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Motivation: As chromatin accessibility data from ATAC-seq experiments continues to expand, there is
continuing need for standardized analysis pipelines. Here, we present PEPATAC, an ATAC-seq pipeline
that is easily applied to ATAC-seq projects of any size, from one-off experiments to large-scale sequencing
projects.

Results: PEPATAC leverages unique features of ATAC-seq data to optimize for speed and accuracy, and it
provides several unique analytical approaches. Output includes convenient quality control plots, summary
statistics, and a variety of generally useful data formats to set the groundwork for subsequent project-
specific data analysis. Downstream analysis is simplified by a standard definition format, modularity of
components, and metadata APIs in R and Python. It is restartable, fault-tolerant, and can be run on local
hardware, using any cluster resource manager, or in provided Linux containers. We also demonstrate the
advantage of aligning to the mitochondrial genome serially, which improves the accuracy of alignment
statistics and quality control metrics. PEPATAC is a robust and portable first step for any ATAC-seq project.

Availability: BSD2-licensed code and documentation at https://pepatac.databio.org.

Introduction

Because cells package chromatin differently depending
on their function and phenotype, profiling chromatin ac-
cessibility is a primary experimental approach for un-
derstanding cell state!">. The number of chromatin ac-
cessibility experiments has grown dramatically in recent
years with the introduction of the assay for transposase-
accessible chromatin (ATAC-seq)*. With the ATAC-seq
method now widespread, there is demand for analytical
approaches®®, including systematic processing pipelines
to facilitate the goal of reproducible research and ease
cross-study comparisons”-8.

To address this need we developed PEPATAC, a fast
and effective ATAC-seq pipeline that easily generalizes
across compute contexts and research environments.
This pipeline has been built over years of experience
analyzing chromatin accessibility experiments and
implements several concepts that make it effective.
These include ATAC-specific quality control outputs,
both nucleotide-resolution and smoothed signal tracks,
and a serial alignment strategy to deal with high
mitochondrial contamination. Our serial alignment
strategy, or ‘prealignments’, allows the user to easily
configure a series of genomes to align to before the
primary genome. PEPATAC provides a framework that
allows a user to align serially in customized order to
as many genomes as desired, which will be useful
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for many situations, including species contamination,
dual-species experiments, repeat model alignments,
decoy contamination, or spike-in controls.

In PEPATAC, modularity and flexibility are paramount
design considerations. PEPATAC is compatible with the
Portable Encapsulated Projects (PEP) format®, which de-
fines a common project metadata description, allowing
projects that use PEPATAC to be easily analyzed using
any PEP-compatible tool. It also provides the possibility
for a single project description to be shared across
pipelines, computing environments, and analytical
teams. PEPATAC is also easily customizable, including
changing individual command settings or even swap-
ping specific software components by modifying a few
lines of human readable configuration files.

PEPATAC does not rely on any specific local or cloud
computing infrastructure, and it has already been
deployed successfully in various compute environments
at multiple research institutes to yield several peer-
reviewed studies!®'#, To simplify installation, we also
enable a computing environment with the command-
line tools required to run PEPATAC using either docker or
singularity with the bulker multi-container environment
manager'®.

PEPATAC includes a well-documented code base along
with detailed installation instructions, tutorials, and ex-
ample projects, so it is useful for both the bench biolo-
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Fig. 1: PEPATAC pipeline steps. Reads are first preprocessed, then
serially aligned to the mitochondrial genome, curated repeats, and then
the nuclear genome. PEPATAC generates both smooth and exact signal
plots, called peaks, and QC output plots and tables.

gist and bioinformatician alike. We anticipate that this
pipeline will provide a useful complete analysis for basic
ATAC-seq projects and serve as a unified starting point
for more advanced ATAC-seq projects.

Design and Implementation
PEPATAC configuration

The PEPATAC pipeline is divided into two major parts
(Fig. 1): First, it processes each sample individually
in the sample-level part. Once sample processing is
complete, the project-level part aggregates, analyzes,
and summarizes the results across samples. PEPATAC
is composed of two primary python scripts that may be
run from the command-line. Sample information and
parameters are passed to the pipeline as command-line
arguments (see pepatac.py --help), making it simple
to use as a standalone pipeline for individual samples
without requiring a complete project configuration.
Project level output is produced using the project level
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pipeline (see pepatac_collator.py --help). PEPATAC
is built using the python module pypiper!®, which
provides restartability, file integrity protection, copious
logging, resource monitoring, and other features.
Individual pipeline settings can also be configured
using a pipeline configuration file (pepatac.yaml),
which enables a user to specify absolute or relative
paths to installed software, change adapter input files
for trimming, and parameterize alignment and peak
calling software tools. This configuration file comes
with sensible defaults and will work out-of-the-box for
research environments that include required software in
the shell PATH, but it also may be configured to fit any
computing environment and adapt to project-specific
parameterization needs.

