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Abstract

Physical activity and cognitive functioning are strongly intertwined. However, the causal
relationships underlying this association are still unclear. Physical activity can enhance brain
functions, but healthy cognition may also promote engagement in physical activity. Here, we
used Latent Heritable Confounder Mendelian Randomization (LHC-MR) to assess the
bidirectional relations between physical activity and general cognitive functioning. Association
data were drawn from two large-scale genome-wide association studies (UK Biobank and
COGENT) on accelerometer-based physical activity (N =91,084) and cognitive functioning (N
= 257,841). We observed a significant MR association, suggesting that increased duration of
physical activity improves cognitive functioning (b =0.61, Closy, = [0.36,0.86], P = 1.16e-06).
In contrast, we found no evidence for a causal effect of cognitive functioning on physical
activity. Follow-up analyses revealed that the favorable association from physical activity to
cognitive functioning was driven by moderate physical activity (b = 1.33, Close, = [0.72,1.94],
P =2.01e-05) with no contribution from vigorous physical activity. These findings provide new
evidence supporting a beneficial causal effect of moderate physical activity on cognitive
functioning. Therefore, interventions that promote moderate rather than vigorous physical

activity may be best suited to improve or recover cognitive skills.

Significance Statement

Whether the relationship between physical activity and cognitive functioning is a one or two-
way association is still unclear. Here, based on a genetically informed method designed to
investigate causal relations in observational data, we found a one-way association: Higher
levels of physical activity improved cognitive functioning. Results further revealed that only
moderate, but not vigorous, physical activity demonstrated a positive effect on cognitive
functioning. These findings show that moderate physical activity plays a fundamental role in
improving general cognitive functioning, suggesting that policies for healthy ageing and
interventions targeting cognitive skills in healthy and clinical populations should primarily rely

on this physical activity intensity.
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Introduction
Promoting healthy ageing is a public health priority (1, 2). Physical activity and cognitive
functioning are prime targets of this advocacy because their decline is associated with increased
disability and mortality (3-7). Multiple cross-sectional and longitudinal studies have shown that
physical activity and cognitive functioning are strongly intertwined and decline through the
course of life (8-12). However, the causality of this relationship is still unclear. Previous results
have indicated that physical activity may improve cognitive functioning (13-19), but recent
studies have also suggested that well-functioning cognitive skills can influence engagement in

physical activity (8, 20-24).

Several mechanisms could explain how physical activity enhances general cognitive
functioning (19, 25-31). For example, physical activity can increase brain plasticity,
angiogenesis, synaptogenesis, and neurogenesis primarily through the upregulation of growth
factors (e.g., brain-derived neurotrophic factor; BDNF) (27, 28, 30). In addition, the repetitive
activation of higher-order brain functions (e.g., planning, inhibition, and reasoning) required to
engage in physical activity may contribute to the improvement of these functions (31, 32). In
turn, other mechanisms could explain how cognitive functioning may affect physical activity.
For example, cognitive functioning may be required to counteract the innate attraction to effort
minimization and thereby influence a person’s ability to engage in physically active behavior
(33-36). Of note, these mechanisms are not mutually exclusive and could therefore lead to
bidirectionally reinforcing relationships (i.e., positive feedback loop) between physical activity

and cognitive functioning (37).

Although previous findings point to a potential mutually beneficial role between physical
activity and cognitive functioning, these findings mainly stem from observational designs and
analytical methods that cannot fully rule out the influence of social, behavioral, and genetic
confounders (37). Accordingly, evidence for a one or two-way association between physical
activity and cognitive functioning could be considered weak. Mendelian Randomization (MR)
is a statistical approach that can overcome this weakness of observational studies. Specifically,
MR uses genetic variants that are randomly distributed in a population as instruments to reduce
the risk of confounding or reverse causation (38, 39). MR-based effect estimates rely on three
main assumptions (40) stating that genetic instruments i) are strongly associated with the
exposure (relevance assumption), ii) are independent of confounding factors of the exposure-

outcome relationship (independence assumption), and iii) are not associated to the outcome
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conditional on the exposure and potential confounders (exclusion restriction assumption). Well-
powered genome-wide association studies (GWAS) offer multiple genetic instruments that are
strongly associated with the exposures of interest (cognitive functioning or physical activity in
our case), which validates the relevance assumption. Each such genetic variant (instrument)
provides a causal effect estimate of the exposure on the outcome, which can be in turn combined
using inverse-variance weighting (IVW) to obtain an overall estimate. The second and third
assumptions are less easily validated and can be violated in the case of a heritable confounder
affecting the exposure-outcome relationship and biasing the causal estimate. Such confounders
can give rise to instruments with proportional effects on the exposure and outcome, hence
violating the INstrument Strength Independent of Direct Effect (InSIDE) assumption requiring

the independence of the exposure and direct outcome effects.

