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Abstract:

Several studies suggested that transcription factor (TF) binding
to DNA may be impaired or enhanced by DNA methylation. We
present MEDEMO, a toolbox for TF motif analysis that com-
bines information about DNA methylation with models captur-
ing intra-motif dependencies. In a large-scale study using ChIP-
seq data for 335 TFs, we identify novel TFs that are affected by
DNA methylation. Overall, we find that CpG methylation de-
creases the likelihood of binding for the majority of TFs. For
a considerable subset of TFs, we show that intra-motif depen-
dencies are pivotal for accurately modelling the impact of DNA
methylation on TF binding.

BACKGROUND

Transcription Factors (TFs) are essential regulatory pro-
teins with diverse roles in transcriptional regulation, such as
chromatin remodelling or the initiation of transcription (1).
Hence, a key step to improve our understanding of the func-
tion of TFs is to identify the genomic location of TF binding
sites (TFBS). It was shown that TFs usually bind to acces-
sible chromatin (2) and therefore a variety of computational
methods (3) has been developed to combine chromatin acces-
sibility data (e.g. DNasel-seq, ATAC-seq, NOMe-seq) with
TF motif information as encoded in Position Weight Matrices
(PWMs) (4-7) to elucidate the tissue-specific binding profiles
of TFs. Recently, LSLIM-models, which capture intra-motif
dependencies, have been successfully applied to overcome
the nucleotide independence assumption of PWMs (8). Fur-
ther approaches that allow for intra-motif dependencies in-
clude improved energy models (9), transcription factor flex-
ible models (10), parsimonious Markov models (11), and
Bayesian Markov models (12).

To provide the community with a systematic comparison of
the plethora of TFBS prediction approaches, the ENCODE-
DREAM in vivo Transcription Factor binding site predic-
tion challenge (13) was conducted in 2016. The competing
methods considered, aside from epigenomics data, also DNA
shape, sequence conservation, and/or sequence composition.
Interestingly, the median area under the precision recall curve

(AUC-PR) for one of the winning methods across all classi-
fiers is only 0.4 (14), suggesting that important molecular
signatures influencing TF binding are not incorporated yet.

One of those signatures is DNA methylation in a CpG con-
text. The analysis of DNA methylation has been a major
focus of epigenomics research and several experimental ap-
proaches have been proposed to characterize DNA methy-
lation in vivo (15): While early methods used methyla-
tion sensitive restriction enzymes in PCR and gel-based ap-
proaches (16), the usage of microarrays allowed a scale-up
of CpG methylation analysis (17). Array-based methods
are nowadays used to characterize the methylation levels of
pre-selected CpGs, e.g. for diagnostic purposes (18). With
the advancements of next-generation sequencing, several se-
quencing based approaches to characterize DNA methyla-
tion on a genome-wide scale have been proposed (19, 20).
Most techniques used currently require bisulfite-treated DNA
as input. Bisulfite treatment causes unmethylated cytosines
to be converted to uracils, whereas methylated cytosines re-
main unchanged (21). Large-scale bisulfite sequencing stud-
ies have been performed by several international consortia
such as Blueprint, Roadmap and ENCODE, to generate DNA
methylation data for several tissue and primary cell types.

DNA methylation in a CpG context has been reported previ-
ously to have a repressive effect on TF binding (22). Addi-
tional studies using protein binding microarrays (23), DAP-
seq (24) or methylation-sensitive systematic evolution of lig-
ands by exponential enrichment (SELEX) (25) indicated that
DNA methylation can also promote TF binding. Function-
ally, the addition of a methyl group to cytosines mimics a
thymine and influences the steric and hydrophobic environ-
ment (26), thus called thymine mimicry (27). Specifically,
CpG methylation leads to a widening of the major groove
and narrows the minor groove (28, 29). It also affects roll
and propeller twist and results in an increase of helix stiff-
ness (29).

As summarized in (26), there are two modes how TFs
can recognize DNA methylation: i) the 5 methyl-cytosine-
arginine-guanine triad detection and ii) the presence of van
der Waals interactions between the methyl group of the cy-
tosine and methyl groups of hydrophobic amino acids or
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methylene groups of polarized amino acids.

Methylation dependence has been studied in depth for sev-
eral TFs such as KLF4 (30), P53 (31), CEBP complexes (25),
NRFI (32) and ZFP57 (33). However, methods specifically
designed to include information about DNA methylation into
the de novo discovery of binding motifs are rare. The MEPI-
GRAM (34) software is an extension of the EPIGRAM algo-
rithm for motif detection (35). MEPIGRAM derives motifs
by constructing PWMs considering a sequence set derived
from TF ChIP-seq data. Specifically, MEPIGRAM computes
the most enriched k-mers within the ChIP-seq peak regions
compared to a randomly shuffled set of sequences. These k-
mers are treated as ’seeds’ and subsequently extended both
up and downstream. To incorporate DNA methylation in this
process, the alphabet considered in PWM construction has
been extended with a separate symbol for methylated cyto-
sine. Viner et al. (36) use an alphabet with additional sym-
bols for differently methylated cytosines and further sym-
bols for the corresponding guanines on the opposite strand.
De novo motif discovery is then performed by an enhanced
version of the MEME suite. To analyse data generated by
the Methyl-Spec-seq assay, Zuo et al. (33) use a similar ex-
tended 6-letter alphabet for PWM construction with separate
symbols for methylated cytosines and guanines opposite of
methylated cytosines.

Recently, the METHMOTIF database, which combines TF
motifs with associated DNA methylation profiles, has been
made available (37). In METHMOTIF, occurrences of known
TF motifs are detected with CENTRIMO in ChIP-seq data
from ENCODE. Subsequently, the genomic loci that are en-
riched for the tested motifs are overlayed with CpG methyla-
tion data from GEO. The found motifs and the CpG methy-
lation signatures are visualized in so called MethMotif logos.
A possible demerit of the approach pursued in METHMO-
TIF, compared with those mentioned previously, is that the
methylation dependence has not been incorporated into the
discovery of the TF motif.

Although the aforementioned methods demonstrated signifi-
cant advantages in the characterization of TF binding sites by
including DNA methylation, they do suffer from the simpli-
fying independence of nucleotide assumption made in PWM
models. Even without considering DNA methylation, sev-
eral recent studies demonstrated that including intra-motif
dependencies improves the accuracy of motif models. The
models employed for this purpose include variable-order
Bayesian networks (38), Bayesian Markov models (12), tran-
scription factor flexible models (10), parsimonious Markov
models (11, 39), and sparse local inhomogeneous mixture
(Slim) models (8). Considering DNA methylation, the inde-
pendence assumption is obviously violated in a CpG methy-
lation context. In addition, neither METHMOTIF nor MEPI-
GRAM provide the user with means to perform methylation-
aware genome wide TFBS predictions.

Here, we present MEDEMO (Methylation and Dependencies
in Motifs), a toolbox using an extension of SLIM models cap-
turing intra-motif dependencies, which accounts for the pres-
ence of DNA methylation. We illustrate that the combina-
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Table 1. Overview of the combinations of genome variants and motif models
considered in this study.

