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Classifying stuttering using big data

Abstract

Introduction

Large datasets, consisting of hundreds or thousands of subjects, are becoming the new
data standard within the neuroimaging community. While big data creates humerous benefits,
such as detecting smaller effects, many of these big datasets have focused on non-clinical
populations. The heterogeneity of clinical populations makes creating datasets of equal size and
quality more challenging. There is a need for methods to connect these robust large datasets
with the carefully curated clinical datasets collected over the past decades.

Methods

In this study, resting-state fMRI data from the Adolescent Brain Cognitive Development
study (N=1509) and the Human Connectome Project (N=910) is used to discover generalizable
brain features for use in an out-of-sample (N=121) multivariate predictive model to classify
young (3-10yrs) children who stutter from fluent peers.

Results

Accuracy up to 72% classification is achieved using 10-fold cross validation. This study
suggests that big data has the potential to yield generalizable biomarkers that are clinically
meaningful. Specifically, this is the first study to demonstrate that big data-derived brain features
can differentiate children who stutter from their fluent peers and provide novel information on
brain networks relevant to stuttering pathophysiology.
Discussion

The results provide a significant expansion to previous understanding of the neural
bases of stuttering. In addition to auditory, somatomotor, and subcortical networks, the big data-
based models highlight the importance of considering large scale brain networks supporting
error sensitivity, attention, cognitive control, and emotion regulation/self-inspection in the neural
bases of stuttering.

Keywords: ABCD, developmental stuttering, fMRI, machine learning, transfer learning
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Abbreviations

ABCD - Adolescent Brain Cognitive Development study
ADHD - Attention Deficit Hyperactivity Disorder
AROMA — Automated Removal of Motion Artifact
AUC - Area under the Curve

BBS — Brain Basis Set

BOLD - Blood Oxygen Level Dependent

CO - Cingular-Opercular network

CER - Cerebellum network

CSF — Cerebral Spinal Fluid

CWS — Children Who Stutter

DAN — Dorsal Attention network

DMN — Default Mode network

EPI — Echo Planar Imaging

FIX — FIMRIB’s ICA-based Xnoiseifier

FD — Framewise Displacement

FSL — FIMRIB Software Library

fMRI — Functional Magnetic Resonance Imaging
HCP — Human Connectome Project

ICA — Independent Component Analysis

MNI — Montreal Neurological Institute

MR — Memory Retrieval network

PCA — Principal Component Analysis

ROC — Receiver Operator Characteristic

ROI — Region of Interest

rsfMRI — Resting-State Functional Magnetic Resonance Imaging
SCPT — Short Continuous Performance Task
SMN — Somatomotor network

SPM - Statistical Parametric Mapping

SSI — Stuttering Severity Instrument

VAN — Ventral Attention network

VIS — Visual network
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Introduction

Childhood onset fluency disorder, more commonly known as stuttering, is a
neurodevelopmental disorder that affects 1% of the general population (5-8% of all preschool-
age children) (Yairi & Ambrose, 2013). Stuttering significantly impedes the speaker’s ability to
produce the rhythmic, fluid flow of speech sounds, and can lead to substantial negative
psychosocial consequences.

Most studies examining stuttering have applied methodological approaches that focus
on specific hypothesis driven brain regions or examine connectivity among a few areas of
interest (See for reviews (Chang et al., 2019; Neef et al., 2015)) However, as a complex
neurodevelopmental disorder, stuttering likely emerges with subtle changes in large-scale
network connections that support multiple functions, including cognitive/language, attention, and
motor control. In a recent study, we used a connectomics approach to examine intra- and inter-
network connectivity of large-scale intrinsic connectivity networks for the first time to examine
stuttering children. We found that children who stutter, regardless of later persistence or
recovery from stuttering, could be differentiated from their non-stuttering peers based on earlier
collected resting-state fMRI scans (Chang et al., 2018). In general, somatomotor network
connectivity was aberrant in children who stutter. However, the differences were also reflected
in the somatomotor network’s connectivity with other large-scale networks such as attention and
default mode networks. This study also reported network connectivity patterns that differentiated
persistently stuttering children from recovered children. Given the lack of a held-out test set or
cross validated model performance, these results warrant replication and expansion through
larger out of sample predictive studies.

A limitation of most clinical studies, especially those involving scanning young children,
is that the sample sizes tend to be small, leading to limited statistical power to discover true
effects and prone to finding false positives and lack of replication. Due to the small sample
sizes, prediction-based (as opposed to associative) studies are rare. Reflecting on these issues’
seriousness, big datasets consisting of hundreds or thousands of subjects are becoming the
new data standard within the neuroimaging community. Big data creates numerous benefits,
including allowing for more ambitious statistical analyses than smaller studies due to the
increased power and better estimations of model generalizability. One important benefit of big
datasets is that underlying “features” inherent in the dataset, such as in specific connectivity

patterns of large-scale networks extracted from resting-state fMRI data, may be more reliably
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measured, and modes of variation of these features are better estimated due to the increased
power.

