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Abstract

Evolutionary theory suggests that lifespan-associated alleles should be purged from the gene pool,
and yet decades of GWAS and model organism studies have shown they persist. Here, we address
one potential explanation, the idea that the alleles that regulate lifespan do so only in certain contexts.
We exposed thousands of outbred Drosophila to a standard and a high sugar diet. We then sequenced
over 10,000 individuals and track genome-wide allele frequency changes over time, as these
populations aged. We mapped thousands of lifespan-altering alleles, some associated with early vs
late life tradeoffs, late-onset effects, and genotype-by-environment interactions. We find that lifespan-
reducing alleles are most likely to be recently derived, have stronger effects on a high-sugar diet,
consistent with the hypothesis that historically neutral or beneficial alleles can become detrimental in
novel conditions. We also show that the gene midway, a regulator of lipid storage and ortholog of the
lifespan-associated gene DGAT1 in mice, also regulates lifespan in Drosophila. Our results provide
insight into the highly polygenic and context-dependent genetic architecture of lifespan, as well as the
evolutionary processes that shape this key trait.
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Introduction

Lifespan, a major component of fitness and a key life history
trait, has a genetic basis: it is modestly heritable in humans
and other organisms (h?~10%) (1) and dozens of lifespan-
reducing alleles have now been identified (2, 3). However,
the fact that genetic variation for lifespan exists at all
presents an evolutionary puzzle, as it is expected that
natural selection will purge fitness-reducing alleles from the
gene pool. Evolutionary theory provides several potential,
non-mutually exclusive explanations for this conundrum.
Lifespan-reducing alleles may persist because: (i) they are
only deleterious in late-life, when selection is relatively weak
(the mutation accumulation theory (4)), (ii) they provide
benefits early in life that outweigh their late-life costs (the
antagonistic pleiotropy theory (5)), and (iii) their effects vary
across environments (genotype-by-environment, GxE)
making them difficult to purge through purifying selection.

Notably, a special class of GxE interactions, driven by
evolutionarily recent changes in human diet and lifestyle (6—
8), are thought to be particularly important for human
disease. Specifically, it has been proposed that many
chronic, noncommunicable diseases are caused by alleles
that evolved under stabilizing or positive selection
throughout human history, but are now “mismatched” to
obesogenic diets and other aspects of modern life (6-9).
While this explanation is compelling, empirical data is
limited due to the difficulty of identifying GxE interactions at
genome-wide scale with high power (10). As a result, the
degree to which exposure to evolutionarily novel
environments alters the relationship between genetic
variation and fitness-related traits remains unclear.

To address this question, we leveraged the tractable
experimental and genomic tools of Drosophila
melanogaster to map loci that affect lifespan in two
environments. Specifically, we exposed an outbred
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Fig. 1 Experimental design to detect GxE interactions modulating lifespan.

(A) D. melanogaster flies caught in Princeton, NJ were used to generate a synthetic outbred population that was kept
under laboratory conditions for over a year, and split in two replicate cages prior to the beginning of the experiment (A
and B). ~1000 flies were collected from A and B at the start of the experiment (Ty, 2+1 days old) and the rest were
distributed into 6 replicate cages of ~10,000 flies each (3 cages = standard lab diet (CTRL), blue; 3 cages = high sugar
diet, orange). ~500 flies were sampled every 3-7 days from a given cage and a last sample was taken when only ~500
flies were left (Tn) (Table S1-2); sampling schedule are noted by vertical dashed lines for the CTRL1 and HS1 cages.
Identical schedules were followed for all other cages within a treatment group. To prevent pupae from the new
generation from eclosing inside the experimental cages, food containers were replaced every three days. (B)
Individually barcoded DNA-seq libraries were prepared from 10,635 individual flies sampled from Ty, Tn, and the
intermediate time points. Each library was sequenced at ~1x depth to estimate allele frequencies and test for frequency
changes across time (Fig. S1). (C) Expected patterns of frequency change are shown for alleles that reduce lifespan
in both diets (shared) or more so on the HS diet (GxE). (D) The allelic composition of cages A (solid line) and B (dashed
line) is very similar at To (n=291,319 SNPs). Inset shows the per-site correlation between the minor allele frequency
(MAF) estimated for cage A versus B at Ty. (E) Logz ratio of males to females at different timepoints during the
experiment. The number of flies sexed at each time point is provided in Table S4.

