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ABSTRACT

A simple but effective method for strain-level characterisation of microbial samples using long read
data is presented. The method, which relies on having a non-redundant database of reference
genomes, differentiates between strains within species and determines their relative abundance. It
provides markedly better strain differentiation than that reported for the latest long read tools.
Good estimates of relative abundances of highly similar strains present at less than 1% are
achievable with as little as 1Gb of reads. Host contamination can be removed without great loss of
sample characterisation performance. The method is simple and highly flexible, allowing it to be
used for various different purposes, and as an extension of other characterisation tools. A code
body implementing the underlying method is freely available.

MAIN

The ability to identify and quantify organisms within a sample underpins many fields of research,
medicine, and agriculture. While cell culture and biochemical tests have historically been used to perform
this type of sample characterisation, the greater speed, breadth, and resolution offered by DNA methods
has made them highly attractive in recent years. Improvements to DNA sequencing technology and
analysis software has driven new understanding of the microbiome's role in physical and mental health'?,
and has led to the creation of new microbiome-focused therapeutics®*. DNA sequencing-based tests have
been employed to diagnose patient infections, where they show higher accuracy and sensitivity than
previous methods at a faster turnaround time’. While species-level characterisation has spurred progress
in these fields, ambiguous strain-level results still hinder our ability to gain new insight into microbiome
dynamics, and restrict the use of sequencing-based methods for pathogen identification. Strain-level
sample characterisation — which strains are present, and their relative abundance -is now an area of active
research, and may lead to a wave of new knowledge and opportunities once proper methods are
discovered.

Marker-based approaches such as 16S rRNA characterisation were initially the most viable methods. An
extensive range of organisms could be detected due to high availability of reference sequences and
broadly applicable PCR primers, allowing these markers to be amplified, sequenced, then matched to a
reference database. Marker based approaches target one or more genes, and use single nucleotide
polymorphisms (SNPs) and small insertions / deletions (indels) to differentiate between taxonomic clades.
While this approach can provide species level characterisation, inadequate genetic difference between
strains in these marker regions has prevented strain-level resolution. Whole genome sequencing (WGS)
approaches have recently provided better strain-level results as the entire genome of an organism can be
used for differentiation. WGS methods have become more applicable to microbiome research and
pathogen identification over time as the number of complete reference genomes publicly available has
grown.

Approaches to sample characterization based on either short*” (including synthetic long read
techniques®’) or long read approaches are both effective. WGS based tools such as StrainPhlAn2'" for
short reads, MetaMaps'' for long reads, and Wimp'?, Kraken2", and Centrifuge'* which may accept either
length, all continue to expand our knowledge of the human microbiome. Due to the high per-base
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accuracy and market dominance of short read data, SNPs and small indels have historically been the focus
for characterisation tools'*'* in the last decade. Both alignment-based approaches such as StrainPhlAn2,
and heuristic approaches such as Kraken2 can be employed to probe this information. Despite a much
higher per-base error rate (roughly 10% at current date), most long read characterisation methods tend to
the same approach. Error-correction is frequently used in an attempt to compensate for the lower
base-accuracy, where a common approach is to compare reads against one another to generate an

error-corrected consensus sequence'’.

The current challenge to strain level characterisation is the high level of genome-wide sequence
homology between similar strains. Two different bacterial strains may differ by only a handful of SNPs
and indels - a rate of less than 1 change per 100 kbp, hindering progress. Regardless of sequencing
technology, most sample reads cannot be uniquely classified to a single strain, as there may be little if any
sequence variation captured. This results in a swathe of similar organisms being reported alongside each
true sample strain when the sample is characterised to strain level.

Aside from SNPs and small indels, long reads provide another avenue to exploit — the ability to easily
identify structural variants (SVs). Long reads provide a much more powerful tool for recognising and
characterising structural variants (SVs) - elements longer than 50 or so bases - than the reads from NGS
technologies'®'®. Tools that allow the extraction of a range of different structural variants from long reads
are available', and their use in human health studies’ *' have been recently documented.  The
importance of SVs in phylogeny® , and therefore in the differentiation of organisms, is well-established,
and exploitation of long read technology in this field is rapidly progressing™.

We take a new approach to sample characterisation. Rather than focusing on how to remedy the
deficiencies of long reads, we directly exploit their strengths - namely that they are long, even if error
prone, and their ability to sample large genomic regions provides ready access to structural information.
Reads spanning discriminating structural features provide clear differentiation between strains, and are
used to identify the true sample strains over other, highly similar organisms. The method has been
implemented in our code body, NanoMAP (Nanopore MAPQ characterisation tool).

