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Abstract

Brain morphology has been shown to be highly heritable, yet only a small portion of the heritability is
explained by the genetic variants discovered so far. Here we exploit the distributed nature of genetic
effects across the brain and apply the Multivariate Omnibus Statistical Test (MOSTest) to genome-wide
association studies (GWAS) of vertex-wise structural magnetic resonance imaging (MRI) cortical measures
from N=35,657 participants in the UK Biobank. We identified 695 loci for cortical surface area and 539 for
cortical thickness, in total 780 unique genetic loci associated with cortical morphology. This reflects an
approximate 10-fold increase compared to the commonly applied univariate GWAS methods. Power
analysis indicates that applying MOSTest to vertex-wise structural MRI data triples the effective sample
size compared to conventional univariate GWAS approaches. Functional follow up including gene-based
analyses implicate 10% of all protein-coding genes and point towards pathways involved in neurogenesis

and cell differentiation.
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Introduction

Variability in brain morphology is highly heritable, with twin studies estimating heritability for global
measures at 89% for total surface area and 81% for mean cortical thickness! and regional measures
(adjusting for whole brain measures) at up to 46% for cortical area and 57% for thickness?. GWAS is a
powerful tool for identifying genetic variants that shape the human cortex, but the full breadth of
reported heritability estimates has yet to be uncovered. The most recent large-scale GWAS of brain MRI
data (N=51,665) from the ENIGMA consortium identified 187 and 50 loci associated with global and
regional cortical surface area and thickness, respectively®. The relatively low yield despite high
heritabilities of brain morphology is likely due to high polygenicity and small effect size (discoverability)

per locus?.

Both imaging genetics* and gene expression studies® suggest that genetic effects are distributed across
cortical regions, such that variants influencing one cortical region are also likely to affect other cortical
regions. Multivariate statistical methods are naturally tailored to model distributed and pleiotropic
genetic effects. We recently developed a Multivariate Omnibus Statistical Test (MOSTest)® that aggregates
effects across spatially distributed phenotypes, such as cortical thickness, boosting our ability to detect
variant-phenotype associations. We showed that applying MOSTest to cortical morphology region of
interest (ROI) measures in the UK Biobank substantially increased loci discovery® compared to the
commonly applied approach used by the ENIGMA consortium?, here referred to as the min-P approach.
For each genetic variant tested for association with multiple phenotypes, min-P considers only the most
significant p-value and corrects it for the effective number of phenotypes analyzed, thus failing to exploit
shared genetic architecture across brain regions. In contrast, MOSTest relies on the distributed nature of
genetic influences across brain regions and allows detection of genetic variants with weak effects in

multiple brain regions. We have shown that the discoverability of GWAS variants underlying regional
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cortical area and thickness depends on the specific parcellation of cortical regions used, and that
parcellations based on genetic correlations from twin studies perform better than genetically un-informed
schemes®. Here we show that the combined genetic yield (number of loci discovered) for cortical area and
thickness can be boosted when using MOSTest (yielding a 3.8-fold increase relative to min-P), and boosted
further when moving from a region-based approach to a more fine-grained vertex-wise approach
(additional 1.8-fold increase). Uncovering the detailed genetic architecture of cortical area and thickness
will provide insight into the underlying neurobiology of the human brain, and give a better understanding

of brain-related human traits, such as cognition’, as well as neurological® and psychiatric diseases®.

Results

Genetic loci discovery

Using MOSTest®, we performed a multivariate GWAS of cortical morphology, such that the significance of
each locus was estimated after aggregating its effects across all vertices (1284 data points each for
thickness and area). This was conducted separately for cortical surface area and thickness in 35,657
individuals from UK Biobank. Cortical morphology estimates were residualized for modality-specific global
brain measures prior to analysis in order to estimate regional cortical effects relative to global brain
measures. Measurements from left and right hemispheres were included separately (not averaged). We
identified 695 and 539 loci, respectively, equating to 780 unique loci associated with cortical morphology.
Prior to performing the MOSTest analysis, individual cortical area and thickness measures were
residualized for age, sex, scanner site, proxy of surface reconstruction quality, the first twenty genetic
principal components, and a participant-specific global measure (either total area or average thickness).
Measurements from left and right hemispheres were not merged. For comparison, we repeated this
procedure aggregating over 68 ROIs from the Desikan-Killiany parcellation. This resulted in the discovery