Refgenie reference assembly resources

Like any genome analysis, PEPATAC relies on reference
genome annotations. To ensure that results are compari-
able across runs, it’s important to use the same reference
assembly. To manage these assets in a reproducible and
robust manner, PEPATAC uses refgenie. Refgenie is a
reference genome assembly asset manager that simpli-
fies access to pre-indexed genomes and annotations for
common assemblies, and also allows generating new
standard reference genomes or annotations as needed
while maintaining asset provenance!”. For a complete
analysis, PEPATAC requires several refgenie-managed
assets: fasta, chrom_sizes, bowtie2_index, blacklist,
refgene_tss, and feat_annotation. These can be either
downloaded automatically or built manually, which
would require a genome fasta file, a gene set annotation
file from RefGene, and an Ensembl regulatory build
annotation file. Using PEPATAC with seqOutBias re-
quires the additional refgenie tallymer_index asset built
for the same read length as the data. Many of these
assets may also be directly specified at the command
line should a user not have refgenie managed versions
available. The TSS annotation file, region blacklist, and
feature annotation file may all be specified to use a
local, user-specified file. For example, while ENCODE
provides a common set of regions that are aberrantly
overrepresented in sequencing experiments (e.g. a
blacklisted set of regions)'®, a user may create their
own version of regions that should be excluded from
consideration and point to this file manually.

File inputs and adapter trimming

PEPATAC sequentially trims, aligns, and analyzes se-
quences (Fig. 1). PEPATAC accepts sequence data input
in 3 formats: unaligned BAM, separated FASTQ, or
interleaved FASTQ format. The pipeline first converts
the input format into FASTQ (if necessary) for adapter
trimming. For adapter trimming, users may select be-
tween trimmomatic'® and skewer?® using command-line
arguments or the PEP configuration file. The pipeline


https://doi.org/10.1101/2020.10.21.347054
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.347054; this version posted October 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

stores quality control results including the number of
raw, trimmed, or duplicated reads, and runs FastQc?! if
installed.

Prealignments and mitochondrial DNA

Because ATAC-seq data can have a high proportion
of reads mapping to the mitochondrial genome (from
15%-50% in a typical experiment up to 95% in some
experiments??), we considered how to optimize the
pipeline to deal with abundant mitochondrial DNA
(mtDNA). The typical strategy is to align to the mito-
chondrial and nuclear genomes simultaneously, and
then remove nuclear-mitochondrial DNA (NuMts)
post-hoc using a blacklist, but this suffers from three
disadvantages: First, it is inefficient to align lots of
mtDNA to the larger nuclear genome; second, reads
that match both nuclear and mitochondrial DNA will
be (incorrectly) split between the two, and third, this
approach relies on an accurate pre-constructed annota-
tion of NuMt locations, which may not be available for
every reference genome. We found that by separately
aligning first to the mitochondrial genome, we improved
both the efficiency and the accuracy of the pipeline
while alleviating all three of these challenges with
simultaneously alignments. Moreover, to capture NuMts
that span the artificial breakpoint induced by converting
the circular mitochondrial DNA into a linear represen-
tation for alignment, we use a doubled mitochondrial
reference sequence, which enables non-circular aligners
to align reads that span the breakpoint. By default, the
pipeline is configured to align reads first to the doubled
mitochondrial reference genome, but may be easily
configured to perform any number of additional serial
alignments.