Previous studies have shown that certain brain features can be linked to phenotypes of
interest (e.g., variations in 1Q, attention, etc.), and can also be used for the prediction of
cognitive or clinical phenotypes (Beaty et al., 2018; Chen et al., 2020; Dubois et al., 2018; Finn
et al., 2015; Goiii et al., 2014; He et al., 2020; Kong et al., 2019; Lake et al., 2019; Nguyen et
al., 2020; Rosenberg et al., 2015, 2020; Sripada, Angstadt, Rutherford, Taxali, Clark, et al.,
2020; Weis et al., 2020; Wu et al., 2020). Recent work in the ABCD study showed that until
sample sizes approach thousands of subjects, brain-behavior relationships were underpowered
and statistical errors were inflated (Marek et al., 2020). The rich research questions regarding
whether big data-derived brain features can be applied to smaller clinical datasets have not yet
been explored. Other work has suggested that big-data applied to small-data, dubbed “meta-
matching,” is potentially useful but did not explore across dataset predictive model transfer (He
et al., 2020). There is a strong need for methods that connect these powerful large datasets with
the carefully curated clinical datasets. We address the feasibility of across dataset model
transfer by discovering brain features in the ABCD and HCP studies and applying them to a
smaller (out of sample) clinical dataset.

This study aimed to create an analysis framework to combine big data with a more
modest sample size clinical dataset. We leveraged a multivariate predictive modeling method,
brain basis set (Sripada, Angstadt, et al., 2019; Sripada, Angstadt, Rutherford, Taxali, &
Shedden, 2020; Sripada, Rutherford, et al., 2019), to bring the power of big data into a
framework examining group differences in brain connectivity present in children who stutter. Our
pipeline begins with feature discovery and selection in large open datasets, using resting-state
functional MRI data from the Human Connectome Project (HCP) and the Adolescent Brain
Cognitive Development (ABCD) study. We then transfer these big-data brain features to an out-
of-sample clinical dataset, consisting of resting-state fMRI data collected from children who
stutter and healthy controls. These data were collected as part of an on-going longitudinal study
in stuttering (Chang et al., 2018; Garnett et al., 2018).

This modeling approach fuses unsupervised and supervised learning techniques. The
initial decomposition of fMRI data (feature discovery) is unsupervised through principal
component analysis (PCA), meaning it is unaware of the data’s behavioral characteristics. The
predictive modeling portion of the pipeline, which uses cross-validated logistic regression, is
supervised because the model is informed (in the training set) of all participants’ clinical labels.

Brain basis set takes advantage of the fact that, though functional connectomes are massive,
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complex objects, there is high redundancy in the set of connections that differ across people.
This allows for a distilled set of PCA components to capture the most meaningful inter-individual
variations and provide generalizability allowing us to use the basis set developed in one group
for prediction in a separate clinical dataset.

In the big datasets used here for feature discovery, participants of both HCP and ABCD
were tested on a battery of assessments, including those relevant to language and attention.
Prior work using brain basis set modeling within these datasets showed the best predictive
performance when predicting cognitive phenotypes, such as fluid intelligence or latent cognitive
variables such as general cognitive ability (Sripada, Taxali, et al., 2019; Sui et al., 2020).
Examining brain basis sets associated with behaviors relevant to children who stutter and
applying them to an out of sample stuttering dataset may provide a way to predict subgroups
within the stuttering group, such as categorizing those most likely to recover from stuttering or
go on to develop chronic stuttering. Early prediction of the clinical population’s different clinical
trajectories is important because it could prioritize clinical resources toward delivering early
intervention to those children most vulnerable to developing persistent stuttering. Apart from
clinical implications, better classification of children who stutter from their non-stuttering peers is
likely to provide a breakthrough in understanding the complex neural bases of stuttering.

This work’s central goal is to test if big datasets, such as the ABCD study and the HCP
data, can help discover a “better” brain basis set, which is a basis set that improves out of
sample classification between children who stutter and fluent peers. The rationale behind this
hypothesis is that larger sample sizes tend to discover more generalizable brain features. HCP
and ABCD data contain higher quality MRI data (spatial and temporal resolution, longer scan
length) than most clinical datasets (Casey et al., 2018; Van Essen et al., 2013). To test this big
data prediction hypothesis, we directly compare the big data model’s performance to within-
sample feature discovery-based models.

Predictive modeling work within the clinical neuroimaging community is often met with
skepticism (Bzdok & Meyer-Lindenberg, 2018; Cabitza et al., 2017; Feczko et al., 2019; Lasko
et al., 2017; Stephan, Bach, et al., 2016, p. 1; Stephan, Binder, et al., 2016). Much of the
criticism surrounding predictive modeling stems from the fact that many predictive models are
“black boxes,” yielding low interpretability in terms of the circuits involved (Rudin & Radin,
2019). We emphasize the importance of interpretable and plausible prediction in clinical
samples, making these characteristics top priority in this work. Therefore, we included an

additional analysis to move our work beyond broad statements about patients differing from
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healthy controls to characterizing which brain networks may contribute the most to the observed

differences with the hope of informing future interventions.

Materials & Methods

Data acquisition

HCP All subjects and data were from the HCP-1200 release (Van Essen et al., 2013).
Four runs of resting-state fMRI data (14.4 minutes each; two runs per day over two days) were
acquired (TR = 720 ms).

ABCD Data from the curated ABCD annual release 1.1 were used, and full details are
described in (Hagler et al., 2019). Imaging protocols were harmonized across sites and
scanners. High spatial (2.4 mm isotropic) and temporal resolution (TR = 800 ms) resting-state
fMRI was acquired in four separate runs (5min per run, 20 minutes total).