There have been several extensions to the common IVW method of MR analysis, including
MR-Egger, which allows for directional pleiotropy of the instruments and attempts to correct
the causal regression estimate. Other extensions, such as median and mode-based estimators,
assume that at least half of or the most “frequent” genetic instruments are valid/non-pleiotropic.
However, despite the extensions and their assumptions, these methods still suffer from two
major limitations. First, they only use a subset of markers as instruments (genome-wide
significant markers), which often dilutes the true relationship between traits. Second, they

ignore the presence of a latent heritable confounder of the exposure-outcome relationship.

The present study applies the Latent Heritable Confounder MR (LHC-MR) method (41), which
addresses the aforementioned limitations, to simultaneously estimate the bidirectional causal
effects between physical activity and cognitive functioning, while accounting for possible
heritable confounders of their relationship (e.g., body mass index, educational attainment, level
of physical activity at work, and material deprivation). Unlike standard MR, LHC-MR accounts
for sample overlap from genome-wide genetic instruments, thereby allowing the exposure and

the outcome to originate either from overlapping datasets or the same dataset.

Here, the causal estimates were modelled based on summary statistics from large-scale GWAS
of accelerometer-based physical activity (42), general cognitive functioning (43, 44), body
mass index (45), and educational attainment (45). Finally, it has been suggested that the effects
of physical activity on cognitive functioning depend on its intensity, with moderate intensity

having a greater beneficial impact compared to vigorous intensity (46-50). Accordingly, we
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assessed whether the causal effect estimates on cognitive functioning were dependent on

physical activity intensity (i.e., moderate vs. vigorous).

Results
As a first proxy for physical activity, two kinds of summary statistics of average acceleration
measures were available. To separate moderate from vigorous activity genetics, we conducted
GWAS:s in the UK Biobank with outcomes defined as a fraction of time spent doing moderate
(100 to <425 mg) and vigorous (>425 mg) physical activity (Manhattan plots and Q-Q plots
can be found in Supplementary materials 1 and 2). Thus, the two datasets of average
acceleration summary statistics (model 1 and 2), alongside the moderate and vigorous physical
activity summary statistics were used in LHC-MR to investigate the possible bidirectional

effect that exists between them and cognitive functioning.

Overall average acceleration and general cognitive functioning

LHC-MR applied to summary statistics belonging to model 1 showed a potential causal effect
of average acceleration on cognitive functioning (b = 0.61, Closy, = [0.36,0.86], P = 1.16e-06)
(Table 1, Figure 2). In the opposite direction, results did not show significant evidence for a
causal effect of cognitive functioning on average acceleration (b =-0.005, Close,. =[-0.06,0.05],
P =0.87). Standard MR methods such as IVW, MR Egger, weighted median, simple mode, and
weighted mode yielded non-significant causal estimates in either direction (Table 2), using 146
genome-wide significant SNPs as instruments for cognitive functioning and 8 SNPs for average
acceleration. LHC-MR applied to summary statistics belonging to model 2 showed consistent
results with that of model 1, i.e. a protective effect of accelerometer-based physical activity on
cognitive functioning (b = 0.61, Closy, =[0.36,0.86], P = 1.4e-06) and a non-significant causal
estimate in the reverse direction (b= 0.035, Clos,=[-0.08,0.15], P =0.56). Both models showed
evidence for the presence of a confounder with a strong negative effect on physical activity (b
=-0.19, Closo = [-0.26,-0.12], P = 2.65e-07) and a positive impact on cognitive functioning (b
=0.48, Closy, =[-0.56,-0.4], P = 1.12e-34). Due to the similarity in results between model 1 and

2, further analyses were conducted using model 1 only.

