibers become conspicuous soon after birth, before 

clinically detectable symptoms (Pearson, 1962). Studying these early stages of disease 

development is challenging due to the very limited access to DMD fetuses and thus these early 
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defects are poorly understood. Our system can therefore help understanding the earliest 

defects resulting from DMD absence in human patients.  

 

In contrast to some studies (Choi et al., 2016; Moretti et al., 2020), we show that in our 

conditions, the morphology and expression of myogenic markers of differentiating myogenic 

DMD-mutant iPSC lines is very similar to that of the WT parental NCRM1 line. The most striking 

morphological phenotype we observed in the differentiating DMD myofibers is abnormal 

branching, a defect which has been reported in muscle biopsies from boys with DMD and in 

myofibers of dystrophin-deficient mdx mice (Chal et al., 2015; Chan and Head, 2011; 

Schmalbruch, 1984). The increased branching of DMD mutant myofibers observed in vitro was 

accompanied with an increased number of nuclei per fiber suggesting increased fusion in DMD 

fibers. This supports the hypothesis that abnormal branching could result from increased fusion 

required by the sustained regeneration caused by myofibers death in DMD patients (Chan and 

Head, 2011).  

 

Using a tissue engineering approach in which myofibers are seeded on soft cantilevers (Nesmith 

et al., 2016), we observed a significant decrease in force contraction in the skeletal myofibers 

derived from DMD mutant iPSC lines compared to isogenic lines expressing Dystrophin. Such a 

contraction defect has previously been observed in myofibers derived from patient’s primary 

myoblasts using the same platform (Nesmith et al., 2016). Such tissue engineered models have 

been previously used to model cardiac disease including DMD (Long et al., 2018; Wang et al., 

2014) and can provide several advantages when compared to in vivo models. First, the ability to 

use isogenic cell lines avoids potential changes in cellular contractility associated with differing 

genotypes, which can impact baseline muscle growth and tissue development (Costa et al., 

2009). Second, this model can be used to directly test human derived cells and subsequent 

pathophysiology, which have been difficult to recapitulate in animal models (McGreevy et al., 

2015). Additionally, tissue engineered models provide the capability of being used for 

personalized medicine applications, where potential therapeutic interventions are tested 

against a patient’s own cells. This is especially important in the case of DMD patients, where 

the dystrophin gene can be disrupted in one of several “hotspot” regions (Esposito et al., 2017), 

meaning that individual patients may require distinct treatment regimes. Importantly our 

observations demonstrate that human DMD mutant myofibers exhibit an intrinsic defective 

contraction defect as observed in zebrafish, mouse or dog lacking dystrophin (Lowe et al., 2006; 

Widrick et al., 2016; Yang et al., 2012). Our in vitro system offers a unique opportunity to 

understand the cause of this defect and to search for therapeutic strategies to correct it. 

 

The molecular mechanism through which dystrophin loss of function affects Ca2+ signaling 

remains controversial. Here we apply for the first time optogenetics to study Ca2+ signaling in 

human DMD myofibers. We show that in vitro differentiation of skeletal myofibers can 

efficiently recapitulate the Ca2+ hyperexcitability phenotype of Dystrophin-deficient fibers. Our 

data are consistent with the Ca2+ handling defects observed in differentiated fibers obtained by 

forced expression of MyoD in DMD Patient iPSC in vitro (Shoji et al., 2015). The hyperexcitability 

phenotype could result from disruption of the dystrophin-glycoprotein complex leading to 

increased Ca2+ leakage currents (Fong et al., 1990; Franco and Lansman, 1990). It is also possible 
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that feedbacks involved in excitation-contraction coupling and Ca2+-induced Ca2+ release are 

dysregulated in DMD myofibers.  For example, the sarco/endoplasmic reticulum Ca2+ ATPase 

(SERCA) has been reported to be dysregulated in DMD models, leading to a lack of Ca2+ removal 

from the cytosol (Voit et al., 2017). This would be consistent with our observation of slower 

Ca2+ relaxation kinetics after excitation in DMD lines. Thus, our work introduces a powerful new 

system to study Ca2+ handling in dystrophic myofibers. 

Glucocorticoids are part of the standard of care for DMD patients in which they increase force 

and prolong ambulation (Matthews et al., 2016). The mechanism of action of glucocorticoids 

underlying their beneficial effect in patients has not been elucidated yet. The positive effect of 

glucocorticoids on patients is often attributed in part to their immunosuppressive properties 

(Kissel et al., 1991; Wehling-Henricks et al., 2004). One expected consequence of treatment is a 

decrease of inflammation associated to degeneration, leading to a slowing down of fibrosis 

progression and an improvement of muscle function. The glucocorticoid effects are paradoxical 

because these steroids can also trigger muscle atrophy (Kanda et al., 2001). Prednisolone can 

also improve myofiber maturation in primary myotubes cultured in vitro suggesting that 

glucocorticoids might also act directly on muscle function (Braun et al., 1989; Sklar and Brown, 

1991). In the mdx mouse and in patients, glucocorticoid treatment leads to metabolism 

reprogramming associated to improved performance of muscles (Quattrocelli et al., 2019). Here 

we demonstrate that Prednisolone can rescue the branching, fusion and force contraction 

phenotypes in three different DMD mutant iPSC lines in vitro. Remarkably, an increase in force 

contraction is not observed when the WT parental lines are treated with Prednisolone. Thus, 

our data suggest that prednisolone acts directly on the Dystrophin-deficient myofibers to 

improve the pathological phenotype. Use of glucocorticoids is problematic in patients as it 

triggers undesirable side effects such as obesity or mood disorders (Matthews et al., 2016). 