Stuttering During the rsfMRI scan, children lay supine with their eyes open. They were
instructed to remain as still as possible. Preceding the MRI scanning session, all children were
trained during a separate visit with a mock scanner to familiarize and desensitize them to the
sights and sounds of the scanner and to practice being still inside the scanner bore (Chang et
al., 2015, 2016). To ensure that the child remained calm and to minimize the possibility of
movement, an experimenter sat by the child throughout the scan. MRI scans were acquired on
a GE 3T Signa HDx scanner (GE Healthcare). Thirty-six contiguous 3-mm axial slices were
collected with a gradient-echo EPI sequence (7 min) in an interleaved order (TR = 2500 ms). All
procedures used in this study were approved by the Michigan State University Institutional
Review Board. Informed consent was obtained according to the Declaration of Helsinki. All
children were paid a nominal remuneration, and were given small prizes (e.g. stickers) for their
participation. This study is not a clinical trial.

In/Exclusion criteria

HCP subjects were eligible to be included if they had structural T1w and T2w data and
had four complete resting-state fMRI runs (14m 24s each; 1206 subjects total in release files,
1003 with full resting state and structural). Subjects with more than 10% of frames censored
were excluded from further analysis, and if there was incomplete phenotypic data, leaving 910
subjects.

ABCD subjects were eligible to be included if they had at least 4 minutes of good data
(after motion censoring at FD>0.5mm) and a usable T1w image (h=2757). To remove unwanted

sources of dependence in the dataset, only one sibling was randomly chosen to be retained for
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any family with more than one sibling (n=2494). Incomplete neurocognitive data were also
criteria for exclusion, as were preprocessing errors in applying the field-maps. This left 1,509
subjects.

Stuttering subjects were eligible to be included if they had at least 4 minutes of good
data (after motion censoring at FD>0.5mm) and a usable T1lw image (n=121). The
demographics of subjects included in our analysis are shown in Table 1.

Table 1 Participant demographics. Mean (standard deviation).

Stuttering ABCD HCP
Sample size 121 1509 910
Age (years) 6.14+1.9 10.05 £ 0.60 28.5+3.7
Sex (M/F) 61/60 783/726 435/475
mean FD (mm) 0.39+0.34 0.21 +0.08 0.15+0.04

Percent stuttered 3.66 + 3.73 - -
syllables (%SLD)
Stuttering severity 9.3+10.2 - -
instrument (SSI)*

Data Preprocessing

We harmonized data preprocessing as much as possible across all three datasets used
in this study. However, due to the nature of these datasets, small differences in data
preprocessing occurred across these datasets, and each preprocessing workflow is described
as follows.

HCP Processed volumetric data from the HCP minimal preprocessing pipeline, including
ICA-FIX denoising, were used. Full details of these steps can be found in Glasser (Glasser et
al., 2013) and Salimi-Korshidi (Salimi-Khorshidi et al., 2014). Briefly, Tlw and T2w data were
corrected for gradient-nonlinearity and readout distortions, inhomogeneity corrected and
registered linearly and nonlinearly to MNI space using FSL's FLIRT and FNIRT. BOLD fMRI
data were also gradient-nonlinearity distortion corrected, rigidly realigned to adjust for motion,
fieldmap corrected, aligned to the structural images, and then registered to MNI space with the

nonlinear warping calculated from the structural images. Then FIX was applied to the data to

! The Stuttering Severity Instrument (SSI-4) was used to examine frequency and duration of disfluencies
occurring in the speech sample acquired from each child who stutters. The SSI composite score
incorporates frequency and duration of stuttered speech, as well as any physical concomitants associated
with stuttering (Riley & Bakker, 2009). To be classified as a child who stutters, they needed to score in the
very mild or higher range on the SSI composite score. For borderline cases, parent’s expressed concern
of stuttering and clinician (certified Speech-Language Pathologist) impression confirming stuttering status
were considered in making the determination of stuttering status.
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identify and remove motion and other artifacts in the time-series. Images were smoothed with a
6mm Gaussian kernel and then resampled to 3mm isotropic resolution. The smoothed images
then went through several resting-state processing steps, including a motion artifact removal
steps comparable to the type B (i.e., recommended) stream of Siegel et al. (Siegel et al., 2017).
These steps include linear detrending, CompCor to extract, and regress out the top 5 principal
components of white matter and CSF (Behzadi et al., 2007), bandpass filtering from 0.1-0.01Hz,
and motion scrubbing of frames that exceed a framewise displacement of 0.5mm.

ABCD Minimally preprocessed resting-state fMRI was used from data release 1.1. This
data reflects the application of the following steps: i) gradient-nonlinearity distortions and
inhomogeneity correction for structural data; and ii) gradient-nonlinearity distortion correction,
rigid realignment to adjust for motion, and field map correction for functional data. Additional
processing steps were applied by our group using SPM12, including co-registration using the
CAT12 toolbox application, smoothing with a 6mm Gaussian kernel, and application of ICA-
AROMA (Pruim et al., 2015). Resting-state processing steps were then applied, including linear
detrending, CompCor (Behzadi et al., 2007), bandpass filtering from 0.1-0.01Hz, and motion
scrubbing of frames that exceed a framewise displacement of 0.5mm.

