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Abstract 

Physical activity and cognitive functioning are strongly intertwined. However, the causal 

relationships underlying this association are still unclear. Physical activity can enhance brain 

functions, but healthy cognition may also promote engagement in physical activity. Here, we 

used Latent Heritable Confounder Mendelian Randomization (LHC-MR) to assess the 

bidirectional relations between physical activity and general cognitive functioning. Association 

data were drawn from two large-scale genome-wide association studies (UK Biobank and 

COGENT) on accelerometer-based physical activity (N = 91,084) and cognitive functioning (N 

= 257,841). We observed a significant MR association, suggesting that increased duration of 

physical activity improves cognitive functioning (b = 0.61, CI95% = [0.36,0.86], P = 1.16e-06). 

In contrast, we found no evidence for a causal effect of cognitive functioning on physical 

activity. Follow-up analyses revealed that the favorable association from physical activity to 

cognitive functioning was driven by moderate physical activity (b = 1.33, CI95% = [0.72,1.94], 

P = 2.01e-05) with no contribution from vigorous physical activity. These findings provide new 

evidence supporting a beneficial causal effect of moderate physical activity on cognitive 

functioning. Therefore, interventions that promote moderate rather than vigorous physical 

activity may be best suited to improve or recover cognitive skills. 

 

Significance Statement 

Whether the relationship between physical activity and cognitive functioning is a one or two-

way association is still unclear. Here, based on a genetically informed method designed to 

investigate causal relations in observational data, we found a one-way association: Higher 

levels of physical activity improved cognitive functioning. Results further revealed that only 

moderate, but not vigorous, physical activity demonstrated a positive effect on cognitive 

functioning. These findings show that moderate physical activity plays a fundamental role in 

improving general cognitive functioning, suggesting that policies for healthy ageing and 

interventions targeting cognitive skills in healthy and clinical populations should primarily rely 

on this physical activity intensity. 
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Introduction 

Promoting healthy ageing is a public health priority (1, 2). Physical activity and cognitive 

functioning are prime targets of this advocacy because their decline is associated with increased 

disability and mortality (3-7). Multiple cross-sectional and longitudinal studies have shown that 

physical activity and cognitive functioning are strongly intertwined and decline through the 

course of life (8-12). However, the causality of this relationship is still unclear. Previous results 

have indicated that physical activity may improve cognitive functioning (13-19), but recent 

studies have also suggested that well-functioning cognitive skills can influence engagement in 

physical activity (8, 20-24). 

 

Several mechanisms could explain how physical activity enhances general cognitive 

functioning (19, 25-31). For example, physical activity can increase brain plasticity, 

angiogenesis, synaptogenesis, and neurogenesis primarily through the upregulation of growth 

factors (e.g., brain-derived neurotrophic factor; BDNF) (27, 28, 30). In addition, the repetitive 

activation of higher-order brain functions (e.g., planning, inhibition, and reasoning) required to 

engage in physical activity may contribute to the improvement of these functions (31, 32). In 

turn, other mechanisms could explain how cognitive functioning may affect physical activity. 

For example, cognitive functioning may be required to counteract the innate attraction to effort 

minimization and thereby influence a person’s ability to engage in physically active behavior 

(33-36). Of note, these mechanisms are not mutually exclusive and could therefore lead to 

bidirectionally reinforcing relationships (i.e., positive feedback loop) between physical activity 

and cognitive functioning (37). 

 

Although previous findings point to a potential mutually beneficial role between physical 

activity and cognitive functioning, these findings mainly stem from observational designs and 

analytical methods that cannot fully rule out the influence of social, behavioral, and genetic 

confounders (37). Accordingly, evidence for a one or two-way association between physical 

activity and cognitive functioning could be considered weak. Mendelian Randomization (MR) 

is a statistical approach that can overcome this weakness of observational studies. Specifically, 