RESULTS

MAPQ Scores CAN DIFFERENTIATE HIGHLY SIMILAR STRAINS

Microbial genomes are highly dynamic. Entire sections of DNA are often inserted, deleted, inverted,
copied, or otherwise moved within and between microorganisms. While SV types such as insertions and
deletions have been indirectly used by characterisation tools through identifying clade-specific DNA*,
structural variation can also create clade-specific arrangements of DNA. Even in the case of cut-paste
variants where the DNA content is not modified, the sequential arrangement of DNA is altered. These
genetic rearrangements can generate discriminating regions of DNA where only a single strain possesses
a particular structural arrangement. Reads sampling these unique regions align markedly better to the
organism’s true reference genome over those belonging to other strains. Mapping quality (MAPQ) scores
are used to detect these reads, and their use underpins our method for sample characterisation.
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MAPQ scores provide a measure of the confidence that a read actually originates from the position it is
aligned to. Reads which align well to only a single location in the reference sequence have an alignment
with high MAPQ score, while reads which have multiple locations of equal best alignment have MAPQ
score equal to zero for all alignments of the read. They were initially designed to indicate the chance a
read had been misplaced in a single organism’s reference genome, but if we treat a whole database of
strains as a single reference genome, a high MAPQ score alignment can signal a read which has been
mapped uniquely to a single genome in that database. This scenario can be established by simply
concatenating the genomes of interest (the database) into a single reference metagenome. Reads reporting
a high MAPQ score alignment (HMQ reads) have a single best mapping location in the metagenome,
implying they align markedly better to one strain over all others. Figure 1a demonstrates this process,
showing how a single SV can differentiate between strains. Figure 1b provides our implementation of
this method for sample characterisation, and Figure 1c provides an indicative set of discriminating data
generated by application of this method using NanoMap.
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Figure 1. Summary of the key elements of our approach, and data from characterisation of the ZymoBIOMICS
Microbial Community Standard product.  a) Alignments of a sample read (originating from organism with
reference genome A) to a metagenome. Alignment to the correct reference genome appears full length, while
alignment to a similar strain’s reference genome produces a split alignment. The alignment to genome A may
possess a high MAPQ score due to poor genome B alignment. b) Overall program workflow that has been
implemented in the NanoMAP code. ¢) Number of MAPQ=60 read alignments per strain during characterisation of
theZymoBIOMICS Microbial Community Standard product. The top 4 strains (by MAPQ=060 alignment count) in
the final round of alignment from each candidate strain group are shown. d) Kmer dotplots for 3 of the 11 off-target
(S. enterica C500) HMQ reads vs the ZymoBIOMICS and C500 strains. The C500 reference genome was shifted
1615000 bp to place it in alignment with the ZymoBIOMICS reference genome. A recent inversion in the
ZymoBIOMICS organism is not reflected in its supplied reference genome.

This method is simple in approach and general. Any read alignment tool which reports MAPQ scores can
be used, with our aligner of choice being minimap2*°. While the majority of discriminating reads seem to
be produced by the presence of structural variation, any form of genetic uniqueness can contribute. SNPs
and indels can generate HMQ reads if enough genetic difference of these types is available in a given
region, which may be relevant for some taxonomic clades. No set database is required, as only sample
reads and reference genomes are needed for characterisation.

SINGLE SV's CAN PROVIDE STRAIN LEVEL DISCRIMINATION

The use of MAPQ scores provides powerful strain discrimination. Figure 1lc displays the final set of
information used by NanoMAP during runtime to identify sample strains. A clear distinction between
correct and incorrect strains is seen in the HMQ read count for ZymoBIOMICS strains and other, highly
similar organisms. Strains are listed by HMQ read count, demonstrating that ZymoBIOMICS strains
often have hundreds if not thousands of HMQ reads while other strains have zero. Aside from S. enterica,
all expected strains are clearly distinguishable as the true sample strain for each species.

After investigation into the off-target S. enterica C500 HMQ reads, it was discovered that the reference
genome for the correct S. enterica strain is out of date. The S. enterica ZymoBIOMICS strain appears to
have recently experienced an inversion in a phase variation control region called hin*’. As a result, the
supplied ZymoBIOMICS reference genome for this strain does not reflect the change. Phase variation
permits fast adaptation to a changing environment via switching the expression of certain genes on or off,
and in this case the orientation of Ain governs the expression of flagellar proteins. The reference genome
for strain C500 has kin in an orientation which matches that of the S. enterica ZymoBIOMICS cells
present in the sample, causing the 11 off-target HMQ reads. Figure 1d shows how these reads would
align to both these strains, showing kmer matches between the read and S. enterica strain C500 in yellow,
with S. enterica ZymoBIOMICS in purple. All off-target HMQ reads covered the inverted hin region.

MAPQ scores can differentiate between strains even in the case of a single SV being the only genetic
difference. Aside from the single inversion which caused off-target HMQ reads explored above, this
principle is clearly demonstrated in Figure 2a. HMQ read count data produced during characterisation of
an ATCC mock microbiome shows sample strains H. pylori 26695 and E. faecalis V583 being
distinguished from other organisms. The strains listed below H. pylori 26695 and E. faecalis V583 in the
table are derivatives of these true sample strains, and differ by as little as 1 SV to the original organism.
The transformations used to create the derivative strains are shown in the comments column. A single
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gene replacement between H. pylori 26695 and H. pylori 26695-dR is capable of uniquely identifying
26695 as the true sample strain. Similarly for E. faecalis, a single 280 bp insertion in strain VE18379
provides enough discrimination to identify V583 as the true sample organism.