Genome variant
original hg38 | methylation-aware
3 PWM | PWM.hg38 PWM.methyl
§ LSlim(5) | LSlim.hg38 LSlim.methyl

tion of methylation information and intra-motif dependencies
considered by MEDEMO typically yields an improved pre-
diction performance compared with a standard PWM-based
approach. To this end, we analysed the DNA methylation de-
pendence of hundreds of TFs in cell-lines and primary cells
using DEEP and ENCODE data. MEDEMO is available as a
stand-alone tool allowing both the inference of methylation-
aware TF motifs and to obtain genome-wide TFBS predic-
tions.

RESULTS AND DISCUSSION

To test whether the inclusion of cell type-specific methylation
information and explicitly modelling dependencies within
DNA-binding sites is beneficial for a specific TF, we follow
the procedure illustrated in Fig. 1. We start from whole-
genome bisulfite sequencing data for the cell type at hand,
discretize methylation calls by the betamix (40) approach,
and use these binary methylation calls to convert the origi-
nal hg38 genome sequence into a methylation-aware genome
version. Specifically, we convert methylated ’C’ to "M’ and
"G’ opposite of a methylated *C’ to "H’, yielding an extended
6-letter alphabet.

Based on the ChIP-seq peaks downloaded from ENCODE,
we extract sequences under the peaks, which serve as input to
the de novo motif discovery. As statistical binding site mod-
els, we use either Position Weight Matrix (PWM) (41, 42)
assuming independence of nucleotides, or LSim(5) (8) mod-
els capturing dependencies between nucleotides over a dis-
tance of at most 5 nucleotides. Both types of models are
applied to sequences under peaks extracted from the orig-
inal hg38 genome, or to sequences under peaks extracted
from the methylation-aware genome version for the cell type
of the ChIP-seq experiment. This results in four modelling
alternatives (Table 1), namely i) PWM applied to original
hg38, ii)) PWM applied to the methylation-aware genome, iii)
LSlim applied to original hg38, and iv) LSlim applied to the
methylation-aware genome.

In the remainder of this section, we first investigate for which
TFs the introduction of a methylation-aware genome and the
inclusion of dependencies yield an improvement in classifi-
cation performance discriminating bound from unbound se-
quences. We then consider specific examples of TFs that
show such an improvement, discuss their binding motifs in
relationship to methylation, and study general trends in sensi-
tivity of TFs to methylation of their binding sites. We finally
present prototypical examples of TFs for which the combina-
tion of methylation information and modelling dependencies
is pivotal to optimal performance.
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Fig. 1. Overview of the MeDeMo workflow: (1) DNA methylation is assessed using whole genome bisulfite sequencing. (2) DNA methylation is quantified using
B-values. (3) Methylation calls (8-values) are discretised using the BETAMIX approach resulting in a binary methylation state for each Cytosine in a CpG context.
(4) A novel reference genome is generated by denoting occurrences of methylated cytosines with the letter M and occurrences of guanines opposite of a methylated
cytosine with the letter H. (5) In-vivo transcription factor binding site information are obtained using peak calls from TF -ChlP-seq data. (6) TF binding data is
used for motif discovery with LSLIM models on the methylation aware reference genomes; (7) resulting in methylation aware TF motif representations.

Investigating the impact of DNA methylation on bind-
ing

For benchmarking the different modelling alternatives, we
follow a classification-based approach. Here, motif models
are tested for their capability of distinguishing bound from
unbound sequences. We consider as sequences bound by a
specific TF those under a ChIP-seq peak, whereas unbound
sequences sampled uniformly across the genome (cf. Meth-
ods). Since for the majority of TFs, this is a highly im-
balanced classification problem, we use the area under the
precision-recall curve (43) as a performance measure. For
each TF, we collect all data sets that are available from EN-
CODE for the cell types under study (GM12878, HepG2,
K562, liver), which might include replicate experiments for
the same combination of cell type and TF, e.g., performed in
different labs.

We further follow a 10-fold cross validation strategy to be
able to also assess classification performance on the data
from the same experiment. For each partition of the 10-
fold cross validation, we consider the motif reported on rank
1 by the SlimDimont framework during training (cf. sec-
tion Training procedure) for evaluating model performance
on test data.

In the following, we distinguish within cell type (i.e., training
and test cell types match) and across cell type (i.e., training
and test cell types are different) classification performance.
For each of these sub-sets of classification problems, we col-
lect all AUC-PR values and perform a one-sided Prentice
rank sum test (44, 45) (using prentice.test from R-
package muStat) between each pair of modelling alterna-
tives considering cross-validation folds as replicates of the
same experiment (replicated block design) and using a sig-
nificance level of o« = 0.05. In addition, we count the num-
ber of data sets, for which one alternative yielded a higher
classification performance than the second one. Finally, we
visualize the differences of AUC-PR values in violin plots as
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shown in Fig. 2.

Analysis of binding models for ATF3 (across cell type set-
ting) is presented as an example in Fig. 2A. We show the
corresponding results for all six pairwise comparisons of
the four modelling alternatives. For instance, from the left-
most panel of Fig. 2A, we observe that the difference be-
tween the AUC-PR values of LSlim.methyl and LSlim.hg38
are mostly positive indicating an improved performance of
LSlim models on the methylation-aware genome compared
with standard hg38. This difference is statistically signifi-
cant with a p-value of 5.78 x 10713, where for 123 cases
(data sets x cross validation folds) LSlim.methyl performs
better than LSlim.hg38, whereas the opposite holds for only
37 cases. Similarly, we find a significant improvement
of LSlim.methyl over PWM.methyl (indicating that depen-
dencies are beneficial), of LSlim.methyl over PWM.hg38,
of LSlim.hg38 over PWM.hg38 and of PWM.methyl over
PWM.hg38. For the comparison of LSlim.hg38 (only de-
pendencies) with PWM.methyl (only methylation informa-
tion), we do not observe a significant difference, which in-
dicates that both aspects of the novel approach contribute
to a similar degree to the final classification performance of
LSlim.methyl. Together, these results make ATF3 a proto-
typical example of a TF for which the combination of methy-
lation information and modelling dependencies is important
for yielding the best classification performance among the
considered classification approaches.