MR uses genetic variants that are randomly distributed in a population as instruments to reduce 

the risk of confounding or reverse causation (38, 39). MR-based effect estimates rely on three 

main assumptions (40) stating that genetic instruments i) are strongly associated with the 

exposure (relevance assumption), ii) are independent of confounding factors of the exposure-

outcome relationship (independence assumption), and iii) are not associated to the outcome 
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conditional on the exposure and potential confounders (exclusion restriction assumption). Well-

powered genome-wide association studies (GWAS) offer multiple genetic instruments that are 

strongly associated with the exposures of interest (cognitive functioning or physical activity in 

our case), which validates the relevance assumption. Each such genetic variant (instrument) 

provides a causal effect estimate of the exposure on the outcome, which can be in turn combined 

using inverse-variance weighting (IVW) to obtain an overall estimate. The second and third 

assumptions are less easily validated and can be violated in the case of a heritable confounder 

affecting the exposure-outcome relationship and biasing the causal estimate. Such confounders 

can give rise to instruments with proportional effects on the exposure and outcome, hence 

violating the INstrument Strength Independent of Direct Effect (InSIDE) assumption requiring 

the independence of the exposure and direct outcome effects.  

 

There have been several extensions to the common IVW method of MR analysis, including 

MR-Egger, which allows for directional pleiotropy of the instruments and attempts to correct 

the causal regression estimate. Other extensions, such as median and mode-based estimators, 

assume that at least half of or the most “frequent” genetic instruments are valid/non-pleiotropic. 

However, despite the extensions and their assumptions, these methods still suffer from two 

major limitations. First, they only use a subset of markers as instruments (genome-wide 

significant markers), which often dilutes the true relationship between traits. Second, they 

ignore the presence of a latent heritable confounder of the exposure-outcome relationship. 

 

The present study applies the Latent Heritable Confounder MR (LHC-MR) method (41), which 

addresses the aforementioned limitations, to simultaneously estimate the bidirectional causal 

effects between physical activity and cognitive functioning, while accounting for possible 

heritable confounders of their relationship (e.g., body mass index, educational attainment, level 

of physical activity at work, and material deprivation). Unlike standard MR, LHC-MR accounts 

for sample overlap from genome-wide genetic instruments, thereby allowing the exposure and 

the outcome to originate either from overlapping datasets or the same dataset. 

 

Here, the causal estimates were modelled based on summary statistics from large-scale GWAS 

of accelerometer-based physical activity (42), general cognitive functioning (43, 44), body 

mass index (45), and educational attainment (45). Finally, it has been suggested that the effects 

of physical activity on cognitive functioning depend on its intensity, with moderate intensity 

having a greater beneficial impact compared to vigorous intensity (46-50). Accordingly, we 
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assessed whether the causal effect estimates on cognitive functioning were dependent on 

physical activity intensity (i.e., moderate vs. vigorous). 

 

Results 

As a first proxy for physical activity, two kinds of summary statistics of average acceleration 

measures were available. To separate moderate from vigorous activity genetics, we conducted 

GWASs in the UK Biobank with outcomes defined as a fraction of time spent doing moderate 

(100 to <425 mg) and vigorous (g425 mg) physical activity (Manhattan plots and Q-Q plots 

can be found in Supplementary materials 1 and 2). Thus, the two datasets of average 

acceleration summary statistics (model 1 and 2), alongside the moderate and vigorous physical 

activity summary statistics were used in LHC-MR to investigate the possible bidirectional 

effect that exists between them and cognitive functioning. 

 

Overall average acceleration and general cognitive functioning 

LHC-MR applied to summary statistics belonging to model 1 showed a potential causal effect 

of average acceleration on cognitive functioning (b = 0.61, CI95% = [0.36,0.86], P = 1.16e-06) 

(Table 1, Figure 2). In the opposite direction, results did not show significant evidence for a 

causal effect of cognitive functioning on average acceleration (b = -0.005, CI95%. = [-0.06,0.05], 

P = 0.87). Standard MR methods such as IVW, MR Egger, weighted median, simple mode, and 

weighted mode yielded non-significant causal estimates in either direction (Table 2), using 146 

genome-wide significant SNPs as instruments for cognitive functioning and 8 SNPs for average 

acceleration. LHC-MR applied to summary statistics belonging to model 2 showed consistent 

results with that of model 1, i.e. a protective effect of accelerometer-based physical activity on 

cognitive functioning (b = 0.61, CI95% = [0.36,0.86], P = 1.4e-06) and a non-significant causal 

estimate in the reverse direction (b = 0.035, CI95% = [-0.08,0.15], P = 0.56). Both models showed 

evidence for the presence of a confounder with a strong negative effect on physical activity (b 

= -0.19, CI95% = [-0.26,-0.12], P = 2.65e-07) and a positive impact on cognitive functioning (b 

= 0.48, CI95% = [-0.56,-0.4], P = 1.12e-34). Due to the similarity in results between model 1 and 

2, further analyses were conducted using model 1 only. 