Moderate physical activity and general cognitive functioning
LHC-MR applied to the fraction of accelerations corresponding to moderate physical activity
showed a potential causal effect of moderate physical activity on cognitive functioning (b =

1.33, Closy, = [0.72,1.94], P = 2.01e-05) (Table 1, Figure 2). This effect was about twice as
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strong in magnitude as that of the positive causal effect of average accelerometer-based physical
activity on cognitive functioning. There was also evidence for the presence of a confounder
with a strong positive effect on cognitive functioning (b = 0.597, Closy, = [0.50,0.69], P=6.11e-
34) and a negative effect on moderate physical activity (b =-0.236, Closy, = [-0.35,-0.13], P =
2.30e-05). However, it should be noted that a competing model with a very close likelihood
shows a large negative, rather than positive, effect of moderate physical activity on cognitive
functioning (b = -1.12, Closy, = [-1.66,-0.58], P = 4.08e-05). Two arguments support the
positive, rather than the negative, causal effect. First, a detrimental effect of moderate physical
activity on cognitive functioning is highly unlikely, especially in light of the beneficial effect
of the average acceleration. Second, the negative (moderate physical activity to cognitive
functioning) causal effect model includes a confounder with positive effects on both traits
(Supplementary material 3 for the top ten competing maximum likelihood estimates and their
parameter estimates), which is in sharp contrast to an opposite effect confounder evidenced by
the best fitting model for the average acceleration — cognitive functioning relationship.
Accordingly, even if a critical look at the results seems to support a positive causal effect from

moderate physical activity to cognitive function, we cannot draw definite conclusions.

Vigorous physical activity and general cognitive functioning

LHC-MR applied to the fraction of accelerations corresponding to vigorous physical activity
on cognitive functioning showed no evidence of a causal effect in either direction (Table 1,
Figure 2), with a non-significant causal effect from vigorous physical activity on cognitive
functioning (b = 0.07, Closy, = [-0.08,0.21], P = 0.37), and a similarly non-significant causal
effect in the reverse direction (b = 0.07, Closy, = [-0.08,0.21], P = 0.36).

Educational attainment and body mass index as possible confounders

Since the results of LHC-MR applied to average acceleration and cognitive functioning
indicated the presence of a confounder with opposite effect on the two traits, we sought to
identify potential confounders. As the results for model 1 and 2 were similar, covariates of
model 2 (level of activity at work, extent of walking or standing at work, and Townsend
deprivation index) are unlikely confounders. Instead, we investigated the level of educational
attainment and body mass index as possible confounders of the two traits. One potential reason
for this is that higher education may lead to a less physically active job type, reducing overall
physical activity levels, while increasing cognitive functioning. We ran standard MR analyses

with educational attainment as exposure and alternated accelerometer-based physical activity
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and cognitive functioning as outcome. We also ran the reverse analyses to obtain reverse causal
estimates. Results showed a significant causal effect of educational attainment on cognitive
functioning (b = 0.67, Closy, = [0.56,0.78], P = 4.46e-34) using IVW with 33 SNPs as valid
instruments. However, educational attainment had a non-significant causal effect on
accelerometer-based physical activity, regardless of the MR method used with 34 valid SNPs.
Thus, educational attainment is unlikely to be a confounder. The causal effects of body mass
index on cognitive functioning (b = -0.12, P = 1.01e-08) and average accelerometer-based
physical activity (b =-0.21, P = 4.11e-20) did not match the opposite signs of the confounder
effects found by LHC-MR.

Since the results of LHC-MR applied to moderate acceleration and cognitive functioning
indicated the presence of a confounder with opposite effect on the two traits, educational
attainment and body mass index were tested as potential confounders. Results showed no
significant effect of educational attainment on moderate physical activity, thereby suggesting
that educational attainment was not a confounder. Body mass index had a significant effect on
moderate physical activity (b =-0.19, P =4.15e-17) with a similar sign to its effect on cognitive
functioning (b =-0.12, P = 1.01e-08), making it a potential confounder of the two traits, which
would give rise to causal effects in the same direction. However, this latter causal association
is likely to be invalid due to effect size estimates confounded by population stratification

(details of this analysis can be found in Supplementary material 4).

