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Abstract 7 

Background: The development of long read sequencing (LRS) has led to greater access to the human genome. LRS 8 

produces long read lengths at the cost of high error rates and has shown to be more useful in calling structural 9 

variants than short read sequencing (SRS) data. In this paper we evaluate how to use LRS data from Oxford 10 

Nanopore Technologies (ONT) to call small variants in regions in- and outside the reach of SRS. 11 

Results: Calling single nucleotide polymorphisms (SNPs) with ONT data has comparable accuracy to Illumina when 12 

evaluating against the Genome in a Bottle truth set v4.2. In the major histocompatibility complex (MHC) and 13 

regions where mapping short reads is difficult, the F-measure of ONT calls exceeds those of short reads by 2-4% 14 

when sequence coverage is 20X or greater.  15 

We develop recommendations for how to perform small variant calling with LRS data and improve current 16 

approaches to the difficult regions by re-genotyping variants to increase the F-measure from 97.24% to 98.78%. 17 

Furthermore, we show how LRS can call variants in genomic regions inaccessible to SRS, including medically 18 

relevant genes such as STRC and CFC1B. 19 

Conclusions: Although small variant calling in LRS data is still immature, current methods are clearly useful in 20 

difficult and inaccessible regions of the genome, enabling variant calling in medically relevant genes not accessible 21 

to SRS.  22 
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Introduction 23 

The field of genomics is constantly evolving as developments in sequencing technology allow greater access to 24 

genomic variation. Since the turn of the century, short read sequencing (SRS) has led to tremendous insight into 25 

the human genome, with SRS becoming an integral part of diagnostics [1]. Currently, SRS is almost synonymous 26 

with Illumina sequencing, with read lengths around 150 bp and error rates from 0.1-1% depending on platform and 27 

protocol [2]. 28 

In the past decade we have seen the emergence of long read sequencing (LRS), with Pacific Biosciences9 (PacBio) 29 

single-molecule real-time (SMRT) technology in 2011 and Oxford Nanopore Technologies (ONT) in 2014 [3]. Both 30 

technologies were initially plagued by high error rates (10-15%) [4], making variant calling very challenging. PacBio 31 

solved this issue with the introduction of the circular consensus sequencing (CCS) protocol, producing high fidelity 32 

(HiFi) reads with lengths of 10-20 kb and error rates of 0.2% [5]. The drawback of this approach is a highly reduced 33 

output, with a single SMRT Cell 8M producing 15-25 Gb of HiFi data [6]. Meanwhile, ONT is still error prone but 34 

provides far longer reads, typically 10-100 kb, and outputting 50-100 Gb of data per PromethION flow cell [6]. ONT 35 

also offers an ultra-long read protocol consistently producing reads exceeding 100 kb at the cost of decreased 36 

output [7]. Considering the PromethION flow cell being slightly cheaper than the SMRT Cell, this results in a much 37 

lower cost per base for ONT data [8].  38 

The development of LRS has made previously inaccessible regions of the genome available for study [9]. These 39 

regions were described by Ebbert et al. as <dark=, due to low coverage (f 5 reads) or low mapping quality (g 90% 40 

reads with MAPQ < 10). They found that PacBio reduced the percentage of dark bases by 58.2% for all gene bodies 41 

and 77.7% for coding sequence (CDS). In comparison ONT reduced the percentage of dark bases by 77.9% in all 42 

gene bodies and by 95.6% in the CDS. Recently, the Telomere-to-Telomere (T2T) consortium also showed the 43 

strength of ultra-long ONT reads, using them as part of their effort to create a complete assembly of the human 44 

CHM13hTERT cell line, underlining the importance of read length in accessing dark regions. [10,11]. 45 