 

Moderate physical activity and general cognitive functioning 

LHC-MR applied to the fraction of accelerations corresponding to moderate physical activity 

showed a potential causal effect of moderate physical activity on cognitive functioning (b = 

1.33, CI95% = [0.72,1.94], P = 2.01e-05) (Table 1, Figure 2). This effect was about twice as 
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strong in magnitude as that of the positive causal effect of average accelerometer-based physical 

activity on cognitive functioning. There was also evidence for the presence of a confounder 

with a strong positive effect on cognitive functioning (b = 0.597, CI95% = [0.50,0.69], P = 6.11e-

34) and a negative effect on moderate physical activity (b = -0.236, CI95% = [-0.35,-0.13], P = 

2.30e-05). However, it should be noted that a competing model with a very close likelihood 

shows a large negative, rather than positive, effect of moderate physical activity on cognitive 

functioning (b = -1.12, CI95% = [-1.66,-0.58], P = 4.08e-05). Two arguments support the 

positive, rather than the negative, causal effect. First, a detrimental effect of moderate physical 

activity on cognitive functioning is highly unlikely, especially in light of the beneficial effect 

of the average acceleration. Second, the negative (moderate physical activity to cognitive 

functioning) causal effect model includes a confounder with positive effects on both traits 

(Supplementary material 3 for the top ten competing maximum likelihood estimates and their 

parameter estimates), which is in sharp contrast to an opposite effect confounder evidenced by 

the best fitting model for the average acceleration – cognitive functioning relationship. 

Accordingly, even if a critical look at the results seems to support a positive causal effect from 

moderate physical activity to cognitive function, we cannot draw definite conclusions. 

 

Vigorous physical activity and general cognitive functioning 

LHC-MR applied to the fraction of accelerations corresponding to vigorous physical activity 

on cognitive functioning showed no evidence of a causal effect in either direction (Table 1, 

Figure 2), with a non-significant causal effect from vigorous physical activity on cognitive 

functioning (b = 0.07, CI95% = [-0.08,0.21], P = 0.37), and a similarly non-significant causal 

effect in the reverse direction (b = 0.07, CI95% = [-0.08,0.21], P = 0.36). 

 

Educational attainment and body mass index as possible confounders 

Since the results of LHC-MR applied to average acceleration and cognitive functioning 

indicated the presence of a confounder with opposite effect on the two traits, we sought to 

identify potential confounders. As the results for model 1 and 2 were similar, covariates of 

model 2 (level of activity at work, extent of walking or standing at work, and Townsend 

deprivation index) are unlikely confounders. Instead, we investigated the level of educational 

attainment and body mass index as possible confounders of the two traits. One potential reason 

for this is that higher education may lead to a less physically active job type, reducing overall 

physical activity levels, while increasing cognitive functioning. We ran standard MR analyses 

with educational attainment as exposure and alternated accelerometer-based physical activity 
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and cognitive functioning as outcome. We also ran the reverse analyses to obtain reverse causal 

estimates. Results showed a significant causal effect of educational attainment on cognitive 

functioning (b = 0.67, CI95% = [0.56,0.78], P = 4.46e-34) using IVW with 33 SNPs as valid 

instruments. However, educational attainment had a non-significant causal effect on 

accelerometer-based physical activity, regardless of the MR method used with 34 valid SNPs. 

Thus, educational attainment is unlikely to be a confounder. The causal effects of body mass 

index on cognitive functioning (b = -0.12, P = 1.01e-08) and average accelerometer-based 

physical activity (b = -0.21, P = 4.11e-20) did not match the opposite signs of the confounder 

effects found by LHC-MR.  

 

Since the results of LHC-MR applied to moderate acceleration and cognitive functioning 

indicated the presence of a confounder with opposite effect on the two traits, educational 

attainment and body mass index were tested as potential confounders. Results showed no 

significant effect of educational attainment on moderate physical activity, thereby suggesting 

that educational attainment was not a confounder. Body mass index had a significant effect on 

moderate physical activity (b = -0.19, P = 4.15e-17) with a similar sign to its effect on cognitive 

functioning (b = -0.12, P = 1.01e-08), making it a potential confounder of the two traits, which 

would give rise to causal effects in the same direction. However, this latter causal association 

is likely to be invalid due to effect size estimates confounded by population stratification 

(details of this analysis can be found in Supplementary material 4). 