population of flies to two diets: a standard laboratory diet
and a high sugar diet containing more sucrose than flies
would encounter in nature and that is known to cause
obesity, diabetes, and reduced lifespan in this species (77,
12). Drawing inspiration from a recent study of human
longevity (13), we tracked genome-wide allele frequency
changes in age-matched flies across their entire adult life.
Using this high-powered experimental approach (Figure 1A-
B), we were able to identify thousands of lifespan-reducing
alleles that decrease in frequency as individuals grow older,
as well as to classify them into: (i) late-onset alleles that only

decrease at late ages (mutation accumulation theory), (ii)
alleles with tradeoffs between early and late life that first
increase and then decrease (antagonistic pleiotropy
theory), and (iii) GxE alleles that have substantially stronger
effects on lifespan on one diet, potentially due to risk alleles
being exposed by the novel diet. Together, our study
provides insight into the genetic architecture and
environmental sensitivity of a major life history trait, and
experimentally evaluates evidence for long-standing
theories for why fithess-reducing alleles abound in nature.
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Fig. 2 GxE interactions determine lifespan.

(A, B) Manhattan plots highlighting significant lifespan-associated SNPs with the strongest GxE effects. Plots show
the -log1o p-value for tests for allele frequency differences between Ty and Toon a (A) CTRL and (B) HS diet; colored
points passed our significance filters for GXE effects (see methods). The p-value threshold corresponding to a 10%
empirically determined FDR is noted with a dashed line for each environment. (C) Comparison of model-estimated
effect sizes for a genetic effect on lifespan on CTRL versus HS diets (positive values indicate the alternate allele
increases in frequency at Ty versus Typ). Only SNPs with significant evidence for GxE effects are colored. (D, E) Allele
frequency changes across replicates for (D) an example SNP (3L:2208596) associated with lifespan in both dietary
conditions and (E) an example SNP (2L:4287424) with larger effects on lifespan on the HS diet. The estimated minor
allele frequency is shown for each replicate cage, with bars representing the standard error. The two To bars
correspond to cage A and B. The inset shows the mean minor allele frequencies at Ty and Ty, for each replicate CTRL
(blue) and HS (orange) cage, using the same x and y axes as in Figure 1B.

Sex and genotype have environment-specific effects on
lifespan

To identify loci associated with lifespan variation and
evaluate their context-dependence, we exposed large,
replicate populations of age-matched outbred adult flies to
a standard laboratory diet (hereafter “control” or “CTRL”")
and a high sugar diet (“HS”) for one generation (n=3
replicates of ~10,000 flies per diet; Figure 1A). To prevent
overlapping generations, food containers (where flies also
lay eggs) were exchanged every three days. We drew a
random sample of ~2000 flies at the beginning of the

experiment (Ty), and continued to sample ~500 flies from
each population at regular intervals. When only the ~500
longest-lived flies remained in a given replicate cage, we
collected a final sample (Tn) (Table S1,2). In total, 10,637
flies were genotyped using individually barcoded low-
coverage genome sequencing (Fig. S1), and used to
estimate age-specific genome-wide allele frequencies on
each diet.

While all replicates for the two diets started from a common
pool of standing genetic variation at the beginning of the
experiment (Figure 1D; Table S3), we observed a
consistent, ~1.6 fold reduction in lifespan for flies on the HS
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diet, as expected (12). We also observed substantial and
unexpected interactions between diet and sex: while the sex
ratio remained roughly 1:1 as flies aged on the HS diet,
males far outlived females on the CTRL diet resulting in a
sex ratio of ~100:1 by the end of the experiment (Figure 1E;
Table S4). We replicated this observation in independent
experiments where the lifespan of individual flies was
quantified, suggesting that it is a repeatable characteristic
of the fly population used here (Cox proportional hazards:
p(sex-by-diet) = 0.026) (Fig. S2, Table S5). While others
have also observed that sex-specific lifespans in flies are
sometimes environmentally-dependent (74, 15), future work
is necessary to uncover the proximate mechanisms at play
here.