Further proof of the usefulness of LRS was the genome in a bottle (GIAB) truth set v4.1, which expanded the high 46 

confidence regions to 92.2% of the genome compared to 85.4% in v3.3.2 using PacBio HiFi reads [12].  47 
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Here we chose to evaluate variant discovery across the genome based on ONT data, as the technology provides 48 

the greatest access to the dark regions at the lowest cost per base. We test some of the most recent variant 49 

callers, namely Medaka, a diploid-aware neural network developed by ONT [13]; Clair, a deep neural network 50 

based variant caller [14] and P.E.P.P.E.R./DeepVariant (<PEPPER= going forward), a deep neural network polisher 51 

and caller [15,16] presented in the PrecisionFDA Truth Challenge V2.  52 

Results 53 

Truth set benchmarking reveals inconsistent performance across different evaluation regions 54 

We analyzed data from the publicly available Ashkenazim trio (HG002, HG003, HG004). Variant calls were 55 

evaluated against the GIAB v4.2 truth set released in relation to the PrecisionFDA Truth Challenge V2 capturing 56 

92.2% of the genome. Illumina data was benchmarked with DeepVariant [16] to establish baseline performance of 57 

a known caller with SRS data. The HG002 truth set has been widely used for model training, we therefore use the 58 

HG003 and HG004 truth sets for evaluation and report their average.  59 

The Illumina data had 60X coverage for all individuals, while coverage for ONT data varied from 50X for HG002 60 

(8.81% error rate) to 80X for HG003 (7.82% error rate) and HG004 (8.24% error rate).  61 
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 62 

Figure 1. Performance metrics measured against the Genome in a Bottle v4.2 truth set. All benchmark regions: Complete truth 63 

set. MHC: Intersect of major histocompatibility complex and truth set. Difficult-to-map regions: Intersect of the truth set with 64 

segmental duplications and regions where 100 bp read pairs have <= 2 mismatches and <= 1 indel difference from another part 65 

of the genome. MHC: Major histocompatibility complex; F: F-measure; P: Precision; S: Sensitivity 66 

As seen in Figure 1, the best variant calling performance across all benchmark regions is achieved using Illumina 67 

data. This is no surprise, as short reads were the foundation of previous versions of the truth set and most of the 68 

human genome is sufficiently unique to map short reads unambiguously. When stratifying performance by variant 69 

type, we see a more detailed picture. This highlights decent SNP calling with ONT data, with both Medaka and 70 

PEPPER F-measure surpassing 99%, while Clair achieves 98.55%. Meanwhile, indel detection with ONT lags severely 71 
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behind. For Illumina we see an F-measure of 99.58%, while Medaka, the best performing ONT caller, achieves 72 

70.34%.  73 

Analyzing performance in more complex regions, such as the difficult-to-map regions and the major 74 

histocompatibility complex (MHC), reveals the benefit of LRS. In the difficult-to-map regions (145 mb), overall ONT 75 

performance surpasses Illumina with an F-measure of 97.24% using PEPPER, while Illumina reaches 94.84%. A 76 

similar picture is seen in the MHC (4.6 mb), except the overall best performance is achieved by Medaka, having an 77 

F-measure of 98.73%, while Illumina reaches 94.04%. In both the MHC and the difficult-to-map regions Illumina is 78 

5-8% better for calling indels than the best ONT caller.  79 

Subsampling reveals high performance from 30X coverage 80 

As 80X ONT whole genome sequencing is not necessarily feasible for large scale experiments we benchmarked 81 

performance at 10X coverage increments (Figure 2). This highlighted the need for at least 20X ONT to surpass SRS 82 

performance in the difficult-to-map regions, while 30X was necessary in the MHC to achieve a meaningful 83 

improvement. Interestingly, this also showed PEPPER as the better choice for ONT data across most depths and 84 

regions, despite the author recommendation of 50-80X coverage [15].  85 

PEPPER with 30X coverage resulted in an overall f-measure of 95.42%, while doubling the coverage increased 86 

performance less than 1%. Finally, we observed a slight dip in PEPPER performance above 60X coverage.  87 
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 88 