Stuttering Data were processed using typical methods in Statistical Parametric Mapping
(SPM12, Wellcome Institute of Cognitive Neurology, London). Slice time was corrected using
sinc-interpolation, and all scans were realigned to the 10th volume acquired during each scan.
Time-series of functional volumes were then co-registered with a high-resolution T1 image,
spatially normalized to the MNI152 brain using the CAT12 toolbox, and then spatially smoothed
with a 6 mm isotropic Gaussian kernel. ICA-AROMA (Pruim et al., 2015) was applied to the
smoothed data for motion denoising. Resting-state processing steps were then applied,
including linear detrending, CompCor (Behzadi et al., 2007), bandpass filtering from 0.1-0.01Hz,
and motion scrubbing of frames that exceed a framewise displacement of 0.5mm.
Connectome Generation

We calculated spatially averaged time series for each of 264 4.24mm radii ROIs from the
parcellation of Power et al. (Power et al., 2011). We then calculated Pearson’s correlation
coefficients between each ROI. These were then transformed using Fisher's r to z-
transformation. Connectomes are symmetric matrices that do not contain directionality
information. Therefore, we vectorize each subject’s connectome’s upper triangle to create a 1 x
34,716 (264 choose 2) vector. All subject’s connectome vectors are then stacked, creating an n
subjects x p connections matrix, where rows represent unique subjects and columns represent

unigue connections.
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Brain Basis Set Predictive Modeling

Brain Basis Set (BBS) is a multivariate predictive method that uses dimensionality
reduction to produce a basis set of components to make phenotypic predictions (see Figure 1
for an overview). First, for the dimensionality reduction step, we submitted an n subjects x p
connections matrix for both the HCP and ABCD training datasets (separately) for principal
components analysis. Next, we moved to the stuttering dataset to calculate the expression
scores for each of the k components for each subject by projecting each subject’'s connectivity
matrix onto each principal component. We then fit a logistic regression model with these
expression scores as predictors and the phenotype of interest (the clinical diagnosis of
stuttering) as the outcome. In a test dataset, we again calculated the expression scores for each
component in the basis set for each test subject. We repeated this model within the stuttering
dataset using 10-fold cross validation. Importantly, our model controls for nuisance variables

(age, sex, linear and quadratic effects of motion).
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Figure 1. Overview of Brain Basis Set (BBS) Predictive Modeling. BBS utilizes
dimensionality reduction with principal components analysis (PCA) to construct a high-quality
feature set in a large data set (i.e., HCP & ABCD) and then apply the basis set to an out-of-
sample clinical data set to the classification of children who stutter from fluent peers and

compare this model performance to within-sample basis set using 10-fold cross validation.

Feature Selection: Top 10 components (“Top k”) and phenotype-correlation
(“Pheno-corr”) models

We tested three different techniques for selecting which components to use in the
predictive model. First, we used the top k variance explaining components from the HCP basis
set and then also from the ABCD basis set. Prior work using BBS modeling in ABCD and HCP

datasets showed that somewhere between 50 to 100 components yields an optimal prediction
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of a broad array of behavioral phenotypes (Sripada, Angstadt, et al., 2019). However, due to the
smaller sample size of the stuttering dataset (n=121) compared to the HCP (n=910) and ABCD
(n=1509) sample sizes, we lowered this number due to the possibility of overfitting the data. The
sample size of the clinical dataset is approximately 1/10™ the sample size of HCP and ABCD.
Therefore, in this study, we used 1/10" the number of components used in previous HCP &
ABCD predictive models and set k equal to 10. These models are referred to as “HCP top k=10"
and “ABCD top k=10".

Next, HCP and ABCD basis set components that were significantly correlated (p<0.01)
with the phenotypes of interest (cognitive variables from the NIHToolbox and sustained
attention) were selected. These models are referred to as “ABCD pheno-corr” and “HCP pheno-
corr” models. Cognitive NIHToolbox phenotypes were selected based on previous work in HCP
and ABCD predictive modeling demonstrating that these cognitive phenotypes tend to yield the
highest accuracy and test-retest reliability (Sripada, Taxali, et al., 2019). The choice of
sustained attention among the phenotypic measures collected in HCP and ABCD was based on
results from Chang et al. (Chang et al., 2018) where significant differences involving attention
networks (DAN, VAN) and their connectivity with FPN and SMN networks were found to
differentiate CWS from controls. Clinically, ADHD and subclinical attention deficits are
commonly reported in stuttering (Donaher & Richels, 2012), but to date, there have been few
studies investigating how neural networks supporting attention are affected in stuttering.
Sustained attention in HCP is measured using the Short Penn Continuous Performance Test
(SCPT) (Gur et al., 2010; Kurtz et al., 2001). Participants see vertical and horizontal red lines
flash on the computer screen. In one block, they must press the spacebar when the lines form a
number, and in the other block, they push the spacebar when the lines form a letter. The lines
are displayed for 300 ms, followed by a 700 ms ITI. Each block contains 90 stimuli and lasts for
1.5 minutes. The equivalent sustained attention variable from the ABCD study is from the stop
signal fMRI task (SST), corresponding to the total number of correct go trials across the entire
task. The SST requires participants to withhold or interrupt a motor response to a “Go” stimulus
when followed unpredictably by a signal to stop. Each of the two runs contains 180 trials. A
further detailed description of this task can be found in Casey et al. (Casey et al., 2018).

