

Dynamic targeting enables domain-general inhibitory control over action and thought by the prefrontal cortex

Dace Apšvalka^{1*}, Catarina S. Ferreira^{2*}, Taylor W. Schmitz³, James B. Rowe^{1,4}, Michael C. Anderson^{1,5}

¹ MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK

² School of Psychology, University of Birmingham, Birmingham, UK

³ Brain and Mind Institute, Western University, London, Ontario, Canada

⁴ University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK

⁵ University of Cambridge, Behavioural and Clinical Neuroscience Institute, Cambridge, UK

October 23, 2020. Preprint v1.1

Successful self-control requires the ability to stop unwanted actions or thoughts. Stopping is regarded as a central function of inhibitory control, a mechanism enabling the suppression of diverse mental content, and strongly associated with the prefrontal cortex. A domain-general inhibitory control capacity, however, would require the region or regions implementing it to dynamically shift top-down inhibitory connectivity to diverse target regions in the brain. Here we show that stopping unwanted thoughts and stopping unwanted actions engage common regions in the right anterior dorsolateral and right ventrolateral prefrontal cortex, and that both areas exhibit this dynamic targeting capacity. Within each region, pattern classifiers trained to distinguish stopping actions from making actions also could identify when people were suppressing their thoughts (and vice versa) and could predict which people successfully forgot thoughts after inhibition. Effective connectivity analysis revealed that both regions contributed to action and thought stopping, by dynamically shifting inhibitory connectivity to motor area M1 or to the hippocampus, depending on the goal, suppressing task-specific activity in those regions. These findings support the existence of a domain-general inhibitory control mechanism that contributes to self-control and establish dynamic inhibitory targeting as a key mechanism enabling these abilities.

Introduction

Well-being during difficult times requires the ability to stop unwelcome thoughts. This vital ability may be grounded in inhibitory control mechanisms that also stop physical actions (Anderson & Hanslmayr, 2014; Anderson et al., 2004; Castiglione et al., 2019; Depue et al., 2016; Depue et al., 2007). According to this hypothesis, the right lateral prefrontal cortex (rLPFC) supports self-control, allowing people to regulate their thoughts and behaviours when

fears, ruminations, or impulsive actions might otherwise hold sway (Anderson & Hulbert, 2021; Benoit et al., 2016; Schmitz et al., 2017). This proposal rests on the concept of inhibitory control, a putative domain-general control mechanism that has attracted much interest in psychology and neuroscience over the last two decades (Anderson et al., 2016; Aron et al., 2004, 2014; Banich & Depue, 2015; Bari & Robbins, 2013; Boucher et al., 2007; Diamond, 2013; Ersche et al., 2012; Eysenck et al., 2007; Joormann & Tanovic, 2015; Lipszyc & Schachar, 2010). Despite widespread and enduring interest, central evidence for the neural basis of domain-general inhibitory control is missing: no study has shown a control region that dynamically shifts its connectivity to suppress local processing in diverse cortical areas depending on the stopping goal – a fundamental capability of this putative mechanism. Inhibiting actions and memories, for example, requires that an inhibitory control region target disparate specialised brain areas to suppress motoric or mnemonic processing, respectively. We term this predicted capability dynamic targeting. Here, we tested the existence of dynamic targeting by asking participants to stop unwanted actions or thoughts. Using functional magnetic resonance imaging (fMRI) and pattern classification, we identified prefrontal regions that contribute to successful stopping in both domains. Critically, we then tested whether people's intentions to stop actions or thoughts were reflected in altered effective connectivity between the domain-general inhibition regions in prefrontal cortex with memory or motor-cortical areas. By tracking the dynamic targeting of inhibitory control in the brain, we provide a window into humans' capacity for self-control over their thoughts and behaviours (Nigg, 2017).

Our analysis builds on evidence that two regions of the rLPFC may contribute to stopping both actions and thoughts: the right ventrolateral prefrontal cortex (rVLPFC) and the right dorsolateral prefrontal cortex (rDLPFC). For example, stopping motor actions activates

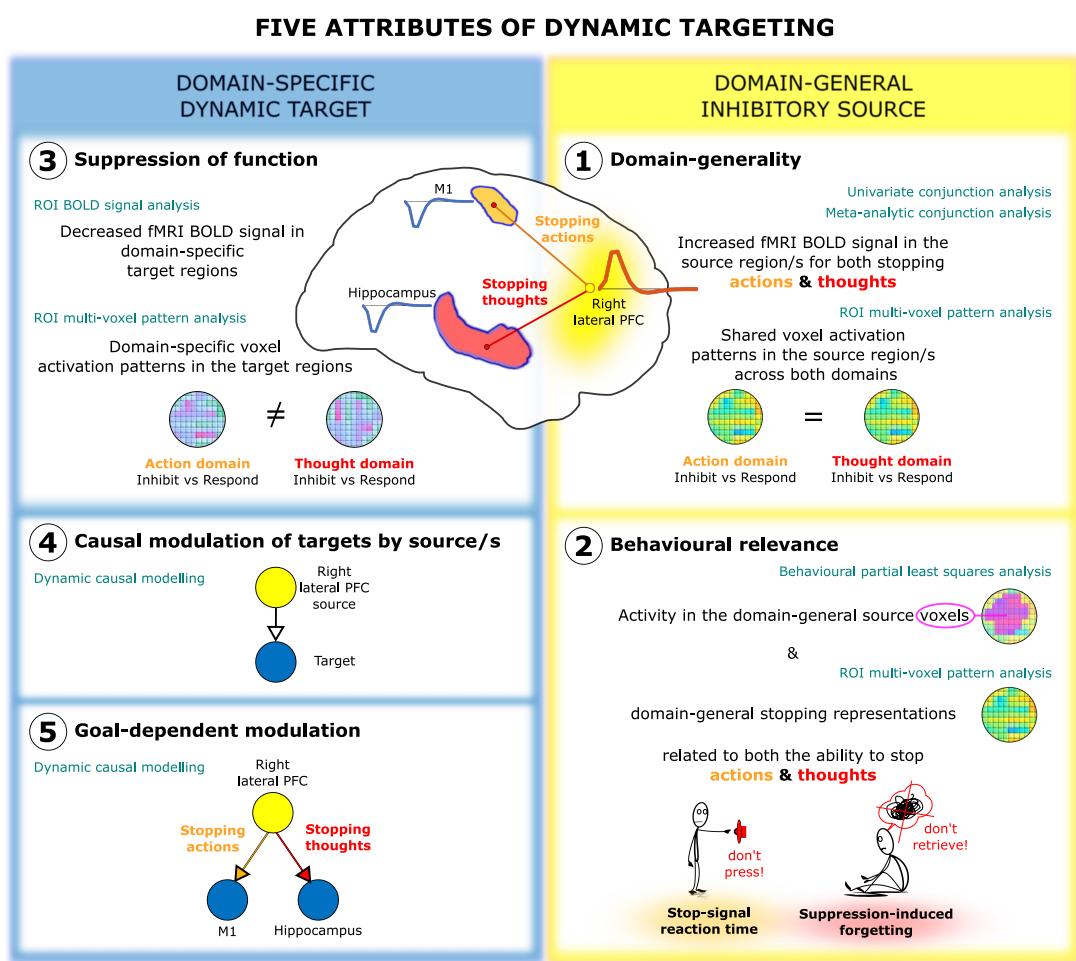


Figure 1. Five attributes of dynamic targeting. Schematic of the five attributes of domain-general inhibitory control by dynamic targeting and methods employed (teal colour) to test the attributes. Attributes 1-2 relate to the existence of domain-general inhibitory sources. The predicted location of such sources was in the right lateral PFC. We present the two attributes on the right side to match the visualised location of the expected sources. To test the domain-generality of inhibitory sources (attribute 1), we performed univariate and meta-analytic conjunction analysis of the No-Think > Think and Stop > Go contrasts, and cross-task multi-voxel pattern analysis (MVPA). To test the behavioural relevance (attribute 2), we related inhibitory activations within the identified domain-general regions to individual variation in inhibition ability (stop-signal reaction time and suppression-induced forgetting) using behavioural partial-least squares and MVPA. Attributes 3-5 relate to the existence of domain-specific target sites that are dynamically modulated by the domain-general sources. Our a priori assumption was that suppressing actions and thoughts would target M1 and hippocampus, respectively. To test the suppression of function within the target sites (attribute 3) we performed a region of interest (ROI) analysis expecting down-regulation within the target sites, and cross-task MPVA expecting distinct activity patterns across the two task domains. To test whether the prefrontal domain-general sources exert top-down modulation of the target sites (attribute 4) dynamically targeting M1 or the hippocampus depending on the process being stopped (attribute 5), we performed dynamic causal modelling.

1 rVLPFC (especially in BA44/45, pars opercularis), rDLPFC, 16
 2 and anterior insula (Aron et al., 2004; Guo et al., 2018; 17
 3 Jahanshahi et al., 2015; Levy & Wagner, 2011; Rae et al., 18
 4 2014; Zhang et al., 2017). Disrupting rVLPFC impairs 19
 5 motor inhibition, whether via lesions (Aron et al., 2003), 20
 6 transcranial magnetic stimulation (Chambers et al., 2006), 21
 7 intracranial stimulation in humans (Wessel et al., 2013) or 22
 8 monkeys (Sasaki et al., 1989). rVLPFC thus could promote 23
 9 top-down inhibitory control over actions, and possibly in- 24
 10 hibitory control more broadly (Aron, 2007; Aron et al., 25
 11 2004; Castiglione et al., 2019). Within-subjects compar- 26
 12 isions have identified shared activations in rDLPFC (BA 27
 13 9/46) that could support a domain-general mechanism 28
 14 that stops both actions and thoughts (Depue et al., 2016). 29
 15 If these rLPFC regions support domain-general in-

hibitory control, the question arises as to how inhibition is directed at actions or thoughts. To address this issue, we tested whether any regions within the rLPFC had the dynamic targeting capacity needed to support domain-general inhibitory control. Dynamic targeting requires that a candidate inhibitory control system exhibit five core attributes (see Figure 1). First, stopping in diverse domains should engage the proposed source of control, with activation patterns within this region transcending the specific demands of each stopping type. As a consequence, activation patterns during any one form of stopping should contain information shared with inhibition in other domains. Second, the engagement of the proposed prefrontal source should track indices of inhibitory control in diverse domains, demonstrating its behavioural relevance. Third,

1 stopping-related activity in the prefrontal sources should 59
2 co-occur with interrupted functioning in domain-specific 60
3 target sites representing thoughts or actions. Fourth, the 61
4 prefrontal source should exert top-down inhibitory cou- 62
5 pling with these target sites, providing the causal basis of 63
6 their targeted suppression. Finally, dynamic targeting re- 64
7 quires that inhibitory coupling between prefrontal source 65
8 and domain-specific target regions be selective to current 66
9 goals. 67

10 These attributes of dynamic targeting remain unproven, 68
11 despite the fundamental importance of inhibitory control. 69
12 Research on response inhibition and thought suppression 70
13 instead has focused on how the prefrontal cortex con- 71
14 tributes to stopping within each domain (Anderson et al., 72
15 2016; Jana et al., 2020; Schall et al., 2017; Wiecki & 73
16 Frank, 2013). For example, research on thought suppres- 74
17 sion has revealed top-down inhibitory coupling from the 75
18 rDLPFC to the hippocampus, and to several cortical regions 76
19 representing specific mnemonic content (Benoit & Ander- 77
20 son, 2012; Benoit et al., 2015; Gagnepain et al., 2014; 78
21 Gagnepain et al., 2017; Mary et al., 2020; Schmitz et al., 79
22 2017). Moreover, suppressing thoughts down-regulates 80
23 hippocampal activity, with the down-regulation linked 81
24 to hippocampal GABA and forgetting of the suppressed 82
25 content (Schmitz et al., 2017). Top-down modulation of 83
26 actions by rVLPFC suggests that premotor and primary mo- 84
27 tor cortex are target sites (Aron & Poldrack, 2006; Rae et 85
28 al., 2015; Zandbelt et al., 2013). Action stopping engages 86
29 local intracortical inhibition within M1 to achieve stop- 87
30 ping (Coxon et al., 2006; Sohn et al., 2002; Stinear et al., 88
31 2009; van den Wildenberg et al., 2010), with a person's 89
32 stopping efficacy related to local GABAergic inhibition (He 90
33 et al., 2019). However, studies of thought suppression and 91
34 action stopping posit that control originates from different 92
35 prefrontal regions (rDLPFC vs rVLPFC), possibly reflecting 93
36 domain-specific inhibitory control mechanisms. A can- 94
37 didate source of domain-general inhibitory control must 95
38 stop both actions and thoughts and exhibit the attributes 96
39 of dynamic targeting. 97

40 Although dynamic inhibitory targeting has not been 98
41 tested, some large-scale networks flexibly shift their cou- 99
42 pling with diverse brain regions that support task per- 100
43 formance. Diverse tasks engage a fronto-parietal net- 101
44 work (Cole et al., 2013; Cole & Schneider, 2007; Duncan, 102
45 2010; Fox et al., 2005), which exhibits greater cross-task 103
46 variability in coupling with other regions than other net- 104
47 works (Cocuzza et al., 2020; Cole et al., 2013). Variable 105
48 connectivity may index this network's ability to recon- 106
49 figure flexibly and coordinate multiple task elements in 107
50 the interests of cognitive control (Cole et al., 2013). A 108
51 cingulo-opercular network, including aspects of rDLPFC 109
52 and rVLPFC, also is tied to cognitive control, including 110
53 conflict and attentional processing (Botvinick, 2007; Cole 111
54 et al., 2009; Crittenden et al., 2016; Dosenbach et al., 112
55 2006; Petersen & Posner, 2012; Seeley et al., 2007; Yeo et 113
56 al., 2015), with the prefrontal components exhibiting high 114
57 connectivity variability over differing tasks (Cocuzza et al., 115
58 2020). However, previous analyses of these networks do 116

not address dynamic inhibitory targeting: Dynamic targeting requires not merely that the prefrontal cortex exhibits connectivity to multiple regions, but that the connectivity includes a top-down component that suppresses target regions.

We sought to test the presence of dynamic targeting through the properties of prefrontal, motor and hippocampal networks (see Figure 1 for an overview of our approach). We combined, within one fMRI session, a cognitive manipulation to suppress unwanted thoughts, the Think/No-Think paradigm (Anderson & Green, 2001; Anderson & Hulbert, 2021), with motor action stopping in a stop-signal task (Logan & Cowan, 1984; Verbruggen et al., 2019). This design provided the opportunity to identify co-localized activations of domain-general inhibitory control in prefrontal sources and observe their changes in effective connectivity with motor cortical and hippocampal targets. For the thought suppression task, prior to scanning, participants learned word pairs, each composed of a reminder and a paired thought (Figure 2). During thought stopping scanning blocks, on each trial, participants viewed one of these reminders. For each reminder, we cued participants either to retrieve its associated thought (Think trials) or instead to suppress its retrieval, stopping the thought from coming to mind (No-Think trials). For the action stopping task, prior to scanning, participants were trained to press one of two buttons in response to differently coloured circles (Schmitz et al., 2017). During the action stopping scanning blocks, participants engaged in a speeded motor response task that, on a minority of trials, required them to stop their key-press following an auditory stop signal. Action and thought stopping blocks alternated, to enable quantification of domain-general and domain-specific activity and connectivity.

The dynamic targeting hypothesis predicts that stopping actions and thoughts call upon a common inhibition mechanism. For thought suppression, we predicted that the reminder would activate the associated thought, triggering inhibitory control to suppress hippocampal retrieval (Anderson et al., 2004; Levy & Anderson, 2012). We predicted that this disruption would hinder later retrieval of the thought, causing suppression-induced forgetting. To verify this, we tested all pairs (both Think and No-Think pairs) after scanning, including a group of pairs that had been learned, but that were omitted during the Think/No-Think task, to estimate baseline memory performance (Baseline pairs). Suppression-induced forgetting occurs when final recall of No-Think items is lower than Baseline items (Anderson & Green, 2001). For action stopping, we proposed that the Go stimulus would rapidly initiate action preparation, with the presentation of the stop signal triggering inhibitory control to suppress motor processes in M1 (Logan & Cowan, 1984; Verbruggen et al., 2019). If the capacities to stop actions and thoughts are related, more efficient action stopping, as measured by stop-signal reaction time, should correlate with greater suppression-induced forgetting.