However, moving forward our in vitro system provides an ideal platform to dissect the 

molecular action of glucocorticoids on myofibers. This will eventually make possible the search 

for alternative therapies preserving the beneficial effect of glucocorticoids, without the side 

effects. 
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FIGURES 

 

 

 

Figure 1: Generation and maturation of iPSC-derived myofibers  

(a) Schematic description of the two-step Myogenic differentiation protocol. 
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(b) RNAseq analysis of the myogenic differentiation of wild type human iPSCs in vitro. Heat map 

showing expression levels of selected myogenic markers at different time points during primary 

differentiation, proliferation in SKGM after replating, and secondary differentiation in KC, KCTi 

or KCTiP media.  

(c-f) Titin antibody staining of secondary cultures differentiated for 1 week in KC (c), KCTi (d) 

and KCTiP (e-f) media. (c-e) Bar: 100 µm. (f) Bar: 25 µm. 

(g-i) Dystrophin immunocytochemistry analysis following secondary differentiation for 1 week 

in KC (g), KCTi (h) and KCTiP (i) media. Bar: 50 µm. 
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Figure 2: Characterization of isogenic DMD mutant human iPSC lines  
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(a) Western blot analysis with an anti-Dystrophin antibody in three independent clones of the 

exon 52 deletion mutant (DMDI) and the exon 52 point mutation mutant (DMDII). Bottom: 

Tubulin loading control.  

(b-d) Dystrophin expression detected by immunocytochemistry in secondary cultures 

differentiated for 1 week in KCTiP medium of WT (b), DMDI (c) and DMDII (d) mutant lines. Bar: 

100 µm. 

(e) Immunocytochemistry analysis of myogenic precursors expressing Myogenin (MYOG) after 2 

days of secondary differentiation in SKGM medium of WT (left), DMDI (middle) and DMDII 

(right) mutant lines. Bar: 200 µm 

(f-h) Immunocytochemistry of secondary cultures differentiated for 1 week in KCTiP medium of 

WT (Left), DMDI (Middle) and DMDII (Right) mutant lines. (f) Desmin, (g) α-actinin, (h) Titin 

(TTN). Bar: 100 µm. 

(i-j) Significantly enriched GO terms from ‘Biological Process’ in downregulated (i) and 

upregulated (j) genes in secondary cultures differentiated for 1 week in KC medium of the DMDI 

and DMDII mutant lines compared to the parental WT iPSCs. 

(k-m) Immunocytochemistry of secondary cultures differentiated for 1 week in KCTiP medium 

of WT (Left),  DMDI (Middle) and DMDII (Right) mutant lines. (k) DAG1, (l) nNOS, (m) Delta-

sarcoglycan. Bar: 50 µm 

Nuclei (blue) are stained with DAPI. WT: Wild Type 
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Figure 3: Myofibers differentiated in vitro from Dystrophin-deficient iPSC lines exhibit 

increased branching defects. 
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(a-i) Isolated fibers from secondary cultures WT (a, d g) and DMDI (b, e, h) and DMDII (c, f, i) 

iPSC lines labeled with membrane GFP (green) and mCherry (red) signals differentiated for 1 

week in KC (a-c), KCTi (d-f) or KCTiP (g-i) medium. Yellow arrowheads indicate branching points. 

Bar: 20µm 

(j-k) Quantitative analysis of the number (#) of branching points in WT and DMD isogenic lines 

in the different culture media. ***: p<0.0001, NS: p>0.05. Bars show mean +/- SEM. 

(l) Quantitative analysis of the number of nuclei per fiber in WT and DMD isogenic lines in the 

different culture media. ***: p<0.0001, NS: p>0.05. Bars show mean +/- SEM. 

 (m-n) Quantitative analysis of the number of branching points in TX1-UNC and TX1-COR 

isogenic lines in the different culture media. ***: p<0.0001. Bars show mean +/- SEM. No data 

is shown for TX1-UNC in KC (NA) as myogenic differentiation from these lines was poorly 

efficient in this condition. 

(o) Quantitative analysis of the number of nuclei per fiber in TX1-UNC and TX1-COR isogenic 

lines in the different culture media. ***: p<0.0001. Bars show mean +/- SEM. 

Kruskal-Wallis non-parametric ANOVA test with planned multiple comparisons. WT: Wild Type. 

SEM: Standard error of the mean. 
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Figure 4: Dystrophin mutant fibers derived in vitro exhibit contractile defects 

(a) Experimental Protocol and schematic illustration of muscular thin film (MTF) assay, for 

measuring contractile force. 
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(b-d) Representative immunofluorescent micrograph of skeletal muscles grown on micro-

molded gelatin substrates, showing aligned confluent tissues (b- WT, c-DMD I, d– DMD II) 

(DAPI: Blue, α-actinin: Green, actin: Red), with high magnification inset showing sarcomere 

expression. (Scale bars: 100 μm left, 10 μm right). 

(e-g) Bright field micrographs of MTF cantilevers (Top-down view) for WT (e), DMD I (f) and 

DMD II (g) myofibers cultured in KCTi (left) and KCTiP (right) media after stimulation (99 Hz), 

showing increased contraction in DMD cells after exposure to prednisolone. (Scale bars: 1 mm).  

(h-j) Skeletal muscle contractile force as a function of stimulation time for WT (h), DMDI (i), and 

DMDII (j) mutant iPSC lines, demonstrating a positive force frequency relationship in the 

absence of dystrophin disruption (cells stimulated between 1.5-8 seconds, at 2-99Hz).  

(k-n) Comparison of peak contractile stresses generated by MTFs paced at 2-99 Hz. (Scale bars: 

1 mm), showing a stronger contractile phenotype for WT cells (k), but a recovery of contractile 

phenotype in the presence of prednisolone treatment (KCTiP) (l-n). (n> 22, Supplementary 

Table 3). * = p<0.05, ** = p<0.01, *** = p<0.001).  

(o-q) Skeletal muscle contractile force as a function of stimulation time for DMD patient-

derived cells (uncorrected -o, q, Corrected - p) in KCTi (o-p) and KCTiP (q) media (cells were 

stimulated between 1.5-8 second. at 2-99Hz).  