 

Discussion 

This study used a genetically informed method that provides evidence of putative causal 

relations to investigate the bidirectional associations between accelerometer-based physical 

activity and general cognitive functioning. Drawing on two large-scale GWAS, we found 

evidence of a potential causal effect, where higher duration of average physical activity led to 

increased cognitive functioning. In the opposite direction, we did not observe evidence of a 

causal effect of cognitive functioning on physical activity. Further analyses revealed that 

moderate physical activity has a positive effect on cognitive functioning. In contrast, pursuing 

vigorous physical activity may not have beneficial effects on cognitive functioning. Hence, our 

study suggests a favorable effect of moderate physical activity on cognitive functioning, but 

does not indicate that increased cognitive functioning promotes engagement in more physical 

activity. 
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Importantly, our method provides evidence for the existence of a strong latent heritable 

confounder of the relationship between cognitive functioning and physical activity, which may 

explain previous contradictory results of standard MR. This confounder was shown to have an 

opposite effect on cognitive functioning and average physical activity, which could have 

masked positive causal effects in some previous studies. While we are unsure what this 

confounder may be, two potential candidates were tested: body mass index and educational 

attainment. The causal effects of body mass index on cognitive functioning and on average 

physical activity were not compatible with the effect of the confounder found by LHC-MR. 

Hence, body mass index cannot be the confounder LHC-MR detected for average physical 

activity. Regarding educational attainment, although this variable seemed to impact only 

cognitive functioning in our follow-up MR analysis, its effect on physical activity may have 

been masked by the fact that people with higher educational attainment have less physically 

active jobs, thereby reducing the total level of physical activity and impacting only leisure-time 

physical activity. Future studies should distinguish between work-related physical activity and 

leisure time-related physical activity to reveal potential effects of educational attainment on 

these two types of physical activity – i.e., a negative effect of higher educational attainment on 

work-related physical activity, but a positive effect on leisure-time related physical activity. 

 

Regarding moderate physical activity, results revealed the presence of a confounder that is 

presumably more complex than originally thought. This confounder may consist of several 

traits with their own effect (opposite in directions) on the exposure and the outcome. A possible 

confounder of the cognitive functioning and moderate physical activity relationship could be 

body mass index, as it had agreeing signs in its effect on each of those traits. Specifically, body 

mass index had a negative effect both on cognitive functioning and moderate physical activity. 

The confounder discovered by LHC-MR for those traits pairs also had agreeing signs for the 

effect of the confounder on cognitive functioning and moderate physical activity. The LHC-

MR model allows the signs of the confounder effects to flip as long as their direction remain in 

the same relationship. Hence, body mass index is a possible confounder as well as a potential 

part of the confounders for the cognitive functioning-average physical activity relationship. 

 

Previous reviews and meta-analyses of observational studies showed a beneficial effect of 

physical activity on cognitive functioning (13, 16, 17, 31). However, the evidence arising from 

intervention studies was inconclusive (18, 19, 21-23, 51). It has been argued that these 

inconsistencies may primarily be attributable to the design-specific tools used to assess physical 
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activity (21). Specifically, many observational studies rely on self-reported measures of 

physical activity, whereas intervention studies often rely on device-based measures of physical 

activity, or had people exercising under monitored conditions. In other words, evidence of a 

favorable effect of physical activity on cognitive functioning could have emerged because of 

the self-reported nature of the measures. Yet, in our observational study, results are based on 

accelerometer-assessed physical activity, thereby partially ruling out this explanation. 

Therefore, our findings further support the literature that demonstrated a protective causal role 

of physical activity on cognitive functioning and extend it by doing so using a device-based 

measure. Our findings are in line with recent MR-based results showing a protective effect of 

objectively assessed, but not self-reported, physical activity on the risk of depression (37). Of 

note, results obtained from LHC-MR differed from those obtained with standard MR methods. 

At least three key differences in the methods can explain this divergence: i) standard MR uses 

only genome-wide significant markers, ii) standard MR is biased in case of sample overlap (as 

is the case in this study) and hence their estimate may be biased towards the observational 

correlation, and iii) LHC-MR explicitly models proportional pleiotropy unlike standard MR. 

Accordingly, our results obtained from LHC-MR are bound to be more robust than those 

obtained from standard MR. 