Alignments, deduplication, and library complexity

For prealignments and primary alignment, PEPATAC
employs bowtie2 by default®>. Bowtie2 settings are
configurable in the pipeline configuration file but come
with sensible defaultsof -k 1 -D 20 -R 3 -N 1 -L 20
-i 8,1,0.50 for prealignments and --very-sensitive
-X 2000 for nuclear genome alignment. Users may
optionally use bwa?* with settings similarly config-
urable in the pipeline configuration file (default: -M).
Following alignment, residual mitochondrial reads are
removed and read deduplication is carried out using
samblaster?®, but picard’s MarkDuplicates?® may also
be utilized based on user preference. PEPATAC utilizes
preseq?’ to calculate and plot sample library complexity
at the current depth, reporting the number of duplicates
(Fig 2a). The pipeline also projects the unique fraction
of the library at 10M total reads. These metrics provide
an estimate of library complexity and allow the user to
determine the value of subsequent sequencing.
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Fig. 2: Example PEPATAC QC plots for all reads. (a) Library com-
plexity plots the read count versus externally calculated deduplicated read
counts (b) TSS enrichment quality control plot. (c) Fragment length dis-
tribution showing characteristic peaks at mono-, di-, and tri-nucleosomes.
(d) Cumulative fraction of reads in annotated genomic features (cFRiF).
Inset: Fraction of reads in those features (FRiF). Data from SRR5427743.

Read QC metrics

For quality control, PEPATAC provides a TSS enrichment
plot, produced by aggregating reads present in regions
2000 bases upstream and downstream of a reference set
of TSSs (Fig 2b). Enrichment is calculated as the aver-
age number of reads in a 100 bp window around the
TSS divided by the average number of reads in the first
200 bases of the entire region. This yields low signals
in the tails with a peak in the center, which we take to
be the TSS enrichment score. PEPATAC also produces
a fragment length distribution plot (Figure 2c). A stan-
dard quality ATAC-seq library is expected to yield clearly
defined peaks at open chromatin (<100bp), mononucle-
osomes (200 bp), and sequentially smaller peaks repre-
senting multi-nucleosomes at regular intervals. To eval-
uate the enrichment of all reads across genomic parti-
tions, PEPATAC plots both the fraction and cumulative
fraction of reads (FRiF, cFRiF respectively) in genomic
features (Fig 2d). A novel feature of PEPATAC includes
the plotting of the fraction of reads in any feature type,
not solely in peaks. This is plotted as the cumulative
sum of reads in each feature divided by the total num-
ber of aligned reads against the cumulative sum of bases
in each feature. The relative proportion of each feature
can be then be directly compared. For a quality sample,
the proportion of reads in peaks should be the most en-
riched, reflecting the specificity of the peak calls for that
sample.
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Fig. 3: Example PEPATAC QC plots for reads in peaks. (a) Signal tracks including: nucleotide-resolution and smoothed signal tracks. PEPATAC
default peaks are called using the default pipeline settings for MACS228. (b) Distribution of peaks over the genome. (c) Distribution of peaks relative
to TSS. (d) Distribution of peaks in annotated genomic partitions. Data from SRR5427743.

Signal tracks and peak calling

Alignments are used to generate two signal tracks: one
that records the exact location of transposition events,
and one that is smoothed (Fig 3a). These two signal
tracks may be used for different downstream analyses;
the exact track is useful for analysis that requires
nucleotide-resolution, while the smoothed version is
often preferred for visualization and peak analysis.
seqOutBias is an optional tool that can be used to
correct for enzymatic (e.g. Tn5 transposase) bias and
generate tracks for visualization?®. The bias itself is
corrected using a k-mer mask for the plus and minus
strand Tn5 recognition sites and by taking the ratio
of genome-wide observed read counts to the expected
sequence based counts for each k-mer?’. The k-mer
counts take into account mappability at a given read
length using GenomeTools’ Tallymer program3°.

An earlier study found multiple peak callers worked
well with chromatin accessibility data®!, and PEPATAC
provides the option to use either F-Seq®? or MACS228
for peak calling, with parameters customizable in
the pipeline configuration file. MACS2 is used by
default (--shift -75 --extsize 150 --nomodel
-—call-summits --nolambda --keep-dup all -p

0.01). Called peaks are standardized by extending up
and down 250 bases (a tunable parameter, --extend)
from the summit of each peak to establish peaks 500
bases in width. Any peaks which then extend beyond
chromosome boundaries are trimmed. Peak scores are
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Fig. 4: Deploying PEPATAC across multiple samples using looper-.
The PEPATAC pipeline can be easily run across multiple samples in any
computing environment using looper.

normalized to score per million by dividing by the sum
of scores over 1M.

