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Abstract

Summary

echolocatoR integrates a diverse suite of statistical and functional fine-mapping tools in order to identify, test
enrichment in, and visualize high-confidence causal consensus variants in any phenotype. It requires minimal input from
users (a summary statistics file), can be run in a single R function, and provides extensive access to relevant datasets
(e.g. reference linkage disequilibrium (LD) panels, quantitative trait loci (QTL) datasets, genome-wide annotations, cell

type-specific epigenomics, thereby enabling rapid, robust and scalable end-to-end fine-mapping investigations.

Availability and implementation

echolocatoR is an open-source R package available through GitHub under the MIT license:

https://github.com/RajLabMSSM/echolocatoR

Keywords

Genome-wide association, Expression quantitative trait loci (eQTL), Neurogenetics, Bioinformatics, Fine-mapping

Supplementary information

Installation instructions (with an optional conda environment to minimize dependency conflicts), vignettes, example
data, documentation of all functions and annotation datasets, as well as source code can be found in the echolocatoR
website:

https://rajlabmssm.github.io/echolocatoR
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1. Introduction

Genome-wide association studies (GWAS) across a variety of phenotypes and quantitative trait loci (QTL) have identified
many significant genetic associations. However, widespread non-independence between genomic variants due to
linkage disequilibrium (LD) makes it difficult to distinguish causal variants from correlated non-causal variants (Pasaniuc
and Price, 2017; Pritchard and Przeworski, 2001; Yang et al., 2011). Fine-mapping aims to identify the causal variant(s)
and thus the mechanisms underlying a phenotype (Spain and Barrett, 2015; Trynka et al., 2015). This methodology has
been especially important to the study of medical conditions such as diabetes (Gaulton et al., 2015; Mahajan et al.,
2018), rheumatoid arthritis (Kichaev and Pasaniuc, 2015; Westra et al., 2018), and obesity (Zhang et al., 2018).

Many fine-mapping tools have been developed over the years (Spain and Barrett, 2015; Trynka et al., 2015),
each of which can nominate partially overlapping sets of putative causal variants. It can therefore be useful to compare
results from multiple fine-mapping methods with complementary strengths and weaknesses, such as the ability to
model multiple causal variants or incorporate functional annotations. However, these powerful methods are
underutilized in no small part due to technical reasons (e.g. not available in the same programming language,
idiosyncratic file inputs/outputs, gathering and formatting of datasets). We therefore developed echolocatoR, an open-
source R package that conducts end-to-end statistical and functional fine-mapping, annotation, enrichment and plotting

that only requires GWAS/QTL summary statistics as input (Fig. 1a).
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Figure 1. echolocatoR facilitates automated end-to-end fine-mapping.

(a) Workflow of the echolocatoR pipeline: 1) user specifies the path to their full GWAS/QTL summary statistics, 2) locus subsets are queried and

saved in a standardized format, 3) LD is extracted, computed from VCF, or supplied by the user, 3) statistical, functional, and/or trans-ethnic/joint

fine-mapping are performed, 4) locus-specific fine-mapping results and selected annotations are visualized in tracks, 5) enrichment tests can be

performed on different SNP groups using the various available annotations (see Section 2.2), 6) GWAS/QTL data, fine-mapping results and

annotations are merged into a file with one SNP-row, 7) narrowed SNPs lists can be targeted in validation experiments.

(b) Example multi-track plot for the PD locus LRRK2: 1) Manhattan plot of GWAS p-values (gold labels and vertical lines indicate Consensus SNPs), 2-

5) tool-specific fine-mapped posterior probability (PP) with 95% credible set (CSgs%) SNPs labeled (green labels), 6) mean per-SNP PP across all fine-

mapping tools, 7) gene transcript models, 8) transcription factor binding site (TFBS) annotations from ENCODE, 9) cell-type-specific histone

modifications from ENCODE (Broad Institute, Bernstein lab), 10) cell-type-specific chromatin marks from Roadmap. Vertical red lines indicate the

location of the lead GWAS SNP.

2. Implementation

The full echolocatoR fine-mapping pipeline can be run using just the finemap_loci() function, which ultimately produces

an organized folder structure containing study- and locus-specific multi-tool fine-mapping results tables and annotated

multi-track plots. If some stage of the pipeline has been run previously for a given locus, finemap_loci() will
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automatically detect and use the associated files, saving time for when testing different parameters. Most echolocatoR
functions can run on a standard laptop (tested on a MacBook Pro with a 2.3 GHz Intel Core i5 processor and 8 GB 2133
MHz LPDDR3 memory), or take full advantage of its parallelizing capabilities on a high performance computing (HPC)

cluster.