In Fig. 2B, we present further examples of TFs for which
the combination of methylation information and modelling
dependencies is beneficial. These cases also illustrate the
varying quantity of combinations of training and test data
sets from different cell types available for different TFs (each
split into 10 cross validation folds). Here, these span from
2 (USF2, one ChIP-seq data set for each of two cell types)
to 18 (JUND and MAX). In all cases, the improvement of
LSlim.methyl over PWM.hg38 is statistically significant, al-

bioRxiv | 3


https://doi.org/10.1101/2020.10.21.348193
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.348193; this version posted October 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A | ATF3

p=9.76e-29

p=5.78¢-13

p=315e-21

p=0.205

::

LSlim.hg38 | LSlim.methyl

PWM.methyl | LSlim.methyl
°
>
% ]
PWM.hg38 | LSlim.methyl
PWM.hg38 | LSlim.hg38
°
>
%
PWM.hg38 | PWM.methyl

PWM.methyl | LSlim.hg38

MAX RAD51

p=3.92e-08

0.05 m
000 ’

-0.05

USF2

p = 0.000153

B | Foxa2

p =5.99e-07

HNF4A

p=179-12

JUND

p=2.17e-30

p=7.84e-41

0.050

" &

-0.025

1 SR

: -0.03

PWM.hg38 | LSlim.methyl

PWM.hg38 | LSlim.methyl
PWM.hg38 | LSlim.methyl

PWM.hg38 | LSlim.methyl
°
8
>
PWM.hg38 | LSlim.methyl
°
>
PWM.hg38 | LSlim.methyl

-0.050 -0.06

C | BHLH40

p=5.69¢-25

o @

CREM ELF1

p=9.34e-18 p=102e-35

0.10
0.00 W
-0.05

Fig. 2. Examples of TFs with significantly improved classification performance (AUC-PR) in across cell type predictions using a methylation-aware genome. Each
panel shows a pairwise comparison of models as indicated by the y-labels above and below the zero line. Each dot represents a case (data sets X cross validation
folds) with different colours for positive (i.e., top model performs best) and negative (i.e., bottom model performs best) differences of AUC-PR values. Total number
of cases where one model performs better than the other are shown as boldface, grey numbers. In addition, points are summarised by a violin plot and corrected
p-values for the Hy that both models perform identical (Prentice test) are given in the header. (A) Pairwise comparison of different modelling variants for ATF3.
We find that all methylation-aware models perform better than their counterparts learned on the original hg38 genome and that dependency models (LSlim) perform
better than PWM models on the same genome variant. For instance, LSlim.methyl performs better than LSlim.hg38 in 123 cases, whereas the opposite is true for
only 37 cases, leading to a p-value of 5.78 x 10~ 2. (B) Comparison of methylation-aware dependency models (LSlim.methyl) with PWM models using standard
hg38 (PWM.hg38) for TFs with a clear advantage of the combination of methylation information and modelling dependencies. (C) Comparison of PWM models
learned from the methylation-aware genome with those learned from the standard hg38 genome.
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though the magnitude of the improvement in classification
performance (y-axis) as well as the proportion of cases where
one model performs better than the other differ among these

LSlim.methyl
TFs.
Fig. 2C shows examples of TFs for which the improvement E
of PWM.methyl over PWM.hg38 is significant but the im- LSlim.hg38 &
provement of LSlim.methyl over PWM.methyl is not, i.e., %
TFs for which inclusion of methylation information is ben- PWM.methyl >
eficial but modelling dependencies does not lead to further
improvements.

PWM.hg38

TFs showing sensitivity to DNA methylation

We compile an overview of such pairwise comparisons of
modelling alternatives in Fig. 3. Here, we apply stringent cri-
teria for counting one modelling alternative to perform better
than a second one for the TF at hand. Specifically, we require
the improvement to be significant i) in the within cell type

x

worse than Y

and across cell type settings consistently for both training
variants (shuffled and randomly drawn negatives, cf. Meth-
ods).

Of the 335 TFs considered in total, ChIP-seq data sets for
at least two cell types are available for 143 TFs, while all
remaining cannot meet the stringent criteria by definition.
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Fig. 3. Pairwise comparison of different modelling variants. For each pair of
models (PWM, LSlim) and each genome variant (original: hg38, methylation
aware: methyl), we determine the number of TFs for which the model listed
in the row performs significantly better than the model listed in the column
i) within and across cell types, and ii) consistently using randomly drawn and
shuffled negatives.
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Among these 143 TFs, we observe the largest number of TFs
(51) with significant and consistent improvement comparing
LSlim.methyl (methylation information and dependencies)
against PWM.hg38 (neither of the two). We also find im-
provements for a substantial number of TFs when consider-
ing intra-motif dependencies in addition to methylation in-
formation (i.e., LSlim.methyl compared with PWM.methyl,
27 TFs), or when considering methylation information in ad-
dition to intra-motif dependencies (i.e., LSlim.methyl com-
pared with LSlim.hg38, 18 TFs). Modeling only dependen-
cies (LSlim.hg38 vs. PWM.hg38) or including only methy-
lation information (PWM.methyl vs. PWM.hg38) yields
an improvement for 33 and 23 TFs, respectively. For the
direct comparison of either including only dependencies
(LSlim.hg38) or only using a methylation-aware genome
(PWM.methyl), we find balanced numbers of TFs with an
improvement in either direction (16 and 13 TFs). The oppo-
site comparisons yield a significant improvement only for a
minority of at most one TF. Considering the traditionally used
PWM model using the standard hg38 genome, we find a bet-
ter performance for PWM.hg38 compared with LSlim.hg38,
LSlim.methyl or PWM.methyl for none of the TFs studied.
We find one TF (HDAC?2) for which the PWM model yields a
better performance than the LSlim model on the methylation-
aware genome. In this case, the PWM.methyl model sig-
nificantly outperforms all other modelling alternatives and
adding dependencies appear to be rather detrimental. We fur-
ther find one TF (CTCF) for which the LSlim model works
better on the original than on the methylation-aware genome.
Converse to HDAC2, intra-motif dependencies seem to be of
greater importance for CTCF than methylation information,
and the LSlim.hg38 outperforms any other modelling alter-
native.

The examples previously shown in Fig. 2A/B are in the in-
tersection of all three sets for which LSlim.methyl performs
better than any of the other three alternatives (top row of
Fig. 3), whereas those shown in Fig. 2C are from the union of
LSlim.methyl vs. LSlim.hg38, LSlim.methyl vs. PWM.hg38
and PWM.methyl vs. PWM.hg38, excluding TFs where one
model on the original hg38 genome performs better than its
methylation-aware counterpart.

We present a list of those TFS for which methylation infor-
mation was beneficial for prediction performance in Table 2.
Here, we exclude TFs without direct and sequence-specific
DNA binding (as discussed for BRCA1 below), while we
provide a complete list of TFs in Supplementary Table 2.

Methylation sensitivity of TFs

Having established a set of TFs for which the inclusion
of methylation information leads to an improvement in the
benchmark study, we further investigate binding preferences
of TFs in the context of their binding motifs. To this end,
we compute a position-specific profile of methylation sen-
sitivity by altering CpG dinucleotides within putative bind-
ing sites to their fully methylated variant MpH and recording
the resulting differences in the corresponding binding scores
according to the motif model. By this means, we may de-
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2.3 Methylation sensitivity of TFs

code the information about methylation preference captured
by the motif model. If the difference of binding scores is pos-
itive, this corresponds to MpH dinucleotides (i.e., methylated
DNA) being preferred over CpG dinucleotides by the model
at a given position, and vice versa. By referring to the level of
predicted binding sites, this measure of methylation sensitiv-
ity is easily transferred to LSlim models, where methylation
sensitivity may depend on the sequence context.