Figure 2. Variant calling performance as a function of sequence coverage. F-measure was determined between 10 and 80X 89 

coverage in 10X increments for each evaluation region. Numbers are average of HG003 and HG004. MHC: Major 90 

histocompatibility complex. 91 

Mendelian concordance decreases outside high confidence regions 92 

Evaluating the performance of variant callers in the 7.8% of the genome not included in the GIAB truth set is more 93 

difficult. Here we look at two measurements; 1) the total number of variants as an indicator of sensitivity and 2) 94 

the Mendelian concordance as an indicator of precision. Mendelian concordance is a commonly used metric, when 95 

no truth set exists [17], while the number of variants is important to avoid overestimating the performance of 96 

conservative callers. To achieve consistent Mendelian concordance calculations for each setup, we only benchmark 97 

variant callers supporting gVCF output (DeepVariant for Illumina, PEPPER for ONT). 98 

As seen in Table 1, variant calling in the high confidence (HC) regions is very consistent, with both technologies 99 

resulting in Mendelian concordance above 99%. At the same time, the total number of variants in ONT data 100 

displays a shortcoming of Mendelian concordance. The call set is missing approximately 200,000 indels, caused by 101 

low sensitivity (57.41%, Figure 1), but maintains high concordance due to consistently missing indels. In the 102 

complementary (Comp) regions the mendelian concordance decreases for both technologies. Stratifying by variant 103 
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type shows the concordance of ONT SNPs to be within 2% of Illumina, while calling 90,000 more SNPs, presumably 104 

due to greater access to the traditionally dark regions of the genome.  105 

Table 1. Total number of variants called in HG002 and their Mendelian concordance 106 

Data Region (variant type) Variants MC (%) 

Illumina 

HC (SNPs + indels) 3,872,611 99.87 

Comp (SNPs + indels) 734,056 95.00 

Comp (SNPs) 382,568 94.59 

Comp (indels) 335,519 95.81 

ONT 

HC (SNPs + indels) 3,662,447 99.40 

Comp (SNPs + indels) 584,514 91.24 

Comp (SNPs) 469,811 92.62 

Comp (indels) 109,753 85.62 

MC: Mendelian concordance; HC: High confidence; Comp: Complementary regions; SNPs: Single nucleotide 107 

polymorphisms; ONT: Oxford Nanopore Technologies. 108 

Long reads reveal 22 mb of dark genome including medically relevant genes 109 

We identified dark regions for both short and long reads, subsequently identifying regions uniquely dark to either 110 

technology. Here we adapted the dark region definition from [9] described previously. This approach found 22 mb 111 

of the genome dark only to short reads, while, surprisingly, 1.5 mb was solely dark to long reads (Figure 3). These 112 

regions were spread across 32607 sites, ranging from 1 to 103,863 bp (median 155 bp) in size, with the 1324 113 

largest regions (3,335 bp and above) making up 50% of the dark bases. 114 
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 115 

Figure 3. Dark regions of chromosome 1. Percentage of bases in 1 mb windows which are dark to only one technology. 116 

Looking at genes previously defined as medically relevant but challenging to short-read technologies [18], we find 117 

618 of 4,773 genes where some bases can only be reached by ONT and 49 genes where at least 10% of the gene is 118 

only reachable with ONT. The same approach for all genes in the Ensembl database [19] identified 2,336 of 19,190 119 

genes with any bases only reached by ONT and 453 genes above the 10% threshold. Figure 4 shows two medically 120 

relevant genes, STRC and CFC1B, of which 23.39% and 100% of the genes can only be accessed with ONT. A 121 

comparison to PacBio HiFi found 12 mb of the genome, including CFC1B, to be dark to PacBio Hifi data but not 122 

ONT. 123 

Intersecting the short read dark regions with the PEPPER variants identified 54,000 variants in HG002, of which 124 

48,000 were SNPs. This number corresponds to half of the 90,000 SNPs identified by ONT and not Illumina. 125 