PEPATAC also produces several plots detailing enrich-
ment of reads in peaks including: the distribution of
peaks across the genome by chromosomal location (Fig
3b), the distribution of reads in peaks relative to TSSs
(Fig 3c), and the distribution of peaks within genomic
partitions (Fig 3d). The TSS distance distribution shows
the distance of called peaks with respect to TSSs grouped
in log-scale bins. Finally, users may optionally employ
Homer to calculate motif enrichments in called peaks®3.

Deploying PEPATAC across multiple samples

To deploy the pipeline across multiple samples in a
larger project, the pipeline uses the job submission
engine looper®*, which employs the Portable En-
capsulated Project standardized definition of project
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metadata’ (Fig. 4). This standard project format en-
ables a pipeline to be run on any project that follows
the format, which is simple, standardized, and well-
documented. Looper enables the PEPATAC pipeline to
be run in any compute environment, including locally
(the default) on a single laptop or desktop, or with any
cluster resource manager. It also can be used with linux
containers. Additionally, use of looper’s project format
gives pipeline users access to APIs written in Python and
R for downstream analysis of pipeline results.

For the user whose environment is set up to run contain-
ers, we enable container use with either Docker or Sin-
gularity through the multi-container environment man-
ager, bulker!®. Using bulker, PEPATAC may be run in
containers across samples and compute environments,
simplifying deployment by requiring only bulker and
the PEPATAC pipeline itself, eliminating the need to in-
stall each required package independently.

Aggregating results from multiple samples

To summarize and incorporate data across samples, the
second step in a PEPATAC analysis is to run a project-
level pipeline (pepatac_collator.py) that identifies
consensus peaks across a project and calculates sample
coverage of those consensus peaks in a convenient table
for easy downstream analysis. To establish consensus
peaks, PEPATAC identifies overlapping peaks between
every sample in a project and defines the consensus
peak’s coordinates based on the overlapping peak with
the highest score. Finally, only peaks present in at least 2
samples with a minimum score per million greater than
or equal to 5 are retained. A peak count table is then
provided where every sample peak set is overlapped
against the consensus peak set. Individual peak scores
for a hit (e.g. an overlapping peak) are weighted by
dividing by the percent overlap of the sample peak with
the consensus peak.

For navigating results, PEPATAC provides both sample
and project level reports in a convenient, easy-to-
navigate HTML report with project-level summary table
and plots, job status page, and individual sample pages
with sample statistics and QC plots all at your fingertips.
In addition, looper will produce summary plots from
individual sample statistics including the number of
aligned reads, percent aligned reads, TSS scores, and
library complexities. A user can produce the HTML
report at any point during or after pipeline completion,
with the job status page providing information on
whether a sample has failed, is still running, or has
already completed.

Results

To demonstrate PEPATAC’s default workflow and out-
put, we analyzed samples from the original standard
ATAC#, fast ATAC®¢, and omni ATAC®” protocol papers.
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This dataset includes human ATAC-seq reads from 33
standard ATAC, 152 fast ATAC, and 139 omni ATAC
samples (Supplemental file 1). PEPATAC provides
output and quality control results both for individual
samples and for the project as a whole. For each sample,
PEPATAC produces narrowPeak and bigWig files to
visualize nucleotide-resolution alignments, smoothed
alignments, and peak calls. PEPATAC also produces
summary statistics files that report the number of reads,
duplicates, genome alignment rates, transcription start
site (TSS) enrichment score, number of called peaks,
fraction of reads in peaks (FRiP), and job runtime
among others for every sample in a project.

Prealighments

To evaluate the advantage of serially aligning to
the mitochondrial genome separately, we measured
the total alignment runtime of synthetic mixtures of
mitochondrial-aligning (mtDNA) and whole human-
aligning (hg38) sequences with and without prealign-
ments. We constructed libraries of mixed mtDNA:hg38
mapping ATAC-seq reads from 0% to 100% mtDNA in
increments of 10%, at 10 million, 20 million, and up
to 200 million total reads in increments of 20 million
reads, resulting in 121 different library combinations.
We recorded the alignment time for each input file with
and without prealignments (Fig. 5b). To determine for
which scenarios using prealignments is beneficial, we
calculated the log ratio of run times with prealignments
versus without prealignments and found that using
prealignments reduces the total time of alignment even
when mtDNA alignment rates are under 10% (Fig. 5c).
In addition to speed and efficiency gains, PEPATAC with
prealignment to mtDNA yields higher alignment rates
to mitochondrial sequence than aligning to a combined
human and mitochondrial genome as is commonly
performed (Fig. 5d). This is true for every sample
tested no matter the library preparation protocol nor
percent mitochondrial contamination (Fig. 5e). This
result indicates that the common approach of simul-
taneously aligning to the nuclear and mitochondrial
genomes systematically underestimates the fraction of
mitochondrial reads in an experiment. We therefore
propose that mitochondrial alignment rates are gener-
ally underestimated by about 1-5% in published reports.
In conclusion, the serial alignment approach not only
improves the efficiency of alignment in most cases, but
it also improves the accuracy.