(r) Peak contractile stress generated by patient derived cells paced at 2-99 Hz. (Scale bars: 1 

mm), showing a recovery of contractile phenotype for patient cells treated with prednisolone 

or corrected with CRISPR-Cas9. (n> 15, Supplementary Table 4).  

Pairwise t-tests. All error bars given as the standard error of the mean. 
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Figure 5: All-optical profiling of Ca2+ responses in healthy and dystrophic human iPSC 

myofibers.   

(a) Schematic of experimental timeline. Myocyte precursors are plated at low density in growth 

medium and inoculated with a lentiviral vector encoding CheRiff after 24 h. After 72 h, cells 

have reached confluence and are switched to differentiation media and cultured for 7 

additional days in KCTi medium. After 7 days of differentiation, cultures are incubated with the 

Ca2+ sensitive dye CaSiR-1 AM and measured.   
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(b) Diagram of optical setup. Red Ca2+-sensitive dyes are excited using oblique illumination, and 

Ca2+-sensitive fluorescence in the near infrared is collected with a high-NA widefield objective. 

CheRiff stimulation is spatially targeted using a digital micromirror device.   

(c) Example image of blue-light induced Ca2+ response in a dish of iPSC cell-derived myocytes.  

Scale bar = 1 mm.   

(d) Profiling Ca2+ response as a function of blue light drive. Simultaneous differentiations of WT, 

DMDI, and DMDII cell lines (N=6 dishes of each) were characterized via their Ca2+ response to 

optogenetic stimulation across a range of drive frequencies (0.5 Hz to 20 Hz). Average traces 

reveal statistically significant differences between DMDI and NCRM1 lines (red asterisks) and 

between DMDII and NRCM1 lines (yellow asterisks).  DMDI and DMDII lines showed no 

significant difference in Ca2+ responses.  

(e) Same experiment as in (d), but with parallel differentiations of a patient derived iPSC line 

(TX1-UNC) and a corrected comparison (TX1-COR) (N=6 dishes of each). For patient-derived 

cells, N=6 samples were analyzed for both TX1-COR and TX1-UNC for the first replicate,  

(f) Replicate experiment comparing TX1-COR and TX1-UNC patient derived cultures, in which 

Ca2+ signals are imaged with BioTracker 609 and normalized relative to responses to ionomycin 

application (10 μM). N=4 samples were analyzed for each condition in the second replicate. 

Paired two-sample t-tests. Confidence intervals of p<0.05 (*), p<0.01(**), and p<0.001(***).   
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MATERIALS AND METHODS 

 

iPSC cell maintenance and differentiation 

Maintenance. Human iPSC cells were cultured as described previously (Chal et al., 2016; Chal et 

al., 2015). Briefly, cells were cultured on Matrigel (BD Biosciences)-coated dishes in mTesR1 

media (Stem Cell Technologies). Cells were passaged as aggregates or as single cells. The 

NCRM1 human iPSC line (RUCDR, Rutgers University) and its engineered derivatives were tested 

mycoplasma-free. 

Differentiation. Serum-free myogenic primary differentiation of human iPSC clones was 

performed as described previously (Chal et al., 2016; Chal et al., 2015b). For secondary 

differentiation purposes, 3-week old primary myogenic cultures generated from iPSCs were 

dissociated as described and myogenic progenitors were replated at a density of 35-40,000/cm2 

onto Matrigel (Corning, Cat#354277)-coated dishes in skeletal muscle growth media (SKGM-2, 

Lonza CC-3245) with 10 µM ROCK inhibitor (#1254, R&D Systems) (Chal, Al Tanoury et al 2016). 

After 24 hours, medium was changed to SKGM-2 media without ROCK inhibitor. Cultures were 

allowed to proliferate for 1-2 days, at which point they reached ~90% confluence. Cultures 

were then induced for myogenic differentiation with DMEM/F12 supplemented with 2% knock-

out serum replacement (Invitrogen, Cat. # 10828028), 1 µM Chiron (Tocris, Cat. # 4423), 0.2% 

Pen/Strep (Life Technologies, Cat. # 15140122), 1x ITS (Life Technologies, Cat. # 41400045), 

with or without 10 µM of the TGFβ inhibitor SB431542 (Tocris, Cat#1614) (KCTi) or 10 µM of 

Prednisolone (Sigma Aldrich, cat. # P6004) (KCTiP). Following induction, differentiation medium 

was changed on days 1 and 2 and then was refreshed every other day for 1 week.  

Generation of isogenic DMD mutant cell lines 

sgRNA design and Cas9 vector assembly: To generate DMD cell line lacking exon 52, NCRM1 

cells were transfected using two pSpCas9 (BB)-2A-GFP plasmids: one containing a guide 

targeting the 5’ intron flanking the exon 52 of the DMD gene and one containing a guide 

targeting the 3’ intron flanking the exon 52 (Supplementary Table 5). Transfected GFP-positive 

single cells were sorted by flow cytometry and seeded at very low density in conditioned media. 

Clone screening was performed by PCR using primers flanking the deleted region (see 

Supplementary Table 5). Clones exhibiting a perfect repair by non-homologous end joining 

were selected after sequencing and named DMDI.  

To generate the DMD cell line exhibiting a stop codon within exon 52, NCRM1 cells were 

transfected using a pSpCas9 (BB)-2A-GFP containing a guide targeting exon 52 and a ssODN 

(Integrated DNA Technologies) containing the mutated region (Supplementary Table 5). Genetic 

editing consists here in replacing the original DNA sequence TTG GAA GAA CTC ATT ACC by the 

mutated sequence CTA GAG GAG CTC ATA TGA, containing silent mutations creating a SacI 

restriction site (underlined) and a stop codon (in bold). Transfected GFP-positive single cells 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2020. ; https://doi.org/10.1101/2020.10.29.360826doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.360826
http://creativecommons.org/licenses/by/4.0/


26 

 

were sorted by flow cytometry and seeded at very low density in conditioned media. Positive 

clones were screened by PCR using the SacI restriction enzyme and, after sequencing, clones 

exhibiting perfect homology directed repair were selected and named DMDII. 