2.1 Rapid, robust, and scalable fine-mapping

By default, echolocatoR automatically indexes the user’s summary statistics file using Tabix (Li, 2011) for rapid on the fly
guerying. Locus-specific summary statistics are then extracted, standardized, and filtered according to user-controllable
parameters such as window size (+ 1Mb surrounding the index SNP by default), minor allele frequency (MAF) threshold,
LD block, and many other features.

echolocatoR integrates a suite of existing fine-mapping tools, which currently includes: ABF (Benner et al., 2016;
Wellcome Trust Case Control Consortium et al., 2012; Wakefield, 2007), GCTA-COJO (Yang et al., 2012), FINEMAP
(Benner et al., 2016), SuSIiE (Wang et al., 2018), PolyFun (Weissbrod et al., 2019), and PAINTOR (Kichaev et al., 2017), the
latter of which can be run with (i.e. PAINTOR+) or without (PAINTOR-) functional annotations. Colocalization tests
between pairs of GWAS and/or QTL can also be performed using coloc (Giambartolomei et al., 2014) to identify locus-
specific phenotype-relevant tissues and cell types and prioritize GWAS/QTL datasets for joint functional fine-mapping.

Each fine-mapping tool produces its own 95% Credible Set (CSes%). The precise meaning of this term varies by
tool but can be understood as the SNPs with 95% probability of being causal in the phenotype of interest. However,
inter-tool comparisons have observed that there is substantial heterogeneity in their CSesy, (see (Weissbrod et al., 2019)),
leading to questions about the validity of any single tool in all situations, which can be strongly influenced by the degree
of LD complexity and the true number of causal SNPs (Pasaniuc and Price, 2017; Pritchard and Przeworski, 2001; Yang et
al., 2011). We therefore define Consensus SNPs as those that were identified in the CSese of two or more tools,
representing high-confidence putative causal SNPs. Indeed, we have shown that these Consensus SNPs have significantly
higher predicted regulatory impact than either index SNPs or individual tool CSesy, SNP sets in Parkinson’s Disease (PD)
(Schilder and Raj, 2020). echolocatoR automatically adds columns for Support (the number of tools that a given SNP was

in the CSgsy%), Consensus SNP status, as well as mean posterior probabilities (PP) across all fine-mapping tools used.
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2.2 Extensive database access

2.2.1 Linkage disequilibrium

A common barrier to performing accurate fine-mapping is access to the appropriate LD reference panels. Currently,
application programming interface (API) access is provided for 1000 Genomes Phases 1 & 3 (with selectable
subpopulations) (Consortium and The 1000 Genomes Project Consortium, 2015), UK Biobank (Bycroft et al., 2018;
Sudlow et al., 2015; Weissbrod et al.), or user-supplied VCF files or LD matrices. Unlike existing LD querying tools
(Machiela and Chanock, 2015), echolocatoR does not restrict the size of LD matrices to allow comprehensive fine-

mapping of all loci regardless of size or complexity.

2.2.2 Genome-wide annotations

Genome-wide annotations can be used to compute SNP-wise prior probabilities for functional fine-mapping (e.g.
PolyFun, PAINTOR+). API access to a large compendium of genome-wide annotations and epigenomic data is provided,
including: tissue and/or cell type/line-specific chromatin marks from Roadmap (Bernstein et al., 2010; Satterlee et al.,
2019), ENCODE (Jou et al., 2019), genic annotations through biomaRt (Durinck et al., 2009),HaploReg (Zhbannikov et al.,
2017; Ward and Kellis, 2012), cell-type-specific epigenomic datasets(Nott et al., 2019; Corces et al.), and hundreds of

additional annotations through the R package XGR (http://xgr.r-forge.r-project.org/) (Fang et al., 2016). catalogueR,

another R package developed by our group, provides rapid APl access to full summary statistics from 110 uniformly
reprocessed QTL datasets (across 20 studies) with parallelized Tabix queries. echolocatoR can utilize all genome-wide
annotations and datasets to compare enrichment across different SNP group (e.g. GWAS lead SNPs vs. CSssy Vs.
Consensus SNPs) using XGR, GoShifter, and/or S-LDSC (Gazal et al., 2017; Finucane et al., 2015; Bulik-Sullivan et al.,
2015).

2.2.3 In-silico validation

We also built in APl access to in silico validation datasets, including massively parallel reporter assays (MPRA) (van
Arensbergen et al., 2019; Tewhey et al., 2018), S-LDSC heritability enrichment, and predictions from multiple machine
learning models trained on tissue- and cell-type- specific epigenomic annotations: Basenji (Kelley et al., 2018), and
DeepSEA (Zhou and Troyanskaya, 2015) (provided by (Dey et al.)) as well as IMPACT (Amariuta et al., 2019). Lastly, we
integrated motifbreakR which uses a comprehensive set of algorithms and position weight matrices (n = 9,933) to assess

whether fine-mapped variants fall within sequence motifs and to what extent they disrupt binding to specific
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transcription factors (Coetzee et al., 2015).

2.3 Multi-track plotting

High-resolution multi-track plots are automatically generated for each locus (Fig. 1b) and can include any combination of
the following tracks: Manhattan plots of GWAS/QTL P-values or tool-specific fine-mapping posterior probabilities (PP)
colored by LD with the lead SNP, mean PP, gene body models, and all aforementioned genome-wide annotations. Plots

can be further customized as returned ggplot objects.

3. Conclusion

Overall, echolocatoR removes many of the primary barriers to perform a comprehensive fine-mapping investigation
while improving the robustness of causal variant prediction through multi-tool consensus and in silico validation using a
large compendium of (epi)genome-wide annotations. Thus, we hope that echolocatoR will make fine-mapping a

standard practice, thereby uncovering human disease etiology and accelerating the development of novel therapeutics.
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