Our primary goal was to determine whether any pre-

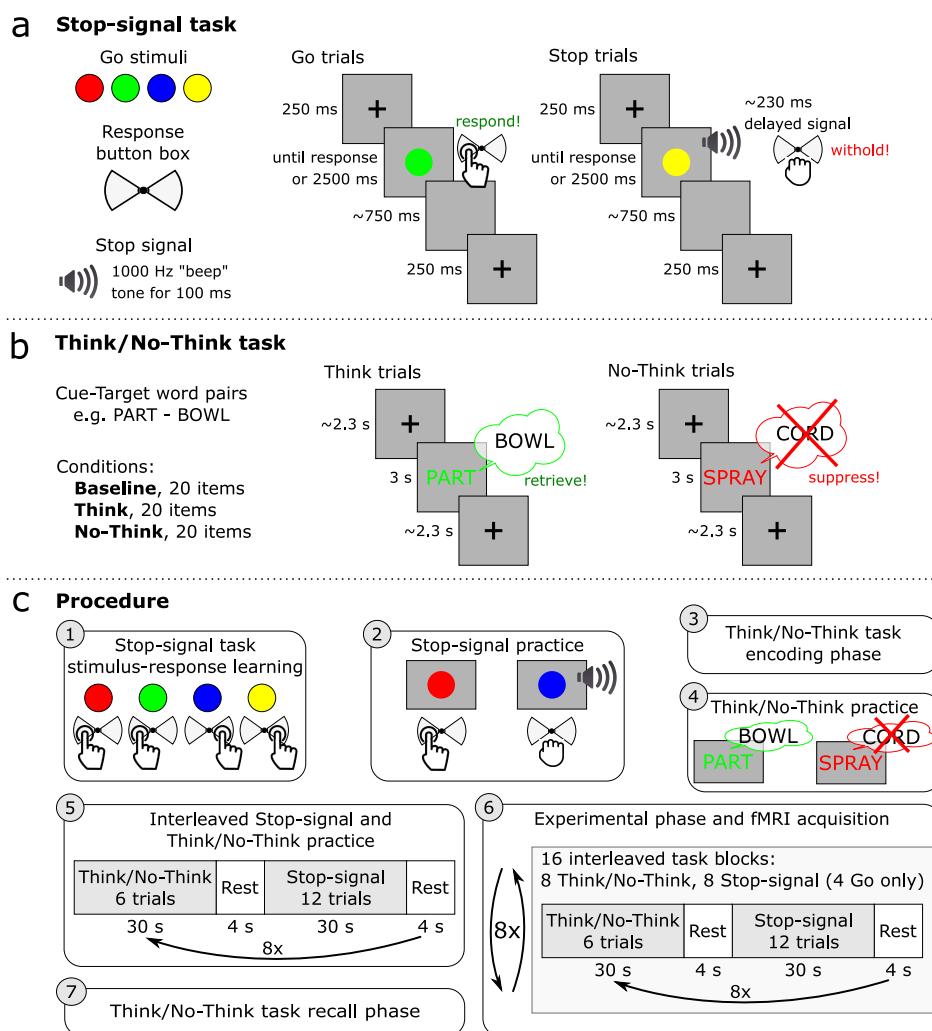


Figure 2. Schematic of the experimental paradigm and procedure. (a) In the Stop-signal task, the Go stimuli were red, green, blue, and yellow coloured circles. On Go trials, participants responded by pressing one of the two buttons on a button box according to learned stimulus-response associations. On Stop trials, shortly after the Go stimulus, an auditory "beep" tone would signal participants to withhold the button press. The stop-signal delay varied dynamically in 50 ms steps to achieve approximately a 50% success-to-stop rate for each participant. (b) In the Think/No-Think task, participants learned 78 cue-target word pair associations. Sixty of the word pairs were then divided into three lists composed of 20 items each and allocated to the three experimental conditions: Think, No-Think, and Baseline. During Think trials, a cue word appeared in green, and participants had 3 s to retrieve and think of the associated target word. On No-Think trials, a cue word appeared in red and participants were asked to suppress the retrieval of the associated target word and push it out of awareness if it popped into their mind. (c) The procedure consisted of 7 steps: 1) stimulus-response learning for the Stop-signal task; 2) Stop-signal task practice; 3) encoding phase of the Think/No-Think task; 4) Think/No-Think practice; 5) practice of interleaved Stop-signal and Think/No-Think tasks; 6) the main experimental phase during fMRI acquisition where participants performed interleaved 30 s blocks of Stop-signal and Think/No-Think tasks; 7) recall phase of the Think/No-Think task.

frontal source region meets the five core attributes for dynamic targeting of inhibitory control. To test this, we first identified candidate regions that could serve as sources of control. We isolated prefrontal regions that were more active during action and thought stopping, compared to their respective control conditions (e.g. "Go" trials, wherein participants made the cued action; or Think trials, wherein they retrieved the cued thought) and then performed a within-subjects conjunction analysis on these activations. We performed a parallel conjunction analysis on independent data from two quantitative meta-analyses of fMRI studies that used the Stop-signal or the Think/No-Think tasks, to confirm the generality of the regions identified. We next tested whether activation patterns within these

potential source regions transcended the particular stopping domains. We used multi-voxel activation patterns to train a classifier to discriminate stopping from going in one modality (e.g., action stopping), to test whether it could identify stopping in the other modality (e.g. thought suppression). Finally, to examine behavioural relevance, we related inhibitory activations within these meta-analytic conjunction areas to individual variation in inhibition ability (e.g., suppression-induced forgetting and stop-signal reaction time) using behavioural partial least squares and multi-voxel pattern analysis. Any regions surviving these constraints was considered a strong candidate for a hub of inhibitory control. We hypothesized that these analyses would identify the right anterior DLPFC (Anderson & Hul-

1 bert, 2021; Benoit & Anderson, 2012; Depue et al., 2016;
2 Guo et al., 2018), and right VLPFC (Aron et al., 2004;
3 Levy & Wagner, 2011).

4 To verify that inhibitory control targets goal-relevant
5 brain regions, we next confirmed that *a priori* target sites
6 are suppressed in a goal-specific manner. Specifically, stop-
7 ping retrieval should down-regulate hippocampal activity
8 (Anderson et al., 2004; Benoit & Anderson, 2012; Depue
9 et al., 2007; Gagnepain et al., 2014; Gagnepain et al.,
10 2017; Levy & Anderson, 2012; Mary et al., 2020), more
11 than does action stopping. In contrast, stopping actions
12 should inhibit motor cortex more than does thought stop-
13 ping (Schmitz et al., 2017). To determine whether these
14 differences in modulation arise from inhibitory targeting
15 by our putative domain-general prefrontal control regions,
16 we used dynamic causal modelling (Friston et al., 2003).
17 If both DLPFC and VLPFC are involved, as prior work sug-
18 gests, we sought to evaluate whether one or both of these
19 regions are critical sources of inhibitory control.

20 Results

21 The ability to inhibit unwanted thoughts is related to 22 action stopping efficiency

23 We first tested whether action stopping efficiency was
24 associated to successful thought suppression. To quan-
25 tify action stopping efficiency, we computed stop-signal
26 reaction times (SSRTs) using the consensus standard inte-
27 gration method (Verbruggen et al., 2019). We confirmed
28 that the probability of responding to Stop trials ($M = 0.49$,
29 $SD = 0.07$; ranging from 0.36 to 0.69) fell within
30 the recommended range for reliable estimation of SSRTs
31 (Verbruggen et al., 2019), and that the probability of Go
32 omissions ($M = 0.002$, $SD = 0.01$) and choice errors on
33 Go trials ($M = 0.04$, $SD = 0.02$) were low. We next veri-
34 fied that the correct Go RT ($M = 600.91$ ms, $SD = 54.63$
35 ms) exceeded the failed Stop RT ($M = 556.92$ ms, $SD =$
36 56.77) in all but one participant (9 ms difference between
37 the failed Stop RT and correct Go RT; including this par-
38 ticipant makes little difference to any analysis, so they
39 were not excluded). Given that the integration method
40 requirements were met, the average SSRT, our measure of
41 interest, was 348.34 ms ($SD = 51.25$ ms), with an average
42 SSD of 230 ms ($SD = 35.68$ ms).

43 We next verified that our Think/No-Think task had in-
44 duced forgetting of suppressed items. We compared final
100 recall of No-Think items to that of Baseline items that
45 had neither been suppressed nor retrieved (see Meth-
101 od). Consistent with a previous analysis of these data
46 (Schmitz et al., 2017) and with prior findings (Anderson
102 & Green, 2001; Anderson & Huddleston, 2012; Ander-
103 son et al., 2004; Levy & Anderson, 2012), suppressing
104 retrieval impaired No-Think recall ($M = 72\%$, $SD = 9\%$)
105 relative to Baseline recall ($M = 77\%$, $SD = 9\%$), yielding
106 a suppression-induced forgetting (SIF) effect (Baseline –
107 No-Think = 5%, $SD = 9\%$, one-tailed $t_{23} = 2.55$, $p =$
108 0.009, $d = 0.521$). Thus, suppressing retrieval yielded the
109 predicted inhibitory aftereffects on unwanted thoughts.

110 To test the relationship between thought suppression
111 and action stopping, we calculated a SIF score for each
112 participant by subtracting No-Think from Baseline recall
113 performance (Baseline – No-Think). This metric indexes
114 the efficiency with which each participant could down-
115 regulate later accessibility of suppressed items, an afteref-
116 fect of suppression believed to be sensitive to inhibitory
117 control (Anderson & Green, 2001). We then correlated the
118 SSRT and SIF scores (excluding one bi-variate outlier; see
119 Methods). Consistent with a potential shared inhibition
120 process, better action stopping efficiency (faster SSRTs)
121 was associated with greater SIF ($r_{ss} = -0.492$, $p = 0.014$,
122 see Figure 4a; A detailed report of behavioural results is
123 available in the supplementary analysis notebook).

124 Although we quantified SSRT with the integration
125 method, this method may, at times, overestimate SSRTs
126 because it does not consider times when participants fail
127 to trigger the stopping process, known as trigger failures
128 (Matzke et al., 2017). Trigger failures may arise, for exam-
129 ple, when a participant is inattentive and misses a stop sig-
130 nal. We recomputed SSRTs using a method that estimates
131 trigger failure rate and that corrects SSRTs for these events
132 (Matzke et al., 2017; Matzke et al., 2013). This method
133 yielded shorter SSRTs ($M = 278.84$ ms, $SD = 41.13$ ms)
134 than the integration method ($M = 348.34$ ms), but did
135 not alter the relationship between stopping efficiency and
136 SIF ($r = -0.383$, $p = 0.065$), which remained similar to
137 the relationship observed with integration method ($r_{ss} =$
138 -0.492 , $p = 0.014$). This alternate SSRT measure also
139 did not qualitatively alter brain-behaviour relationships
140 reported throughout. These findings suggest that atten-
141 tional factors that generate trigger failures are unlikely
142 to explain the relationship between thought and action
143 inhibition.

144 Stopping actions and memories engages both right 145 DLPFC and VLPFC

146 We next isolated brain regions that could provide a source
147 of inhibitory control over action and thought. The whole-
148 brain voxel-wise conjunction analysis of the Stop > Go
149 and the No-Think > Think contrasts revealed that both mo-
150 tor and thought inhibition evoked conjoint activations in
151 the right prefrontal cortex (PFC), specifically, the rDLPFC
152 (middle frontal and superior frontal gyri), rVLPFC (ventral
153 aspects of inferior frontal gyrus, including BA44/45, ex-
154 tends into insula), precentral gyrus, and supplementary
155 motor area (see Table 1a and Figure 3). These findings
156 suggest a role of the right PFC in multiple domains of
157 inhibitory control (Aron et al., 2004; Depue et al., 2016;
158 Garavan et al., 1999), a key attribute necessary to establish
159 dynamic targeting.

160 The observation that rDLPFC contributes to inhibitory
161 control might seem surprising, given the published em-
162 phasis on the rVLPFC in motor inhibition studies (Aron
163 et al., 2004, 2014). It could be that rDLPFC activation
164 arises from the need to alternate between the Stop-signal
165 and Think/No-Think tasks, or from carryover effects be-
166 tween tasks. We therefore compared the activations ob-

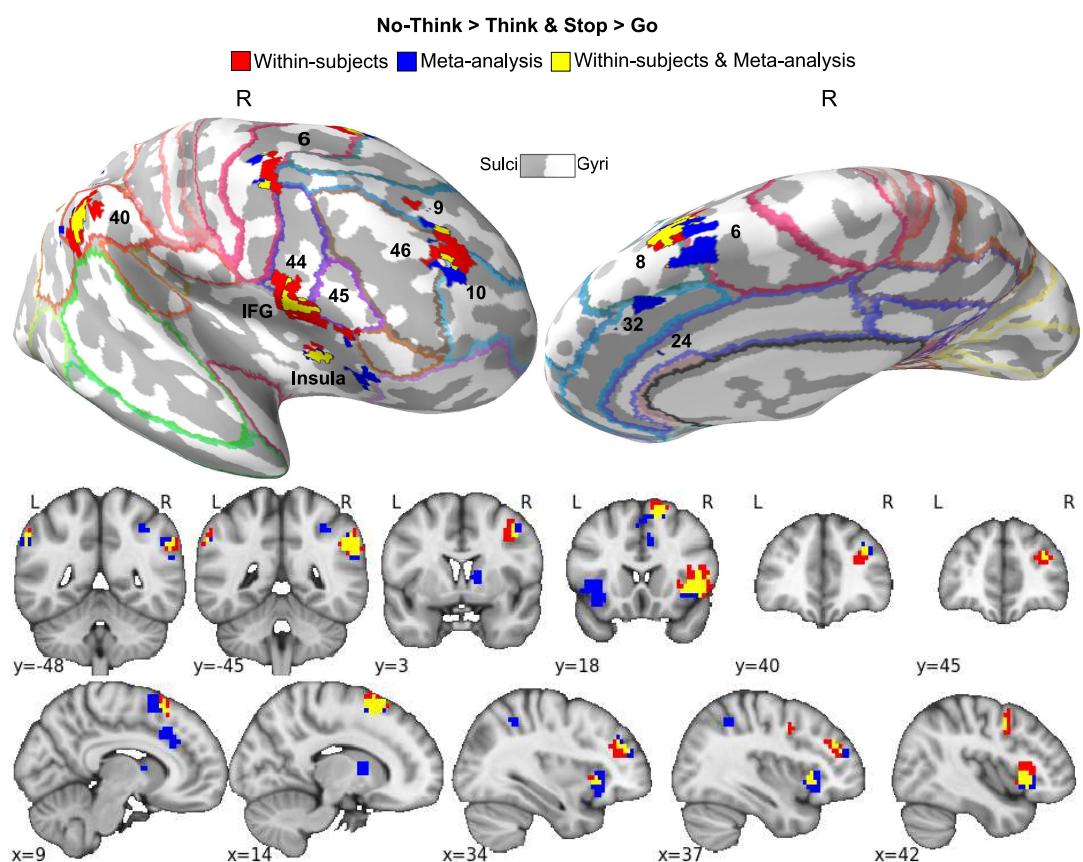


Figure 3. Domain-general inhibition-induced activations. Red: within-subjects ($N = 24$) conjunction of the Stop > Go and the No-Think > Think contrasts thresholded at $p < 0.05$ FDR corrected for whole-brain multiple comparisons. Blue: meta-analytic conjunction of Stop > Go and the No-Think > Think contrasts from independent 40 Stop-signal and 16 Think/No-Think studies. Yellow: overlap of the within-subjects and meta-analytic conjunctions. Results are displayed on an inflated MNI-152 surface with outlined and numbered Brodmann areas (top panel), as well as on MNI-152 volume slices (bottom panel). The brain images were generated using FreeSurfer software (<http://surfer.nmr.mgh.harvard.edu>), and PySurfer (<https://pysurfer.github.io>) and Nilearn (<https://nilearn.github.io>) Python (Python Software Foundation, DE, USA) packages.

served in our within-subjects conjunction analysis to a 24 meta-analytic conjunction analysis of independent Stop- 25 signal ($N = 40$) and Think/No-Think ($N = 16$) studies 26 (see Methods) conducted in many different laboratories 27 with different variations on the two procedures (see Guo 28 et al., 2018) for an earlier version with fewer studies). 29 The meta-analytic conjunction results were highly simi- 30 lar to our within-subjects results, with conjoint clusters 31 in matched regions of DLPFC, VLPFC (BA44/45, extend- 32 ing into insula), right anterior cingulate cortex, and right 33 basal ganglia (see Table 1b&c and Figure 3). Notably, in 34 both the within-subjects and meta-analytic conjunctions, 35 the domain-general activation in rDLPFC did not spread 36 throughout the entire right middle frontal gyrus but was 37 confined to the anterior portion of the rDLPFC, spanning 38 BA9/46 and BA10. The convergence of these conjunc- 39 tion analyses suggests that the involvement of the rDLPFC, 40 and our findings of conjoint activations across the two 41 inhibitory domains more broadly, do not arise from the 42 specific procedures of the inhibition tasks or to carryover 43 effects arising from our within-subjects design; rather, they 44 indicate a pattern that converges across laboratories and 45 different experimental procedures. 46

The domain-general stopping activations included areas outside of the prefrontal cortex (see Table 1a and Figure 3). We characterised these activations in relation to large-scale brain networks, using a publicly available Cole-Anticevic brain-wide network partition (CAB-NP) (Ji et al., 2019). We used the Connectome Workbench software (Marcus et al., 2011) to overlay our activations over the CAB-NP to estimate the parcel and network locations of our clusters. Domain-general clusters primarily were located in the Cingulo-Opercular (CON) and Frontoparietal (FPN) networks (86% of parcels fell within these two networks in the within-subjects conjunction), but also included Posterior-Multimodal and Language networks parcels (see Table S1 and Figure S1). Of the 21 cortical parcels identified for the within-subjects conjunction (see Table S1), the majority (57%) participated in the CON, whereas 29% were involved in the FPN; the independent meta-analysis yielded similar findings (56% vs 30%; see Table S2 and Figure S2). Our main right prefrontal regions both fea- 47 tured parcels from the CON; however, whereas rDLPFC was located solely in the CON (in both the within-subjects and meta-analytic conjunctions), the rVLPFC region also included parcels from the FPN.

Table 1. Within-subjects and meta-analysis domain-general inhibition-induced activations (Stop > Go & No-Think > Think)

Nr.	Hemisphere	Region	~BA	Network	MNI of the peak			Volume (mm ³)
					x	y	z	
<i>a. Within-subjects, Stop > Go & No-Think > Think</i>								
1	Right	Inferior frontal gyrus (VLPFC) Insula	44, 45	CON, FPN	45	18	8	5366
2	Right	Inferior parietal lobule	40	CON, FPN, PMM	63	-42	41	3611
3	Right	Supplementary motor area	6, 8	CON, FPN, LAN	15	18	64	2498
4	Right	Middle frontal gyrus (DLPFC) Superior frontal gyrus (DLPFC)	9, 10, 46	CON	33	42	23	1654
5	Right	Precentral gyrus	6	CON, FPN, LAN	42	3	41	945
6	Left	Inferior parietal lobule	40	CON, FPN	-60	-48	41	641
<i>b. Meta-analysis, Stop > Go & No-Think > Think</i>								
1	Right	Inferior frontal gyrus (VLPFC) Insula	44, 45	CON, FPN	36	26	0	4523
2	Right/Left	Supplementary motor area	6, 8	CON, FPN, LAN	14	14	60	3071
3	Left	Inferior frontal gyrus Insula	44, 45	CON, FPN	-44	18	0	2970
4	Right	Inferior parietal lobule	40	CON, FPN, PMM	58	-46	34	2633
5	Right	Anterior cingulate cortex	24, 32	CON, FPN	6	22	38	1620
6	Right	Middle frontal gyrus (DLPFC) Superior frontal gyrus (DLPFC)	9, 10, 46	CON	36	50	22	844
7	Right	Basal ganglia			16	8	8	776
8	Left	Inferior parietal lobule	40	CON, FPN	-60	-50	34	608
9	Right	Precentral gyrus	6	CON, LAN	44	2	46	270
10	Right	Superior parietal lobule	7	FPN, DAN	34	-48	46	176
<i>c. Within-subjects & Meta-analysis, Stop > Go & No-Think > Think</i>								
1	Right	Inferior frontal gyrus (VLPFC) Insula	44, 45	CON, FPN	45	18	8	2666
2	Right	Inferior parietal lobule	40	CON, FPN, PMM	63	-42	38	1620
3	Right	Supplementary motor area	6, 8	CON, FPN, LAN	15	18	64	1418
4	Right	Middle frontal gyrus (DLPFC)	9, 10, 46	CON	33	39	26	338
5	Left	Inferior parietal lobule	40	CON, FPN	-60	-48	41	270
6	Right	Precentral gyrus	6	CON, LAN	42	3	41	135

1 Together, these findings confirm the role of both the
 2 right anterior DLPFC and rVLPFC for both motor and mem-
 3 ory inhibition. Moreover, they show that inhibitory control
 4 recruits a larger network of regions, dominated by the
 5 CON, and to a lesser degree, FPN. These findings suggest
 6 that domain-general inhibitory control may reflect a spe-
 7 cial configuration of the CON that includes elements of the
 8 FPN and other networks. Notably, key regions of the FPN
 9 were absent from all analyses, including the large middle
 10 frontal region often taken as a hallmark of domain-general
 11 cognitive control (Cole et al., 2013; Duncan, 2010).