H. pylori MAPQ=60 MAPQ=10 Comment _
strain Reads Reads
26695 18 41 True Sample Strain
26B695-dR o 1] Derived from H. pylori 26695 - 1 gene replaced
26695-dRdM2 o o Derived from H. pylori 26695 - 2 genes replaced —
5 . I
26635-dRdM1dM2 0 o Derived from H. pylori 26695 - 2 genes replaced
E. faecalis MAPQ=60 MAPQ=10
strain Reads  Reads Comment
V583 150 189 True Sample Strain
VE14088 o 1 Derived from E. faecalis V583 - 20.5 kbp insertion
VE18378 0 0 Derived from £ fae 583 - 280 bp insertion Truth NanoMAP  MetaMaps Truth NanoMAP  MetaMaps
VE18395 0 ] Derived from E. fascalis V583 - 280 bp insertion i

18,8 kbp deletion B 5. enterica CFSANO00189 E. coli 0157:HT

4 MNon-sample Strains 4 Non-gample Strains

Figure 2. Accurate strain-level characterisation of multiple organisms. a) Table of final round HMQ read counts
for two strains present in the ATCC mock microbiome sample. The true sample strains, H. pylori 26695 and E.
faecalis V583, differ from other possible strains by at most 2 SVs b) NanoMAP and MetaMaps characterisation of
two samples, each sample containing a single organism. NanoMAP reports only the true strain in both cases, while
MetaMaps reports a large number of incorrect strains alongside the sample strain.

Figure 2b demonstrates true strain-level characterisation for two single-strain samples using this method.
Two samples, one containing a single S. enterica strain and the other containing a single E. coli strain
were characterised by NanoMAP and MetaMaps using a consistent database for both programs. For the S.
enterica sample, the database consisted of all complete S. enterica assemblies deposited on RefSeq (as of
28/09/2020). For the E. coli sample, the database consisted of all complete bacterial (19,077) and fungal
(12) genome assemblies on RefSeq at the same date, with the addition of human reference genome hg38
(hence known as the RefSeq b+f+h database). The reported composition returned by each tool is shown
as a stacked bar chart. NanoMAP reported only the correct strain for each sample providing accurate
characterisation, while MetaMaps reported an ambiguous characterisation consisting of multiple strains
for each sample.

ITERATIVE ALIGNMENT PROVIDES ACCESS TO STRAIN DISCRIMINATING DATA
The following two sections provide a brief overview of our code body, NanoMAP, which implements this
method. Fuller details can be found in the Methods section.

NanoMAP uses multiple rounds of alignment in its approach. Alignment methods for sample
characterisation have been criticised as time-consuming when a large reference database is used. To
overcome this issue a multi-step method is taken, where a rough characterisation is initially sought,
followed by a more targeted approach. An initial alignment at kmer-level, rather than base-level
accuracy, maps all sample reads to the full reference metagenome. This allows a shortlist of candidate
strains (strain group) for each real sample strain to be derived using the approximate mapping
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information. Multiple rounds of base-level accuracy alignment are performed for each strain group to
narrow the set of candidate strains and provide necessary MAPQ information. The use of approximate
mapping in the initial alignment step drastically reduces runtime, with no current evidence of degraded
performance.

The role of initial full database alignment is twofold - to confine each sample organism to a small set of
possible strains, and to bin reads by the organism from which they appear to originate. The alignment
output file is processed to provide this information. Reads which map poorly to the full metagenome are
removed through minimum percent identity and alignment length cutoffs. Short reads (< 1000 bp) are
also discarded during this process. Each read is then classified to a subset of database organisms by
comparing all alignments of a given read. The rate of strain co-classification is recorded during this
stage, and is used to identify which strains should appear together as candidate strain groups. This
approach is flexible in terms of taxonomic labels as strain groups are allowed to contain strains across
species designations, and multiple strain groups can be formed within a single species if the sample
contains multiple organisms of the species.

Reads are binned by the most appropriate strain group according to their classification. Any read which
was classified to reference genomes belonging in two separate groups is discarded. The naive DNA
abundance (%) of each group is calculated as the total number of base pairs in reads binned to the group,
divided by the total number of base pairs in all read bins. To prepare for secondary alignment, a fastq file
is generated from each read bin, and a targeted reference metagenome is built for each candidate strain

group.

Iterative alignment of each read bin to its corresponding metagenome allows the true sample strain(s) to
be identified. For a given strain group, the list of candidate strains is narrowed each iteration until the
correct organisms(s) can be identified via HMQ read counts. An iteration consists of three steps:
Base-level alignment of the read bin to the strain group’s current metagenome, output file processing, and
halving the remaining candidate strain pool by removing unlikely candidates. A new metagenome is
constructed from the genomes of the remaining strains. If a single strain is clearly evident in the group,
or < 4 strains remain, the halving process is skipped, and strain identification is performed using HMQ
read count information. Hard cutoffs, and ratios of HMQ counts are used to conclude which of the final
strains are truly present in the sample. Often a single sample organism is present in each strain group, but
multiple sample organisms can appear together if they possess high sequence homology. In these cases,
the relative abundance of each identified strain needs to be estimated.