of 370 loci for cortical surface area and 181 loci for cortical thickness, such that the vertex-wise MOSTest
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analysis provided a 1.9-fold and 3.0-fold increase in yield over the region-based MOSTest analysis,
respectively. Applying the min-P approach to Desikan-Killiany ROIs resulted in further reduction in the
number of loci discovered (88 for cortical surface area; 44 for cortical thickness). This represents a 4.2-
fold and 4.1-fold decrease compared to the MOSTest ROl-based analysis, and a 7.9-fold and 12.3-fold
decrease compared to vertex-wise MOSTest analysis, respectively. Manhattan plots are presented in Fig.
1, with corresponding QQ plots in Supplementary Fig. 1. Numbers of loci discovered with different
approaches are shown in Supplementary Table 1. Specific loci discovered in each analysis are listed in

Supplementary Tables 2 - 7.
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Fig. 1: Manhattan plots for cortical surface area and cortical thickness. (A) Area, MOSTest, vertex-wise:
N=695 loci. (B) Area, MOSTest, ROI: N=370 loci. (C) Area, min-P, ROI: N=88 loci. (D) Thickness, MOSTest,
VW: N=539 loci. (E) Thickness, MOSTest, ROI: N=181 loci. (F) Thickness, min-P, ROI: N=44 |oci. Black dotted
horizontal lines show genome-wide significance threshold (P=5E-8). Loci; independent genome-wide
significant (P<5E-8). Y-axes are truncated at -log10(P)=17.2 to highlight the region around genome-wide
significance threshold. ROl = region of interest.

To compare the vertex-wise MOSTest results with the most recent ENIGMA GWAS3, we also applied the
ENIGMA-based definition of genetic locus. This resulted in 1598 and 1054 unique loci for cortical area and

thickness respectively, and a total of 1735 unique loci for cortical morphology identified in the vertex-wise

MOSTest analysis (Supplementary Tables 8 - 9).
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Power analysis

To estimate the proportion of additive genetic variance explained by genome-wide significant SNPs
identified by either MOSTest or min-P as a function of sample size, we used the MiXeR tool° (Fig. 2). The
horizontal shift of the curve indicates that the effective sample size of MOSTest is around threefold that
of min-P. We estimate that with the current UK Biobank sample (N=35,657), 11.6% and 7.0% of the
additive genetic variance in cortical surface area and thickness, respectively, can be explained by genome-
wide significant loci from the vertex-wise MOSTest analysis. (Fig. 2). In contrast, the min-P approach
identifies 1.3% and 0.2% of the explained additive genetic variance for area and thickness, respectively
(Fig. 2). The power-analysis indicates that 32.2% and 24.0% of the additive genetic variance in cortical
surface area and thickness, respectively, will be discovered in the full UK Biobank sample of N=100,000
using the MOSTest vertex-wise approach (Fig. 2). Further, the proportion of explained variance with the
min-P approach in the full UK Biobank sample is estimated to be lower than the yield of MOSTest in the

present sample size (Fig. 2).
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Fig. 2: Estimated percent of additive genetic variance explained by genome-wide significant SNPs as a
function of sample size. Percentages of genetic variance explained by identified SNPs (p<5E-8) from
multivariate GWAS (MOSTest VW) of area (A) and thickness (B) with current sample size (N=35,657,
vertical dotted line) are shown in parentheses, with MOSTest ROl and min-P ROI for comparison. VW =
vertex-wise. ROl = region of interest.
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Gene-level analysis

Through gene-level analyses of the vertex-wise MOSTest GWAS using MAGMA®, we found that 1647 and
1412 genes, out of a total of 19036 protein-coding genes, were significantly associated with area and
thickness, respectively (Supplementary Table 10). We also performed competitive gene-set analyses
restricted to the Gene Ontology biological processes category (containing 7343 pathways). This resulted
in 204 and 184 significant (p<0.05/7343) gene sets associated with area and thickness, respectively. The
most significantly associated pathways were related to neuronal development and cell differentiation,

with the top 10 shown in Fig. 3.
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Fig. 3: Gene-set analyses with MAGMA. Results from the gene-set analysis based on multivariate GWA
on area (A) and thickness (B). Ten most significant Gene Ontology sets (N=7343) in the MOSTest VV
analysis are listed on the y-axis, in comparison with MOSTest ROl and min-P ROI. Correspondin
uncorrected -logl0(p-values) are shown on the x-axis. P-values were obtained using MAGMA analysis a
implemented in FUMA. Vertical dotted line shows Bonferroni correction threshold (p=0.05/7343). VW
vertex-wise. ROI = region of interest.