Discussion
This study used a genetically informed method that provides evidence of putative causal
relations to investigate the bidirectional associations between accelerometer-based physical
activity and general cognitive functioning. Drawing on two large-scale GWAS, we found
evidence of a potential causal effect, where higher duration of average physical activity led to
increased cognitive functioning. In the opposite direction, we did not observe evidence of a
causal effect of cognitive functioning on physical activity. Further analyses revealed that
moderate physical activity has a positive effect on cognitive functioning. In contrast, pursuing
vigorous physical activity may not have beneficial effects on cognitive functioning. Hence, our
study suggests a favorable effect of moderate physical activity on cognitive functioning, but
does not indicate that increased cognitive functioning promotes engagement in more physical

activity.
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Importantly, our method provides evidence for the existence of a strong latent heritable
confounder of the relationship between cognitive functioning and physical activity, which may
explain previous contradictory results of standard MR. This confounder was shown to have an
opposite effect on cognitive functioning and average physical activity, which could have
masked positive causal effects in some previous studies. While we are unsure what this
confounder may be, two potential candidates were tested: body mass index and educational
attainment. The causal effects of body mass index on cognitive functioning and on average
physical activity were not compatible with the effect of the confounder found by LHC-MR.
Hence, body mass index cannot be the confounder LHC-MR detected for average physical
activity. Regarding educational attainment, although this variable seemed to impact only
cognitive functioning in our follow-up MR analysis, its effect on physical activity may have
been masked by the fact that people with higher educational attainment have less physically
active jobs, thereby reducing the total level of physical activity and impacting only leisure-time
physical activity. Future studies should distinguish between work-related physical activity and
leisure time-related physical activity to reveal potential effects of educational attainment on
these two types of physical activity — i.e., a negative effect of higher educational attainment on

work-related physical activity, but a positive effect on leisure-time related physical activity.

Regarding moderate physical activity, results revealed the presence of a confounder that is
presumably more complex than originally thought. This confounder may consist of several
traits with their own effect (opposite in directions) on the exposure and the outcome. A possible
confounder of the cognitive functioning and moderate physical activity relationship could be
body mass index, as it had agreeing signs in its effect on each of those traits. Specifically, body
mass index had a negative effect both on cognitive functioning and moderate physical activity.
The confounder discovered by LHC-MR for those traits pairs also had agreeing signs for the
effect of the confounder on cognitive functioning and moderate physical activity. The LHC-
MR model allows the signs of the confounder effects to flip as long as their direction remain in
the same relationship. Hence, body mass index is a possible confounder as well as a potential

part of the confounders for the cognitive functioning-average physical activity relationship.

Previous reviews and meta-analyses of observational studies showed a beneficial effect of
physical activity on cognitive functioning (13, 16, 17, 31). However, the evidence arising from
intervention studies was inconclusive (18, 19, 21-23, 51). It has been argued that these

inconsistencies may primarily be attributable to the design-specific tools used to assess physical
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activity (21). Specifically, many observational studies rely on self-reported measures of
physical activity, whereas intervention studies often rely on device-based measures of physical
activity, or had people exercising under monitored conditions. In other words, evidence of a
favorable effect of physical activity on cognitive functioning could have emerged because of
the self-reported nature of the measures. Yet, in our observational study, results are based on
accelerometer-assessed physical activity, thereby partially ruling out this explanation.
Therefore, our findings further support the literature that demonstrated a protective causal role
of physical activity on cognitive functioning and extend it by doing so using a device-based
measure. Our findings are in line with recent MR-based results showing a protective effect of
objectively assessed, but not self-reported, physical activity on the risk of depression (37). Of
note, results obtained from LHC-MR differed from those obtained with standard MR methods.
At least three key differences in the methods can explain this divergence: i) standard MR uses
only genome-wide significant markers, ii) standard MR is biased in case of sample overlap (as
is the case in this study) and hence their estimate may be biased towards the observational
correlation, and iii) LHC-MR explicitly models proportional pleiotropy unlike standard MR.
Accordingly, our results obtained from LHC-MR are bound to be more robust than those

obtained from standard MR.