In Fig. 4, we present six examples of such profiles of methy-
lation sensitivity according to the corresponding PWM mod-
els, plotted below the sequence logo of their predicted bind-
ing sites. As might be expected, all these examples have
in common that their motifs contain prominent CpG dinu-
cleotides, although with different frequencies and in differ-
ent contexts. For ELF1, CREM, and MAX, we observe one
prominent CpG dinucleotide as part of their motifs, where
CpG content varies between 0.57 (ELF1) and 0.85 (CREM).
In all three cases, methylation of this CpG dinucleotide ac-
cording to the model leads to a decrease in the prediction
score, indicating that methylation is detrimental for binding
affinity. Similar patterns also occur for YY1 with one promi-
nent and several less frequent CpG positions, and for BRCA1
and NRF1 exhibiting two prominent CpG dinucleotides each.

For NRF1, it appears as if methylation affects one of the
CpGs (position 8/9) to a lesser degree than the other (po-
sition 14/15). However, ChIP-seq does not provide strand
information and the strand model encapsulating the PWM al-
lows for switching the strand orientation of the binding site.
For these reasons, and because the motif of NRF1 is clearly
palindromic, this phenomenon needs to be interpreted with
care. An alternative explanation might be that once one of
the CpGs present in NRF1 binding sites is methylated, addi-
tional methylation of the other CpG does not lead to a sub-
stantial further effect. Notably, the binding motif discovered
for BRCA1 does not match the canonical motif present in
HOCOMOCO (54). BRCAI1 has been reported to bind DNA
directly but without sequence specificity (55). The ZBTB33-
like motif discovered by our approach could possibly be due
to indirect binding, and a similar motif has been reported for
BRCAI1 before (56).

Strikingly, the influence of methylation on the prediction
score at high-CpG positions is negative in all examples pre-
sented in Fig. 4, suggesting that DNA methylation may lead
to reduced binding affinity for many TFs. In order to investi-
gate if this observation constitutes a general tendency among
the studied TFs, we consider all TFs with a significant and
consistent improvement in prediction performance when in-
cluding methylation information (cf. Table 2). For each of
these TFs, we compute the corresponding profiles of methy-
lation sensitivity per data sets and record the range of val-
ues (i.e., minimum value to maximum value) present in the
profile. Strong deviations from 0 of the maximum or mini-
mum value indicate a clear preference for methylated or un-
methylated DNA according to the model, respectively. We
find (Fig. 5) that the maximum value is only slightly above 0
for the wide majority of TFs, whereas for many TFs, the min-
imum value is clearly below 0. This indicates that for most
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Table 2. Summary of TFs that profit from considering DNA methylation in the motif models. For each TF, we list the availability of ChlP-seq data sets for the
four cell types studied. Columns “Methylation” and “Methyl. & Deps.” indicate a significant and consistent improvement (y: yes, n: no) by including information
about methylation sensitivity in general and/or in combination with modelling intra-motif dependencies, respectively. In the last column, we note references to the
literature for TFs that have already been reported to be methylation sensitive, where *-", “4" and “s” indicate negative or positive influence of methylation or general

methylation sensitivity, respectively.

TF GM12878 | HepG2 | K562 | liver | Methylation | Methyl. & Deps. | Literature
ARID3A X X X y n new
ARNT X X X y n -(32)
ATF3 X X X y y - (25)
ATF7 X X X y n -(25)
BHLHE40 X X X y n -(25)
CREM X X X y n -(25)
ELF1 X X X y n - (25, 46)
FOXALl X X X y n - (47)
FOXA2 X X y y new
FOXK2 X X X y n new
GABPA X X X X y n -(25)
HCFCl1 X X X y y new
HDAC2 X X X y n new
HNF4A X X y y new
HNF4G X X y y new
JUND X X X X y y - (25)
MAX X X X X y y s/- (25, 32)
MNT X X y n s/- (32)
NFATC3 X X y n +(25)
NONO X X y y - (48)
NR2C2 X X y n new
NRF1 X X X y n -(32)
PKNOX1 X X y n new
RADS1 X X X y y new
RNF2 X X y n new
SIXS X X y n new
SP1 X X X y y +/- (25, 49-
51)
TAF1 X X X y n -(52)
TBL1XR1 X X X y n new
USF2 X X y y - (25)
YY1 X X X X y n different mo-
tif (53)
ZBTB40 X X y n new

TFs, the profiles of methylation sensitivity indeed are simi-
lar to those presented in Fig. 4. There are a few examples
of TFs (FOXA1, FOXA2, HNF4A, HNF4G, RAD21), for
which neither the maximum nor the minimum of methylation
sensitivity shows a strong amplitude. These TFs do not have
a prominent CpG in their binding motifs. Nonetheless, inclu-
sion of methylation information leads to an improvement in
prediction performance. We discuss possible explanations of
this observation for two examples below (FoxA1 and FoxA2,
Fig. 6).

For several of the TFs in Fig. 5, a negative influence of methy-
lation on their binding has been reported before. This in-
cludes ARNT (32), ATF3/7 (25), CREM (25), ELF1 (25,
46), GABPA (25), JUND (25), MAX (25, 32), MNT (32),
NRF1 (32), USF2 (25), and YY1 (53). SPI shows a gener-
ally negative influence of methylation on its binding sites in
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our data, although with cell type-specific strength. Previous
results for SP1 have been contradictory, as some studies sug-
gested a positive influence of binding site methylation (25),
whereas others indicated no decisive influence (50), negative
effects (49), or the prevention of methylation by SP1 bind-
ing (51). In general, preference for de-methylated DNA may
be observed either due to the direct binding preference of the
TF at hand, or due to a de-methylation of the bound region as
an effect of TF binding. Based on our data, these two cases
could not be distinguished.

The reasons for the mostly detrimental influence of methyla-
tion for the TFs in our study could be manifold. First, this
could be a bias introduced by the specific selection of TFs
under study, although no such bias has been introduced in-
tentionally, since we consider all TFs with ENCODE data
sets in at least two of the selected cell types. Specifically,

Grau et al. | Methylation-aware TF binding models
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2.4 Methylation sensitivity may vary within a TF family
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Fig. 4. Methylation sensitivity of TFs with improved performance using a methylation-aware genome. In each panel, the top part show a sequence logo of the
discovered motif using the extended alphabet. However, since the model learned to penalize methylated DNA in all six cases, additional symbols are only visible
in case of BRCAL. In the bottom part of the plot, we visualize position-specific CpG content (top row with grey scale) and methylation sensitivity (bottom row
with colour scale) within predicted binding sites. Positive values of methylation sensitivity indicate preferred binding of methylated DNA, whereas negative values
indicate methylated DNA being disfavored. For all six TFs, we observe a detrimental effect of DNA methylation at frequent CpG positions.
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Fig. 5. Methylation within binding motifs is mostly detrimental in models with

significantly and consistently improved prediction performance (cf. Figs. 2 and 3).