PROPORTION ESTIMATION FOR STRAINS IN A STRAIN GROUP

When NanoMAP identifies multiple strains within a group, their relative proportions must be estimated.
As these strains were placed in the same group, they will possess a high level of sequence homology. This
poses a challenge to abundance estimation, as most reads binned to the strain group will align (and
therefore be classified) equally well to each identified organism’s reference genome. If we estimate
abundance naively as above, all identified strains will display roughly equal sample proportion due to
these equal-best alignments, even when the true proportions within the group differ greatly. Accurate
strain-level characterisation under these circumstances requires more than a simplistic approach.
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To overcome this issue, we use a probability model to estimate classification frequencies. Genomic reads
of identified strains are simulated, aligned, then classified to these strains, allowing a model to be
generated to estimate read classification probabilities. For a given strain group with multiple identified
strains, we take the observed classification frequencies of the strain group’s read bin, and use the
probability model generated to estimate the proportion of reads from each identified strain within the

group.

To illustrate, an example where 3 strains (A, B and C) have been identified will be used. Our read set is
the fastq file of n reads for the group being assessed, and the possible classifications for each read are {A,
B, C, AB, AC, BC, ABC}. A read is classified as A if its best alignment among the three genomes is
unique to genome A, while it is classified AB if its best alignment among the three is an equally good
alignment to genomes A and B, but not to genome C. Similarly for AC and BC, while a read is classified
ABC if its best alignment is an equally good alignment to all three genomes A, B and C. Now replace the
strain labels A, B and C by i=1/,2 and 3. Each read receives one of the seven classifications which we now
label j = 1,...,7. Our observed data are then the counts {n,/, where n; is the number of reads receiving
classification j. The probability model underlying our estimation procedure supposes that each read has an
unknown probability p; of being from strain 7, and, given that a read is from strain 7, it has probability 7, of
receiving classification j. The probabilities {7,/ are estimated by simulation. With the combination of the
estimated probability matrix {7,/ and the observed classification counts {n} for the read set, an
EM-algorithm for estimating the probabilities {p,} can be derived, and that is what we use. See Methods
for further details.

UNAMBIGUOUS STRAIN-LEVEL CHARACTERIZATION OF Two MICROBIOME PRODUCTS

To test the viability of this method for more complex samples, two mock microbiome products were
characterised. The ZymoBIOMICS Microbial Community Standard, and ATCC MSA 2006 (henceforth
referred to as ZYMO and ATCC samples respectively) products have known composition, and were
characterised to strain level by NanoMAP and MetaMaps. For both mock microbiomes, Nanopore
sequence data was already available. The read sets of these products were downsampled to 1Gb of
sequence data, and this subset was used for characterisation. The aforementioned RefSeq b+f+h database
was used for both NanoMAP and MetaMaps characterisation, with the addition of ZymoBIOMICS and
ATCC reference genomes for sample strains. Any duplicate reference genomes of sample organisms were
manually removed from the database after these additions (Supplementary Information).

Figure 3 shows NanoMAP providing accurate and clear characterisations for both mock microbiomes.
For the ATCC mock microbiome, NanoMAP reported no non-sample strains, while MetaMaps reported
16 at sample DNA abundance > 0.1% (Figure 3c). These 16 extra strains represent 8.2% of sample
composition in the MetaMaps characterisation. MetaMaps provided good characterisation for most
species, but struggled with H. pylori and S. enterica. These species were challenging for MetaMaps as
organisms which are highly similar to the sample strain are present in the database. Sample composition
reported by each tool is seen in Figure 3a, and shows high concordance between NanoMAP and
MetaMaps despite differing from the theoretical composition.
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Figure 3. NanoMAP and MetaMaps characterisations of ATCC and ZYMO samples. a) The theoretical composition
of ATCC shown with sample composition reported by NanoMAP and MetaMaps. b) Theoretical composition of the
ZYMO sample shown with those reported by NanoMAP and MetaMaps. ¢) Number of sample and non-sample
strains reported by NanoMAP and MetaMaps for the ZYMO and ATCC samples. Number of sample strains
identified is shown in blue, with the number of non-sample strains reported shown in red.

For the ZYMO sample, NanoMAP reported one non-sample strain, S. enterica C500, as present, while
MetaMaps reported 6 (Figure 3c). The composition for the ZYMO sample, seen in Figure 3b closely
matches the theoretical values. Multiple other independent characterisations of this mock microbiome™*!
mirror the inflated abundance for B. subtilis. Many explanations of this are possible, including that the
real sample composition diverges from theoretical, or that the sample preparation methods cause this
effect. Nevertheless the compositions reported by NanoMAP and MetaMaps appear to be reasonably
accurate. For both samples, MetaMaps strain-level composition is slightly altered from NanoMAP. This
is mostly due to MetaMaps being unable to resolve some sample organisms to the single correct strain. In

these cases the non-sample strain(s) contribute to the ‘Not in sample’ segment seen in black.