Cas9 target sites were identified using the online CRISPR design tool (http://tools.genome-

engineering.org). Briefly, DNA sequences flanking exon 52 of the human DMD gene were used 

for designing the sgRNAs. Several pairs of sgRNAs targeting either the top or the bottom 

strands of genomic DNA were selected and tested. For each target, a specific Cas9 vector was 

made. Briefly, the Cas9 vector pSpCas9 (BB)-2A-GFP (pX458; Addgene plasmid ID: 48138) was 

digested using BbsI and a pair of phosphorylated and annealed oligos (20 bp target sequences) 

were cloned into the guide RNA locus as described (Ran et al., 2013). All vectors were 

sequenced to ensure the presence of the right sequence.  

Nucleofection: cells were dissociated using Accutase (Stemcell Technologies) and 8 × 105 cells 

were electroporated using 5 mg of total DNA (Ratio 1:1) and the Amaxa Nucleofector kit (Lonza) 

as described (Ran et al., 2013). 24h post transfection, cells were dissociated and sorted for the 

expression of Cas9-GFP by fluorescence-activated cell sorting and expanded clonally at low 

densities. Later, clones were picked up for PCR screening and expansion. 

Bulk RNA-seq analysis 

Sample collection: NCRM1 line was differentiated into myogenic cultures as described in (Chal 

et al., 2016) and cells were harvested on day 0, day 8, day 16, day 24 and day 32 of 

differentiation. For secondary differentiation, primary cultures were dissociated at day 21 and 

replated as described above in SKGM. Samples were collected after two days in SKGM (SKGM-2, 

Lonza CC-3245) culture. The cultures were further differentiated in three different conditions -

KC, KCTi and KCTiP. For each condition, cells were harvested after 7 and 15 days of 

differentiation. For each time point samples were collected from 3 independent experiments. 

RNA was isolated using NucleoSpin® RNA kit (740955, Macherey and Nagel) following 

manufacturer’s protocol. RNA libraries were prepared using Roche Kapa mRNA Hyper Prep and 

sequencing was performed on Illumina NextSeq 500 Sequencing platform. 

Data from isogenic DMD versus parental iPSC lines, and from the wild-type iPSC differentiation 

assays were analyzed independently. For both datasets, we used STAR (v2.5.1b) (Dobin et al., 

2013) to map sequenced reads to the genome; gene counts were quantified using 

featureCounts (1.6.2) (Liao et al., 2014). Data from isogenic DMD and parental iPSC lines were 

mapped to the reference genome assembly UCSC hg19; for differential expression analysis of 

isogenic DMD iPSC cell line vs WT parental cell lines, we used DESeq2 (v 1.22.2) (Love et al., 

2014). Genes were defined differentially expressed when the fold-change (FC) absolute value 

was greater than 2 and the false discovery rate lower than 0.01. Gene Ontology (GO) 

enrichment analysis was performed on the differentially expressed genes using EnrichR 

(Kuleshov et al., 2016). 

Sequenced reads coming from the myogenic differentiation protocol were mapped to the 

reference genome assembly GRCh38 release 77 from ENSEMBL. To produce heat maps for 

genes of interest from the muscle differentiation assays, we first normalized read counts and 
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calculated the rlog using DESeq2. To calculate up- or down-regulation, we computed the rlog 

difference of the average of the triplicates against the baseline value (average over all 

conditions) for each gene. 

Western blot analysis 

Western blot analysis for human iPSC–derived muscles was performed using antibodies to 

Dystrophin (NCL-DYS1, Leica), gamma-dystroglycan DAG1 (SC-165997, Santa Cruz 

Biotechnologies) and glyceraldehyde-3-phosphate dehydrogenase (MAB374, Millipore). Goat 

anti-mouse and goat anti-rabbit horseradish peroxidase–conjugated secondary antibodies were 

used for described experiments. 

Immunohistochemistry 

Primary myogenic cultures were generated as described above. For secondary cultures, cells 

were replated on Matrigel (354277, Corning) coated glass bottom plates at a density of 52,000 

cells/cm2. Cells were replated in SKGM medium (SKGM-2, Lonza CC-3245) supplemented with 

Rock inhibitor (#1254, R&D Systems). The next day, medium was replaced by fresh SKGM. Cells 

were then differentiated in KC/KCTi/KCTiP medium, cell cultures were fixed for 20 minutes in 

4% paraformaldehyde (15710, Electron Microscopy Sciences) at room temperature. Cultures 

were rinsed three times in phosphate-buffered saline (PBS), followed by blocking buffer 

composed of PBS supplemented with 3% heat inactivated donkey serum (017-000-121, Jackson 

Immuno Research) and 0.1% Triton X-100 (T8787, Sigma-Aldrich). Primary antibodies were then 

diluted in blocking buffer and incubated overnight at 4°C. Cultures were then washed three 

times with PBS and incubated with secondary antibodies (Donkey Anti-Mouse/Rabbit IgG H+L 

Alexa Fluor® Cross-Adsorbed Secondary Antibody, 1:500) and Hoechst (5 μg/ml) in blocking 
buffer for 1 hour at room temperature. Cultures were then washed and stored in PBS until 

analyzed. Images were captured using a Zeiss LSM780 confocal microscope using 10x and 20x 

objectives. Images were analyzed using Fiji (Schindelin et al., 2012). 