For each TF and each data set, we record the profiles of methylation sensitivity as shown in Fig. 4. We aggregate this profile to two values per data set by
computing the minimum and maximum value of methylation sensitivity, which captures the range of values observed in the profile. Here, we plot these maximum
and minimum values of methylation sensitivity across all training data sets. We observe a large amplitude of negative values for the minimum (i.e., methylated DNA
being disfavored) but only slightly positive values for the maximum, indicating that — according to the models — DNA methylation is detrimental for the majority of

TFs.

CEBPB (27, 57, 58), SMADS (25) and ZBTB33 (25, 59, 60)
have been reported to prefer methylated DNA, but we did
not observe a significant and consistent improvement of pre-
diction performance in our study. For GATA1/2/4 (46, 58),
IRF2 (25), KLF16 (25), NFATC1 (25), STAT1/5A (46) and
ZNF274 (25), we had only data for one of the cell types stud-
ied, which prevented us from studying performance across
cell types. Second, this result might be an artifact of our
method. While we cannot rule out this possibility in general,
we do observe clearly positive methylation sensitivity values
for a few TFs. Examples (ZBTB33 with inconsistent results
across cell types, and NFATC1 and ZNF274 with ChIP-seq
data available only for one cell type) are given in Supplemen-

Grau et al. | Methylation-aware TF binding models

tary Fig. 1. Hence, we may at least conclude that our method
is capable of capturing such patterns in general. Third, there
might also be a bias of methylation on the ChIP-seq experi-
ment that constitute the basis of our approach, although we
did not find this to be reported before. For instance, methy-
lation might influence the amplification step in the ChIP-
seq protocol, which could lead to an under-representation of
reads from methylated peak regions.

Methylation sensitivity may vary within a TF family

As we had ChIP-seq data from TFs with the same binding
domain (family) and similar consensus sites we wondered,
whether there could be differences in the sensitivity to DNA
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Fig. 6. Methylation sensitivity may differ between members of a TF family. While methylation sensitivity of FOXA1 and FOXAZ2 is highly similar in HepG2 cells, that
of FOXK2 is noticeably different, although all three motifs appear to be highly similar. This behaviour is consistent between different cell types (Suppplementary

Fig. 2).

methylation for individual family members. For example,
FOXA1 and FOXA2 showed a low amplitude in methylation
sensitivity in Fig. 5, whereas FOXK2 binding appears to be
more strongly affected by DNA methylation. Although all
three TFs are members of the forkhead box family, they play
different roles related to development and disease (61, 62). In
Fig. 6, we present the binding motifs and profiles of methy-
lation sensitivity discovered by our approach for FOXAI,
FOXA2, and FOXK?2 in HepG2 cells. In general, all three
motifs follow the consensus GTAAAYA with slight devia-
tions. The major difference between FOXA1/FOXA?2 and
FOXK?2 motifs is an additional A/T-rich stretch directly pre-
ceding this canonical motif. With regard to methylation sen-
sitivity, we find more prominent difference between the three
TFs. Specifically, FOXA1 and FOXA?2 exhibit a mildly neg-
ative effect of methylation at positions bordering their core
motif. While the influence on the binding score of any of
these positions individually is rather low, the combination
of multiple methylated CpGs at bordering positions might
still have an effect on binding site prediction. By contrast,
FOXK?2 shows two, still rather infrequent, CpG dinucleotides
at positions 6/7 and 12/13 of the core motif, which are not
present in the FOXA1/FOXA2 motifs. Both of these posi-
tions show a stronger sensitivity to methylation than any posi-
tion of FOXA1/FOXA?2. This general picture is consistently
observed in other cell types (Supplementary Fig. 2). Biolog-
ically, this observation might be linked to the mechanism of
FOXA1 and FOXA2 acting as pioneering factors (61, 63),
although pioneering activity has been shown for FOXK2 as
well (62).

DNA methylation sensitivity depends on sequence
context

In this study, we identified a substantial number of TFs,
for which the combination of methylation information and
modelling intra-motif dependencies yields an improvement
in classification performance compared with the base model
(PWM on original hg38) but also relative to the individual
contributions of methylation information and/or modelling
dependencies (cf. Figs. 2B and 3). Here, we discuss three
of those TFs in more detail that illustrate the breadth of
the binding landscapes observed and how these are linked
to specific profiles of methylation sensitivity. In Fig. 7,
we present dependency logos (8, 64) of the predicted bind-
ing sites of JUND (K562 cells), USF2 (K562), and ATF3
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(HepG2), which are enriched with partition-specific profiles
of methylation sensitivity.

JUND binds DNA as a dimer with a variable 1-2bp
spacer (65) which may be captured by dependency models
like the LSlim model employed in this study (8) and more
specialized models like TFFMs (10), but not (adequately) by
standard PWM models. In the dependency logo, this vari-
able spacer is visible as two distinct blocks, the upper block
starting with consensus TGA at positions 3-5 and the lower,
smaller block starting with the same consensus (TGA) but
already at positions 2-4. Both variants share the consensus
TCA at positions 7-9. For the short-spacer variant (upper
block), only a small subset of binding sites deviating from
the standard consensus (TGYGTCA, 4th partition from top)
has a substantial fraction of CpG dinucleotides at positions
5/6, which are moderately methylation sensitive. By con-
trast, about a quarter of the long-spacer variant (lower block,
6th partition from top) with consensus TGACGTCA exhibits
a CpG dinucleotide at positions 5/6, which are strongly af-
fected by methylation. Both, the variable spacer and the spe-
cific profiles of methylation sensitivity within both variants,
explain why the combination of methylation information and
modelling intra-motif dependencies yields a particular advan-
tage for JUND binding sites. Notably, the JUND motif for
K562 present in the MethMotif database (37) only represents
the short-spacer variant and no specific methylation profile
within the core motif, where both likely is an effect of its
limitation to PWM models. By contrast, our results suggest
that both spacer variant and the associated patterns of methy-
lation sensitivity are present across cell types (Supplementary
Fig. 3).

For USF2, we observe a canonical E-box motif with consen-
sus CACGTG for the majority of binding sites, and consen-
sus CACATG for a minority of binding sites displayed as the
bottom partition of the dependency logo. Intra-motif depen-
dencies are especially prominent between positions 6 and 10,
but also several positions flanking the core motif. The de-
pendency between positions 6 and 10 can be attributed to the
consensus CACATG always being preceded by a T at posi-
tion 6, whereas the canonical E-box motif may also be pre-
ceded by C or G. Only those binding sites following the con-
sensus CAYGTG frequently (approx. 80%) exhibit a CpG at
positions 9/10, which is then moderately (1st and 2nd parti-
tion from top) or strongly (3rd partition from top) affected by
methylation. For the partition with consensus CACATG, we

Grau et al. | Methylation-aware TF binding models
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2.6 Methylation-aware models may explain differential binding
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Fig. 7. For JUND, USF2, and ATF3, the advantage of combining dependency models with a methylation-aware genome can be attributed to specific properties of
the corresponding binding landscapes. For JUND, we find the known variable spacer between the two 3 bp half motif (TGA, TCA), where only the longer spacer
frequently contains a CpG. For USF2, the prevalent CpG at positions 9 and 10 shows dependencies to other binding site positions, and is not present in one specific
subset (TCACATG) of binding sites. For ATF3, we find broad heterogeneity, where each sub-motif contains CpG at positions 9 and 10 in different proportions.

find an almost flat profile of methylation sensitivity. Again,
this dependency structure and associated varying methylation
sensitivity may adequately be captured by dependency mod-
els but not by standard PWM models.