Redundant Single Copy Not Present
Stramn MAPSC :J(l Strain M Pfggufi(: Strain M Apl?cuf{(::
L. plantarum ATCC BAA-793 0 L. plantarum ATCC BAA-793 4469 L. plantarum strain HEAL19 773
L. plantarum ATCC BAA-793 Copy 0 L. plantarum strain HEAL19 0 L. plantarum strain BLS41 495
L. plantarum strain HEAL19 0 L. plantarum strain BLS41 0 L. plantarum strain LM 1004 427
L. plantarum strain BLS41 0 L. plantarum strain LM 1004 0 L. plantarum strain DSR_M?2 362

Table 1. Indicative HMQ read counts for three database scenarios using a sample of L. plantarum ATCC BAA-793
reads. The middle ‘Single Copy’ scenario denotes a situation where the database contains a single copy of the
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correct reference genome for the sample reads. ‘Redundant Copy’ shows how a redundant copy of the correct
reference genome leads to zero HMQ read alignments to database genomes. When the correct reference genome
does not exist in the database, as shown in the ‘Not Present’ table, many non-sample strains exhibit HMQ
alignments due to local regions of sequence homology to the correct reference genome.

The genome database must contain a single copy of each sample organism’s reference genome. As
strain-level characterisation relies on little genetic diversity to differentiate strains, these reference
genomes must be current and reflect the true genome of sample organisms. This is true for all
characterisation tools, but especially so for NanoMAP. Table 1 shows the different outcomes that may be
seen depending on different database states, and highlights the need for a good-quality, non-redundant
collection of reference genomes. It also demonstrates that different types of deficiency in the database
with respect to a strain group of interest can be diagnosed. L. plantarum ATCC BAA-793 reads, acting
as a sample, were aligned to a metagenome consisting of 6 complete L. plantarum genome assemblies.
The correct strain is identifiable in the ‘Single Copy’ scenario, but not the ‘Redundant’ or ‘Not Present’
situations. NanoMAP requires the database to be consistent with the ‘Single Copy’ scenario, where a
single copy of each sample organism’s reference genome is present. The other scenarios demonstrate that
strain-level characterisation is not possible using MAPQ score information in the case of a database
redundancy, or a missing reference genome.

MAPQ MEgTHOD SHOWS WIDE APPLICABILITY

Given an appropriate database, this method appears to allow strain differentiation in most situations. To
test its applicability to other organisms and taxonomic clades aside from those encountered during
development, we investigated whether each bacterium with a complete genome assembly available on
RefSeq (19,077) could be distinguished from any other bacterium in this set via HMQ read count. An
all-vs-all approach was not pursued in this situation due to the large number of organisms in this group.
Rather, we made the assumption that any bacteria which can be distinguished from its most closely
related organism via MAPQ information should also be distinguishable from less related organisms using
the same method. For the following, a single organism is used as an example, with the same procedure
being carried out for all 19,077 complete bacterial genomes in the RefSeq bacteria group.

For a given query genome, its most similar counterpart was determined through alignment percent
identity. 1000 genome fragments of length 3000bp were first extracted from the query with uniform
coverage and spacing across its length. These fragments were then aligned to a database containing all
RefSeq complete bacterial genomes to base-level accuracy using minimap2. All alignments for the query
fragments were grouped by reference genome to which they were being aligned. The top 20 reference
genomes by number of alignments were retained and other reference genomes discarded. Query fragment
alignments to the query reference genome itself were removed. For each reference genome exhibiting
alignments, the median pid across its alignments was calculated, and reference genomes were ranked by
this statistic. Reference genomes exhibiting median alignment pid > 99.999% were removed, as this
SNP rate (approximately 1 in 100,000bp) is within the expected error for modern assemblies, and a
proportion of these were assumed to be redundant copies of the query genome. After this step, the
reference genome with the highest median pid was reported as the most similar counterpart to the query
genome being assessed.
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By this stage, each bacterium in our RefSeq database had been linked to its most similar counterpart. The
ability for each organism to produce MAPQ=60 alignments to its own reference genome over the
reference genome of its counterpart was then measured. For each query bacterium, a metagenome was
constructed from its reference genome and the genome of its counterpart. 300 reads of the query
bacterium were simulated with NanoSim”, using an error model trained on S. enterica ZymoBIOMICS
read alignments to the corresponding S. enterica ZymoBIOMICS reference genome. The simulated reads
were then aligned to this two organism metagenome. Reads with length < 1000bp, were removed, then
the number of alignments with high MAPQ score to either organism was noted.
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Figure 4. RefSeq database MAPQ analysis. Each query genome in the RefSeq bacterial database was paired with
its most similar counterpart, as measured by median alignment pid between the query and counterpart

organism. a. Proportion of query/counterpart pairs with equal or greater than x high MAPQ alignments to the
query, from a set of 300 simulated reads. No HMQ read was witnessed to any counterpart genome in all
comparisons. b. Sequence identity vs proportion of reads which had HMQ alignment to query. A high proportion
of simulated query reads possess a high MAPQ score alignment to the query over the counterpart genome, even
when the two genomes have greater than 99% sequence identity.