 

To the best of our knowledge, our study is the first to investigate the potential causal 

relationship between physical activity and cognitive functioning using such a genetically 

informed method. We are aware of only two other studies that examined the potential 

bidirectional associations between physical activity and cognitive functioning (8, 20). In 

contrast to the present study, those two studies observed a positive influence of cognitive 

functioning on physical activity. At least two factors can explain the differences in the results 

observed. First, both those studies are based on longitudinal assessment (Granger causality) of 

the two traits, while our approach is based on a genetically instrumented causal inference 

technique (LHC-MR). Second, these studies draw on self-reported physical activity rather than 

device-based measures of physical activity, which may have biased the observed associations 

between cognitive functioning and physical activity. Self-reported and accelerometer-based 

physical activity have very modest correlation (52), which reduces the reliability of self-report-

based physical activity studies. Furthermore, self-report bias is correlated with education and 

cognitive functioning, which questions the use of self-reported physical activity in relationship 

with cognitive functioning, which itself, is related to the self-report bias.  

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.342675doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342675
http://creativecommons.org/licenses/by/4.0/


 12 

Results showed that the beneficial effect of physical activity on cognitive functioning was 

observed for moderate physical activity, but not for vigorous physical activity. Although these 

results for moderate physical activity need to be interpreted with caution (see results section), 

they highlight the potential critical role of physical activity of moderate intensity on cognitive 

functioning. These results are consistent with previous literature that have suggested that 

moderate physical activity yields higher benefits of cognitive functioning compared to vigorous 

physical activity (46-50). However, to the best of our knowledge, this study is the first to assess 

and compare the causal relationships of moderate and vigorous physical activity with cognitive 

functioning in such a large-scale dataset and with a genetically informed method. Several 

mechanisms can explain how physical activity enhances brain functioning. Physical activity 

promotes neurogenesis, gliogenesis, neuronal excitability, angiogenesis, cortical thickness, and 

growth factor production (19, 25-31). Moreover, the benefits of moderate physical activity 

could be explained by differences in the quantity of hormones released in the blood. For 

example, one study observed an inverted U relationships between physical activity intensity 

and endocannabinoids, with vigorous intensities reducing the concentrations in peripheral 

endocannabinoids compared with moderate intensities (53). Consequently, vigorous physical 

activity may be less effective in enhancing cognitive functions than moderate physical activity. 

Another potential explanation is the stress response associated with vigorous physical activity 

yielding a large cortisol release that can have a detrimental effect on aspects of cognitive 

functioning, such as memory (54, 55). 

 

Our results contrast with other studies arguing that cognitive functioning is critical to engage 

in physical activity (33-35). This difference could be explained in at least two ways. Firstly, 

previous studies examining the positive effect of cognitive functions on physical activity relied 

on self-reported physical activity, which can bias the observed associations (8, 24, 34). 

Secondly, our study relied on general cognitive functioning, whereas previous results highlight 

the specific importance of inhibition resources that may be required to counteract an innate 

tendency for effort minimization (33-36). Therefore, future studies should investigate the 

specific relationships between motor inhibition and physical activity.  

 

Among the strengths of the current study are the use of large-scale datasets, the reliance on an 

objective measure of physical activity, and the application of a robust genetically informed 

method that can estimate causal effects. However, this study has several features that limit the 

conclusions that can be drawn. First, the measure of cognitive functioning involves multiple 
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tests, which reduced the specificity of the cognitive functioning that was assessed. This feature 

limits the ability to evaluate the putative causal effects between specific cognitive functioning, 

such as motor inhibition, and physical activity. Second, MR analysis is designed to elucidate 

life-long exposure effect on life-long outcome (except in special cases when genetic factors 

have time-dependent effects), thus it is not suited to explore temporal aspects of these causal 

relationships. Third, 2-sample MR methods require that SNP effects on the exposure are 

homogeneous between the two samples. Here, because our two samples differ in age, we rely 

on the assumption that these genetic effects do not change depending on age. This assumption 

often turns out to be true, although there are rare exceptions (56). Fourth, LHC-MR can be 

limited by the low heritability of traits causing bimodal/unreliable estimates. Fifth, regarding 

the identification of potential confounders, it should be noted that classical MR analysis of the 

body mass index and cognitive functioning relationship may be biased due to parental/dynasty 

effects, which can be circumvented by between-sib association analysis (57). Likewise, a 

weakness of LHC-MR is to assume a single confounder (or several ones with similar effects). 