Analysis of these variants will however be difficult as Mendelian concordance is only 86.87%. Furthermore, the 126 

PEPPER call set contained an extra 25,000 events in these regions, which were not called as variants. Upon visual 127 

inspection several events were missing genotypes (./.) or called as homozygous reference (0/0) despite high 128 

coverage and variant allele frequencies above 50%. We assume this is caused by DeepVariant (the final step of 129 

PEPPER) sometimes recognizing SNP-dense regions as segmental duplications, leading it to call homozygous 130 

reference [20].  131 
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 132 

Figure 4. Coverage of the medically relevant genes STRC and CFC1B. Top panel shows the coverage of the STRC gene. Bottom 133 

panel shows the coverage of the CFC1B gene. 134 

Re-genotyping variants outside the high confidence regions increase mendelian concordance 135 

As our original calls in the dark regions showed low Mendelian consistency, we re-genotyped the joint VCF files 136 

from PEPPER using Whatshap [21]. Whatshap can take an input VCF + BAM file to compute haplotype-aware 137 

genotypes for each event in the VCF file based on a Hidden Markov Model [22]. Using this approach on all events 138 

in the dark regions increased the number of variants by approximately 15,000 while simultaneously improving the 139 

Mendelian concordance by more than 7% (Table 2).  140 

Table 2. Number of variants and Mendelian concordance of PEPPER and re-genotyped PEPPER in the dark regions.  141 

Variants MC (%) Re-genotyping 

54,363 86.87 No 

71,866 94.32 Yes 

MC: Mendelian concordance 142 
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Extending the re-genotyping to each subset of the genome (HC, MHC, difficult-to-map, complementary, dark 143 

regions) showed increased Mendelian concordance for all regions (Figure 5). For the high confidence, MHC and 144 

difficult-to-map regions we also re-calculated the F-measure of the new HG003 and HG004 genotypes. Re-145 

genotyping resulted in 1.5% decreased F-measure in the high confidence regions. However, in the MHC, the F-146 

measure increased marginally, while in the difficult-to-map regions it improved from 97.25% to 98.78%. Further, 147 

re-genotyping improved the consistency of variant calling between samples in the MHC. In this region, the F-148 

measure for both Illumina and ONT varied 2-4% between HG003 and HG004, while in other regions it varied 0-149 

0.2%. Re-genotyping reduced the F-measure difference in the MHC to 0.2-2%.  150 

For the Illumina data, the F-measure decreased for all regions (Figure 5), while re-genotyping had mixed effects on 151 

the Mendelian concordance with slight increases in the MHC and complementary regions and decreases in the HC 152 

and difficult-to-map regions. 153 

 154 

Figure 5. The effect of re-genotyping on mendelian concordance and F-measure. For PEPPER we see an increase in Mendelian 155 

concordance for all regions, while the F-measure is decreased in the HC, but increased in the MHC and difficult-to-map regions. 156 

For Illumina we see improved Mendelian concordance in the MHC and complementary regions, while it is decreased in the HC 157 
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and difficult-to-map regions, the F-measure is decreased in all regions. HC: High confidence; MHC: Major histocompatibility 158 

complex; Dif-map: Difficult-to-map; Comp: Complementary regions (outside HC, excluding centromere and sex chromosomes). 159 

Discussion 160 

We have analyzed multiple variant calling approaches in ONT data from the publicly available Ashkenazim trio 161 

(HG002, HG003, HG004). This has shown very consistent SNP calling, with both Medaka and PEPPER exceeding 162 

99% F-measure when evaluating against the latest release of the GIAB truth sets. Limiting evaluations to more 163 

challenging regions of the truth sets shows performance 2-4% higher than SRS with as little as 20X coverage.  164 

No single variant calling approach was the best across all regions and coverages, but the consistency of PEPPER 165 

makes it a good default choice for analysis up to at least 50X coverage, while we begin to see diminishing results at 166 