To detect longevity-associated alleles, we estimated allele
frequencies at 268,159 common SNPs (MAF>0.05) and
tested for alleles that exhibited a significantly lower
frequency at the end of the experiment (Tn; Nn=1443 and
1866 sequenced flies for CTRL and HS, respectively)
compared to the beginning of the experiment (To; Nn=2104
sequenced flies). Such decreases in frequency indicate that
individuals carrying a given allele die at younger ages
relative to individuals carrying the alternative allele (Figure
1C). We identified 2246 genetic variants that fit this pattern,
distributed among 1919 genes (permutation-derived FDR
10%; Figure 2, Table S6, Fig. S3,4). The average absolute
decrease in allele frequency between Ty and Ty for these
lifespan-associated SNPs was 0.08, with most changes
falling between 0.05-0.12 (Fig. S5). The majority of the
lifespan-associated SNPs (68.6%) have significant and
positively correlated effects on the two diets, suggesting
similar or “shared” effects are common (Figure 2C, Fig S4).
However, we found that 31.4% of lifespan-associated SNPs
(n=704) exhibited evidence for substantial GxE interactions
(i.e., stronger effects on one diet relative to the other,
defined as permutation derived FDR<10% in one
environment and p>0.05 in the other environment, see also
Fig. S6). Strikingly, of these 704 SNPs with the largest GxE
effects on lifespan, 99.6% (701) had larger effects on the
HS diet, indicating that their effects are magnified or
unmasked under dietary stress (Figure 2). These results
suggest that a substantial amount of genetic variation that
appears to have little effect on phenotypic variation under
one set of conditions might indeed play a fundamental role
in new or stressful environments. We also note that SNPs
identified as having “shared” effects in the two environments
more often exhibit stronger effects on the HS diet (76% of
the time, p-value = 1.4e-98). These results, and our
simulations (Fig S6), suggest that GxE interaction is a
common feature among SNPs affecting lifespan.

Biological and functional insight into the genetic basis
of lifespan

To understand the biology of loci that contribute to lifespan
we first asked whether lifespan-associated SNPs were
enriched in particular genomic features or molecular
processes. We found that our longevity-associated SNPs
are not significantly enriched for any particular molecular
pathway nor for “canonical” longevity genes (Table S7).
These results support a highly polygenic model in which
genetic variation segregating in wild-derived populations of
D. melanogaster does not localize to the canonical
biological pathways associated with aging and lifespan (76,
17), as was also observed by (74, 18, 19). Notably, we did
find that lifespan-associated SNPs are strongly enriched in
genes identified in previous studies of D. melanogaster
longevity (Figure 3A, Table S8, S9).

Many of the lifespan-associated genes we identified
perform essential functions but are not known to affect
lifespan in flies. For example, midway, involved in fat
metabolism and oogenesis (20), and Jovit, involved in
neurophysiology (27), both contain lifespan-associated
SNPs. Using loss-of-function mutant lines, we validated
their effects on lifespan (lovit: p-value = 0.042; midway: p-
value < 10-'8, Figure 3B-C, Table S10). The validation of
midway, a diacylglycerol acyltransferase involved in
triglyceride metabolism, is a notable finding since its
mammalian ortholog, DGAT1, has been shown to regulate
lifespan in mice (22). In addition, midway has a particularly
strong GxE effect in the outbred population (change in MAF
with age on HS = 12.5%, g-value = 0.04; on CTRL = 3.8%,
g-value = 0.7) as well as in the loss-of-function lines (p-
value for GxE interaction = 7x10, Figure 3B-C, Table S10),
indicating that its effect on lifespan is environment-
dependent. These results contribute to the increasing body
of literature linking lipid metabolism to the regulation of
aging and lifespan (23).

Testing evolutionary theories of aging and longevity

Fitness-reducing alleles are thought to be largely governed
by mutation-selection balance, in which mutation
continuously generates deleterious alleles and purifying
selection eliminates them (24). However, we find that first,
the minor allele reduces lifespan only in about half of cases
(58%), and second, that these risk alleles are by no means
rare in the population (mean frequency +/- SD at To = 0.35
+/- 0.1; Table S6), suggesting that other evolutionary forces
maintain them at moderate frequencies. Our results indicate
that GxE interactions are one key factor. We next asked if
two additional forces, antagonistic pleiotropy and mutation
accumulation, may also be important contributors to this
feature of the data. Specifically, we estimated allele
frequencies at several time points between Tpand Ty to
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Fig. 3 Properties of lifespan-associated genes.

(A) Genes in or near (<1kb) SNPs with shared (grey) or substantial GxE (blue) effects on lifespan in this experiment
overlap with lifespan and fecundity genes identified in previous studies (identified by first author’s last name). The
degree of overlap is represented as fold enrichment from a Fisher’s exact test, and light bars indicate non-significant
overlap. Studies represent several types: GWAS for fecundity measured during weeks 1-7 in inbred lines (25); selection
for extended lifespan in outbred flies (18, 19, 26, 27); analyses of standing variation associated with lifespan in inbred
lines (714); and “canonical” longevity genes from the GenAge database (28). Light bars indicate non-significant overlap.
(B, C) Kaplan-Meier survival curves for two candidate genes, with p-values from a Cox proportional-hazards model
testing for an effect of the gene on survival as well as a GxE effect. Survival curves for the control lines include data
from four wild-type control lines (DGRP 439, DGRP 181, Canton-S, and yw).

determine the trajectory of lifespan-reducing alleles (Figure
1A, Table S1, S2). We then asked whether these alleles
exhibited (i) a U-shaped pattern indicative of trade-offs and
differential fitness effects at young versus old ages, as
predicted by antagonistic pleiotropy theory (5); (ii) evidence
for fithess-effects only at old ages, as predicted by mutation
accumulation theory (4); or (iii) an evolutionary “null” model
of constant fitness-effects at all ages (Figure 4A).