Figure 4a suggests that the MAPQ method may be able to discern true sample strains in the vast majority
of cases. 99.75% of query / counterpart bacterium pairs produced at least one MAPQ=60 read alignment
to the query genome over its most similar in-database counterpart from the pool of 300 simulated reads,
with that proportion reaching 99.99% if MAPQ=10 alignments are also considered. For more marked
differentiation, 98.49% of query bacterium displayed at least 10 MAPQ=60 alignments, with 99.98%
displaying at least 10 MAPQ=10 read alignments. As expected, no HMQ reads to the counterpart rather
than the query were witnessed across all comparisons, but this may not be the case if read errors such as
chimeras, random reads and junk reads are introduced by the sequencer. This data suggests the use of
high MAPQ score reads may be reliable for the majority of possible sample compositions.
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Figure 4b indirectly shows the relationship between sequence homology and MAPQ read generation.
For query / counterpart bacterium pairs whose genomes diverge by roughly 1 in 200 bp, more than half of
all simulated reads produced a MAPQ=60 alignment to the query (correct) genome and can be uniquely
mapped. When considering a MAPQ score of 10, query / counterpart pairs approaching 1 base alteration
per 1000 bp still display a large proportion of reads with MAPQ=10 alignment to the query. Above this
level of sequence homology, most reads are multimapping rather than uniquely classified to the query,
although the data in 4a shows that some distinguishing reads are usually present. The high proportion of
reads with MAPQ=60 alignment despite high sequence identity between the query and counterpart further
supports structural variation as the main generator of HMQ reads. As a MAPQ score of 60 for a read
alignment theoretically represents a 1 in 1,000,000 probability of incorrect mapping location for the read,
it is unlikely that a small number of distinguishing SNPs and indels which may have been sampled by a
read cause such high confidence in mapping location. The 300 simulated query reads equate to 2.5 Mb of
sequence data (0.25% of 1Gb read set), suggesting that strain-level identification may be possible down to
very low sample abundances for some clades using this method.

SENSITIVITY

The data in Figure lc suggest this method can provide strain-level discrimination even for lowly
abundance sample organisms. During ZYMO sample characterisation, the ZymoBIOMICS strains (each
present at 12% sample abundance) generally had hundreds of MAPQ=60 reads, while other organisms of
these species possessed zero. Assuming that the MAPQ=60 read count is proportional to the total number
of reads sequenced for these strains, most ZymoBIOMICS strains would still have tens of MAPQ=60
reads if their sample abundance was reduced to less than 1%, permitting correct identification. Sensitivity
fluctuates depending on organism, and Figure lc shows that strain-level identification would only be
possible to approximately 1% sample DNA abundance for the B. subtilis and S. enterica ZymoBIOMICS
organisms.

A simple modelling approach provides further assessment of the sensitivity of this approach. We require
at least one HMQ to declare one genome different from another. Then, following an approach similar to
Lander and Waterman, we can estimate the probability that a random sample of reads includes at least
one read that crosses a structural variant boundary. This can be estimated by considering cases in which
there are n structural variants between the pair of genomes, and requiring there to be a minimum amount
of each read lying in both the structural variant region and the common region of the pairs of genomes
that a sufficiently high MAPQ value is achieved. Such an analysis (Supplementary Information, Figure 1)
shows that, with only one discriminating SV to the most similar other organism, and only 1Gb of
sequence data, it is expected that - even at a relative abundance of 0.25% - a strain would be identified
nearly 50% of the time. If there are 5 discriminating SVs this rises to strain identification more than 95%
of the time. Thus the empirical results are supported by a more general, though simple, theoretical
analysis.
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DiscussioN

The method presented here offers fine-grained identification of the microbial organisms present in a
sample. Accurate characterisation of both single- and multi-organism samples may allow the method to be
employed for a wide range of purposes including microbiome research, pathogen identification, and
environmental sample analysis. While these possibilities are exciting, strain-level characterisation is only
possible for strains present in the reference database. An increasing number of relevant genomes are
being added to publicly available catalogues, providing more likelihood of encompassing the organisms
present in a sample.

Researchers must be confident in the output provided by characterisation tools, as incorrect
characterisation may divert research away from the best direction. An ideal tool would need to identify
all strains with noteworthy abundance in the sample while reporting no incorrect organisms. While the
method presented here still has much room for development, NanoMAP demonstrated these abilities for
the ATCC mock microbiome sample, and was only prevented from doing so with the ZYMO sample due
to an out of date reference genome.

The method’s ability to distinguish strains based on structural variation makes it useful for pathogen
identification. Pathogenic and benign strains of a given species may only differ by a small number of
relative SVs, requiring diagnostic tools to be able to discriminate using these features. NanoMAP use has
demonstrated the ability to differentiate between strains when a single 280 bp SV was the only marked
genetic difference. Host contamination needs to be removed for patient samples but poses no significant
issue, as human reads are binned to a strain group consisting of the human genome during NanoMAP
runtime and can be ignored.

This method can be extended to provide other functionality. If desired, NanoMAP can act as a final pass
following another tool’s characterisation. The strains reported by the initial tool can be fed to NanoMAP,
where it may be able to provide further strain-level information. In future, the use of MAPQ scores may
be expanded to perform even greater tasks, such as providing the ability to monitor the evolution of
microbiome organisms as they acquire structural variation, and to measure the impact of these genetic
changes on human health. Database redundancies may also be identified by aligning fragments of
database genomes back to the database itself, and viewing the resultant MAPQ score information. Table 1
demonstrates the expected MAPQ score information given the database contains a single copy, or
redundant copies of a given reference genome, which could be used as a basis for this task.