60X and above. Another benefit of PEPPER compared to other variant calling options is the ability to output gVCF 167 

format, which is easily processed with GLnexus [23,24] to create joint VCF files. 168 

Evaluating performance outside the high confidence regions we observed decreased Mendelian concordance, 169 

which was expected as these regions are generally more challenging. Re-genotyping calls in these regions with 170 

Whatshap improved Mendelian concordance by almost 6%, resulting in ONT surpassing SRS. This approach also 171 

improved the F-measure of ONT data in both the MHC and the difficult-to-map regions. A similar approach for SRS 172 

was not beneficial, highlighting how some of the behavior of DeepVariant is good for short reads but at times 173 

detrimental to long reads. Re-genotyping PEPPER variant calls in the MHC (highest SNP-density region) also 174 

improved the consistency of variant calling, while maintaining a similar average F-measure, which in our opinion is 175 

to be preferred. 176 

Finally, we show that ONT can reach an additional 22 mb of the genome, finding more than 50,000 variants, which 177 

are completely inaccessible to SRS. As shown, these regions include medically relevant genes like CFC1B, which can 178 

only be reached with the very long reads from ONT or potentially PacBio continuous long reads (CLR).  179 

During this work, we have observed new releases of almost every software used, including the Guppy basecaller 180 

used to generate the initial sequence files. It is therefore not unreasonable to expect improved performance of 181 

ONT data in the future, both through better basecalling but also variant calling. Meanwhile, SRS has reached a 182 
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point where future improvements will be minimal, leading us to believe that the current performance difference in 183 

regions accessible to both methods will become smaller.  184 

The primary issue for ONT is now indel performance, which we have not put substantial focus on in this paper. 185 

Current results are inferior to SRS in all evaluation regions by 5-30%, making it an obvious focus point for future 186 

development.  187 

Conclusion 188 

For researchers whose primary interest is small variants inside the high confidence regions, SRS is both cheaper, 189 

better and easier to work with. ONT sequencing technology has already been shown to be useful for structural 190 

variant detection [25] and methylation calling [26]. We now show that ONT is beneficial for small variant calling in 191 

the MHC, the difficult-to-map regions and regions outside the high confidence regions, in particular we find 22 mb 192 

accessible only to ONT. 193 

In the challenging regions of the genome, ONT outperforms SRS in SNP calling, helping researchers gain access to 194 

genomic regions and genes which are otherwise completely dark. Here we find PEPPER to be the best performing 195 

variant caller, without access to very high coverage data (>60X). Further, we advise a re-genotyping step, as it 196 

improves consistency and performance of variant calling in these regions. 197 

As a technology, ONT is still quite immature, making it a challenge to utilize to its full potential. At the same time, 198 

this immaturity promises greater performance and easier use in the future, if developments continue at the 199 

current pace. 200 

Methods 201 

Data preparation: 202 

GRCh38 aligned Illumina BAM files from the Ashkenazim trio (HG002, HG003, HG004) were downloaded and used 203 

as is. ONT and PacBio HiFi FASTQ files were downloaded and aligned to GRCh38 using Minimap2 v2.14 [27] utilizing 204 

the presets for each technology (<-ax map-ont= and <-ax asm20=, respectively). Sorting and indexing was 205 

performed with SAMtools v1.9 [28]. 206 
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All Illumina data had a coverage of 60X, ONT ranged from 50X (HG002) to 80X (HG003, HG004), while PacBio had 207 

35X coverage for all.  208 

Variant calling: 209 

Illumina: 210 

A singularity image of DeepVariant v0.10.0 was created using 8singularity pull deepvariant_0.10.0.simg 211 

docker://google/deepvariant:0.10.09. Variant calling was performed with standard parameters (--model_type 212 

WGS) using the singularity exec command, outputting both VCF and gVCF files.  213 

ONT: 214 

Medaka v1.0.3 was run using medaka_variant, calling variants by chromosome before combining VCF files with 215 