Finally, we observe substantial heterogeneity among the
binding sites of ATF3, which have been reported before (8).
Starting from the top of the dependency logo, we find a parti-
tion with consensus TTTACGRC (positions 5-12), followed
by a large partition with consensus YCACRTG (positions 6-
12), a small partition with consensus TRACGYR (positions
6-12), a partition with consensus TGACGBCA (positions 6-
13), and finally a partition with consensus TGAYGYAA (po-
sitions 6-13). The diversity of the predicted ATF3 binding
sites manifests as strong intra-motif dependencies between
positions 7 and 12, 7 and 11, 5 and 7, and 11 and 12. How-
ever, all partitions show a considerable fraction of CpG dinu-
cleotides at positions 9/10, which are methylation sensitive to
different degrees. Partition 3 (counted form top) exhibits an
additional CpG at positions 11/12 with moderate frequency
and methylation sensitivity. While each of these partitions
could be modelled decently by its individual (methylation-
aware) PWM model, only dependency models as proposed in
this study are capable of capturing such highly heterogeneous
binding landscapes without prior knowledge about their spe-
cific structure.

Methylation-aware models may explain differential
binding

Having established that incorporating methylation-aware
genomes and/or intra-motif dependencies is often benefi-
cial for modeling TF binding sites, we further investigate to
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which extent these models are capable of explaining differ-
ential binding across cell types as outlined in Fig. 8A.

We consider TFs for which ChIP-seq data are available for
two cell types. The idea is to compare whether differences in
peak occurrence or ChIP-seq signal in both cell lines can be
related to a change in binding scores according to our mod-
els. In addition to our models, we consider a simple baseline
model, which considers average methylation levels of larger
genomic regions (cf. Methods) instead of scores of individ-
ual binding sites. To associate binding scores with ChIP-seq
peaks, we consider the binding sites under ChIP-seq peaks as
predicted by the same model, which may have been trained
on data from one of the cell types considered or from another
cell type. We partition the peaks into “common peaks”, i.e.,
peaks that are overlapping between the two cell types, and
“unique peaks”, i.e., peaks that are present only in one of the
cell types.

For the common peaks, and associated binding sites and pre-
diction scores, we separate peaks into those without differen-
tial methylation in the binding site and, accordingly, identical
prediction scores (“equal”), those with a greater score in cell
type A than in cell type B (“greater’), and vice versa (“less”).
In addition, we compute the difference in log peak height
(“signal”) for each pair of overlapping peaks. If the model
could explain differential binding, we would expect these dif-
ferences to be lower than O for the “less” group, around 0 for
the “equal” group, and above O for the “greater” group, and
we test pairwise differences in the distribution of log signal
values accordingly by a one-sided Wilcoxon rank sum test.

Boxplots representing this analysis for TF CREM in K562
and GM 12878 cell types using a PWM model trained from
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Fig. 8. Association of differential model scores and differential binding according to ChlP-seq data. (A) Evaluation schema. For common peaks of two cell types,
we consider predicted binding sites at the same location that may show differential methylation and, consequently, different model scores in the methylation-aware
genomes. For the peaks containing such binding sites, we record the difference of model scores and the difference in peak height (signal). For unique peaks present
in only one of the cell types, we record the scores of the binding sites predicted in the two methylation-aware genomes. (B) Evaluation of cell type-specific binding
for CREM in K562 and GM12878 cell types. Left: Comparison of the difference in log signal for binding sites with an equal score in the methylation-aware genomes
of K562 and GM12878, with a larger score in K562 than in GM12878, and vice versa. Number of peaks in each group are given above the boxes, p-values from a
one-sided Wilcoxon rank sum test are above the boxplots, and the difference of median values between the “greater” and “less” group is indicated. Middle: For those
sites with a prediction score differing between K562 and GM12878, we find a correlation of 0.461 between the difference of the log signals and the difference of
the prediction scores in those two cell types. Right: Hexbin representation of the scatter plot of scores determined from binding sites in the two methylation-aware
genomes for peaks that are present only in K562. Hexbin colours in log scale. (C) Same as (B), but for MAX in K562 and GM12878 cell types. (D) Same as (B),
but for JUND in liver and HepG2 cell types. (E) Same as (B), but for ATF3 in liver and K562 cell types using a PWM model (left group) or an LSlim model (right
group).

K562 data (cf. Supplementary Table 3) are shown in the left
panel of Fig. 8B. We find significant differences in log sig-
nal between all pairs of groups. The difference between the
median values for the “less” and “greater” group is 0.6436,
which corresponds to a 1.9-fold increase in the ratio of the
cell type-specific signal values. Hence, the model appears to
be capable of predicting if a peak is larger in cell type A than
in cell type B, although the large number of confounding fac-
tors, including chromatin accessibility, leads to pronounced
variation within each of the groups.

In addition, we plot the differences in log signal against
the differences in associated prediction scores and compute
the Pearson correlation coefficient between both quantities
as shown in the middle panel of Fig. 8B. Here, we exclude
peaks without differential methylation in the binding site,
since these would obtain a fixed score difference of 0. In
case of CREM, we find a substantial correlation between both
quantities, although only a small subset of common CREM
peaks (473 peaks) participates in the analysis. This may in-
dicate that the model is not only capable of predicting the
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direction of the change in peak height, but that the difference
in prediction scores is associated with the magnitude of this
change.

For the unique peaks present only in cell type A, we com-
plement the predicted binding site in the methylation-aware
genome of cell type A with the corresponding site in the
methylation-aware genome of cell type B, and compute the
model scores for both site variants. If DNA methylation as
captured by the model could explain the presence and ab-
sence of a peak, respectively, we would expect the score for
cell type A to be larger than for cell type B. In the right panel
of Fig. 8B, we show a hexbin representation of the scatter
plot of such pairs of prediction scores for CREM in K562
and GM 12878 cell types. Indeed, we find a larger score for
K562 than GM 12878 for 10021 sites, whereas the opposite is
true only for 1533 sites. For the majority of 15901 sites, pre-
diction scores in the methylation-aware genomes of both cell
types are identical. Still, the pairwise difference in scores is
significantly different from O in a Wilcoxon signed rank test
(p=1.1x107207),

Grau et al. | Methylation-aware TF binding models
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In complete analogy, we present results for TF MAX in K562
and GM12878 cell types in Fig. 8C. Here, we consider an
LSlim model trained on data for cell type HepG2, i.e., in this
case the training cell type is different from the two cell types
considered in this analysis. Again, we find significant differ-
ences between the three groups of peaks divided by the differ-
ence in prediction scores. However, the difference of median
values between the “less” and “greater” groups is only 0.3536
in this case. Here, the correlation analysis shows a slightly
lower Pearson correlation than for CREM as well with a vis-
ible enrichment of score differences around 0. Considering
unique peaks, we find approximately 4-fold as many peaks
with larger prediction scores in K562 than in GM 12878 for
peaks that are present only in K562.