Finally, to test whether big data improves classification performance, we compared the
big data models to within-sample feature discovery models. Using big datasets from HCP and
ABCD may be hurting our predictive performance due to differing age ranges of the populations
they are drawn from and that there are unlikely any clinically diagnosed stuttering participants in

these datasets. Instead of using the HCP or ABCD basis set, we embedded the dimensionality
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step within the stuttering dataset cross validation, and this model is called “In-sample top k=10".
We used the top k =10 components from the stuttering training set as predictors and compared
them to the top k=10 HCP model and k=10 ABCD model. We did not repeat the pheno-corr
method in-sample due to not having enough training set subjects to yield reliable correlations
(Poldrack et al., 2020; Varoquaux, 2018; Varoquaux et al., 2017).
Model Evaluation

The performance of our model was determined using the area under the curve (AUC)
(Fawcett, 2006; Hand & Till, 2001). The “curve” reference in AUC corresponds to the receiver
operating characteristic (ROC) curve, which plots the true positive rate versus the false positive
rate. AUC is calculated on the test set within 10-fold cross validation, and the average AUC
across folds is reported in Table 2 and Figure 2. Assessing the overall model statistical
significance in our primary analysis framework is challenging due to the cross-validation
procedure (10 different test-sets). While we do not want to rely on statistical significance for
interpreting results, we recognize that overall model significance is helpful for determining that
the prediction is meaningful (above chance accuracy). Following model evaluation and reporting
methods in previous work (Sripada, Angstadt, Rutherford, Taxali, Greathouse, et al., 2020), a
logistic regression model was fit within the whole sample to determine the overall statistical
significance of each proposed feature selection method. The statistical significance of each full
models’ predictors is shown in supplemental tables, and the overall model statistical significance
is reported in the results section.
Visualization of Whole Brain Predictive Models

To help convey overall patterns across all components in a given BBS predictive model,
we constructed “consensus” component maps, shown in Figure 3. We first fit a BBS model to
the entire dataset consisting of all stuttering participants. We then multiplied each component
map with its associated beta weight from this fitted BBS model. Next, we summed across all top
k=10 components or pheno-corr components, yielding a single map for each model. The
resulting map indicates the extent to which each connection is positively (red) or negatively
(blue) related to the outcome variable of interest, stuttering status.
Interpretation Analysis: Keep Two Networks

To aid in the predictive model’s interpretability, we repeated all analyses using every
network pair (one at a time) from the Power parcellation (Power et al., 2011). There are 13 brain
networks in the Power parcellation, which results in 78 network pairs (13 choose 2). This allows
us to observe which nodes, edges, and networks contribute most to the predictive model's

accuracy. For every network pair, for example, the FPN-DMN, all other nodes, and edges
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belonging to other networks are removed to create a much smaller connectivity matrix (that
includes within-DMN, within-FPN, and DMN-FPN connections) for each subject and every step
of the analysis (PCA matrix decomposition, component selection, and cross-validated logistic
regression model fit) are performed on only the nodes and edges belonging to the FPN & DMN
networks. This was repeated for all other network pairs. Figure 3A provides a visual intuition for
the process of creating network-pair connectomes from the whole brain connectome. We used
the top k=10 components HCP, ABCD, and In-sample models during the component selection
step. For the pheno-corr models, we only used the HCP fluid intelligence model and ABCD fluid
intelligence model due to their high prediction accuracy in the whole-brain results. Also, given
that there are 78 network-pairs, and therefore 78 models to run per phenotype, we needed to
limit our selection to produce succinct results.
Data sharing

All code and data (that allows for it) is made available on GitHub

(https://www.qgithub.com/saigerutherford/bigdata-stuttering). The ABCD data does not allow raw

or derivative data re-sharing and requires users to complete their own data use agreement on
https://www.nda.nih.gov. A study has been created on NDA (DOI:10.15154/1520500) to track

the included ABCD subijects in these analyses.

Results

Primary Analysis: Whole-Brain Connectome
Fluid intelligence pheno-corr model in ABCD and HCP achieved highest accuracy
The brain basis set predictive model successfully differentiated between children who
stutter and healthy controls using resting-state connectivity patterns from out-of-sample healthy
child (ABCD study) and adult (HCP study) datasets. The best performing whole-brain model
used components related to fluid intelligence in the child (AUC1ofoidcv = 0.66; p-valuesisampie =
5.79e-5), and adult (AUC1gfoid-cv = 0.66; p-valuesyi.sample = 2.25€-3) samples. Accuracy of other
phenotype models from the NIH-Toolbox and sustained attention ranged from 0.5 (Picture
Sequence — episodic memory) to 0.65 (Pattern Completion — processing speed). Table 2
summarizes the accuracy of all ABCD and HCP pheno-corr models, along with the number of
features in each model (components significantly correlated with each phenotype), and the
subdomains/abilities each phenotype represents. The supplemental tables contain the feature

level statistical significance of all models.


https://doi.org/10.1101/2020.10.28.359711
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.28.359711; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Classifying stuttering using big data

Table 2 HCP & ABCD pheno-corr model performance using variables from the NIH Toolbox
and a sustained attention task. The number of significantly correlated components with
phenotypes (p<0.01) are reported for each dataset along with the average AUC across a 10-fold
cross validation framework.