For the moderate physical activity – cognitive functioning relationship, two competing causal 

models were equally probable, with markedly different properties. This may suggest that 

multiple confounders are present, with some of them having similar effect directions on the 

traits and others having opposing effect directions. Body mass index may be an example of the 

former kind of confounders.  

 

Our findings provide preliminary support for a unidirectional relation whereby higher levels of 

moderate physical activity lead to improved cognitive functioning. These results underline the 

essential role of moderate physical activity in maintaining or improving general cognitive 

functioning. Therefore, policies for healthy ageing and interventions that promote moderate 

rather than vigorous physical activity may be best suited to improve or recover cognitive skills. 

 

Methods 

Data sources and instruments 

This study used de-identified GWAS summary statistics from original studies that were 

approved by relevant ethics committees. The current study was approved by the Ethics 

Committee of Geneva Canton, Switzerland (CCER-2019-00065). The available summary-level 

data were based on 257,841 samples for general cognitive functioning, 91,084 samples for 

accelerometer-based physical activity, 240,547 samples for educational attainment, and 
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359,983 sample for body mass index. Participants age ranged from 40 to 69 years in the UK 

Biobank, and from 8 to 96 years in the COGENT consortium. 

 

Physical activity  

Device-based measure of physical activity was assessed based on summary statistics from a 

recent GWAS (42) analyzing accelerometer-based physical activity data from the UK Biobank. 

In the UK Biobank, about 100,000 participants wore a wrist-worn triaxial accelerometer 

(Axivity AX3) that was set up to record data for seven days. Individuals with less than 3 days 

(72 h) of data or not having data in each 1-hour period of the 24-h cycle or for whom device 

could not be calibrated were excluded. Data for non-wear segments, defined as consecutive 

stationary episodes g 60 min where all three axes had a standard deviation < 13 mg, were 

imputed. The details of data collection and processing can be found elsewhere (58). We 

examined three measures derived from the three to seven days of accelerometer wear: overall 

acceleration average in milli-gravities (mg), fraction of acceleration > 100 mg and < 425 mg to 

estimate moderate physical activity (59), and fraction of acceleration g 425 mg to estimate 

vigorous physical activity (59). The GWAS for overall acceleration average (nmax = 91,084) 

identified 2 independent genome-wide significant SNPs (P < 5e-09), with a SNP-based 

heritability of ~ 14%. Furthermore, two GWAS models for overall acceleration average were 

used: one model where the SNP-accelerometer associations had been adjusted for age, sex, 

genotyping chip, first ten genomic principal components (PC), center, season (month) of 

wearing accelerometer (model 1) and another model where an extra adjustment had been done 

for the baseline self-reported level of physical activity at work, the extent of walking or standing 

at work, and the Townsend Deprivation Index (model 2).  

 

As for the other two physical activity measures, the fractions of accelerations corresponding to 

moderate and vigorous physical activity were obtained by running new GWAS on the 

decomposed acceleration data from UK Biobank using the BGENIE software (60). The 

phenotype for moderate physical activity was limited to acceleration magnitudes ranging from 

100 to < 425 mg, whereas vigorous physical activity was limited to accelerations magnitudes 

ranging from 425 to 2000 mg. These acceleration fractions were adjusted for age, sex, and the 

first 40 PC, and the analyzed individuals were restricted to unrelated white-British. The two 

datasets of average acceleration summary statistics, alongside the moderate and vigorous 

physical activity summary statistics were used in LHC-MR to investigate the possible 

bidirectional effect that exists between these summary statistics and cognitive functioning. 
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General cognitive functioning 

General cognitive functioning was assessed based on summary statistics from a recent GWAS 

combining cognitive and genetic data from the UK Biobank and the COGENT consortium 

(N=257,841) (43). In the UK Biobank (nmax = 222,543) participants were asked to complete 13 

multiple-choice questions that assessed verbal and numerical reasoning. The verbal and 

numerical reasoning score was based on the number of questions answered correctly within a 

two-minute time limit. Each respondent took the test up to four times. The phenotype consists 

of the mean of the standardized score across the measurement occasions for a given participant. 