Currently, the NanoMAP implementation of these ideas differentiates between strains via HMQ read
counts. Rather than using these key reads to simply discriminate between strains, the genetic differences
generating HMQ reads could be reconstructed. This may provide greater discriminating power, and
error-correction potential. Off-target HMQ reads arising from reference genome errors, as seen in the
Salmonella enterica data of Figure 1¢ with the associated inversion seen in Figure 1d, or those caused by
read errors, such as chimeras, may be avoided using this approach.
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METHODS

SAMPLE CHARACTERISATIONS

Four datasets were used in assessing the performance of NanoMap. The choice of datasets was guided by
recent published work'""* and to cover the different use-cases for this method. For the characterisation of
each dataset, NanoMAP and MetaMaps were supplied an identical set of reference genomes to use as a
database.

Two Mock Microbial Communities

The ZymoBIOMICS Microbial Community Standard Cat #D6300 and ATCC MSA-2006 are established
datasets for assessing performance of microbiome analysis methods and tools. Nanopore sequence data is
publicly available for both samples. The ZYMO read set, sequenced on the nanopore MinlON device by
Nicholls et al in 2019, was downsampled to 1 Gb for characterisation. Downsampling was performed by
selecting a contiguous 1 Gigabase read chunk from part-way through the original fastq file. The ATCC
read set generated by Moss, Maghini and Bhatt’' was downsampled in a similar manner. The database
used for both samples was RefSeq b+f+h with the addition of ZymoBIOMICS and ATCC reference
genomes for sample strains. Redundant copies of these reference genomes were removed from RefSeq
b+f+h if present (See Supplementary Table 1 and 2 for detailed list of removals). The original read sets
for ZYMO and ATCC samples can be found under SRA accessions ERR3152364 and SRR9847864
respectively.

Two Single-Organism Samples

Two pure samples, one containing S. enterica serovar Bareilly CFSAN(000189, and the other containing
E. coli O157:H7, were used to measure strain-level identification performance. Nanopore sequence data
was available for both the S. enterica and E. coli samples under SRA accessions SRR9603470 and
SRR9603471 respectively’. Each sample was sequenced by the MinlON device, and the resultant read
set was downsampled to 1Gb of sequence data for characterisation as above. For the S. enterica sample,
all complete S. enterica genomes (875) available on RefSeq were downloaded and used as a reference
database. For E. coli, the RefSeq b+f+h database was used.

NANOMAP PrOGRAM

Usage

Our implementation of the method, NanoMAP, is intended to be easy to use. The only requirements are
related to the reference database against which the sample reads are characterised - each genome
currently needs to be stored as a separate file, each header sequence must contain a human readable strain
name as these appear in NanoMAP’s characterisation output, and the database must be non-redundant. A
database with two or more copies of the reference genome for a sample strain will result in a scenario
where no reads can be uniquely mapped, and all alignments have a MAPQ score of zero. A
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recommendation is to download genomes from an online database such as RefSeq, as this will satisfy all
requirements (assume RefSeq is non-redundant).

Read classification after initial alignment

Filtering is performed prior to classification in order to remove low quality reads from consideration.
Aside from removing short (< 1000 bp) reads, alignments with pid < 10%, or collinearity < 80% are
removed. Here we define collinearity as the difference between the length of the query and that of the
reference participating in the alignment, scaled by the length of the query participating in the alignment.
This aims to remove alignments with large gaps.

After filtering, reads are classified. The classification for a read is a set of plausible strains the read may
have originated from. For a single read, all alignments are gathered, then the following steps are
performed to classify the read. The maximum alignment block (the alignment length between read and
reference) is found, and any alignments with block < 50% of the maximum are removed. In a similar
approach, the alignment with the highest number of base matches among those remaining is found, and
alignments with base matches < 90% of this value are removed. Each remaining alignment has a high
number of base matches and a large region of alignment for the particular read. The read is subsequently
classified to the set of strains whose reference genomes are participating in these good quality alignments
that remain.

Grouping Similar Strains

For each sample strain, a group of plausible candidate organisms is shortlisted. To facilitate this, the rate
of classification co-occurrence for strains is created and consulted. A pairwise matrix is generated, which
stores the frequency each strain appears in the same read classification as every other strain. Strains which
are similar will possess a high classification co-occurrence rate, while those which are dissimilar will
rarely appear together in a read classification and have low rate.

An abundance measure referred to as ‘naive abundance’ is used to sort strains by importance for the
subsequent grouping process. For each read, each organism appearing in the read classification is awarded
n bases, where n represents the length of the read divided by the number of organisms the read has been
classified to. After this is calculated for each strain, the grouping process begins.

Strain grouping is performed using the pairwise classification co-occurrence matrix and the ordered list of
strains. This is an iterative process, and continues till the ordered list has no remaining members. At each
iteration, the strain with highest naive abundance is removed from the list and a new strain group is
created for this organism. All remaining strains in the list are then collected into this group, where all
strains with greater than 50% co-occurrence with the removed strain are added. The process then
continues, where each time the organism with highest naive abundance is removed, then a group is
formed around this strain.