 

Primary antibodies used in this study: 

Antigen Antibody Species Dilution 

α-actinin Novus/NBP 1-22630 Mouse 1:100 

Dystrophin Leica/DYS1-CE Mouse 1:25 

DAG1 SantaCruz/sc-165997 Mouse  1:50 

Titin DSHB/9D10-c Mouse 1:200 

NCAM (CD56) DSHB/5.1H11 Mouse 1:10 

Myosin Heavy Chain DSHB/F1.652- s Mouse 1:10 
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MyoG SantaCruz/SC-576X Rabbit 1:500 

delta-Sarcoglycan  Leica/NCL-d-SARC Mouse 1:50 

nNOS 

Thermo 

Fisher/3G6B10 Mouse 1:150 

Desmin  Agilent/IS60630-2 Mouse 1:10 

Laminin Sigma/L9393 Rabbit 1:500 

 

Fiber branching quantification  

 

Myogenic progenitors were replated in SKGM-2 medium supplemented with Rock inhibitor in 6-

well plates. 24h after, cells were transfected with Tol2 CAGGS-nls mCherry IRES GFPcaax and 

CAGGS transposase (kindly donated by C. Marcelle, ARMI, Australia). Expression of the 

transposase enzyme along with flanking Tol2 sites ensure integration of the expression 

sequence and high fluorophore expression throughout expansion and differentiation. Plasmid-

containing cells expressed ubiquitous NLS-mCherry in the nuclei and EGFP in the membrane. In 

this experimental set-up, any myofiber is immediately labelled upon fusion with a transfected 

cell. Cells were transfected with the plasmids using Lipofectamine 3000 (Thermofisher) at 

standard concentrations as suggested in the manufacturer protocols. This technique allowed us 

to permanently mark a subset of randomly-selected progenitors within the population, allowing 

for better visualization of individual fibers. Cells were allowed to recover 24 hours after 

lipofectamine, meaning differentiation was induced 48 h after replating.  

One day after transfection (i.e. 48h after replating), cells were induced for differentiation using 

KC, KCTi, or KCTiP media. Cells were allowed to differentiate for 7 days, a sufficient time to 

allow for the formation of a large percentage of multinucleated fibers, as seen under an EVOS 

fluorescent microscope (Life Technologies). 

Plates were then fixed with 4% PFA and immuno-stained for GFP (Abcam ab13970) and RFP 

(Abcam ab62341) and MF20 (DSHB) to enhance the fluorescent signal and confirm the identity 

of differentiated fibers, and the entire wells were imaged using the InCell 2000 arrayscan 

imaging platform (G.E. Life Sciences). Individual images (approximately 500 per well) were 

stitched using the Grid Stitching Plugin (Stephan Preibisch) on Fiji software. The number of 

branching points and total number of nuclei per fiber (all fibers visible from tip to tip were 

manually counted (approximately 500 fibers per well), fibers that could not be made out 

individually from others were not, each entire well was analyzed) were quantified. Averages 

and significance were statistically analyzed using a Kruskal-Wallis non-parametric ANOVA test 

with planned multiple comparisons (Prism 8 software, GraphPad). 

 

 

Contractility / Force measurements 
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Gelatin Muscular Thin Film Manufacture : Gelatin muscular thin film (MTF) chips were 

manufactured as previously reported (McCain et al., 2014), topaz or acrylic substrate surfaces 

were covered in a low adhesive tape (5560; Patco), and chips of 75x25 mm in dimensions were 

cut using a laser engraver. (Epilog Laser, Golden, CO). Tape was selectively peeled from each 

coverslip such that the base of each muscular thin film was revealed. Exposed regions were 

then oxygen plasma treated for one minute, (100 W RF, Plasma Prep II, SPI Supplies, West 

Chester, PA) to promote gelatin adhesion. Tape was then peeled from the remaining chip 

surface, exposing gelatin runoff channels. Onto each chip, 300 µL of 10% w/v gelatin was 

aliquoted. Quickly after aliquoting, a PDMS stamp containing aligned grooves of 20 µm x 20 µm 

(10 µm depth) was placed onto each chip. Next, on top of each stamp a glass slide to distribute 

mass and a 200 g weight were placed. Chips were then allowed to cure for a minimum of seven 

hours under moist conditions, at 4° C before being air dried and laser cut into thin film 

cantilevers, each 5x2 mm in dimension.  Excess gelatin combs were then removed, and chips 

were adhered to the bottom of a 24-well petri dish using an additional 10% w/v gelatin glue. 

Chips were then stored in fresh phosphate buffered saline (PBS), and were UV sterilized prior to 

use. 10% w/v Gelatin solutions were prepared by dissolving 1.0 g of gelatin powder (Porcine 

Skin, Sigma-Aldrich) into 5 mL of deionized water, and 0.4 g of microbial transglutaminase 

(MTG) into another 5 mL of deionized water. Solutions were heated to 60° C and 37° C 

respectively until all powders dissolved (~30 minutes). Gelatin and MTG solutions were then 

combined and stirred using a vortex mixer. The resulting solution was then briefly degassed 

using a desiccator (~2 min), and the solution was then transferred to a 37° C water bath, where 

it was stored during MTF chip manufacture to prevent premature gelation. 

Muscular Thin Film Contractile Experiments: Myogenic progenitors were generated from 

primary cultures of iPSC cells lines were differentiated for 20-30 days as described above and 

dissociated cells were replated on patterned gelatin MTFs in SKGM medium for 1-2 days to 

reach 80-90% of confluence. Cells were then differentiated over one week period in media 

containing Knock-out Replacement Serum (KSR), Chir 99021, and TGFβ inhibitor at 10 µM. 