Phenotype | Subdomain Ability # of HCP HCP #of ABCD | ABCD
components | AUC | components | AUC
(p<0.01) (p<0.01)

Dimensional | Executive Cognitive 8 0.52 14 0.58
Change Function Flexibility
Card Sort
List Sorting Working Working 9 0.57 21 0.53

Memory Memory
Picture Language | Vocabulary 13 0.54 17 0.59
Vocabulary Knowledge
Pattern Processing | Processing 13 0.52 15 0.65
Comparison Speed Speed
Picture Episodic Episodic 15 0.54 22 0.50
Sequence Memory Memory
Reading Language Oral 18 0.52 18 0.58
Recognition Reading

Skill

Fluid - - 13 0.66 17 0.66
Intelligence?
Sustained - - 13 0.58 17 0.56
Attention

Top k=10 models suggest big data basis sets may improve accuracy
When comparing the HCP, ABCD and in-sample top k=10 basis sets, the ABCD

(AUC1f0id-cv = 0.63; p-valueryisampie = 2.26€-3) and HCP (AUCofoig-cv = 0.59; p-valueryi-sample =

4.58e-3) models had slightly higher accuracy than the in-sample model (AUCigoig-cv = 0.57; p-

valuersample = 7.85€-3), suggesting that using big data to discover a brain basis set improves

prediction performance, or at the very least does not decrease performance compared to in-

sample feature selection. Interestingly, the top k=10 predictive models from separate datasets

appear to leverage very similar brain connections. The correlation between the consensus maps

2 Fluid Intelligence is a Cognition Composite Score that includes DCCS, Flanker, Picture Sequence
Memory, List Sorting, and Pattern Comparison measures.
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of each model are strongly positive and are statistically significant. The HCP & ABCD
consensus maps are correlated r=0.55, HCP & In-sample correlation of r=0.32, and ABCD & In-
sample are correlated r=0.50. The pheno-corr fluid intelligence model showed less overlap
between the HCP & ABCD models (r=0.06). The ROC curve for all dataset’s top k=10 and
ABCD & HCP fluid intelligence pheno-corr whole brain models are shown in Figure 2 and the
consensus map models for all dataset’s top k=10, and HCP & ABCD fluid intelligence pheno-

corr models are shown in Figure 3.
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Figure 2 Whole Brain Receiving Operator Characteristic Curve plotting the false positive
rate versus true positive rate for the top k=10 HCP, ABCD, and In-sample models and the fluid
intelligence HCP and ABCD models. All of these models were tested using 10-fold cross
validation logistic regression models. The diagonal dotted line shows chance accuracy. For
most all subjects, the big data models (blue, red, cyan, magenta lines) are above the in-sample
model (green line) meaning that big data models help improve the classification for most

subjects in the clinical dataset.
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Figure 3 Consensus maps of connections that are predictive of stuttering status. The top
k=10 models are highly similar across all three datasets (bottom row), and the pheno-corr
models (top row) show unique, distributed patterns of connections that predict stuttering status.
The correlation (r) between each of the maps is shown to quantify the overlap between each

model’s predictive features.
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Interpretation Analysis: Keep Two Networks
Subset network basis sets reveal a fine-scale resolution of clinical data not
detected in whole-brain models

When further interrogating which brain nodes, connections, and networks contributed the
most useful information to our predictive model, we learned that the auditory and ventral
attention networks, from the in-sample top k=10 model, contributed the most and yielded the
highest accuracy (AUCof0d-cv = 0.72). The salience and subcortical network pair from the in-
sample top k=10 model was a close second (AUCgsdcv = 0.71). These results show that when
using a reduced basis set (from just two brain networks, e.g., auditory & salience), the in-sample
basis set outperforms ABCD & HCP. The results of all network pairs are visualized in Figure 4.
This suggests that clinical variation has a fine-scale resolution that may be overlooked when
searching the full connectome.
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Figure 4 Keep Two Network Analysis. A) Visual intuition for how the network-pair
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connectomes (ex. DMN-FPN) are created. This process was repeated for all 78 network pairs.

In panels B-F, a black box is placed around the most accurate (i.e., best-performing model)

network-pair, and this network pair is also shown below the panel in larger, bolded text. The
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number represented in each box is the average AUC across 10-fold CV for that given network-
pair. Lighter colors correspond to higher accuracy. B) ABCD fluid intelligence pheno-corr C)
HCP fluid intelligence pheno-corr D) ABCD top k=10 E) HCP top k=10 F) In-sample top k=10

Discussion

In this work, we determined whether a brain basis set developed in big data sets, HCP
and ABCD, could be used to classify stuttering children from fluent peers. The results across
several predictive models in this study suggest that big data can be transferred to smaller
clinical datasets to help prediction performance. While the big data-based models provide a
rather modest improvement in classification accuracy, it is important to remember that predicting
behavior from biological data is a highly complex problem to solve, and accuracy is not the only
important facet of predictive modeling. There are other benefits of leveraging big data such as
testing true out of sample model fit to determine generalizability and exploration of brain
components related to phenotypes that were not collected in smaller clinical samples.