Of the 2246 SNPs with significant effects on lifespan, we
confidently assigned 75 to one of the three trajectories
described above (AAIC between the best and second-best
trajectory > 97.5% of permutations). 29 (42%) of these
SNPs exhibit an antagonistic pleiotropy pattern, and 38
(48%) exhibit a pattern consistent with mutation
accumulation theory (Figure 4B-D; Table S11). In further
support of antagonistic pleiotropy theory, we also find that
genes near lifespan-associated SNPs (not just the 75 with
assigned trajectories) significantly overlap with genes
identified in a previous study of age-specific fecundity in
flies (Figure 3A; Table S9; (25)). Interestingly, the pattern is
most pronounced for the 704 SNPs we identified with the
strongest GxE effects (Figure 3A, Table S9). This overlap
further indicates that many longevity-decreasing alleles are

maintained because they provide other benefits, for
example to fertility in early adulthood, that outweigh their
late life costs.

The evolution of alleles regulating lifespan

The finding that GXE interactions are common with respect
to diet in our experiment has important implications for
human health. In particular, it is thought that rapid shifts in
human diet and lifestyle following the Industrial Revolution
have caused previously adaptive or neutral alleles to
become maladaptive (or “mismatched”), such that they are
currently associated with diseases that impact lifespan
(Figure 5A; (6, 7, 10)). The high-sugar (HS) environment
provided in our experiment is a particularly extreme case of
such a change, and potentially relevant to relatively recent
dietary changes in some human populations. We have
shown that exposing flies to such high sugar concentrations
reveals a substantial amount of genetic variation that
remains hidden/cryptic in the CTRL diet, as has been
predicted repeatedly (6) but rarely tested experimentally.
That said, it should also be noted that, from an evolutionary
perspective, our standard lab media (CTRL) also reflects a
substantial change in diet from that experienced by the wild-
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caught flies in our experiment (collected in Princeton, NJ)
and the ancestral populations from which they ultimately
originated (sub-Saharan Africa). The prevalence of GxE
interactions among the SNPs we have associated with
lifespan allows us to test predictions of the “evolutionary
mismatch” hypothesis for the first time at genome-wide
scale. Specifically, we asked whether alleles with lifespan-
reducing effects in the Princeton population 1) are more
likely to be recently derived and 2) exhibit signatures of
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Fig. 4 Insights into evolutionary theories of aging.

(A) Allele frequency trajectories across time according to
the antagonistic pleiotropy and mutation accumulation
theories, and a constant trajectory not expected under
evolutionary models. We asked whether each lifespan-
associated SNP could be confidently assigned to one of
these trajectories. (B) AAIC between the best and
second-best model for each tested SNP. HS and CTRL
cages were analyzed separately due to the different age
distributions within each treatment (See Figure 1A).
SNPs with AAIC values >97.5% of the null distribution
are confidently assigned to a given trajectory and their
AAIC values are plotted as individual points. Examples
of a (C) quadratic trajectory SNP in HS suggesting
antagonistic pleiotropy and (D) a breakpoint trajectory
SNP in the standard lab environment (CTRL) suggesting
mutation accumulation dynamics. Points represent the
mean alternate allele frequency for a given age
estimated across all cages, while bars represent the
standard error of the estimate.

positive selection in this population and/or the ancestral
populations from which it originated.