12 **Right DLPFC and VLPFC support a common process
 13 underlying suppression-induced forgetting and
 14 action stopping efficiency**

15 We next examined whether action inhibition and thought
 16 suppression depend on activity in the putative domain-
 17 general regions identified in our meta-analytic conjunc-
 18 tion analysis. We tested whether activation in the very
 19 same voxels would predict SIF and SSRT. This test used
 20 behavioural PLS analysis (see Methods), excluding one
 21 behavioural bi-variate outlier from this analysis (see Meth-
 22 ods), although the results with the outlier included did
 23 not qualitatively differ.

24 The first latent variable (LV) identified by PLS accounted
 25 for 78% of the covariance between inhibitory control ac-
 26 tivations and behavioural measures of SSRT and SIF. To

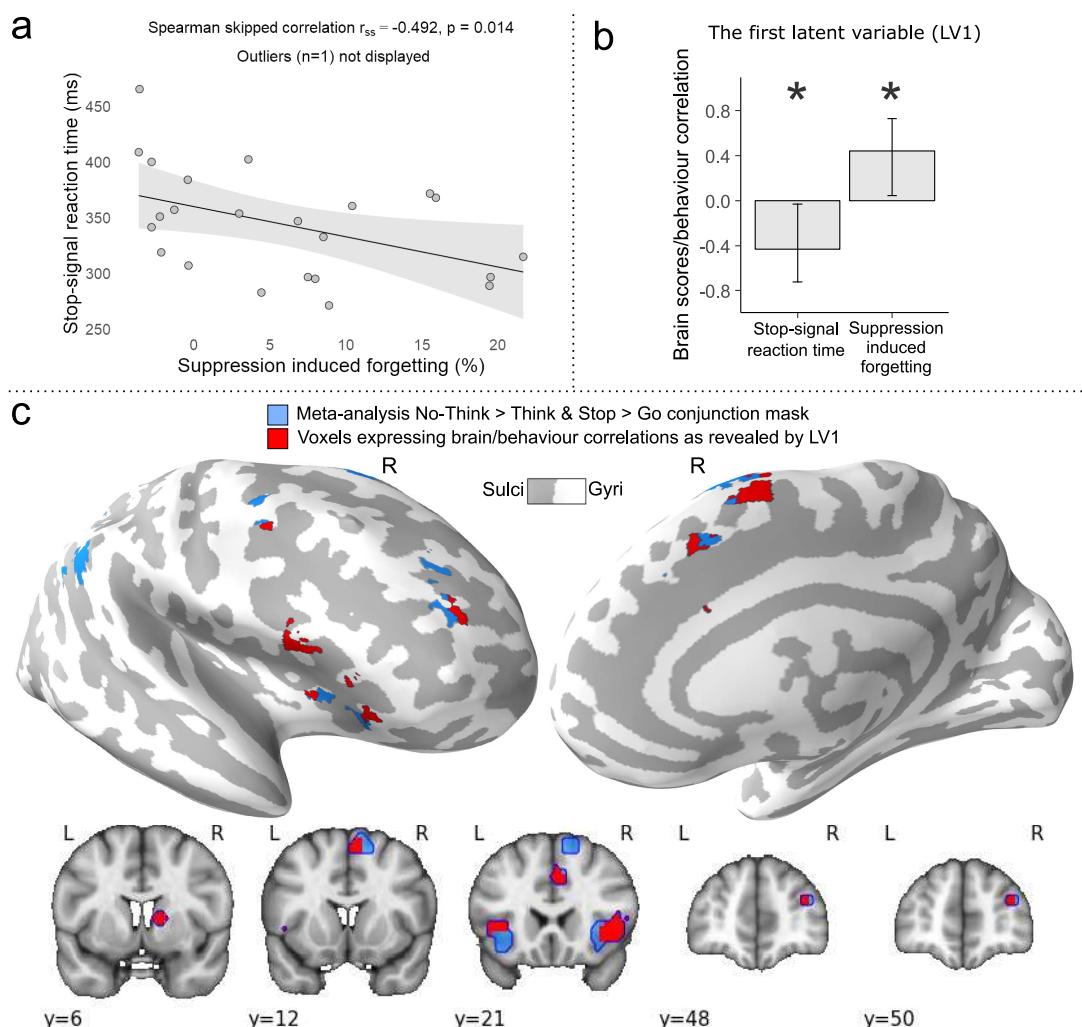


Figure 4. Domain-general behavioural and brain/behaviour relationships. (a) Better action stopping efficiency (shorter stop-signal reaction time) was associated with better inhibitory control over thoughts (percentage of items forgotten for No-Think relative to Baseline conditions at the final recall phase, i.e. suppression-induced forgetting; $r_{ss} = -.492$, $p = .014$). One bivariate outlier is not displayed on the scatterplot. Shading represents 95% CI. (b and c) A behavioural partial least squares (PLS) analysis was conducted to identify brain areas where individual variation in inhibition ability (SSRT and SIF) was related to increased inhibition-induced activity (main effect contrast of inhibition from the within-subject experiment, masked by the meta-analytic conjunction). (b) The first latent variable (LV1) identified voxels showing a significant pattern of brain/behaviour correlations to both SSRT and SIF (error bars indicate bootstrapped 95% CI). (c) The voxel salience map expressing LV1. Blue: meta-analytic conjunction mask. Red: voxels showing a significant pattern of brain/behaviour correlations as revealed by the LV1; thresholded at bootstrapped standard ratio 1.96, corresponding to $p < 0.05$, two-tailed. Results are displayed on an inflated MNI-152 surface (top panel), as well as on MNI-152 volume slices (bottom panel). The brain images were generated using FreeSurfer software (<http://surfer.nmr.mgh.harvard.edu>), and PySurfer (<https://pysurfer.github.io>) and NiLearn (<https://nilearn.github.io>) Python (Python Software Foundation, DE, USA) packages.

1 specify how brain activation relates to those measures, we 15
2 computed voxel saliences and a brain score for each par- 16
3 ticipant (see Methods). A brain score indicates how much 17
4 a participant expresses the multivariate spatial pattern of 18
5 correlation between inhibitory control brain activations 19
6 and behavioural measures of action and memory control 20
7 captured by a LV. Thus, correlations between brain scores 21
8 and behavioural measurements identify the direction and 22
9 the strength of the relationship captured by a LV (i.e., the 23
10 corresponding voxel salience over that LV). Within our 24
11 meta-analytic conjunction regions (see Methods; Table 1b, 25
12 Figure 3 and Figure 4c), participants' brain scores for the 26
13 first LV correlated negatively with SSRT scores ($r = -0.432$, 27
14 [-0.724, -0.030] bootstrapped 95% CI) and positively with 28

SIF scores ($r = 0.441$, [0.044, 0.729] bootstrapped 95% CI; Figure 4b). In other words, for voxels with high positive salience for this LV, a higher BOLD signal for the Inhibit > Respond contrast predicted faster SSRTs (i.e., better action stopping speed) and larger amounts of SIF (i.e., better memory inhibition). Voxels associated with significant positive salience arose across the entire set of domain-general conjunction regions except for the inferior parietal lobules (see Table 2 and Figure 4c). No voxels were associated with a significant negative salience (i.e., the opposite pattern).

These findings support the hypothesis that the stopping-evoked activity identified in our conjunction analyses plays behaviourally important roles both in stopping actions

Table 2. Control network regions showing a significant pattern of brain/behaviour correlations as revealed by the first latent variable of the PLS analysis.

Brain region	~BA	MNI of the peak			Volume (mm ³)	
		x	y	z		
Right	Inferior frontal gyrus (VLPFC) Insula	44, 45	45	21	0	3375
Right	Anterior cingulate cortex	24, 32	6	30	34	1418
Left	Inferior frontal gyrus Insula	44, 45	-33	21	4	1046
Right/Left	Supplementary motor area	6, 8	6	9	64	1013
Right	Basal ganglia		15	3	8	709
Right	Middle frontal gyrus (DLPFC)	10, 46	33	48	19	304
Right	Precentral gyrus	6	42	3	41	68

1 efficiently and in forgetting unwanted thoughts, a key 41
2 attribute necessary to establish dynamic targeting. 42

3 Stopping actions and stopping thoughts 43 4 downregulates domain-specific target areas 44

5 A key attribute of dynamic targeting is that the domain- 45
6 specific target areas are inhibited in response to activity of 46
7 the domain-general source of inhibitory control, when the 47
8 specific task goals require it. For example, inhibiting motor 48
9 responses downregulates activity in M1 (Badry et al., 49
10 2009; Chowdhury et al., 2019; Mattia et al., 2012; Sumi- 50
11 tash et al., 2019; Zandbelt & Vink, 2010), whereas inhibiting 51
12 memory retrieval downregulates activity in the hippocampus 52
13 (Anderson et al., 2016; Anderson & Hanslmayr, 53
14 2014; Anderson et al., 2004; Benoit & Anderson, 2012; 54
15 Benoit et al., 2016; Benoit et al., 2015; Depue et al., 2007; 55
16 Gagnepain et al., 2017; Hu et al., 2017; Levy & Anderson, 56
17 2012; Liu et al., 2016). Previously, we reported both of 57
18 the foregoing patterns in a separate analysis of the current 58
19 data (Schmitz et al., 2017). In the analyses below, we 59
20 reconfirmed these findings using the left M1 and the right 60
21 hippocampus ROIs which we defined specifically for the 61
22 current DCM analyses (see Methods). 62

23 Dynamic targeting predicts a crossover interaction such 63
24 that action stopping suppresses M1 more than it does the 64
25 hippocampus, whereas thought stopping should do the re- 65
26 verse. A repeated-measures analysis of variance (ANOVA) 66
27 confirmed a significant interaction between modulatory 67
28 target regions (M1 vs. hippocampus) and stopping modal- 68
29 ity (stopping actions vs. stopping thoughts) on the BOLD 69
30 signal difference between the respective inhibition and 70
31 non-inhibition conditions in each modality ($F_{1,23} = 42.71$, 71
32 $p < 0.001$; Figure 5a). Whereas stopping motor responses 72
33 (Stop - Go) evoked greater downregulation of the M1 than 73
34 the hippocampus ROI ($t_{23} = 5.89$, $p < 0.001$, $d = 1.202$), 74
35 suppressing thoughts (No-Think - Think) evoked larger 75
36 downregulation of the hippocampus than the M1 ROI ($t_{23} = 76$
37 $= 3.22$, $p = 0.004$, $d = 0.658$). Thus, action stopping 77
38 and thought suppression preferentially modulated the left 78
39 M1 and right hippocampus, respectively. Critically, these 79
40 modulations were not solely produced by up-regulation 80

in the Go or Think conditions, as illustrated by negative BOLD response during Stop ($t_{23} = -3.88$, $p < 0.001$, $d = 0.791$) and No-Think ($t_{23} = -1.84$, $p = 0.04$, $d = 0.375$) conditions (see Figure 5b). Thus, brain regions involved in representing the type of content requiring inhibition for each stopping task showed evidence of interrupted function during stopping, consistent with the requirements of dynamic targeting.

Action and thought stopping share common representations in the right DLPFC and VLPFC, but not in targeted regions

It is possible that despite the shared locus of activation in the rDLPFC and rVLPFC, the pattern of activation across voxels within these regions may fundamentally differ for action and thought stopping, a possibility that cannot be excluded with conventional univariate methods. However, dynamic targeting predicts similarities in the multivariate pattern of inhibitory control activity across voxels in the two tasks. Similarities should arise because of the shared engagement of a modality independent stopping process, even if some differences arise because of the stimulus processing and output pathways uniquely required to be each stopping process. To identify the similarities, we trained a classifier on the difference between Inhibit and Respond conditions in one modality and tested the ability to classify Inhibit and Respond conditions in the other domain. Such cross-modality decoding should not be possible in domain-specific target regions, reflecting their specialised involvement in action or memory stopping.

We performed the classification analysis on the rDLPFC, rVLPFC, right hippocampus, and left M1 ROIs which we defined for our DCM analyses (see Methods). The cross-modality classification revealed that a classifier trained on one modality could discriminate Inhibition from Respond conditions in the other modality significantly above chance (50%) for both rDLPFC ($M = 57\%$, $SD = 10\%$, one-tailed $t_{23} = 3.48$, $p = 0.004$, $d = 0.711$) and rVLPFC ($M = 60\%$, $SD = 12\%$, one-tailed $t_{23} = 3.93$, $p = 0.001$, $d = 0.802$). This cross-task decoding suggests a domain-general inhibitory control process in these regions (see

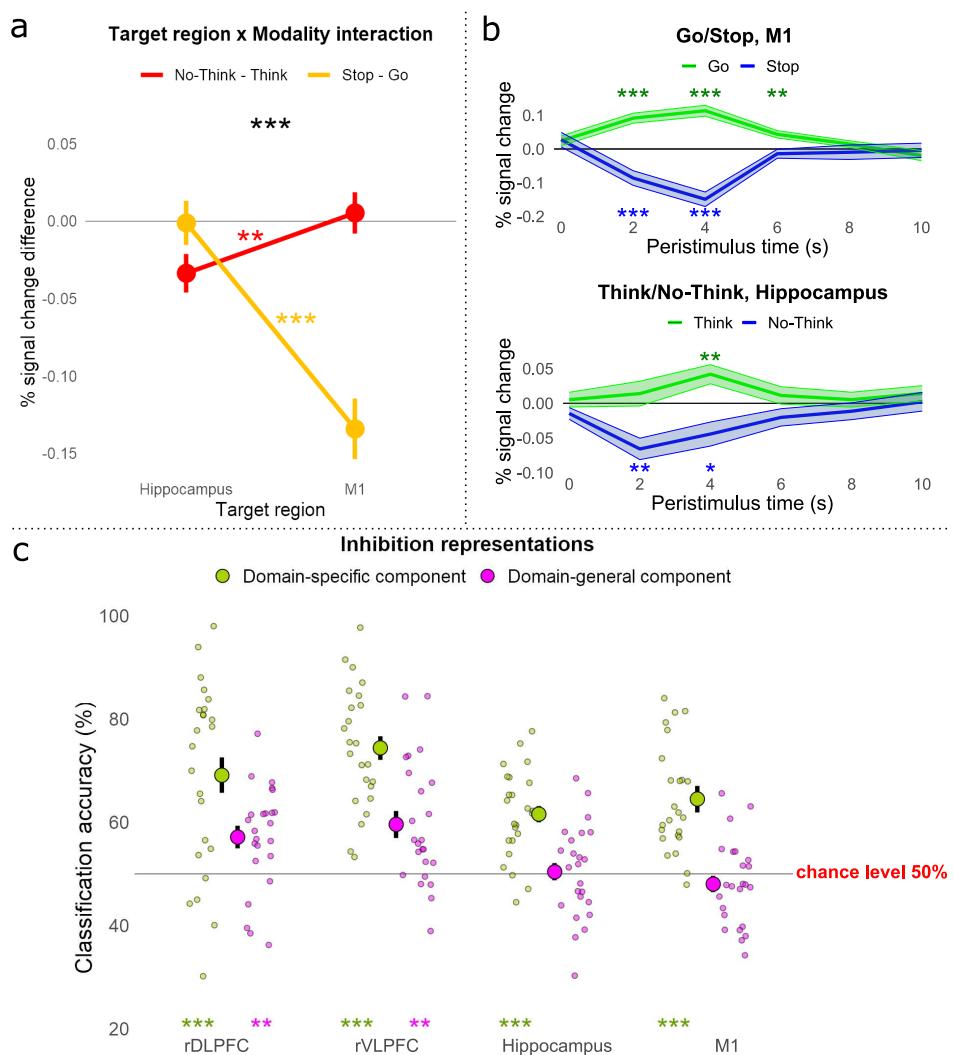


Figure 5. ROI analysis of domain-specific and domain-general modulation during thought and action suppression. *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$. Error bars represent within-subject standard error. (a) Target areas M1 and hippocampus were modulated in a domain-specific manner. We calculated the BOLD signal in each target ROI for each condition by averaging across the time points from 2 to 8 s post-stimulus onset and subtracting out the onset value to account for pretrial variability. Then we subtracted the values of Go from Stop and Think from No-Think and entered them into a region by modality repeated-measures ANOVA. The ANOVA confirmed a significant interaction between modulatory target regions and stopping modality. Stopping actions (in yellow) evoked greater downregulation of M1 than of the hippocampus but suppressing thoughts (in red) evoked greater downregulation of the hippocampus than of M1. (b) The BOLD signal time-course in M1 (top panel) and hippocampus (bottom panel). During inhibition conditions (Stop and No-Think; in blue), the BOLD signal decreased below the baseline, whereas during respond conditions (Go and Think; in green) the BOLD signal increased above the baseline. (c) Using MVPA, we tested whether action and thought inhibition share a common voxel activation pattern within the four ROIs. We performed two types of pattern classification to identify domain-general (cross-task classification; in violet) and domain-specific (between-task classification; in green) components within each ROI. Large circles represent group average classification accuracies, and small circles represent individual participant accuracies.

Figure 5c). We also sought to identify differences in the patterns of activation across tasks by training a classifier to discriminate Stop from No-Think trials (see Methods). We found a significant domain-specific component in both rDLPFC ($M = 69\%$, $SD = 18\%$, one-tailed $t_{23} = 5.09$, $p < 0.001$, $d = 1.039$) and rVLPFC ($M = 74\%$, $SD = 12\%$, $t_{23} = 10.10$, $p < 0.001$, $d = 2.06$).

In contrast to the patterns observed in the prefrontal cortex, we observed no evidence of cross-task decoding in the modality-specific regions targeted by inhibitory control. This pattern arose for both right hippocampus ($M = 50\%$, $SD = 9\%$, one-tailed $t_{23} = 0.23$, $p = 1$, $d = 0.046$)

and also left M1 ($M = 48\%$, $SD = 8\%$, one-tailed $t_{23} = -1.15$, $p = 1$, $d = -0.235$), in which the cross-modality classifier accuracy did not significantly differ from chance performance (see Figure 5c). Nevertheless, these putative target regions responded very differently to the two modalities of inhibitory control, as evidenced by presence of significant domain-specific information in each region. A classifier could reliably distinguish No-Think trials from Stop trials within both the right hippocampus ($M = 62\%$, $SD = 9\%$, $t_{23} = 6.59$, $p < 0.001$, $d = 1.346$) and left M1 ($M = 65\%$, $SD = 10\%$, $t_{23} = 6.85$, $p < 0.001$, $d = 1.399$; see Figure 5c).