Halving Candidates per Strain Group

After groups of candidate strains are formed, these groups usually need to be refined to a smaller set of
organisms to ensure the MAPQ scores are useful. This is an iterative process, consisting of alignment,
processing, then either halving the number of remaining strains or picking the present organisms. For a
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given strain group, an iteration begins by aligning the group’s read bin to a metagenome composed from
reference genomes of the remaining strain candidates. The minimap2 alignment parameters are -c, -p 0.1,
-N 10, -K 100M, -I 1000G, and read technology settings are applied with -x. After alignment, the output
.paf file is processed in a similar manner to read classification after initial full database alignment, with
some alterations. The classifications for a read are those with equal highest MAPQ score (highest MAPQ
is often zero), and base matches equal to 99.9% of the highest base matches in alignments of the read.
Naive abundance is calculated for each strain using the same method as previously mentioned. The
number of MAPQ=60, MAPQ=10, and MAPQ=2 alignments for each strain are tallied for use when
halving candidates or final strain identification.

Once the alignment file has been processed, the group of candidate strains is either halved in size, or final
strain identification is performed. If the group has less than 5 strains remaining, or a single strain has
MAPQ=60 alignment tally 100x greater than all others, the halving process is skipped and final
identification is performed. If not, the group is halved using the following process. Strains with naive
abundance of less than 0.05% of total sample abundance (5Mb of sequence data for 1Gb sample) are
automatically removed. The new list of candidate strains is then created using MAPQ information. The
two strains with highest MAPQ=60 alignment count are added to this new list if their MAPQ=60
alignment count is greater than 2. The same process is then repeated with MAPQ=10 alignments. If the
size of the new candidate list is still less than half of the original value, strains are added in order of
decreasing MAPQ=2 alignment count until the list is filled to the correct size. This forms the halved set of
candidate strains for the group. A new metagenome is constructed from their reference genomes for
alignment in the next iteration.

Picking Present Strains

Once the set of candidate strains is less than five, or a single strain is clearly evident, strains are selected
as present in the sample given MAPQ information. If a single strain has a MAPQ=60 alignment count
which is 10x greater than all others it is selected as the sole organism present for the group. Otherwise,
any strain with a single MAPQ=60 alignment is selected as present. The strains identified in this manner
appear in the final characterisation output of NanoMAP.

Strain Group Abundance Estimation

As summarized above, the probability model underlying our estimation procedure supposes that each read
has an unknown probability p, of being from strain i = /,2,...,s, where s is the number of strains in the
strain group under consideration, and, given that a read is from strain /, it has probability #, of receiving
classification j, where j =1,2, ...,2°-1 indexes the possibly classifications of a read.

We first estimate the (transition) probabilities {7,/ by simulation. A ‘read set’ is created by extracting
fragments of length 3000bp (constant stride) from each source genome. Fragments are marked with an
identifier to indicate the genome from which the fragment was sampled. This read set is then aligned to a
reference database consisting of all s source genomes, and the number of reads m, from source i receiving
classification j is recorded. An estimated transition matrix is then constructed from this information: 7, =
m / Zym, , the proportion of reads from source genome i receiving classification ;.
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In practice, to obtain the classification frequencies for our read set, a reference database is built containing
the genomes of just the identified strains (source genomes). Reads are aligned to this database and
classified as described previously, where the classification is defined to be the set of strains participating
in equal best alignments of the read. The frequencies {n,} observed in each classification are recorded and
these are the data on which our estimates of proportions for the strain group will be based.

With the combination of the estimated transition matrix {7,} and the observed classification counts {n,} for
the read set, an EM-algorithm for estimating the probabilities {p,} can be readily derived (full details

omitted). If after ¢ iterations, we have estimates {pgc) }, these are updated as follows:

7 (c)

e+ _ 1 pi Lij
P =L M ©
J=1 Zh=1ph Lhj

where n = Xn, Natural starting values are pgo) = 1/s, i=1,...,s. The EM iterations guarantee
convergence as ¢ — o of the estimates {pgc)} to stable values which give a local maximum of the

observed data log-likelihood LL , where

LL,({p}) = Zmlog(Ep ;)

where here we assume that the matrix {7,/ has been estimated without error. If needed, different stable
sets of estimates can be compared by calculating their respective LL, values, and the set with the largest
observed data log-likelihood retained. We have found that iterations starting from the values 1/s
stabilized quickly at reasonable estimates of the {p,, which we believe are the maximum likelihood
estimates. So far we have not found evidence that multiple starting values need to be considered, though
doubtless examples will be found in practice where this is the case.

Output

NanoMAP returns a strain-level characterisation against the reference genomes in an input genome folder.
NanoMAP produces a simple output which lists the names, identifiers, and the sample DNA abundance of
identified strains. The names and identifiers are those which appear in header lines of the input reference
genomes. Most modern computers are suitable for use, with 8Gb of RAM being recommended. The most
resource demanding part of NanoMAP is minimap2 alignment which can be configured for low system
requirements to suit a given machine.

CoODE AVAILABILITY

NanoMAP and all associated code are available on GitHub
(https://github.com/GraceAHall/NanoMAP).
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