BCFtools v1.9 [28]. 216 

Clair v2.0.6 was run using the callVarBam module with the pretrained ONT model, variants were called by 217 

chromosome. 218 

A singularity image of PEPPER/DeepVariant was created using 8singularity pull 219 

docker://kishwars/pepper_deepvariant_cpu:latest9 (Image from 15/6/2020). Variants were called by modifying the 220 

run_pepper_deepvariant.sh script to include gVCF output and storing the PEPPER models outside the image to 221 

ensure write permission. Variant calling was performed in 8Run-time9 mode.  222 

For both data types gVCF output from each individual was joined using GLnexus v1.2.7. A singularity image was 223 

created using 8singularity pull glnexus_v1.2.7.simg docker://quay.io/mlin/glnexus:v1.2.79. The image was executed 224 

with --config DeepVariantWGS.  225 

Re-genotyping 226 

Whatshap v1.0 was used to re-genotype the joint VCFs from GLnexus, running Whatshap genotype on individual 227 

chromosome with the --indel flag. VCF files were re-combined using BCFtools concat. Whatshap genotype required 228 

the presence of a read group tag and sample in the bam header. This was added using SAMtools with the 229 

command 8samtools addreplacerg -r <ID:HG002\tSM:HG002=9.  230 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.22.350009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.22.350009
http://creativecommons.org/licenses/by/4.0/


 14 

Evaluation 231 

Truth sets: 232 

Version 4.2 of truth sets (VCF + BED files) were downloaded for each individual and used with RTG tools v3.10.1 233 

[29]. 234 

MHC and difficult-to-map regions: 235 

BED files of the major histocompatibility complex (MHC) and diffult-to-map regions, as defined by GIAB, were 236 

downloaded and used as is.  237 

Outside high confidence regions: 238 

A complementary BED file of the HG002 high confidence regions was created using BEDTools v2.18.2 [30] to 239 

extract variants for mendelian concordance testing. From this BED file we subtracted the centromere regions 240 

(UCSC table browser > Mammal > Human > GRCh38 > All tables > centromeres) as well as the X and Y 241 

chromosome, as these regions were too noisy and unsuited for Mendelian concordance, respectively.  242 

Dark regions and medically relevant genes: 243 

For Illumina, ONT and PacBio, dark regions were computed from the BAM files of the trio. Dark regions were 244 

defined as regions of at least 30 bp, with an average coverage below 5X or less than 10% of reads having a 245 

mapping quality at or above 10. The centromere regions were subtracted due to noise. Finally, for Illumina and 246 

PacBio we created BED files of dark regions reachable by ONT by subtracting the ONT BED file from each. 247 

The overlaps between dark regions and genes were computed by intersecting the gene coordinates with the dark 248 

regions using BEDTools.  249 

RTG Tools: 250 

To benchmark against the truth sets we evaluated each VCF file using the vcfeval module of RTG Tools, using the 251 

truth VCF as baseline (-b) and the truth BED to define the regions (--bed-regions). The evaluation region (-e) was 252 

defined using either the truth BED, the MHC BED or the difficult-to-map BED.  253 

Benchmarking outside the truth sets was achieved by intersecting the joint VCF file from GLnexus with the <outside 254 

high confidence regions= BED, followed by RTG Tools mendelian to compute Mendelian concordance rates with 255 
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both mother, father and mother+father. The same approach was used for other BED files when reporting 256 

Mendelian concordance for other regions.  257 

Visualization: 258 

Visualizations were made with R v3.6 [31], ggplot2 [32], karyoploteR [33], inlmisc [34] and IGV v2.8 [35]. 259 

Availability of data and materials 260 

Illumina sequencing data and evaluation BED files are made available by the GIAB consortium [36338] from their 261 

FTP server [39]. ONT and PacBio data are available through the FDA precision challenge [40]. Centromere BED file 262 

can be downloaded from UCSC [41,42] at [43]. The precomputed Clair model is available at [44]. Ensembl release 263 

98 is available from their FTP server [45]. 264 
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