To the best of our knowledge, our study is the first to investigate the potential causal
relationship between physical activity and cognitive functioning using such a genetically
informed method. We are aware of only two other studies that examined the potential
bidirectional associations between physical activity and cognitive functioning (8, 20). In
contrast to the present study, those two studies observed a positive influence of cognitive
functioning on physical activity. At least two factors can explain the differences in the results
observed. First, both those studies are based on longitudinal assessment (Granger causality) of
the two traits, while our approach is based on a genetically instrumented causal inference
technique (LHC-MR). Second, these studies draw on self-reported physical activity rather than
device-based measures of physical activity, which may have biased the observed associations
between cognitive functioning and physical activity. Self-reported and accelerometer-based
physical activity have very modest correlation (52), which reduces the reliability of self-report-
based physical activity studies. Furthermore, self-report bias is correlated with education and
cognitive functioning, which questions the use of self-reported physical activity in relationship

with cognitive functioning, which itself, is related to the self-report bias.
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Results showed that the beneficial effect of physical activity on cognitive functioning was
observed for moderate physical activity, but not for vigorous physical activity. Although these
results for moderate physical activity need to be interpreted with caution (see results section),
they highlight the potential critical role of physical activity of moderate intensity on cognitive
functioning. These results are consistent with previous literature that have suggested that
moderate physical activity yields higher benefits of cognitive functioning compared to vigorous
physical activity (46-50). However, to the best of our knowledge, this study is the first to assess
and compare the causal relationships of moderate and vigorous physical activity with cognitive
functioning in such a large-scale dataset and with a genetically informed method. Several
mechanisms can explain how physical activity enhances brain functioning. Physical activity
promotes neurogenesis, gliogenesis, neuronal excitability, angiogenesis, cortical thickness, and
growth factor production (19, 25-31). Moreover, the benefits of moderate physical activity
could be explained by differences in the quantity of hormones released in the blood. For
example, one study observed an inverted U relationships between physical activity intensity
and endocannabinoids, with vigorous intensities reducing the concentrations in peripheral
endocannabinoids compared with moderate intensities (53). Consequently, vigorous physical
activity may be less effective in enhancing cognitive functions than moderate physical activity.
Another potential explanation is the stress response associated with vigorous physical activity
yielding a large cortisol release that can have a detrimental effect on aspects of cognitive

functioning, such as memory (54, 55).

Our results contrast with other studies arguing that cognitive functioning is critical to engage
in physical activity (33-35). This difference could be explained in at least two ways. Firstly,
previous studies examining the positive effect of cognitive functions on physical activity relied
on self-reported physical activity, which can bias the observed associations (8, 24, 34).
Secondly, our study relied on general cognitive functioning, whereas previous results highlight
the specific importance of inhibition resources that may be required to counteract an innate
tendency for effort minimization (33-36). Therefore, future studies should investigate the

specific relationships between motor inhibition and physical activity.

Among the strengths of the current study are the use of large-scale datasets, the reliance on an
objective measure of physical activity, and the application of a robust genetically informed
method that can estimate causal effects. However, this study has several features that limit the

conclusions that can be drawn. First, the measure of cognitive functioning involves multiple
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tests, which reduced the specificity of the cognitive functioning that was assessed. This feature
limits the ability to evaluate the putative causal effects between specific cognitive functioning,
such as motor inhibition, and physical activity. Second, MR analysis is designed to elucidate
life-long exposure effect on life-long outcome (except in special cases when genetic factors
have time-dependent effects), thus it is not suited to explore temporal aspects of these causal
relationships. Third, 2-sample MR methods require that SNP effects on the exposure are
homogeneous between the two samples. Here, because our two samples differ in age, we rely
on the assumption that these genetic effects do not change depending on age. This assumption
often turns out to be true, although there are rare exceptions (56). Fourth, LHC-MR can be
limited by the low heritability of traits causing bimodal/unreliable estimates. Fifth, regarding
the identification of potential confounders, it should be noted that classical MR analysis of the
body mass index and cognitive functioning relationship may be biased due to parental/dynasty
effects, which can be circumvented by between-sib association analysis (57). Likewise, a
weakness of LHC-MR is to assume a single confounder (or several ones with similar effects).
For the moderate physical activity — cognitive functioning relationship, two competing causal
models were equally probable, with markedly different properties. This may suggest that
multiple confounders are present, with some of them having similar effect directions on the
traits and others having opposing effect directions. Body mass index may be an example of the

former kind of confounders.