For comparison, we also performed the same analyses on the ROI-based MOSTest and min-P GWAS

summary statistics, resulting in 198 area and 66 thickness gene sets for ROl-based MOSTest and 60 area

and 4 thickness gene sets for min-P. As shown in Supplementary Figs. 2 and 3, the vertex-wise MOSTest

7
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approach led to much greater significance for nearly all pathways identified. Interestingly, the most
significant pathways identified by vertex-wise MOSTest are tightly connected with critical neurobiological
processes implicated in brain development while top findings in the min-P analysis are less specific. The
distributed effects of identified variants across different brain regions are also illustrated by brain maps,

highlighting the mixture of effects across the cortex (Supplementary Fig. 4).

Discussion

We identified 695 loci for cortical surface area and 539 for cortical thickness, in total 780 unique genetic
loci associated with cortical morphology. This reflects an approximate 10-fold increase compared to the
commonly applied univariate GWAS methods. Our study highlights the greatly improved yield obtained
with the multivariate method compared to conventional univariate GWAS approach, which stems from
the multivariate nature of brain morphology phenotypes, representing continuous maps per individual.
The present results support the hypothesis that the genetic determinants of variability in brain
morphology are extensively shared across multiple regions®. Our findings further underscore the complex
molecular mechanisms shaping the human brain, which we show are largely related to

neurodevelopmental processes.

Twin studies have suggested the largely independent nature of cortical surface area and thickness®. The
genetic correlation between them estimated using linkage disequilibrium score regression (LDSR) is rg=-
0.32 (p=6.5E-12)%. Here we identify the specific loci involved and show that these cortical phenotypes
share a large proportion of genomic loci. Out of a total of 695 loci for cortical area and 539 loci for cortical
thickness, 454 loci (58.2% of the total number of unique loci) were overlapping. These findings illustrate
how measures of genetic correlation fail to fully capture the extent to which the genetic influences of two
phenotypes are interrelated. LDSR and twin analyses depend on the consistency of effect directions across

phenotypes. In contrast, the analysis performed here consider non-null loci as overlapping if they are both
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significant and in linkage disequilibrium, regardless of effect directions. Overlapping genetic architecture
across brain regions despite the absence of strong genetic correlations are therefore plausible due to
common molecular toolkits involved in neurodevelopment across brain regions®2. This is in line with Allen
Brain Atlas maps of the adult human brain'®, showing regions with high similarity in gene expression
between cortical structures consistent with the notion that the basic architecture across the entire cortex
is similar or “canonical”*. This may also explain the shared genetic architecture observed for many brain-
related traits and disorders'>'’. Accounting for the distributed signal across the cortex in a multivariate
framework allowed us to boost power for discovery compared to traditional univariate approaches, such

as min-P.

Our gene-level analyses indicated that, with the current sample size, 10% of all protein-coding genes were
significantly associated with brain morphology (either cortical area or thickness). Gene-set analyses for
both area and thickness confirmed involvement of pathways recently reported by ENIGMAS3, but with
greater statistical significance. We additionally found strong evidence for the involvement of several
genetic pathways regulating neuronal development and differentiation that were not identified by the
min-P approach, implicating key biological processes regulating human surface area expansion and
increases in thickness. This also corroborates the strong statistical signals and suggests that we are
capturing true biological mechanisms that were missed by previous methodologies. These novel findings
of neurobiological underpinnings associated with brain morphology provide a framework for follow-up
experimental studies to identify the complex polygenic mechanisms involved in human brain
development!®. Further, the findings implicating neuronal development and cell differentiation can
facilitate experimental studies to gain better insight into the pathobiological mechanisms of brain-related
diseases including psychiatric disorders!®, where we need to understand the role of polygenic