Because we z-normalised activation within each of these regions within each task, the ability to distinguish No-Think from Stop trials was not based on differences in overall univariate signal, but instead on information contained in distinct patterns of activity in each task. These findings reinforce the assumption that the hippocampus and M1 are uniquely affected by thought and action stopping respectively, as expected for domain-specific targets of inhibitory control. Taken together, these contrasting findings from the PFC and domain-specific regions are compatible with the view that rDLPFC and rVLPFC jointly contribute to a domain-general stopping process that dynamically targets different regions, depending on the nature of the content to be suppressed.

Adaptive forgetting can be predicted using action stopping representations

Because dynamic targeting posits that LPFC contains domain-general stopping representations, training a classifier to distinguish stopping in one domain should predict stopping behaviour in other domains. For example, the ability of an action stopping classifier to distinguish when people are suppressing thoughts raises the intriguing possibility that it also may identify participants who successfully forget those thoughts. To test this possibility, we capitalised on an active forgetting phenomenon known as the conflict reduction benefit (for a review, see [Anderson and Hulbert, 2021](#)). The conflict-reduction benefit refers to the declining need to expend inhibitory control resources that arises when people repeatedly suppress the same intrusive thoughts. This benefit arises because inhibitory control induces forgetting of inhibited items, which thereafter cause fewer control problems. For example, over repeated inhibition trials, activation in rDLPFC, rVLPFC, and anterior cingulate cortex decline, with larger declines in participants who forget more of the memories they suppressed ([Anderson & Hulbert, 2021](#); [Kuhl et al., 2007](#); [Wimber et al., 2015](#)). If an action stopping classifier detects the inhibition process, two findings related to conflict-reduction benefits should emerge. First, over Think/No-Think task blocks, the action-stopping classifier should discriminate thought suppression less well, with high classification in early blocks that drops as memories are inhibited. Second, this decline should be larger for people showing greater SIF.

We examined how accurately an action stopping classifier distinguishes No-Think from Think conditions for the 8 fMRI runs. The rDLPFC showed a robust linear decline ($F_{7,157} = 11.19$, $p = 0.001$) in classification accuracy from the first ($M = 77\%$) to the eighth ($M = 40\%$) run, consistent with a conflict-reduction benefit (see Figure S4A). The rVLPFC exhibited a marginal linear decline ($F_{1,157} = 3.04$, $p = 0.083$) in classification accuracy from the first ($M = 64\%$) to the eighth ($M = 32\%$) run (see Figure S5A). Critically, for both rDLPFC ($r_{ss} = -0.618$, $p = 0.001$; Figure S4B) and rVLPFC ($r_{ss} = -0.682$, $p < 0.001$; Figure S5B), participants showing greater SIF exhibited a steeper classification accuracy decline. This suggests that adaptive

forgetting had diminished demands on inhibitory control. Consistent with the involvement of inhibition, the decline in classifier performance also was associated to SSRT for both rDLPFC ($r = 0.525$, $p = 0.008$; Figure S4C) and rVLPFC ($r_{ss} = 0.590$, $p = 0.002$; Figure S5C). These findings support the view that suppressing unwanted thoughts engages a domain-general inhibition process indexed by action stopping and suggests that both rDLPFC and rVLPFC support this process.

Right DLPFC and VLPFC dynamically couple with their domain-specific target areas to down-regulate their activity

Although rDLPFC and rVLPFC contribute to action and thought stopping, it remains to be shown whether either or both regions causally modulate target regions during each task, one of the five key attributes of dynamic targeting. On the one hand, rVLPFC alone might show dynamic targeting, exerting inhibitory modulation on the hippocampus or M1 in a task-dependent manner, as emphasized in research on motor response inhibition ([Aron et al., 2004, 2014](#)); rDLPFC may only be involved to maintain the inhibition task set in working memory, possibly exerting a modulatory influence on rVLPFC to achieve this (rVLPFC alone model). On the other hand, rDLPFC alone might show dynamic inhibitory targeting, consistent with the emphasis on the rDLPFC as the primary source of inhibitory control in research on thought suppression ([Anderson & Hanslmayr, 2014](#); [Anderson & Hulbert, 2021](#)); rVLPFC may only be involved when attention is captured by salient stimuli, such as the stop signal or intrusions, possibly exerting a modulatory effect on rDLPFC to upregulate its activity (rDLPFC alone model). A third possibility is that rDLPFC and rVLPFC each contribute to top-down modulation in a content-specific manner, with only rDLPFC modulating the hippocampus during memory control, but only rVLPFC modulating M1 during action stopping. By this independent pathway hypothesis, both structures are pivotal to inhibitory control functions, but only with respect to their special domains, contrary to dynamic targeting. Finally, both rDLPFC and rVLPFC may be involved in dynamic targeting, modulating both hippocampus and M1 in a task-dependent manner; they may interact with one another to support stopping (Parallel modulation hypothesis).

To determine the way that rDLPFC and rVLPFC interact with each other and with the target regions of inhibitory control (M1 and hippocampus) we analysed effective connectivity between regions using dynamic causal modelling (DCM, see Methods). DCM accommodates the polysynaptic mediation of the causal influence that prefrontal regions could exert on activity in the hippocampus and in M1 ([Anderson et al., 2016](#)). DCM is ideally suited to test our hypotheses about which prefrontal regions drive inhibitory interactions, whether these vary by task context, and whether and how those prefrontal regions interact with one another to achieve inhibitory control.

Our model space included a null model with no mod-

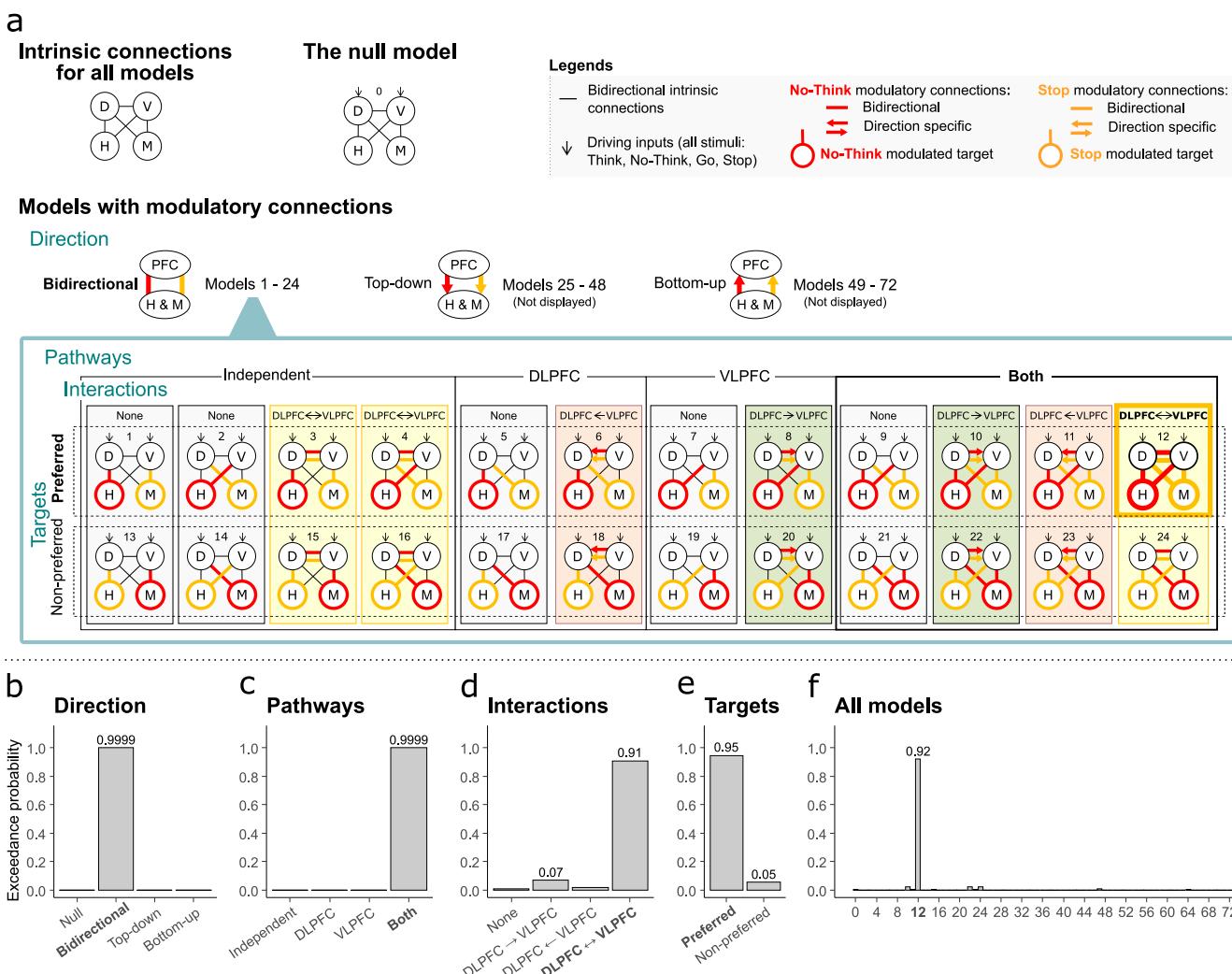


Figure 6. DCM model space and results. (a) DCM analysis determined the most likely inhibition-related interactions between domain-general inhibitory control source areas (D: rDLPFC, V: rVLPFC) and domain-specific target areas (H: right hippocampus, M: left M1). We compared 73 alternative models grouped into four family types. Direction: three families according to whether the source-target modulation is bidirectional, top-down, or bottom-up (we display only the 24 models within the bidirectional family as the further grouping was identical within each of the three families). Pathways: four families differing according to how Stop and No-Think modulate the pathways: independent modulation of target regions by rDLPFC and rVLPFC; rDLPFC only modulation; rVLPFC only modulation; or modulation by both rDLPFC and rVLPFC. Interactions: four families differing according to how Stop and No-Think modulate interactions between the rDLPFC and rVLPFC regions: no interactions; rVLPFC modulates rDLPFC; rDLPFC modulates rVLPFC; or bidirectional interaction between rDLPFC and rVLPFC. Targets: two families differing according to whether Stop and No-Think modulate the prefrontal connectivity with the preferred targets (M1 when stopping actions and hippocampus when stopping thoughts) or with the non-preferred targets (hippocampus when stopping actions and M1 when stopping thoughts). BMS (reporting exceedance probability to which a model is more likely to other models considered) overwhelmingly favoured models with (b) bidirectional source-target modulation; (c) both rDLPFC and rVLPFC modulating both the hippocampus and M1; (d) bidirectional interactions between the rDLPFC and rVLPFC; (e) the preferred target modulation. (f) The overall winning model also was strongly favoured by BMS even when directly assessing all 73 models, side by side, without grouping them into model families.

ulatory connections and 72 distinct modulatory models (see Figure 6a) differing according to whether the source-target modulation was bidirectional, top-down, or bottom-up, whether rDLPFC, rVLPFC or both were sources of modulation, whether rDLPFC and rVLPFC interacted during inhibition tasks, and whether the site on which top-down modulation acted was appropriate to the inhibition task or not. We first compared the null model and models in which the direction of source-target modulation was either bidirectional, top-down, or bottom-up (24 models in each of the three families). The findings from these

connectivity analyses were unambiguous. Bayesian Model Selection (BMS) overwhelmingly favoured models with bidirectional connections between the sources (rDLPFC and rVLPFC) and targets (M1 and hippocampus) with an exceedance probability (EP) of 0.9999. In contrast, the null modulation, top-down, and bottom-up models had EP of 0/0.0001/0, respectively (see Figure 6b). Exceedance probability refers to the extent to which a model is more likely in relation to other models considered. The bidirectional modulation confirms the existence of a top-down (our focus of interest) influence that prefrontal regions

1 exert on activity in the hippocampus and in M1, alongside 59
2 bottom-up modulation. 60

3 We next compared, within the 24 bidirectional models 61 (models 1-24, see Figure 6a), whether either rDLPFC 62 or rVLPFC was the sole dominant top-down source of 63 inhibitory control (rDLPFC only vs rVLPFC only models) to 64 models in which both regions comprised independent mod- 65 ulatory pathways (independent pathways model) or in- 66 stead, contributed cooperatively to achieving top-down in- 67 hibitory control (parallel inhibition model). The BMS over- 68 whelmingly favoured models in which both rDLPFC and 69 rVLPFC contributed to modulating both the hippocampus 70 and M1 with an exceedance probability (EP) of 0.9999; 71 in contrast, Independent Pathways, rDLPFC alone, and 72 rVLPFC alone models had an EP of 0.0001/0/0, respec- 73 tively (see Figure 6c).

74 We next sought to distinguish subfamilies within this 75 parallel model (models 9-12, and 21-24, see Figure 6a) 76 that varied according to whether and how rDLPFC and 77 rVLPFC interacted during inhibition: No-interaction at all 78 between rDLPFC and rVLPFC (none); Unidirectional inter- 79 action from rVLPFC to rDLPFC (unidirectional rVLPFC); 80 Unidirectional interaction from rDLPFC to rVLPFC (unidi- 81 rectional rDLPFC) and bidirectional interaction (rDLPFC 82 and rVLPFC interact with each other). If rDLPFC and 83 rVLPFC work as a functional unit to achieve inhibitory con- 84 trol, one would expect clear evidence that some form of 85 interaction occurs. Consistent with this view, BMS strongly 86 favoured models with bidirectional interactions between 87 the rDLPFC and rVLPFC (EP = 0.91; EP for the none, 88 unidirectional rDLPFC, and unidirectional rVLPFC being 89 0.01/0.07/0.02; see Figure 6d).

90 Next, we tested whether inhibitory control is dynam- 91 ically targeted to the appropriate target structure (e.g., 92 hippocampus or M1), depending on which process needs 93 to be stopped (memory retrieval or action production). Ac- 94 cording to our hypothesis, the rDLPFC and rVLPFC should 95 down-regulate hippocampal activity during thought sup- 96 pression, but should instead modulate M1, during action 97 stopping. To test this dynamic targeting hypothesis, we 98 compared the two remaining models (12 and 24, see 99 Figure 6a) within our winning parallel/bidirectional sub- 100 family. In the “preferred targets” model, rDLPFC and 101 rVLPFC modulated the hippocampus during thought sup- 102 pression, but M1 during action stopping; in the “non- 103 preferred targets” model, these structures modulated 104 content-inappropriate targets (e.g. M1 during thought 105 suppression, but hippocampus during action stopping). 106 BMS strongly favoured the model with preferred (EP = 107 0.95) over the non-preferred (EP = 0.05) target modula- 108 tion (see Figure 6e). Indeed, the overall winning model 109 also was strongly favoured by BMS even when directly 110 assessing all 73 models, side by side, without grouping 111 them into model families and subfamilies (BMS = 0.92; 112 see Figure 6f).

113 The preferential modulations of hippocampus or M1, 114 depending on whether thoughts or actions are to be sup- 115 pressed, confirm our key hypothesis that top-down mod- 116

ulation by rDLPFC and rVLPFC is dynamically targeted 117 depending on participants’ task goals. Together, the re- 118 sults of the DCM analysis suggest that, when inhibiting a 119 prepotent response, the domain-general inhibitory control 120 regions, rDLPFC and rVLPFC, interact with each other and 121 are both selectively coupled with M1 when stopping ac- 122 tions and selectively coupled with the hippocampus when 123 stopping thoughts.

Discussion

The current findings identify two regions within the right LPFC that possess a dynamic targeting capability supporting the inhibition of both unwanted motor actions and thoughts: anterior rDLPFC and rVLPFC. These regions exhibited the five attributes needed to infer dynamic targeting. Both are engaged by diverse domains of inhibitory control, a finding supported not only by a within-subject conjunction analysis, but also via a meta-analytical conjunction; both show evidence of cross-task decoding, indicating that the representations formed in these regions are sufficiently general so that they recur in highly different stopping domains. Both regions are relevant to individual variation in inhibitory efficiency in both action stopping and thought suppression. Indeed, the multivariate activation pattern for action stopping resembled that for thought suppression enough so that it could be used as a proxy to predict how successfully people had suppressed their thoughts. Both regions are engaged alongside significant down-regulations in domain-specific target regions that we predicted *a priori* likely would require top-down inhibition; and both prefrontal regions show top-down effective connectivity with M1 and hippocampus during action stopping and thought suppression, supporting a causal role in their down-regulation. Critically, effective connectivity from both rDLPFC and rVLPFC to these two target regions dynamically shifted as participants moved between action to thought stopping, as would be required of a domain-general mechanism that can be flexibly targeted to suppress specialised content in multiple domains.