Our findings provide preliminary support for a unidirectional relation whereby higher levels of
moderate physical activity lead to improved cognitive functioning. These results underline the
essential role of moderate physical activity in maintaining or improving general cognitive
functioning. Therefore, policies for healthy ageing and interventions that promote moderate

rather than vigorous physical activity may be best suited to improve or recover cognitive skills.

Methods
Data sources and instruments
This study used de-identified GWAS summary statistics from original studies that were
approved by relevant ethics committees. The current study was approved by the Ethics
Committee of Geneva Canton, Switzerland (CCER-2019-00065). The available summary-level
data were based on 257,841 samples for general cognitive functioning, 91,084 samples for

accelerometer-based physical activity, 240,547 samples for educational attainment, and
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359,983 sample for body mass index. Participants age ranged from 40 to 69 years in the UK
Biobank, and from 8 to 96 years in the COGENT consortium.

Physical activity

Device-based measure of physical activity was assessed based on summary statistics from a
recent GWAS (42) analyzing accelerometer-based physical activity data from the UK Biobank.
In the UK Biobank, about 100,000 participants wore a wrist-worn triaxial accelerometer
(Axivity AX3) that was set up to record data for seven days. Individuals with less than 3 days
(72 h) of data or not having data in each 1-hour period of the 24-h cycle or for whom device
could not be calibrated were excluded. Data for non-wear segments, defined as consecutive
stationary episodes = 60 min where all three axes had a standard deviation < 13 mg, were
imputed. The details of data collection and processing can be found elsewhere (58). We
examined three measures derived from the three to seven days of accelerometer wear: overall
acceleration average in milli-gravities (mg), fraction of acceleration > 100 mg and <425 mg to
estimate moderate physical activity (59), and fraction of acceleration > 425 mg to estimate
vigorous physical activity (59). The GWAS for overall acceleration average (7max = 91,084)
identified 2 independent genome-wide significant SNPs (P < 5e-09), with a SNP-based
heritability of ~ 14%. Furthermore, two GWAS models for overall acceleration average were
used: one model where the SNP-accelerometer associations had been adjusted for age, sex,
genotyping chip, first ten genomic principal components (PC), center, season (month) of
wearing accelerometer (model 1) and another model where an extra adjustment had been done
for the baseline self-reported level of physical activity at work, the extent of walking or standing

at work, and the Townsend Deprivation Index (model 2).

As for the other two physical activity measures, the fractions of accelerations corresponding to
moderate and vigorous physical activity were obtained by running new GWAS on the
decomposed acceleration data from UK Biobank using the BGENIE software (60). The
phenotype for moderate physical activity was limited to acceleration magnitudes ranging from
100 to < 425 mg, whereas vigorous physical activity was limited to accelerations magnitudes
ranging from 425 to 2000 mg. These acceleration fractions were adjusted for age, sex, and the
first 40 PC, and the analyzed individuals were restricted to unrelated white-British. The two
datasets of average acceleration summary statistics, alongside the moderate and vigorous
physical activity summary statistics were used in LHC-MR to investigate the possible

bidirectional effect that exists between these summary statistics and cognitive functioning.
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General cognitive functioning

General cognitive functioning was assessed based on summary statistics from a recent GWAS
combining cognitive and genetic data from the UK Biobank and the COGENT consortium
(N=257,841) (43). In the UK Biobank (nax = 222,543) participants were asked to complete 13
multiple-choice questions that assessed verbal and numerical reasoning. The verbal and
numerical reasoning score was based on the number of questions answered correctly within a
two-minute time limit. Each respondent took the test up to four times. The phenotype consists
of the mean of the standardized score across the measurement occasions for a given participant.
In the COGENT consortium (7.4 = 35,298), general cognitive function is statistically derived
from a principal components analysis of individual scores on a neuropsychological test battery
(61). The phenotype estimates overall cognitive functioning and is relatively invariant to the
battery used and specific cognitive abilities assessed (62, 63). These COGENT data used to
assess general cognitive functioning were also used in another GWAS study (44). The GWAS
identified 226 independent genome-wide significant SNPs, with a SNP-based heritability of
~20%.

Educational attainment

Educational attainment was measured in the UK Biobank as the age when completing full-time
education (N = 240,547) (45). All cohort-level analyses were restricted to European-ancestry
individuals that passed quality control procedures and were at least 30 years of age when their
EduYears was reported. The International Standard Classification of Education (ISCED) was
used to construct the EduYears phenotype by mapping each major educational qualification
with a years-of-education equivalent. The GWAS identified 49 independent genome-wide

significant SNPs, with a SNP-based heritability of ~10%.