Samples were treated with 10 µM Prednisolone during differentiation when indicated (KCTiP 

medium). After one week of differentiation muscular thin film experiments were performed in 

a Tyrode’s running solution (5 mM HEPES, 5.4 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 135 mM 

NaCl, 5 mM glucose, and 0.33 mM NaH2PO4 in deionized water, pH 7.4; Sigma-Aldrich). After 

forming tissue constructs, the MTFs were peeled from the substrate, allowing them to contract 

and curl away from the underlying resting plane.  Video micrographs were recorded on a Zeiss 

Discovery.V12 stereomicroscope using a Basler electric ACA2500-14UC USB 3.0 camera, at 30 

frames per second, with a magnification of 7.2x and a resolution of 1920x1080 pixels. Thin films 

were recorded for an ~1.5 second period in the absence of stimulation, and then for 6.5 

seconds at 1, 2, 10, 50 & 99hz at 20-30 V of stimulation. Field stimulation was controlled using 

an IonOptix myopacer with two parallel platinum electrode wires positioned ~30 cm apart. Each 

stimulation pulse was biphasic with a total duration of 10 ms per pulse, with 30 second breaks 

given between each stimulation time course.  
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Contractile stress was calculated using a custom python script.  To measure contractile 

strength, the radius of curvature, r, was determined for each cantilever, using the following 

relation to numerically approximate r: 

끫毊 = �끫殾 끫毀끫毀끫毀 �끫歾끫殾� , 끫殦끫殦끫殾 
2끫歾끫欖 < 끫毊 < 끫歾 끫殾, 끫殦끫殦끫殾 

끫歾
2끫欖 < 끫毊 <

2끫歾끫欖  

   

 

(1) 

where, L, is the base cantilever length and x, is the x-projection of each cantilever. X-projections 

were extracted from cantilever movies using a custom script in NIH’s ImageJ. Briefly, regions of 

interest were determined along the midsection for each cantilever, running from the base of 

the MTF to the inscribed edge. Each cantilever image was then thresholded to a binary and x-

projections were extracted.  The radius of curvatures was then converted to contractile 

stresses, σc, using a modified version of Stoney’s equation for deforming thin sheets, such that: 

끫欜끫殠 =
 끫歰�끫毂끫殞2

6끫毂끫殦 �1 +
끫毂끫殦끫毂끫殞� 끫歬 

 

(2) 

Where 끫歰�  is the film’s Youngs modulus in the direction of contraction, tb is the gelatin film’s 

thickness, tf is the tissue thickness, and c is the film curvature as given by 1/r. Here an average 

film thickness of 134 µm and a tissue thickness of 15 µm were used (as determined by confocal 

microscopy, supplementary Figure 6). A young’s modulus of 55.6 kPA was used for gelatin films 

as has been previously reported for this protocol (McCain et al., 2014).  

Contractile stress here is reported as the difference between maximal contraction, and the 

baseline pre-strain, as determined on a per cantilever basis. As the stimulation protocols were 

manually initiated, contraction time courses were corrected by using the maximal value of the 

first derivative of contraction vs time to match stimulation times. Contractile time course 

measurements were additional internally normalized by subtracting the minimum recorded 

prestrain from each cantilever measurement.  

Specific Tensile Strength Estimates: To normalize thin film contractile stress against in vivo 

tensile models, we estimated the specific tensile strength, Ts, of the engineered tissue 

constructs using dimensional analysis such that: 끫殎끫毀 =
 끫欜끫殠∙끫歬끫殜끫欘∙끫歬끫殜 ∙ 1끫欖끫殦끫殾2 = 

 끫欜끫殠끫欖끫欘끫殦끫殾2 

 

(3) 

  

Where fr is the fiber bundle radius which we used to approximate the physiological cross-

section,  끫欜끫殠was the maximal contractile stress, Ca is the cantilever area and ρ is the fiber 
density. To estimate fiber density and cross-sectional areas, we used orthogonal confocal 

fluorescent cross sections (Supplementary Figure 6) of aligned tissue. This yielded an estimate 
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of ~620±280 muscle fibers per cantilever. Uncertainties in tensile strengths are reported as the 

standard error of the mean. 

 

Calcium signaling analysis 

Cell Culture and Sample Preparation: Human iPSC-derived myoblasts were differentiated into 

myocyte fibers according to (Chal et al., 2016). 3-4 weeks old primary myogenic cultures 

generated from wild-type iPSCs were dissociated as described and myogenic progenitors 

(myoblasts) were replated at low density (35-40k/cm2) onto Matrigel (Corning, Cat#354277)-

coated dishes in skeletal muscle growth media (SKGM-2, Lonza CC-3245) with 10 µM ROCK 

inhibitor.  After 24 hours, medium was changed to SKGM-2 media without ROCK inhibitor and 

incubated with low-titer lentivirus encoding CheRiff-CFP.  Myoblast cultures were allowed to 

proliferate for up to 72 hours, at which point cultures reached ~90% confluence.  Cultures were 

then induced for myogenic differentiation with DMEM/F12 supplemented with 2% knock-out 

serum replacement (Invitrogen, Cat. # 10828028), 10 µM of the TGFβ inhibitor SB431542 

(Tocris, Cat. # 1614), 1 µM Chiron (Tocris, Cat. # 4423), 0.2% Pen/Strep (Life Technologies, Cat. 

# 15140122) and 1x ITS (Life Technologies, Cat. # 41400045).   Following induction, medium was 

changed on days 1 and 2 and then was refreshed every other day for up to 10 days post-

differentiation to generate mature and fused myocyte fibers.  

CheRiff-expressing myocyte cultures were stained for imaging after 7 days of differentiation (10 

days total culture time).  Samples were stained either with CaSiR-1 AM (Goryo Chemical) or 

BioTracker 609 AM Red Ca2+ Dye (EMD Millipore).  Briefly, on the day of staining, 50 µg dye 

aliquots were thawed and then reconstituted in DMSO to 1 mM stock concentration.  A loading 

solution was prepared by diluting calcium dye stocks 1:500 in phosphate buffered saline to 2 

µM concentration in the presence of 0.02% final concentration of Pluronic F127 (Sigma).  

Myofiber samples were stained in loading solution for 30 minutes in a standard tissue-culture 

incubator, washed twice in phosphate buffered saline to remove residual dye, and then 

transferred to Tyrode’s solution containing (in mM) 125 NaCl, 2 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 

30 glucose. The pH was adjusted to 7.3 with NaOH and the osmolality was adjusted to 305–310 

mOsm with sucrose.  All calcium measurements were performed in 2 mL of Tyrode’s solution 

buffer. 