Based on these and related findings, we propose that anterior rDLPFC and rVLPFC constitute key hubs for a domain-general inhibitory control mechanism that can be dynamically targeted at diverse content represented throughout the brain. We focused here on the stopping of simple manual actions and verbal thoughts. Given this approach, this study does not address the breadth of thought content that can be targeted by this mechanism. However, when considered alongside the growing literature on retrieval suppression, the breadth of content is considerable. For example, the anterior rDLPFC and rVLPFC regions identified in the meta-analytic conjunction have been observed during the suppression of a range of stimuli, including words (Anderson et al., 2004; Benoit & Anderson, 2012; Levy & Anderson, 2012), visual objects (Gagnepain et al., 2014; Mary et al., 2020), neutral and aversive scenes (Benoit et al., 2015; Depue et al., 2007; Gagnepain et al., 2017; Liu et al., 2016) and person-specific fears about the future (Benoit et al., 2016). In addition,

1 during retrieval suppression, these frontal regions exert 59
2 top-down inhibitory modulation not only of the hippocam- 60
3 pus (Anderson et al., 2016; Levy & Anderson, 2012), but 61
4 also of other domain-specific content regions, including 62
5 areas involved in representing visual objects (Gagnepain 63
6 et al., 2014; Mary et al., 2020), places (Benoit et al., 64
7 2015; Gagnepain et al., 2017), and also emotional content 65
8 in the amygdala (Depue et al., 2007; Gagnepain et al., 66
9 2017). Content-specific modulations are triggered espe- 67
10 cially when these types of content intrude into awareness 68
11 in response to a cue and need to be purged (Gagnepain 69
12 et al., 2017), indicating that inhibition can be dynamically 70
13 targeted to diverse cortical sites to meet control demands. 71
14 The current findings broaden the scope of this mecha- 72
15 nism further by showing that it is not limited to stopping 73
16 retrieval processes, but also extends to stopping the prepa- 74
17 ration and execution of motor responses, consistent with a 75
18 broad mechanism involved in self-control over action and 76
19 thought. 77

20 We considered the possibility that one of these two 78
21 prefrontal regions is central to implementing top-down 79
22 inhibitory control, with the other providing upstream in- 80
23 puts essential to initiate successful inhibitory control. Our 81
24 effective connectivity analysis probed alternative hypoth- 82
25 eses about the way rDLPFC and rVLPFC interact during 83
26 inhibitory control. RDLPFC might implement the true in- 84
27 inhibitory signal, receiving salience detection input from 85
28 rVLPFC that up-regulates rDLPFC function. Alternatively, 86
29 rVLPFC may implement inhibition, with rDLPFC preserving 87
30 task set by sending driving inputs to the rVLPFC. Our 88
31 findings indicate that both structures contributed in parallel to 89
32 top-down inhibitory control and interacted bidirectionally 90
33 during both action and thought stopping. Little evidence 91
34 suggested a strong asymmetry in how rDLPFC and rVLPFC 92
35 interacted, as should arise if one region simply served a 93
36 role in salience detection or task-set maintenance. These 94
37 findings suggest that rDLPFC and rVLPFC act together to 95
38 implement top-down inhibitory control. Although it might 96
39 seem surprising that two spatially segregated prefrontal 97
40 regions would act in concert to achieve this function, it 98
41 seems less unusual considering their potential role in the 99
42 Cingulo-Opercular network (CON). The majority of the 100
43 regions identified in our inhibition conjunction analysis 101
44 participate in this network, suggesting that it may play 102
45 an important role in achieving inhibitory control. Given 103
46 the strong integrated activity of this network, elements 104
47 of which are distributed throughout the brain (Cocuzza 105
48 et al., 2020; Cole et al., 2013), this suggests future work 106
49 should examine how rDLPFC and rVLPFC work together 107
50 with other elements of this network to achieve successful 108
51 inhibitory control. 109

52 The current proposal contrasts with models that empha- 110
53 sise the primacy of either rVLPFC or rDLPFC in inhibitory 111
54 control, and which have not addressed dynamic targeting 112
55 to diverse content. Research on motor inhibition has em- 113
56 phasised the rVLPFC as the source of top-down inhibitory 114
57 control (Aron et al., 2004, 2014), although without evi- 115
58 dence to exclude the role of rDLPFC. Indeed, studies cited 116

as favouring the selective role of rVLPFC often support contributions of the anterior rDLPFC structure identified here. For example, whereas intracranial stimulation in primates establishes the causal necessity of the rVLPFC in motor stopping, so too does stimulation of the dorsal bank of the principal sulcus, the putative monkey homologue of the rDLPFC in humans (Sasaki et al., 1989); and whereas intracranial recordings in humans show stopping-related activity in rVLPFC, they also reveal it in anterior rDLPFC and often prior to rVLPFC (Swann et al., 2013). Research on thought suppression has emphasised the rDLPFC as the source of top-down inhibitory control (Anderson et al., 2016; Anderson & Hanslmayr, 2014; Anderson et al., 2004); but most studies supporting the role of rDLPFC in thought suppression also reveal activations in the rVLPFC (Guo et al., 2018). Indeed, as our within-subjects and meta-analytic conjunctions unambiguously confirm, both regions are recruited during both inhibitory control tasks. The current study goes further than establishing conjoint activation: Pattern classification and connectivity analyses show the involvement of both regions in the dynamics of control, without selectivity. These findings validate the importance of both regions, establish the domain-generality of their influence, and demonstrate the dynamic inhibitory targeting capacity necessary to infer a flexible control mechanism.

The present findings highlight a potentially important difference between the brain networks involved in inhibitory control and other forms of cognitive control that do not require the inhibition of a motor or cognitive process. Maintaining rules in working memory, implementing task sets, performing multi-tasking, and manipulating information actively are all clear cases of cognitive control that can require interference resolution, but do not necessarily entail active stopping. The above tasks engage the widely discussed fronto-parietal network (FPN), often assigned a central role in implementing cognitive control more broadly (Cole et al., 2013; Cole & Schneider, 2007; Duncan, 2010; Fox et al., 2005). One might assume that because inhibitory control is a form of cognitive control that the FPN would be central to it as well. Nevertheless, the FPN, though involved in our tasks, appeared less prominent than the CON, which accounted for the majority of distinct cortical parcels participating in our domain-general inhibition regions. We found little evidence for involvement of major areas of the FPN, including much of the middle frontal gyrus bilaterally in our multimodal inhibition regions. As our meta-analysis and within-subjects comparisons confirm, inhibitory control is strongly right lateralised, which also is not a feature emphasised in research on the FPN. Our findings raise the possibility that stopping actions and thoughts may rely on a distinct network, with different functional characteristics to the FPN.

Dynamic inhibitory targeting provides a neurocognitive framework that can account for both associations and dissociations in the abilities to suppress unwanted thoughts and actions. On the one hand, deficits in both action and

thought stopping should arise with dysfunction in the rDLPFC or rVLPFC, given the common reliance of these abilities on those regions. Such associations occur frequently. In the general population, people scoring highly on self-report measures of impulsivity or compulsivity also report greater difficulty with intrusive thoughts (Gay et al., 2011; Gillan et al., 2016). Clinically, persistent intrusive thoughts and action stopping deficits co-occur in numerous disorders: Obsessive thoughts and compulsive actions in obsessive-compulsive disorder (Fineberg et al., 2018; Gillan et al., 2017); intrusive memories and impaired response inhibition in PTSD (Falconer et al., 2008; Sadeh et al., 2018; Sadeh et al., 2015; van Rooij & Jovanovic, 2019; Wu et al., 2015); persistent worry and impulsivity in anxiety disorders (Berg et al., 2015) and intrusive thoughts and compulsivity in addiction (Everitt & Robbins, 2016; Kavanagh et al., 2005; May et al., 2015). These co-morbid deficits may reflect dysfunction in the rDLPFC, the rVLPFC or in other shared components of their control pathways. On the other hand, dissociations should arise when dysfunction selectively disrupts a domain-specific pathway linking rLPFC to target sites involved in generating actions and thoughts, including dysfunction to local inhibition at the target site itself. For example, individual variation in local GABAergic inhibition within the hippocampus or M1 predict inhibitory control over memories and actions, respectively, independently of prefrontal function (He et al., 2019; Schmitz et al., 2017). Thus, selective difficulties in action stopping or thought inhibition may arise, given focal deficits in either motor cortical or hippocampal GABA (Schmitz et al., 2017). The separate contributions of domain-general and domain-specific factors to inhibitory control implied by dynamic targeting constrains the utility of motor inhibition as a metric of inhibitory control over thought and may explain the surprisingly small SSRT deficits in major depression and anxiety, relative to attention deficit hyperactivity disorder or obsessive-compulsive disorder (Lipszyc & Schachar, 2010).

The current study did not seek to characterise the polysynaptic pathways through which the rDLPFC and rVLPFC suppress activity in either M1 or the hippocampus (Anderson et al., 2016; Depue et al., 2016). Rather, we focused on the existence of a central, domain-general inhibitory control function capable of flexibly shifting its top-down influence across actions and thoughts. By juxtaposing two well characterised model systems for stopping actions and thoughts, each with distinct neural targets of inhibition, we were able to show that the same set of prefrontal regions is involved in stopping processing in different cortical target areas, in a rapid, flexible manner. In doing so, we established evidence for dynamic inhibitory targeting as a key mechanism of domain-general inhibitory control in the human brain. More broadly, this work suggests that the human capacity for self-control in the face of life's challenges may emerge from a common wellspring of control over our actions and thoughts.

Methods

We used a dataset from a published study (Schmitz et al., 2017). However, here all data were independently re-analysed with a different focus.

Participants

Thirty right-handed native English speakers participated. Participants gave written informed consent and received money for participating. Five participants did not reach the 40% learning criterion on the Think/No-Think task, and one fell asleep during fMRI acquisition. The final sample comprised 24 participants (7 males, 17 females), 19-36 years old ($M = 24.67$ years, $SD = 4.31$). Participants had normal or corrected-to-normal vision and no reported history of neurological, medical, or memory disorders, and they were asked not to consume psychostimulants, drugs, or alcohol before the experiment. The Cambridge Psychology Research Ethics Committee approved the project.

Experimental paradigm

Participants performed adapted versions of the Stop-signal (Logan & Cowan, 1984) and Think/No-Think (Anderson & Green, 2001) tasks. Both tasks require participants to stop unwanted processes, but in the motor and memory domains, respectively.

The Stop-signal task assesses the ability to stop unwanted actions. Participants first learn stimulus-response associations and then perform speeded motor responses to the presented (Go) stimuli. Occasionally, shortly after the Go stimulus, a stop signal occurs, and participants must withhold their response. We measured the stop-signal reaction time (SSRT), an estimate of how long it takes the participant to stop.

The Think/No-Think task assesses the ability to stop unwanted memory retrievals. Participants first form associations between unrelated cue-target word pairs. Then participants receive two-thirds of the cues as reminders (one at a time) and are asked to either think (Think items) or to not-think (No-Think items) of the associated target memory, with each Think and No-Think reminder repeated numerous times throughout the task. Finally, participants attempt to recall all initially learned associations. Typically, recall performance suffers for No-Think items compared to Baseline items that were neither retrieved nor suppressed during the think/no-think phase. This phenomenon, known as suppression-induced forgetting (SIF), indirectly measures the ability to stop unwanted memory retrievals by quantifying inhibitory aftereffects of this process (Anderson & Hanslmayr, 2014; Anderson & Weaver, 2009).

Stimuli and apparatus

We presented stimuli and recorded responses with Presentation software (Neurobehavioral Systems, Albany, CA, USA). For the Stop-signal task, four visually discriminable red, green, blue, and yellow coloured circles of 2.5 cm in diameter, presented on a grey background, constituted the Go stimuli (Figure 2a). Participants responded by pressing

1 one of the two buttons (left or right) with a dominant 57
2 (right) hand on a button box. An auditory 1000 Hz “beep” 58
3 tone presented at a comfortable volume for 100 ms signalled 59
4 participants to stop their responses. A fixation cross 60
5 appeared in 50-point black Arial Rounded font on a grey 61
6 background prior to the onset of the Go stimulus. 62

7 For the Think/No-Think task, we constructed 78 weakly 63
8 relatable English word pairs (cue-target words, e.g., Part- 64
9 Bowl) as stimuli and an additional 68 semantically related 65
10 cue words for 68 of the target words (e.g., a cue word 66
11 ‘Cornflake’ for the target word ‘Bowl’). We used 60 of the 67
12 target words and their related and weak cues in the critical 68
13 task, with the other items used as fillers. We divided the 69
14 critical items into three lists composed of 20 targets and 70
15 their corresponding weak cue words (the related word 71
16 cues were set aside to be used as independent test cues 72
17 on the final test; see procedure). We counterbalanced 73
18 these lists across the within-subjects experimental 74
19 conditions (Think, No-Think, and Baseline) so that across 75
20 all participants, every pair participated equally often in 76
21 each condition. We used the filler words both as practice 77
22 items and also to minimise primacy and recency effects 78
23 in the study list (Murdock, 1962). Words appeared in a 79
24 32-point Arial font in capital letters on a grey background 80
25 (Figure 2b). During the initial encoding and final recall 81
26 phases, we presented all cues and targets in black. For the 82
27 Think/No-Think phase, we presented the Think cues in 83
28 green and the No-Think cues in red, each preceded by a 84
29 fixation cross in 50-point black Arial Rounded font on a 85
30 grey background. 86

31 **Procedure**

32 The procedure consisted of seven steps: 1) stimulus- 88
33 response learning for the Stop-signal task; 2) Stop-signal 89
34 task practice; 3) encoding phase of the Think/No-Think 90
35 task; 4) Think/No-Think practice; 5) practice of inter- 91
36 leaved Stop-signal and Think/No-Think tasks; 6) experi- 92
37 mental phase during fMRI acquisition; 7) recall phase of 93
38 the Think/No-Think task. We elaborate these steps below 94
(see also Figure 2c). 95

40 **Step 1 – Stop-signal task stimulus-response learning**

41 Participants first formed stimulus-response associations for 97
42 the Stop-signal task. As Go stimuli, we presented circles 98
43 in four different colours (red, green, blue, and yellow) 99
44 and participants had to respond by pressing one of the 100
45 two buttons depending on the circle’s colour. Thus, each 101
46 response button had two colours randomly assigned to it 102
47 and participants associated each colour to its particular 103
48 response. 104

49 Participants learned the colour-button mappings in two 105
50 sets of two colours, with the first colour in a set associated 106
51 with one button, and the second with the other button. 107
52 After practising the responses to these colours in random 108
53 order 10 times each, the same training was done on the 109
54 second set. Subsequently, participants practised the colour- 110
55 button mappings of all four colours in random order until 111
56 they responded correctly to each colour on 10 consecutive 112

trials. During the practice, we instructed participants to respond as quickly and accurately as possible and provided feedback for incorrect or slow (> 1000 ms) responses.

57 **Step 2 – Stop-signal task practice**

58 Once participants learned the stimulus-response associations, 59
59 we introduced the Stop-signal task. We instructed 60
60 participants to keep responding to each coloured circle 61
61 as quickly and accurately as possible but indicated that 62
62 on some trials, after the circle appeared, a beep would 63
63 sound, and that they should not press any button on these 64
64 trials. We also told participants to avoid slowing down and 65
65 waiting for the beep, requesting instead that they treat 66
66 failures to stop as normal and always keep responding 67
67 quickly and accurately. Thus, on Go trials, participants 68
68 responded as quickly as possible, whereas, on Stop trials, 69
69 a tone succeeded the cue onset, signalling participants to 70
70 suppress their response. To facilitate performance, partici- 71
71 pants received on-screen feedback for incorrect and too 72
72 slow (> 700 ms) responses to Go trials, and for pressing 73
73 a button on Stop trials.

74 Figure 2a presents the trial timings. Go trials started 75
75 with a fixation cross, presented for 250 ms, followed by 76
76 a coloured circle until response or for up to 2500 ms. 77
77 After the response and a jittered inter-trial interval ($M = 750$ ms, $SD = 158.7$ ms), a new trial commenced. Stop 78
78 trials proceeded identically except that a tone sounded 79
79 shortly after the circle appeared. This stop signal delay 80
80 varied dynamically in 50 ms steps (starting with 250 ms 81
81 or 300 ms) according to a staircase tracking algorithm 82
82 to achieve approximately a 50% success-to-stop rate for 83
83 each participant. Note that the longer the stop signal 84
84 delay is, the harder it is to not press the button. The 85
85 dynamic tracking algorithm reduces participants’ ability to 86
86 anticipate stop signal delay timing and provides a method 87
87 for calculating the SSRT. In this practice step, participants 88
88 performed 96 trials, of which 68 (71%) were Go trials and 89
89 28 (29%) were Stop trials.

90 **Step 3 – Think/No-Think task encoding phase**

91 Once participants had learned the Stop-signal task, we 92
92 introduced the Think/No-Think task. In the encoding 93
93 phase, participants formed associations between 60 critical 94
94 weakly-related word pairs (e.g., Part-Bowl) and between 95
95 18 filler pairs. First, participants studied each cue-target 96
96 word pair for 3.4 s with an inter-stimulus interval of 600 97
97 ms. Next, from each studied pair, participants saw the cue 98
98 word only and recalled aloud the corresponding target. 99
99 We presented each cue for up to 6 s or until a response 100
100 was given. Six hundred ms after cue offset, regardless 101
101 of whether the participant recalled the item, the correct 102
102 target appeared for 1 s. We repeated this procedure until 103
103 participants recalled at least 40% of the critical pairs (all 104
104 but 5 participants succeeded within the maximum of three 105
105 repetitions). Finally, to assess which word-pairs participants 106
106 learned, each cue word appeared again for 3.3 s with an 107
107 inter-stimulus interval of 1.1 s and participants 108
108 recalled aloud the corresponding target. We provided no 109
109 feedback for incorrect responses.

1 feedback on this test.

2 **Step 4 – Think/No-Think practice**

3 After participants encoded the word pairs, the Think/No-
4 Think practice phase commenced. On each trial, a cue
5 word appeared on the screen in either green or red. We
6 instructed participants to recall and think of the target
7 words for cues presented in green (Think condition) but
8 to suppress the recall and avoid thinking of the target
9 words for those cues presented in red (No-Think condition).
10 Participants performed the direct suppression variant
11 of the Think/No-Think task (Benoit & Anderson, 2012;
12 Bergström et al., 2009) in which, after reading and com-
13 prehending the cue, they suppressed all thoughts of the
14 associated memory without engaging in any distracting
15 activity or thoughts. We asked participants to “push the
16 memory out of mind” whenever it intruded.

17 Trial timings appear in Figure 2b. A trial consisted of
18 presenting a cue in the centre of the screen for 3 s, followed
19 by an inter-stimulus interval (0.5 s, M = 2.3 s, SD = 1.7
20 s) during which we displayed a fixation cross. We jittered
21 the inter-stimulus interval (0.5 s, M = 2.3 s, SD = 1.7
22 s) to optimize the event-related design (as determined by
23 optseq2: <http://surfer.nmr.mgh.harvard.edu/optseq>). In
24 this practice phase, we used 12 filler items, six of which
25 were allocated to the Think condition and six to the No-
26 Think condition. We presented each item three times
27 in random order (36 trials in total). In the middle of
28 the practice, we administered a diagnostic questionnaire
29 to ensure participants had understood and followed the
30 instructions.

31 **Step 5 – Interleaved Stop-signal and Think/No-Think
32 practice**

33 Before moving into the MRI scanner, participants per-
34 formed an extended practice phase interleaving the Stop-
35 signal and Think/No-Think tasks. For the Think/No-Think
36 task, we again used 12 filler items. Other than that, and
37 the fact that the practice took place outside the MRI scanner,
38 this phase was identical to a single fMRI acquisition
39 session described into more detail next.

40 **Step 6 – Experimental phase and fMRI acquisition**

41 In the main experimental phase, participants underwent
42 8 fMRI scanning runs in a single session. Before the scan-
43 ning began, participants saw the correct button-colour
44 mappings and all 78 word pairs briefly presented on the
45 screen to remind them of the task and items. After the brief
46 refresher, the fMRI acquisition started. During each fMRI
47 run, participants performed 8 blocks of the Think/No-
48 Think task interleaved with 8 blocks of the Stop-signal
49 task. All blocks lasted 30 s. To minimize carry-over ef-
50 ffects, we interspersed 4 s rest periods (blank screen with a
51 grey background) between blocks. Each block began with
52 items that we did not score (the filler items) to reduce
53 task-set switching effects between blocks. Within each
54 block, we pseudo-randomly ordered all trials, and the trial
55 timings for both tasks were identical to those used in their
56 respective practice phases (step 2 and step 4; Figure 2a

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

Figure 2b).