Body mass index

Body mass index was derived from the UK Biobank data on height and weight collected at
baseline (N = 359,983) (45). Height was measured in whole centimeters with a Seca 2020
stadiometer device. Weight was measured to the nearest 0.1 kg with the BC-418 MA body
composition analyzer (Tanita Corp). Body mass index was derived from weight in kg divided
by height in squared meters. The GWAS identified 615 independent genome-wide significant
SNPs, with a SNP-based heritability of ~25%.
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Statistical analysis

MR is a statistical method in which the randomized inheritance of genetic variation is treated
as a natural experiment to estimate the potential causal effect of a modifiable risk factor or
exposure on health-related outcomes in an observational design (38, 39). MR draws on the
assumption that genetic variants, because they are randomly allocated at conception, are less
dependent on other risk factors that may be confounders of the exposure and the outcome, and
are immune to reverse causality since diseases or health-related outcomes have no reverse effect
on genetic variants. Consequently, these genetic variants can be used as instrumental variables,
potentially making MR less vulnerable to confounding or reverse causation than conventional
approaches in observational studies (38, 39). However, MR and its various extensions that aim
to relax several of its assumptions are still prone to biased estimates due to the presence of
unmeasured genetic confounders (horizontal pleiotropy) and their use of only genome-wide

significant markers from GWAS summary statistics.

LHC-MR (41) also uses GWAS summary statistics, but it uses whole genome-wide genetic
instruments to estimate bidirectional causal effects, direct heritability, confounder effects while
accounting for sample overlap from genome-wide genetic instruments. LHC-MR extends the
standard two-sample MR by modeling a latent (unmeasured) heritable confounder that has an
effect on the exposure and outcome traits. This allows LHC-MR to differentiate SNPs based on
their co-association to a pair of traits and distinguish heritable confounding that leads to genetic
correlation from actual causation. Thus, the unbiased bidirectional causal effect between these
two traits are estimated simultaneously along with the confounder effect on each trait (Figure
1). LHC-MR is analogous to linkage disequilibrium score regression (LDSC) (64) that
estimates trait heritability, in that it uses all genetic markers in a random effect model
framework to estimate bidirectional causal effect, as well as other parameters. The LHC-MR
framework, with its multiple pathways through which SNPs can have an effect on the traits, as
well as its allowance for null effects, make LHC-MR more precise at estimating causal effects

compared to standard MR methods.

The likelihood function for LHC-MR derived from the mixture of different pathways that the
genome-wide SNPs can have an effect through (acting on either the exposure, the outcome, the
confounder, or the combinations of these three), is then optimized given random starting values
for the parameters it can estimate. The optimization of the likelihood function then yields the

maximum likelihood estimate (MLE) value for a set of estimated parameters, including the
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bidirectional causal effect between the exposure and the outcome as well as the strength of the

confounder effect on each of those two traits.

The significance of each of the parameters estimated using LHC-MR was obtained by removing
each of the parameters at a time from the likelihood function and then optimizing it again to
obtain a second MLE, which would be compared to the first MLE using the likelihood ratio test
(LRT) where a P-value is calculated. Furthermore, the causal estimates obtained from LHC-
MR are on the scale of 1 standard deviation (SD) outcome difference upon a 1 SD exposure
change due to the use of standardized summary statistics for the two traits. When LHC-MR
revealed a significant confounder effect acting on both exposure and outcome, we attempted to
discover what that confounder may be by testing the effect of possible confounders candidates
on the exposure trait and outcome trait individually using standard MR. We investigated the
roles of education level and body mass index as possible confounders and tried to match their

causal effects to those of our estimated confounder effect on the traits.
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Figure and tables

Table 1. LHC-MR results for the association between accelerometer-based physical activity

and general cognitive functioning

Parameter h2X h2Y tX tY X—Y Y—X
Average accelerometer-based physical activity
Estimate 0.065 0.107 0.476 -0.195 -0.005 0.610
P-value 1.12¢-34 2.65e-07 0.870 1.16e-06
Moderate accelerometer-based physical activity (fraction of acceleration > 100 mg and < 425 mg)
Estimate 0.062 0.052 0.597 -0.236 0.675 1.331
P-value 6.11e-34 2.30e-05 0.234 2.01e-05
Vigorous accelerometer-based physical activity (fraction of acceleration > 425 mg)
Estimate 0.062 0.078 0.413 0.115 0.069 0.066
P-value 1.38e-28 0.072 0.358 0.368