Optogenetic Stimulation and Calcium Imaging: Spatially resolved optical electrophysiology 

measurements were performed using a home-built upright ultra-widefield microscope (Werley 

et al., 2017) with a large field of view (4.6x4.6 mm2, with 2.25x2.25 μm2 pixel size) and high 

numerical aperture objective lens (Olympus MVPLAPO 2XC, NA 0.5).  Fluorescence of CaSiR-1 

was excited with a 639 nm laser (OptoEngine MLL-FN-639) at 100 mW/cm2, illuminating the 

sample from below at an oblique angle to minimize background autofluorescence.  CaSiR-1 

fluorescence was separated from scattered laser excitation via a dichroic beam splitter 

(Semrock Di01- R405/488/561/635-t3-60x85) and an emission filter (Semrock FF01-708/75-60-

D).  BioTracker 609 fluorescence was excited using 561 nm laser beam (MPB Communications, 

F-04306-02) with the same dichroic beam splitter with a separate emission filter (Chroma 

ET600/50m).  Images were collected at a 50 Hz frame rate on a Hamamatsu Orca Flash 4.2 
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scientific CMOS camera.  Optogenetic stimulation was performed by exciting CheRiff with a 

blue LED (Thorlabs M470L3) with a fixed intensity between 10 and 30 mW/cm2 and patterned 

using a digital micromirror device module (Vialux V-7001). For each experiment, blue 

illumination intensity was first adjusted relative to CheRiff expression in a test sample dish in 

order to elicit a range of calcium responses across frequencies, and then fixed for all samples 

for the remainder of the experiment. 

Image Processing and Data Analysis: Optical recordings of calcium-sensitive CaSiR-1 AM and 

BioTracker 609 AM fluorescence were processed using custom MATLAB software.  Briefly, to 

minimize uncorrelated shot-noise, movies were subjected to 4x4 binning.  Changes in 

fluorescence were then calculated relative to an initial baseline image in order to calculate the 

calcium-sensitive component of the signal (ΔF/F).  ΔF/F movies were then averaged across the 
optical stimulation region of interest to generate an overall sample response, which was then 

median filtered in the time domain (9 frame kernel).  Individual dish responses were then 

normalized relative to the response to a saturating channelrhodopsin stimulus in order to 

account for differences in labeling density.  For ionophore-normalized controls, responses were 

instead normalized relative to the ΔF/F response to bath application of ionomycin (10 µM).  For 

BioTracker 609 AM data, an additional crosstalk subtraction step was performed for 20 Hz 

stimulation periods due to unfiltered bleedthrough of fluorescence excited by the 470 nm 

stimulus. 

Statistical significance between cell lines was assessed via paired two-sample t-tests using 

standard MATLAB functions (ttest2).  For a given sample dish, calcium responses were averaged 

within a particular stimulus train in order to calculate an overall response metric per dish per 

frequency, and then populations of responses were compared at each frequency between 

relevant experimental conditions (e.g. NCRM1 vs DMDI vs DMDII; TX1-COR vs TX1-UNC).  

Figures indicate confidence intervals of p<0.05 (*), p<0.01(**), and p<0.001(***).  For isogenic 

lines, N=6 samples were compared for each condition (NCRM1, DMDI, DMDII) for 18 total 

measurements.  For patient-derived cells, N=6 samples were analyzed for both TX1-COR and 

TX1-UNC for the first replicate, and N=4 samples were analyzed for each condition in the 

second replicate (comprising 20 total patient-derived dishes measured). 
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Supplementary Tables 

Supplementary Table 1: List of genes upregulated or downregulated (DESEQ) in DMDI and 

DMDII vs WT NCRM1 iPSC cells isolated after a week of secondary differentiation in KC medium 

Supplementary Table 2: EnrichR analysis of the genes upregulated and downregulated in DMDI 

and DMDII vs WT NCRM1 iPSC cells isolated after a week of secondary differentiation in KC 

medium 

Supplementary Table 3: Number of isogenic MTF cantilevers assayed as a function of 

stimulation frequency. Number of cantilevers gives the amount of individual force 

measurements recorded for each condition (3-4 cantilevers per well), while number of chip 

gives the number of distinct replicates.  

Supplementary Table 4: Number of patient derived MTF cantilevers assayed as a function of 

stimulation frequency. Number of cantilevers gives the amount of individual force 

measurements recorded for each condition (3-4 cantilever’s per well), while number of chip 

gives the number of distinct replicates. 

Supplementary Table 5: Guide RNAs used for the construction of the DMDI and DMDII lines 

and primers used for clone screening 
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Supplementary Movies: 

 

Supplementary Movie 1: Contractile phenotype of isogenic hIPSC derived skeletal muscle. 

Representative brightfield micrograph of muscular thin films seeded with DMD (DMD II - upper, 

left) (DMD I- lower left) and wildtype (wt) cell lines (upper, right), in the absence (left-KCTi) and 

presence (right-KCTiP) of prednisolone, with corresponding force measurements (lower right) 

(scale bars – 1 mm) (99 Hz stimulation induced at ~2 s). Uncertainty in force measurements 

given as the standard error in measurement for the whole chip (full chip not shown). 

Supplementary Movie 2: Contractile phenotype of patient derived skeletal muscle. 

Representative brightfield micrograph of muscular thin films seeded with patient derived 

uncorrected DMD  (UNC - lower, left & upper,right)  cells and CAS9 corrected cell lines (Cor 

lowerr, right), in the absence (right-KCTi) and presence (left) of prednisolone, with 

corresponding force measurements (upper left) (scale bars – 1 mm) (99 Hz stimulation induced 

at ~2 s). Uncertainty in force measurements given as the standard error in measurement. 

Supplementary Movie 3: Calcium responses in isogenic cell lines under optogenetic drive. 