50 Four of the Stop-signal task blocks contained Go trials
51 only. We did not use these blocks in this report. Each
52 of the other four Stop-signal blocks contained 12 trials,
53 yielding 384 trials in total (8 runs * 4 blocks per run *
54 12 trials per block). On average, across participants, Stop
55 trials constituted 32% (SD = 2%) of the trials. As in the
56 practice phase, a staircase tracking algorithm varied the
57 delay between cue onset and stop-signal tone according
58 to each participant’s performance, keeping the stopping
59 success at approximately 50%.

60 Each of the Think/No-Think blocks contained 6 trials,
61 starting with a filler item as a Think trial followed by
62 5 Think or No-Think items in a pseudo-random order.
63 Within each fMRI run, participants saw all 20 critical Think
64 and 20 critical No-Think items once. Thus, across the 8
65 runs, participants recalled or suppressed each memory
66 item 8 times. The proportion of the Think trials (58%)
67 exceeded the proportion of the No-Think trials (42%) to
68 better resemble the higher frequency of Go trials than Stop
69 trials during the Stop-signal task. We accomplished this by
70 assigning Think trials to the filler items, without changing
71 the frequency of Think trials on critical experimental items.
72 After the fourth (middle) run, to allow participants to rest,
73 we acquired their anatomical scan and administered the
74 diagnostic questionnaire to ensure that participants closely
75 followed the instructions of the Think/No-Think task.

76 **Step 7 – Think/No-Think recall phase**

77 In the final step (inside the scanner but without any scan
78 acquisition), we measured the aftereffects of memory re-
79 trieval and suppression via a cued-recall task on all word
80 pairs (encoded in step 3). This included 20 Baseline items
81 that were neither retrieved nor suppressed during the
82 Think/No-Think phase and that thus provided a baseline
83 estimate of the memorability of the pairs.

84 To reinstate the context of the initial encoding phase,
85 we first tested participants on 10 filler cue words, 6 of
86 which they had not seen since the encoding phase (step 3)
87 and 4 of which they saw during the interleaved Stop-signal
88 and Think/No-Think practice phase (step 5). We warned
89 participants that the cues in this phase could be ones they
90 had not seen for a long time and encouraged them to think
91 back to the encoding phases to retrieve targets.

92 Following context reinstatement, participants per-
93 formed the same-probe and independent-probe memory
94 tests. In the same-probe test, we probed memory with the
95 original cues (e.g. the weakly related cue word ‘Part’ for
96 the target word ‘Bowl’). We included the independent-
97 probe test to test whether forgetting generalized to novel
98 cues (Anderson and Green, 2001), using the related cues
99 we had designed for each target. For example, we cued
100 with the semantic associate of the memory and its first
101 letter (e.g., ‘Cornflake – B’ for the target ‘Bowl’). Across
102 participants, we counterbalanced the order in which the
103 tests appeared. In both tests, cues appeared for a maxi-
104 mum of 3.3 s or until participants gave a response, with
105 an inter-stimulus interval of 1.1 s. We coded a response as
106 107 108 109 110 111 112 113

1 correct if participants correctly recalled the target while
2 the cue was onscreen.
57

3 Finally, we debriefed participants, and administered a
4 post-experimental questionnaire to capture participants'
5 experiences and the strategies they used in the Think/No-
6 Think and Stop-signal tasks.
62

7 Brain image acquisition

8 We collected MRI data using a 3-Tesla Siemens Tim Trio
9 MRI scanner (Siemens, Erlangen, Germany) fitted with
10 a 32-channel head coil. Participants underwent eight
11 functional runs of the blood-oxygenation-level-dependent
12 (BOLD) signal acquisitions. We acquired functional brain
13 volumes using a gradient-echo, T2*-weighted echoplanar
14 pulse sequence (TR = 2000 ms, TE = 30 ms, flip angle
15 = 90°, 32 axial slices, descending slice acquisition, voxel
16 resolution = 3 mm³, 0.75 mm interslice gap). We dis-
17 carded the first four volumes of each session to allow for
18 magnetic field stabilisation. Due to technical problems
19 encountered during task performance, we discarded from
20 the analysis one functional run from two participants each,
21 and two functional runs from another participant. After
22 the fourth functional run, we acquired an anatomical refer-
23 ence for each participant, a high-resolution whole-brain
24 3D T1-weighted magnetization-prepared rapid gradient
25 echo (MP-RAGE) image (TR = 2250 ms, TE = 2.99 ms,
26 flip angle = 9°, field of view = 256 x 240 x 192 mm, voxel
27 resolution = 1 mm³). Following the acquisition of the
28 anatomical scan, participants underwent the remaining
29 four functional runs.
78

30 Data analysis

31 Behavioural performance

32 For statistical analyses of the behavioural data, we
33 used R (v4, 2020-04-24) in Jupyter Notebook (Ana-
34 conda, Inc., Austin, Texas). The data and detailed
35 analysis notebook are freely available at <http://bit.do/analysis-domain-general>. For all statistical comparisons,
36 we adopted $p < 0.05$ as the significance threshold.
37

38 For correlation analyses, we followed recommendations
39 by Pernet et al. (2013) and used one of three correlation
40 methods depending on whether the data were normally
41 distributed or contained outliers. If there were no out-
42 liers and data were normally distributed, we performed
43 Pearson correlation and reported it as ' r '. If there were
44 univariate outliers (but no bivariate) or data were not
45 normally distributed, we performed robust 20% Bend cor-
46 relation and reported it as ' r_{pp} '. If there were bivariate
47 outliers, we performed robust Spearman skipped corre-
48 lation using the minimum covariance determinant (MCD)
49 estimator and reported it as ' r_{ss} '. For univariate and bi-
50 variate outlier detection, we used boxplot and bagplot
51 methods, respectively.
108

52 For the analysis of Stop-signal task data, we followed
53 the guidelines by Verbruggen et al. (2019) and calculated
54 SSRT using the integration method with the replacement
55 of Go omissions. Specifically, we included all Stop trials
56 and all Go trials (correct and incorrect), replacing missed
109 trials with the maximum Go RT. To identify the nth
110 fastest Go RT, we multiplied the number of total Go trials
111 by the probability of responding to stop signal (unsuccess-
112 ful stopping). The difference between the nth fastest Go
113 RT and the mean SSD provided our estimate of SSRT.
114

50 Go responses with the maximum Go RT. To identify the nth
51 fastest Go RT, we multiplied the number of total Go trials
52 by the probability of responding to stop signal (unsuccess-
53 ful stopping). The difference between the nth fastest Go
54 RT and the mean SSD provided our estimate of SSRT.
55

56 In addition to SSRT, we calculated the probability of
57 Go omissions, probability of choice errors on Go trials,
58 probability of responding to Stop trials, mean SSD of all
59 Stop trials, mean correct Go RT, and mean failed Stop RT.
60 We also compared RTs of all Go trials against RTs of failed
61 Stop trials to test the assumption of an independent race
62 between a go and a stop runner. Besides, we assessed the
63 change of Go RTs across the eight experimental blocks.
64 Prior work suggests that the experiment-wide integration
65 method can result in underestimation bias of SSRT if par-
66 ticipants slow their RT gradually across experimental runs.
67 In that case, a blocked integration method would provide
68 a better measure of SSRT (Verbruggen et al., 2013). In our
69 data, however, on average within the group, we observed
70 a negligible decrease in RT across runs ($B = -2.555$, $p =$
71 .250), suggesting that the experiment-wide integration
72 method was more appropriate.
73

74 For the Think/No-Think task data, we focused on the
75 critical measure: SIF. We used the final recall scores (from
76 step 7) of No-Think and Baseline items conditionalized on
77 correct initial training performance (at step 3), as in prior
78 work (Anderson et al., 2004). Thus, in the final recall
79 scores, we did not include items that were not correctly
80 recalled ($M = 29\%$, $SD = 17$) during the criterion test
81 of the encoding phase, as the unlearned items can be
82 neither suppressed nor retrieved during the Think/No-
83 Think phase (step 6). As in our previous work (Schmitz et
84 al., 2017), we averaged the scores across the same-probe
85 and independent-probe tests and the difference between
86 the Baseline and No-think item recall scores constituted
87 our measure of SIF. To assess the group effect of SIF, we
88 tested the data for normality ($W = 0.95$, $p = 0.264$) and
89 performed a one-sample, one-sided t-test to determine
90 if SIF is greater than zero. Finally, to assess whether
91 inhibition ability generalises across motor and memory
92 domains, we performed a correlation between the SSRT
93 and SIF scores.
94

95 To identify univariate and bi-variate outliers in the SSRT
96 and SIF scores, we used box plot method, which relies
97 on the interquartile range. Univariate outliers were not
98 present for any of the two measures. One bi-variate out-
99 lier was removed from the correlation analysis and the
100 behavioural partial least squares analysis (described be-
101 low). Nevertheless, outlier removal did not qualitatively
102 alter the results.
103

104 Brain imaging data

105 **Pre-processing.** We pre-processed and analysed the brain
106 imaging data using Statistical Parametric Mapping v12 re-
107 lease 7487 (SPM12; Wellcome Trust Centre for Neuroim-
108 aging, London) in MATLAB vR2012a (The MathWorks, MA,
109 USA). To approximate the orientation of the standard Mon-
110 treal Neurological Institute (MNI) coordinate space, we re-
111

1 oriented all acquired MRI images to the anterior-posterior 58
2 commissure line and set the origins to the anterior com- 59
3 missure. Next, we applied our pre-processing procedure 60
4 to correct for head movement between the scans (images 61
5 realigned to the mean functional image) and to adjust 62
6 for temporal differences between slice acquisitions (slice- 63
7 time correction relative to the middle axial slice). The 64
8 procedure then co-registered each participant's anatomical 65
9 image to the mean functional image and segmented 66
10 it into grey matter, white matter, and cerebrospinal fluid. 67
11 We then submitted the segmented images for each par- 68
12 ticipant to the DARTEL procedure (Ashburner, 2007) to 69
13 create a group-specific anatomical template which optim- 70
14 ises inter-participant alignment. The DARTEL procedure 71
15 alternates between computing a group template and warp- 72
16 ing an individual's tissue probability maps into alignment 73
17 with this template and ultimately creates an individual 74
18 flow field of each participant. Subsequently, the procedure 75
19 transformed the group template into MNI-152 space. Fi- 76
20 nally, we applied the MNI transformation and smoothing 77
21 with an 8 mm full-width-at-half-maximum (FWHM) Gaus- 78
22 sian kernel to the functional images for the whole-brain 79
23 voxel-wise analysis.

24 **Univariate whole-brain analysis.** To identify brain areas 81
25 engaged in both inhibiting actions and inhibiting memo- 82
26 ries, we performed a whole-brain voxel-wise univariate 83
27 analysis. We high-pass filtered the time series of each voxel 84
28 in the normalised and smoothed images with a cut-off fre- 85
29 quency of 1/128 Hz, to remove low-frequency trends, and 86
30 modelled for temporal autocorrelation across scans with 87
31 the first-order autoregressive (AR(1)) process. We then 88
32 submitted the pre-processed data of each participant to the 89
33 first-level, subject-specific, General Linear Model (GLM) 90
34 modelling a single design matrix for all functional runs. 91

35 We modelled the Stop-signal task and Think/No-Think 92
36 task conditions as boxcar functions, convolved with a 93
37 haemodynamic response function (HRF). In the model, 94
38 we used group average response latencies for each trial 95
39 type as the trial durations for the Stop-signal task con- 96
40 dition, but we used 3 s epochs for the Think/No-Think 97
41 task condition. As in the behavioural analysis, we condi- 98
42 tionalized the Think and No-Think conditions on initial 99
43 encoding performance. The main conditions of interest 100
44 for our analysis included: correct Stop, correct Go (from 101
45 the mixed Stop-signal and Go trial blocks only), condi- 102
46 tionalized No-Think and conditionalized Think. Unlearned 103
47 No-Think and Think items, filler items, incorrect Stop, 104
48 incorrect Go and Go trials from the Go-only blocks we 105
49 modelled as separate regressors of no interest. We also 106
50 included the six realignment parameters for each run as 107
51 additional regressors of no interest, to account for head 108
52 motion artefacts, and a constant regressor for each run. 109
53 We obtained the first-level contrast estimates for Stop, Go, 110
54 No-Think, and Think conditions, and the main effect of 111
55 Inhibit [Stop, No-Think] > Respond [Go, Think]. 112

56 At the second-level random-effect group analysis we 113
57 entered the first-level contrast estimates of Stop, Go, No- 114

5 Think, and Think conditions into a repeated-measures 6 analysis of variance (ANOVA), which used pooled error and 7 correction for non-sphericity, with participants as between- 8 subject factor. We then performed a conjunction analysis 9 of Stop > Go No-Think > Think contrasts, using the 10 minimum statistics analysis method implemented in SPM12, 11 and testing the conjunction null hypothesis (Friston et 12 al., 2005; Nichols et al., 2005). The results of the 13 conjunction analysis represent voxels that were significant 14 for each individual contrast thresholded at $p < 0.05$ false 15 discovery rate (FDR) corrected for whole-brain multiple 16 comparisons.

17 **Behavioural partial least squares (PLS) analysis.** We 18 hypothesised that domain-general inhibitory control brain 19 activity would be related to domain-general inhibitory 20 behaviour. To test our hypothesis, we performed behavioural 21 PLS analysis (Krishnan et al., 2011; McIntosh & Lobaugh, 22 2004) following a previously employed strategy (Gagne- 23 pain et al., 2017). We restricted our analysis to an inde- 24 pendent domain-general inhibitory control mask derived 25 from a meta-analytic conjunction analysis of 40 Stop-signal 26 and 16 Think/No-Think fMRI studies (described below). 27 Within this mask, we identified voxels where the BOLD 28 signal from the main effect of Inhibit > Respond contrast 29 depicted the largest joint covariance with the SSRT and 30 SIF scores.

31 Specifically, Inhibit > Respond contrast values from each 32 voxel of an MNI-normalised brain volume were aligned 33 and stacked across participants into a brain activation 34 matrix X, and SSRT and SIF scores were entered into a 35 matrix Y. In both matrices, rows represented participants. 36 We then individually mean-centred the X and Y matrices 37 and normalised each row in the matrix X (representing 38 each participant's voxel activations) so that the row sum 39 of squares equalled to one. Setting an equal variance of 40 voxel 41 activities across subjects ensured that the observed 42 differences between participants were not due to overall 43 differences in activation. Hereafter, a correlation of X and 44 Y matrices produced a matrix R encoding the relation- 45 ship between each voxel activity and behavioural scores 46 across participants. We then applied a singular-value 47 decomposition to the correlation matrix R to identify LVs 48 that maximise the covariance between voxel activation (X) 49 and behavioural measurements (Y). Each LV contained 50 a single value for each participant representing the 51 variance explained by the LV, and brain saliences, which are 52 a weighted pattern across brain voxels representing the 53 strength of the relationship between the BOLD signal and 54 the behavioural scores.

55 To assess the statistical significance of each LV and the 56 robustness of voxel saliences, we used 5000 permutation 57 tests and 5000 bootstrapped resamples, respectively. By 58 dividing each voxel's initial salience by the standard error of 59 its bootstrapped distribution, we obtained a bootstrapped 60 standard ratio, equivalent to a z-score, to assess the signifi- 61 cance of a given voxel. We thresholded the acquired scores 62 at 1.96, corresponding to $p < 0.05$, two-tailed. The multi- 63

1 variate PLS analysis method does not require correction 58
2 for multiple comparisons as it quantifies the relationship 59
3 between the BOLD signal and behavioural scores in a single 60
4 analytic step (McIntosh & Lobaugh, 2004). 61

5 **Dynamic causal modelling (DCM) analysis.** We conducted 62
6 a DCM analysis (Friston et al., 2003) to determine 63
7 the most likely inhibition-related interactions between 64
8 domain-general inhibitory control areas in the right pre- 65
9 frontal cortex and domain-specific target areas. For the 66
10 domain-specific target areas, we selected the left primary 67
11 motor cortex (M1) and right hippocampus, based on our 68
12 previous findings showing that stopping actions and stopping 69
13 memories preferentially downregulates M1 and hippocampus, 70
14 respectively (Schmitz et al., 2017). 71

15 DCM enables one to investigate hypothesised interactions 72
16 among pre-defined brain regions by estimating the 73
17 effective connectivity according to (1) the activity of other 74
18 regions via intrinsic connections; (2) modulatory influences 75
19 on connections arising through experimental manipulations; 76
20 and (3) experimentally defined driving inputs to one or more of the 77
21 regions (Friston et al., 2003). The intrinsic, modulatory, and 78
22 driving inputs one specifies 79
23 constitute the model structure assumed to represent the 80
24 hypothesised neuronal network underlying the cognitive 81
25 function of interest. 82

26 With DCM, a set of models can be defined that embody 83
27 alternate hypotheses about the average connectivity and 84
28 conditional moderation of connectivity. These models are 85
29 inverted to the data and then compared in terms of the 86
30 relative model evidence using Bayesian model selection 87
31 (BMS). The differential model evidence from BMS indicates 88
32 the probability that a given model is more likely to 89
33 have generated the data than the other models and allows 90
34 to infer both the presence and direction of modulatory 91
35 connections. This can be estimated for individual models, 92
36 or families of models that share critical features. 93

37 For the DCM analysis, we defined four regions of interest 94
38 (ROIs): the right dorsolateral prefrontal cortex (rDLPFC), 95
39 the right ventrolateral prefrontal cortex (rVLPFC), the 96
40 right hippocampus, and the left M1. We obtained the 97
41 rDLPFC and rVLPFC ROIs, centred at MNI coordinates 35, 98
42 45, 24 and 44, 21, -1, respectively, from an independent 99
43 meta-analytic conjunction analysis (described below). We 100
44 defined the M1 ROI (centred at MNI coordinates -33, -22, 101
45 -46) from a group analysis (N = 30) of an independent 102
46 M1 localiser study on different participants (Button Press 103
47 > View contrast). We mapped the rDLPFC, rVLPFC, and 104
48 M1 ROIs from the MNI space to participants' native space. 105
49 We manually traced the hippocampal ROIs in native space 106
50 for each participant, using ITK-SNAP (www.itksnap.org; 107
51 Yushkevich et al., 2006) and following established anatomical 108
52 guidelines (Duvernoy et al., 2013; Pruessner et al., 109
53 2000). Within each subject-specific ROI, we identified all 110
54 significant voxels (thresholded at $p < 0.05$, uncorrected 111
55 for multiple comparisons) for that participant based on the 112
56 main effect of interest, which included Stop, Go, No-Think, 113
57 and Think conditions. Only the identified significant voxels 114
58

els were included in the final ROIs for the DCM analysis.