Notes. Parameters estimates and their p-values correspond to the LHC-MR optimized model
with the maximum likelihood. Heritability on exposure (X; cognitive functioning) and outcome
(Y; physical activity) shown as h2X and h2Y, respectively. The effect of the confounder on X
and Y shown as tX and tY, respectively. Bidirectional associations from X to Y (X—Y) and Y
to X (Y—X) are also reported.
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Table 2. Standard MR results for the association between accelerometer-based physical

activity and general cognitive functioning

|Exposure | Outcome | MR method | Valid SNPs | Causal estimate | SE | P-value |
Average accelerometer-based physical activity — model 1
CF PA MR Egger 146 0.107 0.181 0.556
Weighted median 146 -0.029 0.036 0.422
Inverse variance weighted 146 -0.022 0.031 0.488
Simple mode 146 -0.058 0.107 0.584
Weighted mode 146 -0.058 0.110 0.593
PA CF MR Egger 8 -2.240 0.973 0.061
Weighted median 8 -0.038 0.059 0.513
Inverse variance weighted 8 -0.112 0.095 0.238
Simple mode 8 -0.061 0.086 0.502
Weighted mode 8 -0.034 0.089 0.710
Moderate accelerometer-based physical activity (fraction of acceleration > 100 mg and < 425 mg)
CF PA MR Egger 131 -0.031 0.181 0.864
Weighted median 131 -0.032 0.038 0.400
Inverse variance weighted 131 -0.019 0.032 0.554
Simple mode 131 -0.053 0.103 0.610
Weighted mode 131 -0.025 0.090 0.780
PA CF MR Egger 33 0.704 0.930 0.455
Weighted median 33 0.010 0.037 0.785
Inverse variance weighted 33 0.041 0.045 0.365
Simple mode 33 0.003 0.078 0.964
Weighted mode 33 0.011 0.068 0.876
Vigorous accelerometer-based physical activity (fraction of acceleration > 425 mg)
CF PA MR Egger 131 0.055 0.142 0.697
Weighted median 131 -0.034 0.035 0.328
Inverse variance weighted 131 0.006 0.025 0.824
Simple mode 131 -0.147 0.105 0.162
Weighted mode 131 -0.104 0.092 0.261
PA CF MR Egger 22 -0.057 0.915 0.951
Weighted median 22 0.023 0.039 0.551
Inverse variance weighted 22 0.005 0.043 0.911
Simple mode 22 0.030 0.069 0.668
Weighted mode 22 0.026 0.059 0.667

Notes. CF = general cognitive functioning; PA = accelerometer-based physical activity. Causal
estimates from 5 standard MR methods on alternating exposure and outcome traits. For both
moderate and vigorous physical activity as exposure, the cutoff was decreased to 10e-5 because

of the low number of genome wide significant SNPs to use as instruments.
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Figure 1. Visual representation of the model in LHC-MR
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U

Notes. G = Genetic instruments; CF = general cognitive functioning; AccAvg = Average
acceleration from device-based measure (model 1); U = Latent heritable confounder; h?c =
direct heritability of exposure; h?, = direct heritability of the outcome. The figure includes the
bidirectional causal effects between the two traits as well as the confounder effects on each of

them. Coefficients are beta values. The P-values are indicated in brackets.
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Figure 2. LHC-MR plots for the association between accelerometer-based physical activity

and general cognitive functioning
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Notes. This modified dot-and-whisker plot reports the causal estimate between general
cognitive functioning (cognition) as exposure and varying PA-related traits as outcome. The
forward (Cognition—PA) and reverse (PA—Cognition) causal estimates are shown in two
different colors (grey and black) as dots with 95% CI whiskers. Average PA2 = average
acceleration from device-based measure (model 1). Average PA2 = average acceleration from
device-based measure (model 2), Moderate PA = fraction of acceleration corresponding to
moderate physical activity. Vigorous PA = fraction of acceleration corresponding to vigorous

physical activity.
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