Similar tendencies may be observed for JUND in liver and
HepG2 cell types using a LSlim model trained from K562
data (Fig. 8D). However, the results for the unique peaks are
less pronounced in this case with only 2-fold difference in the
number of peaks with greater and lower scores in liver than
in HepG2, respectively.

Finally, we illustrate the impact of modelling intra-motif de-
pendencies, i.e., the comparison of PWM and LSlim mod-
els, for ATF3 binding sites in liver and K562 cell types in
Fig. 8E. While we observe a clear advantage of the LSlim
model over the PWM model for all three analyses, this advan-
tage is less pronounced than it had been for the classification-
based benchmarks in previous sections.

In Supplementary Figures 4 to 13, we provide results for
these and further TFs, and compare these against the base-
line model that considers average methylation levels in the re-
gions under the ChIP-seq peaks. It is well known that methy-
lation levels in broader regions, especially in enhancers, are
highly informative of TF binding (66). In addition, binding
models consider only 20 bp of DNA, which makes the pres-
ence of differential methylation less likely than for the simple
model. Hence, we expect this to be a strong baseline model.
For the common peaks, we indeed find that the differences
between the “equal”, “greater” and “less” groups often ob-
tain lower p-values for the baseline than for the methylation-
aware binding models, partly due to the larger number of
regions with differences in methylation levels. Notably, the
binding models often surpass the baseline models for the cor-
relation analysis. Regarding unique peaks, binding models
often more clearly show an enrichment of larger scores for
the cell type with a peak being present.

In summary, our results suggest that models of TF binding
sites learned from methylation-aware genomes and incorpo-
rating intra-motif dependencies may indeed be indicative of
presence or absence of a ChIP-seq peak and its peak height,
despite the many confounding factors that are not related to
DNA methylation but strongly influence TF binding.

CONCLUSIONS

In this paper, we present MEDEMO, a novel framework for
TF motif discovery and TFBS prediction that combines in-
formation about DNA methylation with models capturing
intra-motif dependencies. In contrast to MEPIGRAM (34),
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4.1 Data

MEDEMO does not use a beta value cut-off of 0.5 to ob-
tain a discrete methylation value. Instead, we model the
distribution of all beta values using the BETAMIX (40) soft-
ware to select the cut-off in an informed way. Similar to
previous approaches (33, 36), MEDEMO uses an extended
6-letter alphabet with separate symbols for methylated cy-
tosines and the corresponding guanosines on the opposite
strand. Also, MEPIGRAM uses a PWM based approach, ne-
glecting intra-motif dependencies. Therefore, MEDEMO us-
ing PWM models can be seen as an improved instantiation
of MEPIGRAM, but also allows for including intra-motif de-
pendencies when applying LSlim to methylation-aware input
data. In agreement with our results, Ngo et al. (34) showed
that MEPIGRAM outperforms the MEME suite for motif dis-
covery which does not take DNA methylation into account.
Previous and this work have shown that many TFs show sen-
sitivity to the status of CpG methylation. Interestingly, it was
also shown that enzymes such as DNasel and the Tn5 trans-
posase, the two most often used enzymes for the measure-
ment of open-chromatin, show differences in DNA cutting
or insertion with respect to CpG methylation (7, 67). Thus
in genome-wide analysis of such data, neglecting the status
of DNA methylation may be harmful in two ways. Bind-
ing may be impaired due to TFs that show reduced bind-
ing of methylation and abundance of open-chromatin reads
may also be affected. Thus, learning of a TF-specific effect
of DNA methylation using open-chromatin data only, should
carefully integrate both these aspects.

MEDEMO allows the research community to leverage the
vast amounts of TF ChIP-seq and DNA methylation datasets
available to elucidate the methylation dependence of hun-
dreds of TFs in vivo, without the need of performing addi-
tional experiments such as Methyl-Spec-seq (33).

Apart from improving TF binding predictions, MEDEMO
could also improve the interpretation of methylation QTLs
(meQTLs). Methylation QTLs have been reported before to
be associated to changes in TF binding, histone modification
and gene expression (68). Using MEDEMO, those associa-
tions could be understood at more detail, and our analyses re-
garding differential binding might be a first step towards this
goal. Similarly, our tool could provide valuable additional
insights into the vast amount of epigenome-wide association
studies (EWAS) (69).

Especially in light of upcoming single cell applications as
single-cell methylation (70) and single-cell chromatin acces-
sibility assays become available (71), the need of methyla-
tion aware TFBS prediction approaches will rise even further
in the near future. MEDEMO will help to fulfill these data
analysis needs.

METHODS

Data

We downloaded whole genome bisulfite sequencing data
for 3 cell-lines (K562, HepG2, GM12878) from ENCODE
as well as for 2 replicates of primary human hepato-
cytes (DEEP). The ENCODE data has been processed
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following the uniform ENCODE-Processing pipeline, the
DEEP data has been processed following the DEEP MCSv3
pipeline (72). Furthermore, we downloaded TF-ChIP seq
peak calls (IDR thresholded peaks) from ENCODE for 336
experiments in K562, 145 in HepG2, 129 in GM 12878 and
25 in primary human hepatocytes (liver). Data accession IDs
are provided in Supplementary Table 1.

Generation of methylation-aware genomes

To generate a methylation-aware genome sequence, where a
methylated C is replaced by "M’ and a G opposite of a methy-
lated C is replaced by 'H’, we discretized the methylation
calls from whole genome bisulfite data using BETAMIX (40)
and the parameter —components unimodal unimodal.

Training procedure

Motif models are learned from ChIP-seq data by the dis-
criminative maximum supervised posterior principle within
the SLIMDIMONT framework (8, 73). To this end, we use
as positive training sets genomic regions under all ChIP-seq
positive peaks (optimal IDR thresholded peaks) as down-
loaded from the ENCODE project and extract the sequence
of length 1,000bp around the peak center. In addition, we
use two different sets of negative training sets. First, we
randomly draw 10,000 regions uniformly from the complete
genome excluding any ChIP-seq positive region of the TFs
studied (random) and again extract the sequence of length
1,000bp around the center of each region. Second, we con-
sider dinucleotide shuffled versions of each positive sequence
in the training set (shuffled). Negative training sequences are
weighted such that their total weight equals the number of
positive training sequences. In either case, we extract se-
quences from the original #g38 genome with standard DNA
nucleotides and, alternatively, sequences from the genomes
including methylation calls (Section 4.2). As the methylated
genomes are cell type-specific we always use those match-
ing the cell type of the corresponding ChIP-seq experiment.
Sequences from the negative sets are also extracted from the
matching genome versions. Models that are discovered de
novo from these data sets are i) standard position weight ma-
trices and ii) LSLIM models (8) with a maximum distance
of 5bp between putatively dependent positions. In general,
motif discovery within the SLIMDIMONT framework (8, 73)
may report multiple motifs per input data set. For the re-
mainder of the analyses described here, we only consider the
first reported motif according to the ranking by the value of
the maximum supervised posterior objective function used
internally in the SLIMDIMONT framework as proposed pre-
viously (73).