We performed the DCM analysis on participants' native-space, unsmoothed brain images, to maximise the anatomical specificity of the hand-traced hippocampal ROI. We estimated a first-level GLM for each participant in their native space. The GLM model was closely similar to the first-level model defined for the univariate whole-brain analysis (see above). But in this new model, we concatenated all functional runs into a single run to form a single time series per participant. Because we concatenated the runs, we did not model conditions that started less than 24 s before the end of each run (apart from the very last run), and we did not use the SPM high-pass filtering and temporal autocorrelation options, but as additional regressors of no interest we included sines and cosines of up to three cycles per run to capture low-frequency drifts, and regressors modelling each run.

From each of the four ROIs, we extracted the first eigenvariate of the BOLD signal time-course, adjusted for effects of interest. Based on these data, we estimated and compared a null model with no modulatory connections and 72 models with modulatory connections (73 models in total) to test alternative hypotheses about how suppressing actions and memories modulate connectivity between the four ROIs (see Figure 6a). All 72 models with modulatory connections were variants of the same basic model with intrinsic bidirectional connections between all regions except no intrinsic connections between M1 and hippocampus, and with driving inputs from the Stop-signal (Stop and Go trials) and Think/No-Think (No-Think and Think trials) tasks into both rDLPFC and rVLPFC regions. Across models, we varied the modulatory influences on the intrinsic connections arising through Stop or No-Think trials.

We grouped the 72 models into three families differing according to whether the source-target modulation was bidirectional, top-down, or bottom-up. Within each family, we defined four subfamilies that differed according to how Stop and No-Think trials modulate the prefrontal control and inhibitory target pathways: independent modulation of target regions by rDLPFC and rVLPFC (testing the idea that two parallel inhibition pathways might exist); rDLPFC only modulation (testing the idea that only rDLPFC supports inhibition); rVLPFC only modulation (testing the idea that only rVLPFC supports inhibition); or modulation of both rDLPFC and rVLPFC (testing the idea that both contribute to inhibition). Within the four subfamilies, we defined further four subfamilies according to how Stop and No-Think trials modulate interactions between the rDLPFC and rVLPFC regions: no interactions; rVLPFC modulates rDLPFC; rDLPFC modulates rVLPFC; or bidirectional interaction between rDLPFC and rVLPFC.

Furthermore, within each subfamily, we defined two additional subfamilies according to whether Stop and No-Think trials modulate the prefrontal connectivity with the preferred targets (M1 when stopping actions and hippocampus when stopping memories) or with the non-preferred targets (hippocampus when stopping actions and M1 when stopping memories), testing the idea that

1 inhibitory modulation must affect a task appropriate structure to model the data well. 58
2

3 We compared the model evidence for the 73 models 60
4 (the null model and 72 models with modulatory connec- 61
5 tions) and the groups and subgroups of families across 62
6 the 24 subjects using random-effects BMS (Penny et al., 63
7 2010; Stephan et al., 2010). BMS reports the exceedance 64
8 probability, which is a probability that a given model, or 65
9 family of models, is more likely than any other model or 66
10 family tested, given the group data. 67

11 **Multi-voxel pattern analysis.** We performed multi-voxel 68
12 pattern analysis (MVPA) to test whether action and mem- 69
13 ory inhibition share a common voxel activation pattern 70
14 within an ROI. We used linear discriminant analysis (LDA) 71
15 to classify voxel activity patterns within the same four 72
16 ROIs that we used for the DCM analysis (rDLPFC, rVLPFC, 73
17 right hippocampus, and left M1). 74

18 For each participant on their native-space unsmoothed 75
19 brain images, we estimated a first-level GLM which was 76
20 identical to the first-level model defined for the univariate 77
21 whole-brain analysis (see above). The estimated beta 78
22 weights of the voxels in each ROI were extracted and pre- 79
23 whitened to construct noise normalized activity patterns 80
24 for each event of interest (No-Think, Think, Stop, Go) 81
25 within each of the eight functional fMRI runs. 82

26 To increase the reliability of pattern classification ac- 83
27 curacy, we used a random subset approach (Diedrichsen 84
28 et al., 2013). Specifically, for each ROI separately, we cre- 85
29 ated up to 2000 unique subsets of randomly drawn 90% 86
30 of ROI voxels (for smaller ROIs, there were less than 2000 87
31 possible combinations). We then applied the LDA on each 88
32 subset and averaged the subset results to obtain the final 89
33 classification accuracy for each ROI. We performed two 90
34 types of pattern classification to identify domain-general 91
35 and domain-specific components within each ROI. 92

36 For the domain-general component, we performed a 93
37 cross-task classification. We trained the LDA classifier to 94
38 distinguish Inhibit from Respond conditions in one modal- 95
39 ity (e.g. No-Think from Think) and tested whether the 96
40 trained classifier could distinguish Inhibit from Respond 97
41 in the other modality (e.g. Stop from Go). Both training 98
42 and testing data consisted of two (conditions) by eight 99
43 (runs) activation estimates for a set of voxels (e.g. 13 x 16 100
44 matrix for a set of 13 voxels). For training and testing sets 101
45 separately, for each voxel, we z-scored the activity pat- 102
46 tterns across the 16 activation estimates setting the mean 103
47 activity within each voxel to zero. This way, each voxel 104
48 represented only the relative contribution of Inhibit vs 105
49 Respond conditions within the Think/No-Think and Stop- 106
50 signal tasks. For each ROI subset, we performed the LDA 107
51 twice. The first classifier trained to discriminate Think 108
52 from No-Think and returned the accuracy of distinguishing 109
53 Stop from Go; the second classifier trained to discriminate 110
54 Stop from Go and returned the accuracy of distinguishing 111
55 Think from No-Think. The final score was the average clas-
56 sification accuracy of all subsets and the two classification
57 variants (up to 2000 x 2) per ROI and subject.

For the domain-specific component, we trained and tested the LDA classifier to distinguish No-Think from Stop conditions. The input data consisted of two (conditions) by eight (runs) activation estimates for a set of voxels. We z-scored the activity patterns across voxels for each event of interest. Thus, the mean ROI activity for each event was zero, and each voxel represented only its relative contribution to the given event. That way, we accounted for the univariate intensity differences between No-Think and Stop conditions. For each ROI subset, we performed leave-one-run out cross-validated LDA and averaged the classification accuracies across the eight cross-validation folds. The final score was the average classification accuracy of all subsets and cross-validation folds (up to 2000 x 8) per ROI and subject.

At the group level, for each ROI, we performed one-tailed t-tests to assess the statistical significance of classification accuracy being above the 50% chance level. All tests were Bonferroni corrected for the number of ROIs.

A meta-analytic conjunction analysis of Stop-signal and Think/No-Think studies. To acquire an independent mask of brain areas involved in domain-general inhibitory control, we updated a previously published meta-analysis of Stop-signal and Think/No-Think fMRI studies (Guo et al., 2018). The study selection process and included studies are reported in detail in (Guo et al., 2018). From the original meta-analysis, we excluded the current dataset (Schmitz et al., 2017) and included a different within-subjects (but with each task performed on different days) Stop-signal and Think/No-Think study from our lab (Guo, 2017). Consequently, our analysis included 40 Stop-signal and 16 Think/No-Think studies. We focused the meta-analysis on the conjunction of Stop > Go No-Think > Think contrasts which we conducted using Activation Likelihood Estimation (ALE) with GingerALE v3.0.2 (<http://www.brainmap.org/ale/>; Eickhoff et al., 2012; Eickhoff et al., 2017; Eickhoff et al., 2009; Turkeltaub et al., 2012). We used the same settings as reported before (Guo et al., 2018). Specifically, we used a less conservative mask size, a non-additive ALE method, no additional FWHM, and cluster analysis peaks at all extrema. In addition, we set the coordinate space to MNI152.

First, we conducted separate meta-analyses of Stop > Go, No-Think > Think, and their pooled data using cluster-level FWE corrected inference ($p < 0.05$, cluster-forming threshold uncorrected $p < 0.001$, threshold permutations = 1000). We then submitted the obtained thresholded ALE maps from the three individual meta-analyses to a meta-analytic contrast analysis (Eickhoff et al., 2011), which produced the conjunction of the Stop > Go & No-Think > Think contrasts. We thresholded the conjunction results at voxel-wise uncorrected $p < 0.001$, with the p-value permutations of 10,000 iterations, and the minimum cluster volume of 200 mm³.

References

Anderson, M. C., Bunce, J. G., & Barbas, H. (2016). Prefrontal-hippocampal pathways underlying inhibitory control over memory. *Neurobiology of Learning and Memory*, 134, 145–161. <https://doi.org/10.1016/j.nlm.2015.11.008>

Anderson, M. C., & Green, C. (2001). Suppressing unwanted memories by executive control. *Nature*, 410(6826), 366–369. <https://doi.org/10.1038/35066572>

Anderson, M. C., & Hanslmayr, S. (2014). Neural mechanisms of motivated forgetting. *Trends in cognitive sciences*, 18(6), 279–92. <https://doi.org/10.1016/j.tics.2014.03.002>

Anderson, M. C., & Huddleston, E. (2012). Towards a cognitive and neurobiological model of motivated forgetting. In R. F. Belli (Ed.), *True and false recovered memories. nebraska symposium on motivation* (pp. 53–120). Springer. https://doi.org/10.1007/978-1-4614-1195-6_3

Anderson, M. C., & Hulbert, J. C. (2021). Active forgetting: Adaptation of memory by prefrontal control. *Annual Review of Psychology*, (In Press).

Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., Glover, G. H., & Gabrieli, J. D. E. (2004). Neural systems underlying the suppression of unwanted memories. *Science*, 303(5655), 232–5. <https://doi.org/10.1126/science.1089504>

Anderson, M. C., & Weaver, C. (2009). Inhibitory control over action and memory. In L. Squire (Ed.), *Encyclopedia of neuroscience* (pp. 153–163). Academic Press. <https://doi.org/10.1016/B978-008045046-9.00421-6>

Aron, A. R. (2007). The neural basis of inhibition in cognitive control. *The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry*, 13(3), 214–28. <https://doi.org/10.1177/1073858407299288>

Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. *Nature neuroscience*, 6(2), 115–6. <https://doi.org/10.1038/nn1003>

Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. *The Journal of Neuroscience*, 26(9), 2424–33. <https://doi.org/10.1523/JNEUROSCI.4682-05.2006>

Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. *Trends in cognitive sciences*, 8(4), 170–7. <https://doi.org/10.1016/j.tics.2004.02.010>

Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. *Trends in cognitive sciences*, 18(4), 177–85. <https://doi.org/10.1016/j.tics.2013.12.003>

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. *NeuroImage*, 38(1), 95–113. <https://doi.org/10.1016/j.neuroimage.2007.07.007>

Badry, R., Mima, T., Aso, T., Nakatsuka, M., Abe, M., Fathi, D., Foley, N., Nagiub, H., Nagamine, T., & Fukuyama, H. (2009). Suppression of human cortico-motoneuronal excitability during the stop-signal task. *Clinical Neurophysiology*, 120(9), 1717–1723. <https://doi.org/10.1016/j.clinph.2009.06.027>

Banich, M. T., & Depue, B. E. (2015). Recent advances in understanding neural systems that support inhibitory control. *Current Opinion in Behavioral Sciences*, 1, 17–22. <https://doi.org/10.1016/j.cobeha.2014.07.006>

Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. *Progress in Neurobiology*, 108, 44–79. <https://doi.org/10.1016/j.pneurobio.2013.06.005>

Benoit, R. G., & Anderson, M. C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. *Neuron*, 76(2), 450–460. <https://doi.org/10.1016/j.neuron.2012.07.025>

Benoit, R. G., Davies, D. J., & Anderson, M. C. (2016). Reducing future fears by suppressing the brain mechanisms underlying episodic simulation. *Proceedings of the National Academy of Sciences*, 113(52), E8492–E8501. <https://doi.org/10.1073/pnas.1606604114>

Benoit, R. G., Hulbert, J. C., Huddleston, E., & Anderson, M. C. (2015). Adaptive top-down suppression of hippocampal activity and the purging of intrusive memories from consciousness. *Journal of Cognitive Neuroscience*, 27(1), 96–111. https://doi.org/10.1162/jocn_a_00696

Berg, J. M., Latzman, R. D., Bliwise, N. G., & Lilienfeld, S. O. (2015). Parsing the heterogeneity of impulsivity: A meta-analytic review of the behavioral implications of the upps for psychopathology. *Psychological Assessment*, 27(4), 1129–1146. <https://doi.org/10.1037/pas0000111>

Bergström, Z. M., de Fockert, J. W., & Richardson-Klavehn, A. (2009). Erp and behavioural evidence for direct suppression of unwanted memories. *NeuroImage*, 48(4), 726–37. <https://doi.org/10.1016/j.neuroimage.2009.06.051>

Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. *Cognitive, affective behavioral neuroscience*, 7(4), 356–66. <https://doi.org/10.3758/cabn.7.4.356>

Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. *Psychological Review*, 114(2), 376–397. <https://doi.org/10.1037/0033-295X.114.2.376>

Castiglione, A., Wagner, J., Anderson, M., & Aron, A. R. (2019). Preventing a thought from coming to mind elicits increased right frontal beta just as stopping action does. *Cerebral Cortex*, 29(5), 2160–2172. <https://doi.org/10.1093/cercor/bhz017>

Chambers, C. D., Bellgrove, M. A., Stokes, M. G., Henderson, T. R., Garavan, H., Robertson, I. H., Morris, A. P., & Mattingley, J. B. (2006). Executive "brake failure" following deactivation of human frontal lobe. *Journal of Cognitive Neuroscience*, 18(3), 444–455.

1 Chowdhury, N. S., Livesey, E. J., & Harris, J. A. (2019). 59
2 Individual differences in intracortical inhibition during 60
3 behavioural inhibition. *Neuropsychologia*, 124(August 61
4 2018), 55–65. <https://doi.org/10.1016/j.neuropsychologia.2019.01.008> 63

5 Cocuzza, V. C., Ito, T., Schultz, D., Bassett, D. S., & Cole, 64
6 M. W. (2020). Flexible coordinator and switcher hubs 65
7 for adaptive task control. *The Journal of Neuroscience*, 66
8 JN-RM-2559-19. [https://doi.org/10.1523/JNEUROSCI.](https://doi.org/10.1523/JNEUROSCI.67) 68
9 2559-19.2020 68

10 Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., An- 69
11 aticevic, A., & Braver, T. S. (2013). Multi-task connectivity 70
12 reveals flexible hubs for adaptive task control. *Nature* 71
13 *Neuroscience*, 16(9), 1348–1355. <https://doi.org/10.1038/nn.3470> 73

14 Cole, M. W., & Schneider, W. (2007). The cognitive control 74
15 network: Integrated cortical regions with dissociable 75
16 functions. *NeuroImage*, 37(1), 343–360. <https://doi.org/10.1016/j.neuroimage.2007.03.071> 77

17 Cole, M. W., Yeung, N., Freiwalde, W. A., & Botvinick, M. 78
18 (2009). Cingulate cortex: Diverging data from humans 79
19 and monkeys. *Trends in Neurosciences*, 32(11), 566–574. 80
20 <https://doi.org/10.1016/j.tins.2009.07.001> 81

21 Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2006). In- 82
22 tracortical inhibition during volitional inhibition of pre- 83
23 paried action. *Journal of Neurophysiology*, 95(6), 3371– 84
24 3383. <https://doi.org/10.1152/jn.01334.2005> 85

25 Crittenden, B. M., Mitchell, D. J., & Duncan, J. (2016). 86
26 Task encoding across the multiple demand cortex is 87
27 consistent with a frontoparietal and cingulo-opercular 88
28 dual networks distinction. *The Journal of Neuroscience*, 89
29 36(23), 6147–6155. <https://doi.org/10.1523/JNEUROSCI.4590-15.2016> 90

30 Depue, B. E., Orr, J. M., Smolker, H. R., Naaz, F., & Banich, 91
31 M. T. (2016). The organization of right prefrontal net- 92
32 works reveals common mechanisms of inhibitory regu- 93
33 lation across cognitive, emotional, and motor processes. 94
34 *Cerebral Cortex*, 26(4), 1634–1646. <https://doi.org/10.1093/cercor/bhu324> 95

35 Depue, B. E., Curran, T., & Banich, M. T. (2007). Prefrontal 96
36 regions orchestrate via a two-phase process. *Science*, 97
37 317(July), 215–219. 100

38 Diamond, A. (2013). Executive functions. *Annual Review* 101
39 of *Psychology*, 64(1), 135–168. <https://doi.org/10.1146/annurev-psych-113011-143750> 103

40 Diedrichsen, J., Wiestler, T., & Ejaz, N. (2013). A multivari- 104
41 ate method to determine the dimensionality of neural 105
42 representation from population activity. *NeuroImage*, 106
43 76, 225–235. <https://doi.org/10.1016/j.neuroimage.2013.02.062> 108

44 Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, 109
45 F. M., Wenger, K. K., Kang, H. C., Burgund, E. D., Grimes, 110
46 A. L., Schlaggar, B. L., & Petersen, S. E. (2006). A core 111
47 system for the implementation of task sets. *Neuron*, 112
48 50(5), 799–812. <https://doi.org/10.1016/j.neuron.2006.04.031> 114

49 Duncan, J. (2010). The multiple-demand (md) system 115
50 of the primate brain: Mental programs for intelligent 115

51 behaviour. *Trends in Cognitive Sciences*, 14(4), 172–179. 116
52 <https://doi.org/10.1016/j.tics.2010.01.004>

53 Duvernoy, H. M., Cattin, F., & Risold, P.-Y. (2013). *The hu- 117
54 man hippocampus: Functional anatomy, vascularization 118
55 and serial sections with mri* (4th ed.). Springer Berlin 119
56 Heidelberg. <https://doi.org/10.1007/978-3-642-33603-4>

57 Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. 120
58 (2012). Activation likelihood estimation meta-analysis 121
59 revisited. *NeuroImage*, 59(3), 2349–61. <https://doi.org/10.1016/j.neuroimage.2011.09.017>

60 Eickhoff, S. B., Bzdok, D., Laird, A. R., Roski, C., Caspers, 122
61 S., Zilles, K., & Fox, P. T. (2011). Co-activation patterns 123
62 distinguish cortical modules, their connectivity and func- 124
63 tional differentiation. *NeuroImage*, 57(3), 938–49. <https://doi.org/10.1016/j.neuroimage.2011.05.021>

64 Eickhoff, S. B., Laird, A. R., Fox, P. M., Lancaster, J. L., & 125
65 Fox, P. T. (2017). Implementation errors in the gingerale 126
66 software: Description and recommendations. *Human 127
67 brain mapping*, 38(1), 7–11. <https://doi.org/10.1002/hbm.23342>

68 Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, 128
69 K., & Fox, P. T. (2009). Coordinate-based activation 129
70 likelihood estimation meta-analysis of neuroimaging 130
71 data: A random-effects approach based on empirical 131
72 estimates of spatial uncertainty. *Human brain mapping*, 132
73 30(9), 2907–26. <https://doi.org/10.1002/hbm.20718>

74 Ersche, K. D., Jones, P. S., Williams, G. B., Turton, A. J., 133
75 Robbins, T. W., & Bullmore, E. T. (2012). Abnormal 134
76 brain structure implicated in stimulant drug addiction. 135
77 *Science*, 335(6068), 601–604. <https://doi.org/10.1126/science.1214463>

78 Everitt, B. J., & Robbins, T. W. (2016). Drug addiction: 136
79 Updating actions to habits to compulsions ten years 137
80 on. *Annual Review of Psychology*, 67(1), 23–50. <https://doi.org/10.1146/annurev-psych-122414-033457>

81 Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. 138
82 (2007). Anxiety and cognitive performance: Attentional 139
83 control theory. *Emotion*, 7(2), 336–353. <https://doi.org/10.1037/1528-3542.7.2.336>

84 Falconer, E., Bryant, R., Felmingham, K. L., Kemp, A. H., 140
85 Gordon, E., Peduto, A., Olivieri, G., & Williams, L. M. 141
86 (2008). The neural networks of inhibitory control in 142
87 posttraumatic stress disorder. *Journal of psychiatry neuro- 143
88 roscience : JPN*, 33(5), 413–22.