Fraction of reads in peaks

We next sought to understand how the serial alignment
strategy affects calculation of Fraction of Reads in Peaks
(FRiP). FRiP is a common qualitative measure of enrich-
ment and sample quality. However, FRiP calculations
are poorly defined, making it dangerous to compare
FRiP scores among different protocols and approaches.
ENCODE defines the denominator of the FRiP score
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to be total mapped reads ENCODE Terms. If only one
genome is used for alignment, then the calculation is
clear, but for a serial alignment pipeline, the FRiP score
depends on whether the denominator includes reads
mapped to the nuclear genome only, or to all genomes
(Fig. 6a,b). By default, PEPATAC uses the number
of mapped reads (i.e. PEPATAC’s “Aligned.reads” stat)
which is relative to the primary alignment and excludes
reads mapped during prealignments. This has the
consequence of changing the FRiP calculation based on
whether prealignments were used (Fig. 6c,d). When
using prealignments, the default FRiP calculation will
significantly increase, because the number of reads
mapped to the primary genome is reduced due to reads
mapping more accurately to the mitochondrial genome
(Fig. 6¢,d). When FRiP is calculated using the total
mapped reads (prealignments and primary alignment),
these relationships are inversed (Fig. 6b,d). In any
scenario, prealignments lead to more total mapped
reads, due to more efficient mitochondrial alignment.
As more recent ATAC-seq sample preparation protocols
intentionally reduce mitochondrial contamination,
these differences are most pronounced when using the
original, standard ATAC-seq protocol. It has also been
reported that, at least in ChIP-seq experiments, FRiP cor-
relates positively with the number of identified peaks®.
Interestingly, this correlation is less obvious without
prealignments, likely due to obfuscation through high
numbers of mitochondrial aligning reads included in the
FRiP denominator (Fig. 6e,f). Therefore, reliance on
a specific cutoff (e.g. 0.3 or greater) as indicative of a
quality sample must be relative to protocol and method.

Availability and Future Directions

PEPATAC is an efficient, user-friendly ATAC-seq pipeline
that produces helpful quality control plots and signal
tracks that provide a comprehensive starting point
for further downstream analysis. Two key benefits of
the PEPATAC pipeline over existing pipelines are its
flexibility and modularity. PEPATAC is uniquely flexible,
for example, by allowing pipeline users to serially align
to multiple genomes, to select from multiple aligners,
peak callers, and adapter trimmers, all while providing
a convenient configurable interface so a user can adjust
parameters for individual pipeline tasks. Furthermore,
PEPATAC reads projects in PEP format, a standardized,
well-described project definition format, providing
a reproducible interface with Python and R APIs to
simplify downstream analysis.

Because PEPATAC is built on looper, it is easily deploy-
able on any compute infrastructure, including a laptop,
a compute cluster, or the cloud. It is thereby inherently
expandable from single to multi-sample analyses with
both project level and individual sample level quality
control reporting. This means that a user may submit
any number of samples using a single looper command
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and corresponding PEP metadata file. Its design allows
for simple restarts at any step in the process should the
pipeline be interrupted. Due to its modular construc-
tion multiple software options for primary pipeline steps
are available, creating a swappable pipeline flow path
with individual steps adaptable to future changes in the
field. PEPATAC is a rapid, flexible, and portable ATAC-seq
project analysis pipeline providing a standardized foun-
dation for more advanced inquiries.

Documentation and links
» PEPATAC: pepatac.databio.org.
* PEP metadata standards: pep.databio.org.
* Looper job submission engine: looper.databio.org.
* Refgenie reference genomes: refgenie.databio.org.

» Source code to reproduce output for this paper:
github.com/databio/pepatac_paper_data.
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