NCRM1, DMDI, and DMDII cells were inoculated with lentivirus encoding the channelrhodopsin 

CheRiff, and then differentiated in parallel. After 7 days in differentiation media, cells were 

stained with the calcium sensitive dye CaSiR-1-AM (Goryo Chemical), and then transferred to a 

home-built microscope to image calcium responses to optogenetic stimulation.  The movie 

shows a montage of calcium responses from each of 3 representative dishes (1 each from the 3 

experimental conditions).  Samples were stimulated with a patterned pulses (20 ms) of 470 nm 

light in the central region, at a 0.5 Hz frequency (denoted by cyan overlays).  Calcium responses 

are displayed in units of deltaF/F (see Methods) and pseudocolored according to the MATLAB 

colormap 'hot' (0 to 25% dF/F dynamic range). Movies were acquired at 20 Hz and are played 

back at 10 fps (i.e. 0.5x real-time speed). 

Supplementary Movie 4: Calcium responses in patient-derived cells under optogenetic drive. 

Uncorrected (TX1-UNC) and corrected (TX1-COR) varients of a patient-derived cell line were 

innoculated with lentivirus encoding the channelrhodopsin CheRiff, and then differentiated in 

parallel. After 7 days in differentiation media, cells were stained with the calcium sensitive dye 

CaSiR-1-AM (Goryo Chemical), and then transferred to a home-built microscope to image 

calcium responses to optogenetic stimulation.  The movie shows a montage of calcium 

responses from both corrected and uncorrected cells in parallel.  Samples were stimulated with 

a patterned pulses (20 ms) of 470 nm light in the central region, at a 0.5 Hz frequency (denoted 

by cyan overlays).  Calcium responses are displayed in units of deltaF/F (see Methods) and 

pseudocolored according to the MATLAB colormap 'hot' (0 to 25% dF/F dynamic range). Movies 

were acquired at 50 Hz and are played back at 25 fps (i.e. 0.5x real-time speed).   

Supplementary Movie 5: Calcium responses in patient-derived cells under optogenetic drive, 

replicated. An independent set patient-derived cells was performed to confirm the results in 

Movie 2.  As before, differentiations of uncorrected (TX1-UNC) and corrected (TX1-COR) 
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variants of a patient-derived cell line were innoculated with lentivirus encoding the 

channelrhodopsin CheRiff, and then differentiated in parallel. After 7 days in 

differentiation media, cells were stained with the calcium sensitive dye BioTracker 609 AM 

(Sigma), and then transferred to a home-built microscope to image calcium responses to 

optogenetic stimulation.  The movie shows a montage calcium responses from both corrected 

and uncorrected cells in parallel.  Samples were stimulated with 50 ms pulses of widefield 470 

nm light at a 0.5 Hz frequency (denoted by cyan overlays).  Calcium responses are displayed in 

units of deltaF/F (see Methods) and pseudocolored according to the MATLAB colormap 'hot' (0 

to 25% dF/F dynamic range). Movies were acquired at 50 Hz, and are played back at 25 fps (i.e. 

0.5x real-time speed).   
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Supplementary Figures 
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Supplementary Figure 1: Comparison of KC, KCTi and KCTiP differentiation conditions. 

Immunocytochemistry analysis of the wild-type iPSC line differentiated in KC, KCTi or KCTiP 

medium for one week. (a-c) MyosinHC, Myosin heavy chain (d-f) Desmin (g-i) Myogenin (MYOG) 

(j-l) Neural Cell Adhesion Molecule 1 (NCAM1) (m-o), α-actinin (p-r) Laminin. Note increased 

fiber thickness and alignment in KCTiP medium. 
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Supplementary Figure 2: Comparison of DGC proteins expression in KC, KCTi and KCTiP 

differentiation conditions.  

Immunocytochemistry of DGC genes Dystrophin (a-c), DAG1 (d-f) and delta-Sarcoglycan (g-h) in 

the NCRM1 iPSC line after one week of secondary differentiation in KC, KCTi, and KCTiP media. 

Note increased expression of the three proteins in KCTi and KCTiP medium and changes in 

delta-Sarcoglycan localization and clustering. 
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Supplementary Figure 3: Immunocytochemistry using anti-Neural Cell Adhesion Molecule 1 

(NCAM1) after one week of secondary differentiation in KCTiP medium. (a) WT = wild-type 

NCRM1 line, (b) DMDI, (c) DMDII – DMD deficient isogenic lines.  
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Supplementary Figure 4: Immunocytochemistry analysis using antibodies for Dystrophin (a, b), 

Titin (c, d), delta-sarcoglycan (e, f), and DAG1 (g,h) in TX1-UNC and TX1-COR cell lines after one 

week of secondary differentiation in KCTiP medium. Note the absence of Dystrophin, decrease 

in delta-sarcoglycan, and DAG1 antibody signal in TX1-UNC cells. 
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Supplemental Figure 5: Cantilever Chip Preparation Flow Chart. Muscle Thin Films (MTF) chips 

are first prepared with a low adhesion tape, and then laser cut into coverslip sized regions. The 

low adhesive tape is then removed from selected regions, to allow surface treatment, causing 

the gelatin to adhere to the exposed base. Run off channels are then removed, and gelatin is 

added, which is then compressed using a micromolded PDMS stamp with an additional 200g 

weight. Individual chips are then laser cut out, and adhered to the bottom of a well plate to 

facilitate cell culture. Before use, all samples are UV sterilized.    
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Supplemental Figure 6. Aligned isogenic cell cross section. Representative confocal fluorescent 

micrograph (upper) of aligned wild-type isogenic cells after culture on gelatin substrates, with 

corresponding orthogonal cross section (lower) taken from the highlighted region showing 

myofibril bundles cross sections (red-actin).  
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Supplementary Figure 7: Representative immunofluorescence micrograph of patient derived 

skeletal muscles grown on micro-molded gelatin substrates. Showing confluent aligned tissues 

(Uncorrected, TX1-Unc – Upper, Prednisolone treated, KCTiP - Middle, Cas9 corrected to 

healthy phenotype, TX1-Cor – Lower) (DAPI: Blue, α-actinin: green, actin: Red), with high 

magnification inset showing sarcomere expression (Scale bars: 100 μm, left; 10 μm, right) 
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