Past neuroimaging research has pointed to a wide range of structural and functional
deficits in speakers who stutter, encompassing aberrant auditory-motor cortical connectivity and
basal ganglia-thalamocortical connections. The wide range of locations and connectivity
patterns that differ in stuttering speakers may not be surprising, given that multiple neural
systems’ deficits can have detrimental effects on fluent speech production. While the main
behavioral manifestations of stuttering involve speech disfluency, many children who stutter also
exhibit comorbid symptoms comprising subtle language, attention, and/or cognitive deficits. This
finding is similar to that observed in other neurodevelopmental disorders where diagnostic
categories overlap and are highly heterogeneous (Siugzdaite et al., 2020). Reflecting these
views, there is a growing consensus for rejecting a “core-deficit hypothesis” in developmental
disorders in favor of embracing the view that neurodevelopmental conditions can arise from
complex patterns of relative strengths and weaknesses that may encompass multiple aspects of
cognition and behavior (Astle & Fletcher-Watson, 2020). Therefore, we tested whether cognitive
functions that are more reliably captured with big data (using methods such as brain basis set
[BBS] modeling to derive basic “features” inherent in resting-state fMRI) could improve
classification performance in a pediatric stuttering dataset. We expected that this approach
would allow us to examine how the stuttering group differs in these basic features in complex

ways in the context of whole-brain connectivity measures.
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The whole-brain connectome results showed that the BBS models of fluid intelligence
phenotype-correlation derived from the HCP and ABCD datasets achieved the highest accuracy
in classifying stuttering children. The fluid intelligence measure is a composite score that
encompasses scores from other tests administered as part of the NIH toolbox®, including
Pattern comparison task (processing speed; information processing), list sorting working
memory task (working memory; Categorization; Information Processing), picture sequence
memory task (Visuospatial sequencing & memory), flanker task (Cognitive Control/Attention,
and the dimensional change card sort task (Flexible thinking; concept formation; set-shifting)
(Gershon et al., 2010; Luciana et al., 2018). Interestingly, phenotypes that were more directly
related to language function, such as reading and picture vocabulary scores, did not perform as
well in the pheno-corr models compared to the fluid intelligence and processing speed cognitive
phenotypes. These results suggest the need to examine further inherent changes in these
cognitive dimensions (processing speed, attention, working memory) for stuttering children and
how they might interact with stuttering status.

Apart from the pheno-corr models, the top k=10 models from ABCD and HCP performed
slightly better than the model based on the in-sample dataset. The consensus component
maps, generated to convey overall patterns across all components in a given BBS predictive
model, further showed the connectivity pairs in each model that contributed to predicting
stuttering status. The top k=10 predictive models from HCP, ABCD, and the patient samples,
appeared to leverage very similar brain connections. The correlation between each model’s
consensus maps was strongly positive and statistically significant, especially between ABCD
and the patient sample. The higher correlation found between consensus models derived from
ABCD and the stuttering sample could be attributed to the more similar age distributions of
these two samples as opposed to the HCP study, which included mostly adults. Network-level
alterations predicting stuttering based on consensus models that were common across all three
datasets included: within-network connectivity decreases in the default mode network (DMN),
frontoparietal network (FPN), and visual network. Also, increased connectivity between DMN-
cingulo-opercular (CO) networks and the FPN-CO networks predicted stuttering status. The
DMN is hypothesized to implement emotion regulation and self-inspection; decreased DMN
function may negatively affect adaptive emotion regulation (Schilbach et al., 2012). Decreased
DMN function, when paired with decreased FPN function (affecting cognitive control) and
overactive functioning of CO and ventral attention networks (VAN), have been implicated in
anxiety disorders (Sylvester et al., 2012). The fact that stuttering was associated with decreased

intra-network connectivity of both the DMN and FPN networks and at the same time increased
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connectivity of those same networks with the cingulo-opercular network is interesting given the
CO network’s relevance to error sensitivity, detecting negative affect and pain (Shackman et al.,
2011). Altered within-network functional connectivity in the CO network has also been linked to
patients with social anxiety disorder (Liao et al., 2010) and tonic alertness, i.e., sustained
attention (Sadaghiani & D’Esposito, 2015). The heightened connectivity between the cingulo-
opercular network to both DMN and FPN networks in stuttering speakers might reflect the need
for greater involvement of these two networks to achieve emotional regulation and cognitive
control in the presence of error detection and conflict.

While social anxiety is commonly reported in adults who stutter, the same has not been
consistently reported in children who stutter. Direct examination of emotional processing in
children who stutter has been rare, though some studies have reported subtle differences in
CWS in terms of autonomic nervous system responses to challenging speech tasks (nonword
repetition; (Tumanova & Backes, 2019)) or emotionally stressful stimuli ((Jones et al., 2014;
Walsh et al., 2019). The current BBS results suggest that brain networks linked to emotional
regulation and their connectivity with cognitive control networks may differentiate children who
stutter. More research is warranted in this area, especially related to understanding how these
network connectivity patterns change due to persistence and stuttering recovery.

Altered network findings predicting stuttering status based on just the in-sample
consensus model included: decreased within-network connectivity in the auditory and cerebellar
networks and decreased connectivity between the auditory- somatomotor networks (SMF, SMH)
and auditory- ventral attention networks (VAN). The in-sample model pointing to the auditory
network and its connectivity with somatomotor networks is largely consistent with past literature
in stuttering, where most studies have identified structural and functional deficits in auditory-
motor integration. Decreased within-network connectivity in the auditory network may suggest a
less ideal functioning of this network, representing a critical to interface with the speech motor
region, necessary for developing and maintaining fluent speech control (Bohland & Guenther,
2006). Deficient auditory cortex function has been reported as one of the neural “signatures” of
stuttering based on meta-analyses of neuroimaging stuttering literature (Brown et al., Budde et
al.). The current results implicating decreased auditory-ventral attention network connectivity in
children who stutter is relevant to findings reported in a previous study of childhood stuttering
that also showed aberrant connectivity involving the attention networks, including the ventral
attention network (Chang et al., 2018). The VAN includes parts of the ventrolateral prefrontal
cortex and the temporoparietal junction and supports bottom-up attention, i.e., directing

attention to newly appearing stimuli. The decreased connectivity between the VAN and auditory
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networks implicated in the in-sample consensus model for stuttering may suggest discordant
function between these two networks. That is, an abnormally increased function of the ventral
attention network may be linked to a tendency to direct attention to stimuli that suddenly appear
rather than towards (auditory) stimuli that are currently the focus of the task to be performed,
e.g., speech control. A prolonged influence of such aberrant auditory-VAN connectivity may
cascade downstream to influence how the auditory network interfaces with the somatomotor
networks, which could lead to inefficient integration of auditory-motor networks that are critical
for supporting fluent speech control.