89 Fineberg, N. A., Apergis-Schoute, A. M., Vaghi, M. M., 144
90 Banca, P., Gillan, C. M., Voon, V., Chamberlain, S. R., 145
91 Cinosi, E., Reid, J., Shahper, S., Bullmore, E. T., Sahakian, 146
92 B. J., & Robbins, T. W. (2018). Mapping compulsivity in 147
93 the dsm-5 obsessive compulsive and related disorders: 148
94 Cognitive domains, neural circuitry, and treatment. *Inter- 149
95 national Journal of Neuropsychopharmacology*, 21(1), 150
96 42–58. <https://doi.org/10.1093/ijnp/pyx088>

97 Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., 151
98 Van Essen, D. C., & Raichle, M. E. (2005). From the 152
99 cover: The human brain is intrinsically organized into 153
100 dynamic, anticorrelated functional networks. *Proceed- 154*

ings of the National Academy of Sciences, 102(27), 9673–9678. <https://doi.org/10.1073/pnas.0504136102>

Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. *NeuroImage*, 19(4), 1273–302. [https://doi.org/10.1016/S1053-8119\(03\)00202-7](https://doi.org/10.1016/S1053-8119(03)00202-7)

Friston, K. J., Penny, W. D., & Glaser, D. E. (2005). Conjunction revisited. *NeuroImage*, 25(3), 661–667. <https://doi.org/10.1016/j.neuroimage.2005.01.013>

Gagnepain, P., Henson, R. N., & Anderson, M. C. (2014). Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition. *Proceedings of the National Academy of Sciences of the United States of America*, 111(13), E1310–9. <https://doi.org/10.1073/pnas.1311468111>

Gagnepain, P., Hulbert, J., & Anderson, M. C. (2017). Parallel regulation of memory and emotion supports the suppression of intrusive memories. *The Journal of Neuroscience*, 37(27), 6423–6441. <https://doi.org/10.1523/JNEUROSCI.2732-16.2017>

Garavan, H., Ross, T. J., & Stein, E. a. (1999). Right hemispheric dominance of inhibitory control: An event-related functional mri study. *Proceedings of the National Academy of Sciences of the United States of America*, 96(14), 8301–6. <https://doi.org/10.1073/pnas.96.14.8301>

Gay, P., Schmidt, R. E., & Van der Linden, M. (2011). Impulsivity and intrusive thoughts: Related manifestations of self-control difficulties? *Cognitive Therapy and Research*, 35(4), 293–303. <https://doi.org/10.1007/s10608-010-9317-z>

Gillan, C. M., Fineberg, N. A., & Robbins, T. W. (2017). A trans-diagnostic perspective on obsessive-compulsive disorder. *Psychological Medicine*, 47(9), 1528–1548. <https://doi.org/10.1017/S0033291716002786>

Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., & Daw, N. D. (2016). Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. *eLife*, 5. <https://doi.org/10.7554/eLife.11305>

Guo, Y. (2017). *The role of the basal ganglia in memory and motor inhibition* (Doctoral dissertation). University of Cambridge. <https://doi.org/10.17863/CAM.14695>

Guo, Y., Schmitz, T. W., Mur, M., Ferreira, C. S., & Anderson, M. C. (2018). A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence. *Neuropsychologia*, 108(November 2017), 117–134. <https://doi.org/10.1016/j.neuropsychologia.2017.11.033>

He, J. L., Fuelscher, I., Coxon, J., Chowdhury, N., Teo, W.-P., Barhoun, P., Enticott, P., & Hyde, C. (2019). Individual differences in intracortical inhibition predict motor-inhibitory performance. *Experimental Brain Research*, 237(10), 2715–2727. <https://doi.org/10.1007/s00221-019-05622-y>

Hu, X., Bergström, Z. M., Gagnepain, P., & Anderson, M. C. (2017). Suppressing unwanted memories reduces their unintended influences. *Current directions in psychological science*, 26(2), 197–206. <https://doi.org/10.1177/0963721417689881>

Jahanshahi, M., Obeso, I., Rothwell, J. C., & Obeso, J. A. (2015). A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. *Nature Reviews Neuroscience*, 16(12), 719–732. <https://doi.org/10.1038/nrn4038>

Jana, S., Hannah, R., Muralidharan, V., & Aron, A. R. (2020). Temporal cascade of frontal, motor and muscle processes underlying human action-stopping. *eLife*, 9. <https://doi.org/10.7554/eLife.50371>

Ji, J. L., Spronk, M., Kulkarni, K., Repovš, G., Anticevic, A., & Cole, M. W. (2019). Mapping the human brain's cortical-subcortical functional network organization. *NeuroImage*, 185(September 2018), 35–57. <https://doi.org/10.1016/j.neuroimage.2018.10.006>

Joormann, J., & Tanovic, E. (2015). Cognitive vulnerability to depression: Examining cognitive control and emotion regulation. *Current Opinion in Psychology*, 4, 86–92. <https://doi.org/10.1016/j.copsyc.2014.12.006>

Kavanagh, D. J., Andrade, J., & May, J. (2005). Imaginary relish and exquisite torture: The elaborated intrusion theory of desire. *Psychological Review*, 112(2), 446–467. <https://doi.org/10.1037/0033-295X.112.2.446>

Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial least squares (pls) methods for neuroimaging: A tutorial and review. *NeuroImage*, 56(2), 455–475. <https://doi.org/10.1016/j.neuroimage.2010.07.034>

Kuhl, B. A., Dudukovic, N. M., Kahn, I., & Wagner, A. D. (2007). Decreased demands on cognitive control reveal the neural processing benefits of forgetting. *Nature Neuroscience*, 10(7), 908–914. <https://doi.org/10.1038/nn1918>

Levy, B. J., & Anderson, M. C. (2012). Purging of memories from conscious awareness tracked in the human brain. *Journal of Neuroscience*, 32(47), 16785–16794. <https://doi.org/10.1523/JNEUROSCI.2640-12.2012>

Levy, B. J., & Wagner, A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: Reflexive reorienting, motor inhibition, and action updating. *Annals of the New York Academy of Sciences*, 1224(1), 40–62. <https://doi.org/10.1111/j.1749-6632.2011.05958.x>

Lipszyc, J., & Schachar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. *Journal of the International Neuropsychological Society*, 16(6), 1064–1076. <https://doi.org/10.1017/S1355617710000895>

Liu, Y., Lin, W., Liu, C., Luo, Y., Wu, J., Bayley, P. J., & Qin, S. (2016). Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories. *Nature Communications*, 7, 1–12. <https://doi.org/10.1038/ncomms13375>

Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. *Psychological Review*, 91(3), 295–327. <https://doi.org/10.1037/0033-295X.91.3.295>

Marcus, D. S., Harwell, J., Olsen, T., Hodge, M., Glasser, M. F., Prior, F., Jenkinson, M., Laumann, T., Curtiss, S. W., & Van Essen, D. C. (2011). Informatics and data

1 mining tools and strategies for the human connectome 58
2 project. *Frontiers in Neuroinformatics*, 5(June), 1–12. 59
3 <https://doi.org/10.3389/fninf.2011.00004> 60
4 Mary, A., Dayan, J., Leone, G., Postel, C., Fraisse, F., Malle, 61
5 C., Vallée, T., Klein-Peschanski, C., Viader, F., de la 62
6 Sayette, V., Peschanski, D., Eustache, F., & Gagnepain, 63
7 P. (2020). Resilience after trauma: The role of mem- 64
8 ory suppression. *Science*, 367(6479), eaay8477. <https://doi.org/10.1126/science.aay8477> 65
9
10 Mattia, M., Spadacenta, S., Pavone, L., Quarato, P., Es- 67
11 posito, V., Sparano, A., Sebastian, F., Di Gennaro, G., 68
12 Morace, R., Cantore, G., & Mirabella, G. (2012). Stop- 69
13 event-related potentials from intracranial electrodes 70
14 reveal a key role of premotor and motor cortices in stop- 71
15 ping ongoing movements. *Frontiers in Neuroengineering*, 72
16 5(June), 1–13. <https://doi.org/10.3389/fneng.2012.00012> 73
17
18 Matzke, D., Love, J., & Heathcote, A. (2017). A bayesian 75
19 approach for estimating the probability of trigger failures 76
20 in the stop-signal paradigm. *Behavior Research Methods*, 77
21 49(1), 267–281. <https://doi.org/10.3758/s13428-015-0695-8> 78
22
23 Matzke, D., Love, J., Wiecki, V. T., Brown, S. D., Logan, 80
24 G. D., & Wagenmakers, E. J. (2013). Release the beasts: 81
25 Bayesian estimation of ex-gaussian stop-signal reaction 82
26 time distributions. *Frontiers in Psychology*, 4(DEC), 1– 83
27 13. <https://doi.org/10.3389/fpsyg.2013.00918> 84
28 May, J., Kavanagh, D. J., & Andrade, J. (2015). The elabo- 85
29 rated intrusion theory of desire: A 10-year retrospective 86
30 and implications for addiction treatments. *Addictive Be- 87
31 haviors*, 44, 29–34. <https://doi.org/10.1016/j.addbeh.2014.09.016> 88
32
33 McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least 90
34 squares analysis of neuroimaging data: Applications 91
35 and advances. *NeuroImage*, 23(SUPPL. 1), 250–263. 92
36 <https://doi.org/10.1016/j.neuroimage.2004.07.020> 93
37 Murdock, B. B. (1962). The serial position effect of free 94
38 recall. *Journal of Experimental Psychology*, 64(5), 482– 95
39 488. <https://doi.org/10.1037/h0045106> 96
40 Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, 97
41 J. B. (2005). Valid conjunction inference with the mini- 98
42 mum statistic. *NeuroImage*. <https://doi.org/10.1016/j.neuroimage.2004.12.005> 99
43
44 Nigg, J. T. (2017). Annual research review: On the re- 101
45 lations among self-regulation, self-control, executive 102
46 functioning, effortful control, cognitive control, impul- 103
47 sivity, risk-taking, and inhibition for developmental psy- 104
48 chopathology. *Journal of Child Psychology and Psychiatry*, 105
49 58(4), 361–383. <https://doi.org/10.1111/jcpp.12675> 106
50 Penny, W. D., Stephan, K. E., Daunizeau, J., Rosa, M. J., 107
51 Friston, K. J., Schofield, T. M., & Leff, A. P. (2010). 108
52 Comparing families of dynamic causal models. *PLoS 109
53 computational biology*, 6(3), e1000709. <https://doi.org/10.1371/journal.pcbi.1000709> 110
54
55 Pernet, C. R., Wilcox, R., & Rousselet, G. A. (2013). Robust 112
56 correlation analyses: False positive and power validation 113
57 using a new open source matlab toolbox. *Frontiers in 114
58*
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765<br

1 Stephan, K., Penny, W., Moran, R., den Ouden, H., Dau- 59
2 nizeau, J., & Friston, K. (2010). Ten simple rules for dy- 60
3 namic causal modeling. *NeuroImage*, 49(4), 3099–3109. 61
4 <https://doi.org/10.1016/j.neuroimage.2009.11.015> 62

5 Stinear, C. M., Coxon, J. P., & Byblow, W. D. (2009). Pri- 63
6 mary motor cortex and movement prevention: Where 64
7 stop meets go. *Neuroscience and Biobehavioral Reviews*, 65
8 33(5), 662–673. <https://doi.org/10.1016/j.neubiorev.2008.08.013> 66
9

10 Sumitash, J., Ricci, H., Muralidharan, V., & Aron, A. R. 68
11 (2019). Temporal cascade of frontal, motor and muscle 69
12 processes underlying human action-stopping. *bioRxiv*, 70
13 1–41. <https://doi.org/https://doi.org/10.1101/700088> 71

14 Swann, N. C., Tandon, N., Pieters, T. A., & Aron, A. R. 72
15 (2013). Intracranial electroencephalography reveals dif- 73
16 ferent temporal profiles for dorsal- and ventro-lateral 74
17 prefrontal cortex in preparing to stop action. *Cerebral 75
18 Cortex*, 23(10), 2479–2488. <https://doi.org/10.1093/cercor/bhs245> 76
19

20 Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, 78
21 M., Wiener, M., & Fox, P. (2012). Minimizing within- 79
22 experiment and within-group effects in activation likeli- 80
23 hood estimation meta-analyses. *Human brain mapping*, 81
24 33(1), 1–13. <https://doi.org/10.1002/hbm.21186> 82

25 van den Wildenberg, W. P. M., Burle, B., Vidal, F., van 83
26 der Molen, M. W., Ridderinkhof, K. R., & Hasbroucq, 84
27 T. (2010). Mechanisms and dynamics of cortical motor 85
28 inhibition in the stop-signal paradigm: A tms study. 86
29 *Journal of Cognitive Neuroscience*, 22(2), 225–239. <https://doi.org/10.1162/jocn.2009.21248> 87
30

31 van Rooij, S. J., & Jovanovic, T. (2019). Impaired inhibition 90
32 as an intermediate phenotype for ptsd risk and treat- 91
33 ment response. *Progress in Neuro-Psychopharmacology 91
34 and Biological Psychiatry*, 89, 435–445. <https://doi.org/10.1016/j.pnpbp.2018.10.014> 92
35

36 Verbruggen, F., Aron, A. R., Band, G. P., Beste, C., Bissett, 93
37 P. G., Brockett, A. T., Brown, J. W., Chamberlain, S. R., 94
38 Chambers, C. D., Colonius, H., Colzato, L. S., Corneil, 94
39 B. D., Coxon, J. P., Dupuis, A., Eagle, D. M., Garavan, H., 94
40 Greenhouse, I., Heathcote, A., Huster, R. J., ... Boehler, 94
41 C. N. (2019). A consensus guide to capturing the ability 94
42 to inhibit actions and impulsive behaviors in the stop- 94
43 signal task. *eLife*, 8, 1–26. <https://doi.org/10.7554/elife.46323> 94
44

45 Verbruggen, F., Chambers, C. D., & Logan, G. D. (2013). 94
46 Fictitious inhibitory differences: How skewness and 94
47 slowing distort the estimation of stopping latencies. *Psy- 94
48 chological science*, 24(3), 352–62. <https://doi.org/10.1177/0956797612457390> 94
49

50 Wessel, J. R., Conner, C. R., Aron, A. R., & Tandon, N. 94
51 (2013). Chronometric electrical stimulation of right in- 94
52 ferior frontal cortex increases motor braking. *Journal of 94
53 Neuroscience*, 33(50), 19611–19619. <https://doi.org/10.1523/JNEUROSCI.3468-13.2013> 94
54

55 Wiecki, V. T., & Frank, M. J. (2013). A computational 94
56 model of inhibitory control in frontal cortex and basal 94
57 ganglia. *Psychological Review*, 120(2), 329–355. <https://doi.org/10.1037/a0031542> 94
58

59 Wimber, M., Alink, A., Charest, I., Kriegeskorte, N., & An- 94
60 derson, M. C. (2015). Retrieval induces adaptive for- 94
61 getting of competing memories via cortical pattern sup- 94
62 pression. *Nature neuroscience*, 18(4), 582–9. <https://doi.org/10.1038/nn.3973> 94
63

64 Wu, J., Yuan, Y., Cao, C., Zhang, K., Wang, L., & Zhang, L. 94
65 (2015). The relationship between response inhibition 94
66 and posttraumatic stress symptom clusters in adolescent 94
67 earthquake survivors: An event-related potential study. 94
68 *Scientific Reports*, 5(1), 8844. <https://doi.org/10.1038/srep08844> 94
69

70 Yeo, B. T. T., Krienen, F. M., Eickhoff, S. B., Yaakub, S. N., 94
71 Fox, P. T., Buckner, R. L., Asplund, C. L., & Chee, M. W. 94
72 (2015). Functional specialization and flexibility in hu- 94
73 man association cortex. *Cerebral Cortex*, 25(10), 3654– 94
74 3672. <https://doi.org/10.1093/cercor/bhu217> 94
75

76 Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., 94
77 Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3d 94
78 active contour segmentation of anatomical structures: 94
79 Significantly improved efficiency and reliability. *Neuro- 94
80 Image*, 31(3), 1116–1128. <https://doi.org/10.1016/j.neuroimage.2006.01.015> 94
81

82 Zandbelt, B. B., Bloemendaal, M., Hoogendam, J. M., Kahn, 94
83 R. S., & Vink, M. (2013). Transcranial magnetic stimula- 94
84 tion and functional mri reveal cortical and subcortical 94
85 interactions during stop-signal response inhibition. 94
86 *Journal of Cognitive Neuroscience*, 25(2), 157–174. https://doi.org/10.1162/jocn_a_00309 94
87

88 Zandbelt, B. B., & Vink, M. (2010). On the role of the 94
89 striatum in response inhibition. *PLoS ONE*, 5(11). <https://doi.org/10.1371/journal.pone.0013848> 94
90

91 Zhang, R., Geng, X., & Lee, T. M. C. (2017). Large-scale 94
92 functional neural network correlates of response inhibi- 94
93 tion: An fmri meta-analysis. *Brain Structure and Func- 94
94 tion*, 222(9), 3973–3990. <https://doi.org/10.1007/s00429-017-1443-x> 94
95