mechanisms?°.
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Compared to the current largest brain morphology GWAS (N=50K)3, analyzing parcellation-free, vertex-
wise data with MOSTest increased the yield of significant loci 8.5-fold for cortical surface area and 21.1-
fold for cortical thickness, despite the lower sample size in our study (N=35K). Of note, while being
generally consistent, our protocol differs in a few aspects from the previous GWAS?, where global
measures were included in the principal analysis and data for cortical regions were averaged across right
and left hemispheres. Using the Desikan-Killiany parcellation approximately 2.0 times more variants were
identified for cortical surface area than for cortical thickness both with the min-P and the MOSTest
(Supplementary Table 1). In contrast, there were 1.3 times more loci for area compared to thickness when
using the MOSTest for parcellation-free vertex-wise data. (Supplementary Table 1). The observed
difference in loci yield may be due to differing degrees of mismatch between parcellation schemes and
actual architecture of the phenotypes. This seems to be particularly relevant for thickness, where variant
effects obtained from an ROI parcellation scheme may be underestimated compared to the vertex-wise
approach. This result may explain why parcellation schemes better reflecting the genetic architecture of

the cortex improve detectability in imaging genetics studies®.

The boost in statistical power using the multivariate vertex-wise approach is equivalent to a more than
three-fold increase in effective sample size for both area and thickness (Fig. 2). Our analysis suggests that
the substantial gain in power provided by MOSTest is projected to explain approximately 32.2% and 24.0%
of the additive genetic variance for cortical surface area and thickness, respectively, upon completion of
UK Biobank’s target neuroimaging sample (N=100,000)*' (Fig. 2). It is possible that multivariate
approaches will also boost discovery of genetic associations with other human phenotypes that exhibit

shared signal between traits.

To conclude, we have identified 780 unique loci associated with human brain morphology, highlighting its
polygenic nature and providing the foundation for functional follow-up experiments. While this study is

focused solely on UK Biobank, the generalizability and flexibility of this approach allows its incorporation

10
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into large-scale meta-analyses like ENIGMAZ, offering unique opportunities for major advances in our

understanding of the genetic determinants of brain morphology.

Materials and Methods

Sample

Genotypes, MRl scans, demographic and clinical data were obtained from the UK Biobank under accession
number 27412. For this study, we selected white British individuals (as derived from both self-declared
ethnicity and principal component analysis®®) who had undergone the neuroimaging protocol. The
resulting sample contained 35,657 individuals with a mean age of 64.4 years (standard deviation 7.5

years), 51.7% female.

Data processing

T1-weighted structural MRI scans were processed with the FreeSurfer v5.3 standard “recon-all”
processing pipeline?* to generate 1284 non-smoothed vertex-wise measures (ico3 downsampling with the
medial wall removed) and 68 ROl measures (based on the Desikan-Killiany parcellation) summarizing
cortical surface area and thickness. All measures were pre-residualized for age, sex, scanner site, a proxy
of surface reconstruction quality (FreeSurfer’s Euler number®), the first twenty genetic principal
components, and a global measure specific to each set of variables: total cortical surface area and mean
cortical thickness for the regional area and thickness measurements correspondingly. Subsequently, a
rank-based inverse normal transformation was applied to the residualized measures. We used UK Biobank
v3 imputed genotype data?, carrying out standard quality-checks as described previously®, and setting a
minor allele frequency threshold of 0.5%, leaving 9 million variants. Variants were tested for association

with cortical surface area and cortical thickness at each vertex and each ROl separately using the standard

11
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univariate GWAS procedure. Resulting univariate p-values and effect sizes were further combined in the

MOSTest and min-P analyses to identify area- and thickness-associated loci.

MOSTest analysis

Consider N variants and M (pre-residualized) phenotypes. Let z;; be a z-score from the univariate
association test between it variant and j" (residualized) phenotype and z; = (z;4, ..., Z;y) be the vector
of z-scores of the i™ variant across M phenotypes. Let Z = {z;;} be the matrix of z-scores with variants in
rows and phenotypes in columns. For each variant consider a random permutation of its genotypes and
let Z = {ZU} be the matrix of z-scores from the univariate association testing between variants with
permuted genotypes and phenotypes. A random permutation of genotypes is done once for each variant
and the resulting permuted genotype is tested for association with all phenotypes, therefore preserving

correlation structure between phenotypes.