Prediction procedure

Given a trained motif model and an input set of sequences,
we compute for each sequence the log-likelihood of all over-
lapping sub-sequences on both strands matching the motif
length. We then chose as predicted value for that sequence
the maximum over all these log-likelihood values. In contrast
to alternative scores, like the sum occupancy score (74) inte-
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grating over all log-likelihood values, this procedure makes
sure that the score of a sequence can be attributed to one spe-
cific sub-sequence with its methylation pattern.

Cross validation procedure

For benchmarking the different models learned from se-
quence with and without methylation information, we follow
a 10-fold cross validation procedure. Specifically, we parti-
tion ChIP-seq positive regions and (for the first training vari-
ant) drawn negative regions into 10 equally sized sets, where
in each cross validation fold, the union of 9 of these sets is
used for training and the remaining set is used for testing.
Since partitioning is performed before extracting sequences,
training sets in the different cross validation folds are identi-
cal (aside from methylation information) between the differ-
ent genome versions.

Evaluating performance

For evaluating performance of a model trained on and ap-
plied to sequences from a specific genome version, we con-
sider a classification problem discriminating ChIP-seq posi-
tive from negative sequences. The positive set comprises all
sequences extracted under ChIP-seq positive regions from the
corresponding test partition. The negative set, in turn, com-
prises sequences from genomic regions that are again ran-
domly drawn uniformly from the complete genome, in this
case excluding all ChIP-seq positive regions for all TFs stud-
ied and also excluding the negative regions used for training.
In total, this negative set contains 100,000 regions, which
are again partitioned into 10 test sets to capture variability
among different choices of negatives. Given a model, scores
for all sequences in positive and negative sets are computed
as described in Section 4.4. The ability of these scores to dis-
tinguish positives from negatives is then evaluated by the area
under the precision recall curve (AUC-PR) as determined by
the PRROC R package (43). Models trained on the training
partition of one ENCODE data set for one specific TF are
evaluated 1) on the test partition of the same data set, ii) on
the corresponding test partition of other data sets for the same
TF and cell type, and iii) on the corresponding test partition
of other data sets for the same TF in other cell types. We refer
to the first two cases as within cell type, and to the latter case
as across cell type.

Model visualization

Since parameters of models learned by discriminative learn-
ing principles may be skewed to optimize prediction accu-
racy, a direct visualization of these parameters may lead to
un-intuitive results. Hence, we follow the approach of (8)
and visualize models based on their predicted binding sites
on the training data represented by traditional sequence logos
and dependency logos generated by the DEPLOGO R pack-
age (64).

Methylation sensitivity

We investigate the methylation sensitivity of a trained model
again based on predicted binding sites. To this end, we
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consider models learned from sequences using the extended,
methylation-aware alphabet and binding sites predicted from
the corresponding training data set. Each of these binding
sites is first converted to the standard DNA alphabet replac-
ing occurrences of M with C and of H with G. We use this
modified sequence to compute a base score without methy-
lation. We then consider each CpG dinucleotide within the
sequence (regardless if it was methylated in the original se-
quence) and change both the C to M and the G to H (MH). We
compute the score of the modified sequence according to the
model and determine its difference relative to the base score.
If this score is larger than the base score, we consider the in-
fluence of methylation on such a nucleotide (in this sequence
context) as beneficial, and as detrimental otherwise. For each
binding site position, we also compute the relative abundance
of CpGs in the predicted binding sites and the average of the
score differences of the MH case relative to the base score.

Differential binding

For analyzing the association between scores of predicted
binding sites and differential binding, we consider pairs of
cell types, A and B, with ChIP-seq data available for the same
TF. In this analysis, we distinguish common peaks that over-
lap between the two cell types, and unique peaks present in
only one of the cell types. We further predict one binding
site per ChIP-seq peak at the position yielding the maximum
score as described in Section 4.4.

For the common peaks, we only compare (scores of) bind-
ing sites that are predicted at exactly the same genomic loca-
tion in the methylation-aware genomes of both cell types, as
this allows for a direct comparison of prediction scores. This
requirement is reasonable as, in principle, the position of a
predicted binding site could change due to differences in the
methylation states of the two cell types. Since only such com-
mon binding sites are considered, we identify common peaks
by the presence of predictions at identical genomic locations
within the two methylation-aware genomes. Predicted bind-
ing sites in both cell types are recorded together with the cor-
responding prediction scores and the peak heights (column 7
of the narrowPeak format) of the surrounding peaks.

We further identify unique peaks for cell type A using the
bedtools (75) command “bedtools intersect -v -a peaksA.bed
-b peaksB.bed > onlyA.bed”. For binding sites predicted
from the methylation-aware genomes of cell type A, we ex-
tract the corresponding sequence from the methylation-aware
genome of cell type B, and record prediction scores for these
two predicted sites. We proceed in complete analogy to iden-
tify unique peaks for cell type B.

For these analyses, we aim at using the same models that have
also been considered for classification-based benchmarks.
Howeyver, as these benchmarks are based on 10-fold cross val-
idation experiments, we also obtain a set of 10 models per TF
and training data set. For this reason, we perform the above-
mentioned procedure for each of the 10 models, and average
prediction scores per ChIP-seq peak before proceeding with
statistical analysis and visualization.

As a reference, we also consider a simple baseline, which
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4.9 Differential binding

measures methylation levels of the sequences under ChIP-seq
peaks. Specifically, we extract sequences of length 1000 bp
and determine, on either strand of the DNA sequence, the
fraction of cytosines that are methylated according to the
methylation-aware genome of a cell type. We center the ex-
tracted sequences at the position of the predicted target site
instead of the (cell type-specific) peak center or peak summit
to ensure that methylation levels in different cell types are
measured for the same genomic region.

Method implementation

We implement the model, training procedure, and predic-
tion procedure based on the existing implementation of the
SLIMDIMONT approach (8). The basic modification com-
pared with the version published previously is the extension
of the alphabet to A, C, G, T, M and H, where M is com-
plementary to H. This extension allows us to include infor-
mation about methylation while preserving the possibility to
compute reverse complements of input sequences, which is
necessary because in ChIP-seq data binding sites may be lo-
cated on either DNA strand. We provide this methylation-
aware toolbox termed MEDEMO for motif discovery as i)
stand-alone binary versions with graphical user interface and
command line interface (cf. “Availability of data and materi-
als”).
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