Another altered network finding that was specific to the in-sample consensus model was
decreased within-cerebellar network connectivity. Given the cerebellum’s role in motor learning,
error correction, movement timing, and past findings of aberrant function (De Nil et al., 2003)
and structure (Connally et al., 2014; Sitek et al., 2016) in stuttering speakers, a further detailed
examination of this structure in relation to stuttering is warranted. Apart from its motor-related
functions, the cerebellum has connections with most parts of the cerebral cortex (Buckner,
2013) including the auditory cortex. It also connects to the basal ganglia and thalamus and has
afferent connections from the olivary nucleus. The latter may have a role in detecting and
processing somatosensory and auditory errors (Schweighofer et al., 2013). It would be of
particular interest to examine how cerebellar network connectivity, both within-network and
between network connectivity - change during development in normally developing children
compared to children who stutter. Such investigations have the potential to reveal how the
cerebellar function may modulate previously reported network alterations in stuttering and
provide clues to how this may influence developmental changes that are linked to later
persistence and recovery.

The keep- two network models were used to interrogate further which brain nodes,
connections, and networks contributed the most useful information to our predictive model using
a reduced basis set (from just two brain networks). Here, the in-sample basis set outperformed
the models from both the ABCD and HCP data sets. The auditory and ventral attention network
pairs appeared to contribute the most to the model and yielded an accuracy of (72%). The
salience and subcortical network pair from the in-sample top k=10 model was the next highest
contributor achieving 71% classification accuracy. Here, the auditory-VAN network connectivity
is highlighted again, providing further confirmation of these networks’ importance in predicting
stuttering status. The salience network is often equated with both the CO and VAN networks,
with overlapping or adjacent structures comprising each of these networks. The salience

network’s key structures include the anterior insula and the dorsal anterior cingulate cortex,
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although the striatal-thalamic loop is also functionally connected to the key structures and hence
the salience network (Peters et al., 2016) The salience network’s function has been reported to
include detecting and integrating sensory and emotional stimuli (V. Menon, 2015; Vinod Menon
& Uddin, 2010), and attentional shifting that helps mediate the switch between internally-
directed versus externally-directed attention (Uddin, 2015). In the consensus models discussed
above, connectivity involving the salience network was altered for stuttering children, based on
both ABCD and in-sample models. Networks showing altered connections with the salience
network included the DMN and FPN, two networks linked to internally directed and externally
directed cognitive control function, respectively. These results suggest that the efficiency of
switching between internal and externally oriented tasks might be affected in children who
stutter. Specifically, these inefficiencies may be reflected in suboptimal performance on
externally oriented tasks such as speech production because internally oriented processing
such as self-inspection is not fully switched off. A similar perspective is taken by the default
network interference model (Sonuga-Barke & Castellanos, 2007), where diminished segregation
between the DMN and other networks might allow the intrusion of DMN activity that causes
inefficient functioning of task-positive processes (Zou et al., 2013) and lead to behavioral
variability (Kelly et al., 2008; Poole et al., 2016). Altered connectivity of the salience network to
the subcortical network in stuttering is also not surprising, given past findings pointing to
aberrant thalamocortical loop function in stuttering physiology (Alm, 2004; Chang & Guenther,
2020; Craig-McQuaide et al., 2014).

Conclusion

In sum, our findings show that using big data such as ABCD and HCP datasets to derive
basic cognitive “features” provided superior models to classify children who stutter from age-
matched controls. The results provide a significant expansion to previous understanding of the
neural bases of stuttering that had previously been limited mainly to auditory and motor
integration areas in the cortical and subcortical regions. In addition to auditory, somatomotor,
and subcortical networks, the models built using big data highlight the importance of considering
large scale brain networks supporting error sensitivity (cingulo-opercular), attention (ventral
attention, salience), cognitive control (FPN), and emotion regulation/self-inspection (DMN) in the
neural bases of stuttering. The results also suggest that while big data can identify whole-brain
based connectivity alterations relevant to the disorder, these approaches might be best
supplemented by detailed reduced-basis set modeling that further interrogates which brain

nodes, connections, and networks contribute the most useful information to the predictive
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models. This latter approach indicated that the clinically specific stuttering dataset outperformed
the big dataset derived models, possibly showing core disorder-specific networks that may be
altered and are vulnerable for further modulation from other large-scale networks. This study is
a first attempt to identify the brain basis features predictive of stuttering. The present findings
offer insights into the neurophysiological basis of stuttering and pave the way for future studies
that elucidate neural mechanisms for ultimately predicting the optimal treatment strategy and/or
outcomes. The transfer learning framework introduced by this work builds an important

connection between the clinical neuroscience and the big-data heuroscience communities.
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