Let R be the correlation matrix of Z, and R = USVT is its singular valued decomposition (U and V —
orthogonal matrixes, S— diagonal matrix with singular values of R on the diagonal). Consider the
regularized version of the correlation matrix R, = US, VT, where S, is obtained from S by keeping r
largest singular values and replacing the remaining with 7y, largest. The MOSTest statistics for it" variant
(scalar) is then estimated as x; = ziﬁr‘lzl-T, where regularization parameter r is selected separately for
cortical area and thickness to maximize the yield of genome-wide significant loci. In this study we observed
the largest yield for cortical surface area with r=10; the optimal choice for cortical thickness was r=20
(Supplementary Fig. 5). The distribution of the test statistics under null (CDF%5¢) is approximated from
the observed distribution of the test statistics with permuted genotypes, using the empirical distribution
in the 99.99 percentile and Gamma distribution in the upper tail, where shape and scale parameters of

Gamma distribution are fitted to the observed data. The p-value of the MOSTest test statistic for the i*"

variant is then obtained as pyosr = CDF195 (x;).

12
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min-P analysis

Similar to the MOSTest analysis, consider N variants and M preresidualized phenotypes. Let z;; be a z-
score from the univariate association test between i variant and j" (residualized) phenotype and z; =

(2i1, -, Ziyy) be the vector of z-scores of the it variant across M phenotypes. The min-P statistics for the

i™" variant is then estimated as y; = 2® (— .mla>§4(|zij|)>, where @ is a cumulative distribution function
j=1..

of the standard normal distribution. The distribution of the min-P test statistics under null (CDF™=F) is

approximated from the observed distribution of the test statistics with permuted genotypes, using the
empirical distribution in the 99.99" percentile and Beta distribution in the upper tail, where shape
parameters of Beta distribution (o and () are fitted to the observed data. The p-value of the min-P test

statistic for the i™ variant is then obtained as pyin_p = CDFP (y,).
Locus definition

Genetic loci were defined based on association summary statistics produced with MOSTest and min-P
following the protocol implemented in FUMA?® with default parameters. The protocol can be summarized

as the following:

1. Independent significant genetic variants are identified as variants with p-value<5E-8 and linkage
disequilibrium (LD) r2<0.6 with each other.

2. Asubset of these independent significant variants with LD r2<0.1 are then selected as lead variants.

3. Foreachindependent significant variant all candidate variants are identified as variants with LD r220.6
with the independent significant variant.

4. For a given lead variant the borders of the genomic locus are defined as min/max positional
coordinates over all corresponding candidate variants.

5. Lociare then merged if they are separated by less than 250kb.
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Alternatively, to facilitate comparison with the current largest brain morphology GWAS3, we also counted
genetic loci applying locus definition similar to that used by ENIGMA. Briefly, the association summary
statistics produced with either MOSTest or min-P were clumped with PLINK?” using p-value threshold of
5E-8 (--clump-p1) and linkage disequilibrium cutoffs of 1 Mb (--clump-kb) and r2 < 0.2 (--clump-r2).

Obtained clumps of variants were considered as independent genome-wide significant genetic loci.

MiXeR analysis

MOSTest and min-P p-values were analyzed with the MiXeR tool'? to estimate the proportion of additive
genetic variance explained by genome-wide significant SNPs as a function of sample size. Right censoring

(MiXeR option: --z1max 5.45) was applied to mitigate extreme effects which may lead to biased estimates.

Gene-level analysis

We carried out MAGMA-based gene analyses using default settings, which entail the application of a SNP-
wide mean model to GWAS summary statistics, with the use of the 1000 Genomes Phase 3 EUR reference
panel. Gene-set analyses were done in a similar manner, restricting the sets under investigation to those
that are part of the Gene Ontology biological processes subset (N=7343), as listed in the Molecular

Signatures Database (MsigdB) v7.0.

Data availability

The data incorporated in this work were gathered from the public UK Biobank resource.

Code availability

MOSTest code is publicly available at https://github.com/precimed/mostest (GPLv3 license).
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