As predicted, we find that lifespan-reducing alleles are more
likely to be derived than ancestral, and this bias is the
largest for SNPs with the strongest GxE effects (65%,
Figure 5B). We next asked if lifespan-associated alleles
exhibit evidence for selection, and of what form. Notably, we
find that lifespan-decreasing alleles are at significantly lower
frequency than lifespan-increasing alleles in the Princeton
population (p-value = 8e-8, Wilcoxon test; Figure 5C),
consistent with their predicted effects on fitness. To further
elucidate the nature of selection pressures on lifespan-
associated alleles, we determined the frequencies of these
alleles and frequency-matched non-significant SNPs in
putatively ancestral African populations (Figure 5C).
Remarkably, these comparisons reveal that, in contrast with
what is observed in the Princeton population, in Africa
lifespan-decreasing alleles are at significantly higher
frequency than lifespan-increasing alleles (p-value = 4e-16,
Wilcoxon test). Moreover, lifespan-decreasing alleles are at
significantly higher frequencies than non-significant SNPs
in African populations (p-value = 2e-5, Wilcoxon test),
consistent with positive selection, either direct or via linked-
selection, promoting lifespan-decreasing alleles in these
populations (the frequencies of non-significant SNPs for
lifespan-increasing and lifespan-decreasing alleles do not
differ, p-value = 0.24, Wilcoxon test, Figure 5C). When
Princeton and African allele frequencies are directly
compared, we observe that while lifespan-decreasing
alleles do not differ in frequency between Princeton and
African populations, lifespan-increasing alleles show a
notable increase in frequency in the Princeton population
(Figure 5D). The differences between Princeton and African
populations suggest that spatially and/or temporally
heterogeneous selection pressures have impacted the
frequencies of lifespan-associated SNPs. The evidence for
positive selection in the evolutionary history of alleles that
decrease lifespan in the Princeton population supports the
evolutionary mismatch hypothesis for the presence of high
frequency alleles that are detrimental to fithess when
exposed to novel environments.

Implications for understanding the genetic basis of
lifespan variation

Long-standing population genetic and evolutionary theories
have proposed several forces at play in the maintenance of
genetic variation for fitness-related traits (4, 6-8).
Experimental tests of the predictions of these theories have
been hampered by the difficulty of mapping fitness-related
genetic effects. For example, a recent human study using a
similar approach to ours but a 10-fold larger sample size
found only two lifespan-associated regions near the APOE
and CHRNAS3 genes (13). Instead, we identified thousands
of lifespan-associated loci, most of which have larger effects
on the HS diet, uncovering a highly polygenic and context-
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dependent architecture. We estimate that in the absence of
environmental heterogeneity, both studies have similar
statistical power (Fig. S7); the fact that we find orders of
magnitude more lifespan-associated SNPs here highlights
the utility of well-controlled experimental designs in model
organisms for the study of complex traits. Because our high-
powered design allowed us to identify many lifespan-
reducing alleles, we could evaluate the generality of
important theories for why alleles that shorten lifespan
persist in nature and how they evolve. Specifically, we
identified a key role for GxE interactions, as well as mutation
accumulation and antagonistic pleiotropy as forces
maintaining genetic variation for lifespan. We also provide
experimental insight into how interactions between derived
genetic variation and novel environmental conditions may
shorten lifespan.
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Fig. 5 Insights into the evolution of alleles that
regulate lifespan.

(A) Potential predictions from mismatch theory: alleles that
evolved more recently in the focal population (derived alleles) are
neutral (black line) or advantageous (dashed line) in the ancestral
environment they evolved in; however, they become deleterious
in a “novel” environment. (B) The derived allele is more likely than
the ancestral allele to reduce lifespan relative to chance
expectations. For lifespan-associated SNPs shared between
environments (Shared) or with substantially stronger effects on
the HS diet (GxE:HS), the proportion of SNPs for which the
derived allele is the lifespan-reducing allele is noted with an arrow.
Null expectations were derived by performing the same
calculations on effect sizes from individual CTRL and HS cages
across 1000 randomly drawn pools of 1000 frequency matched
non-significant SNPs. (C) The derived allele frequency (DAF)
distribution for sites where the derived allele significantly
increases or decreases lifespan in at least one environment
(FDR<10%). For comparison, the DAF for a set of non-significant
sites (NS) frequency-matched to lifespan-increasing and
decreasing alleles in Princeton is also shown. The DAF
distribution is plotted for our experiment at TO (“Princeton”) as well
as for the DPGP2 African dataset (“Africa”) for the same set of
sites. Lines highlight the differences in median values between
each pair of distributions. DAF for lifespan-increasing and
decreasing alleles in the Princeton as well as in the African
populations are significantly different, but with opposite directions
(Wilcoxon test: Princeton p-value = 5e-8, Africa p-value = 4e-16).
The distributions of NS sites are not significantly different. (D) DAF
difference in our experiment (at TO) versus the DPGP2 for lifespan
increasing and decreasing alleles. Red dots indicate the median
DAF difference observed in real data for a given set of alleles.
Colored distributions represent the median DAF differences for
1000 datasets of non-significant sites sampled to match the
frequency distribution of the allele set.
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Figure S4. Comparison of the magnitude of the genetic
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TN.
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Table S8. Genes related to fecundity and longevity
(from this study and others).
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