In the COGENT consortium (nmax = 35,298), general cognitive function is statistically derived 

from a principal components analysis of individual scores on a neuropsychological test battery 

(61). The phenotype estimates overall cognitive functioning and is relatively invariant to the 

battery used and specific cognitive abilities assessed (62, 63). These COGENT data used to 

assess general cognitive functioning were also used in another GWAS study (44). The GWAS 

identified 226 independent genome-wide significant SNPs, with a SNP-based heritability of 

~20%. 

 

Educational attainment 

Educational attainment was measured in the UK Biobank as the age when completing full-time 

education (N = 240,547) (45). All cohort-level analyses were restricted to European-ancestry 

individuals that passed quality control procedures and were at least 30 years of age when their 

EduYears was reported. The International Standard Classification of Education (ISCED) was 

used to construct the EduYears phenotype by mapping each major educational qualification 

with a years-of-education equivalent. The GWAS identified 49 independent genome-wide 

significant SNPs, with a SNP-based heritability of ~10%. 

 

Body mass index 

Body mass index was derived from the UK Biobank data on height and weight collected at 

baseline (N = 359,983) (45). Height was measured in whole centimeters with a Seca 2020 

stadiometer device. Weight was measured to the nearest 0.1 kg with the BC-418 MA body 

composition analyzer (Tanita Corp). Body mass index was derived from weight in kg divided 

by height in squared meters. The GWAS identified 615 independent genome-wide significant 

SNPs, with a SNP-based heritability of ~25%. 
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Statistical analysis  

MR is a statistical method in which the randomized inheritance of genetic variation is treated 

as a natural experiment to estimate the potential causal effect of a modifiable risk factor or 

exposure on health-related outcomes in an observational design (38, 39). MR draws on the 

assumption that genetic variants, because they are randomly allocated at conception, are less 

dependent on other risk factors that may be confounders of the exposure and the outcome, and 

are immune to reverse causality since diseases or health-related outcomes have no reverse effect 

on genetic variants. Consequently, these genetic variants can be used as instrumental variables, 

potentially making MR less vulnerable to confounding or reverse causation than conventional 

approaches in observational studies (38, 39). However, MR and its various extensions that aim 

to relax several of its assumptions are still prone to biased estimates due to the presence of 

unmeasured genetic confounders (horizontal pleiotropy) and their use of only genome-wide 

significant markers from GWAS summary statistics. 

 

LHC-MR (41) also uses GWAS summary statistics, but it uses whole genome-wide genetic 

instruments to estimate bidirectional causal effects, direct heritability, confounder effects while 

accounting for sample overlap from genome-wide genetic instruments. LHC-MR extends the 

standard two-sample MR by modeling a latent (unmeasured) heritable confounder that has an 

effect on the exposure and outcome traits. This allows LHC-MR to differentiate SNPs based on 

their co-association to a pair of traits and distinguish heritable confounding that leads to genetic 

correlation from actual causation. Thus, the unbiased bidirectional causal effect between these 

two traits are estimated simultaneously along with the confounder effect on each trait (Figure 

1). LHC-MR is analogous to linkage disequilibrium score regression (LDSC) (64) that 

estimates trait heritability, in that it uses all genetic markers in a random effect model 

framework to estimate bidirectional causal effect, as well as other parameters. The LHC-MR 

framework, with its multiple pathways through which SNPs can have an effect on the traits, as 

well as its allowance for null effects, make LHC-MR more precise at estimating causal effects 

compared to standard MR methods.  

 

The likelihood function for LHC-MR derived from the mixture of different pathways that the 

genome-wide SNPs can have an effect through (acting on either the exposure, the outcome, the 

confounder, or the combinations of these three), is then optimized given random starting values 

for the parameters it can estimate. The optimization of the likelihood function then yields the 

maximum likelihood estimate (MLE) value for a set of estimated parameters, including the 
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bidirectional causal effect between the exposure and the outcome as well as the strength of the 

confounder effect on each of those two traits.  

 

The significance of each of the parameters estimated using LHC-MR was obtained by removing 

each of the parameters at a time from the likelihood function and then optimizing it again to 

obtain a second MLE, which would be compared to the first MLE using the likelihood ratio test 

(LRT) where a P-value is calculated. Furthermore, the causal estimates obtained from LHC-

MR are on the scale of 1 standard deviation (SD) outcome difference upon a 1 SD exposure 

change due to the use of standardized summary statistics for the two traits. When LHC-MR 

revealed a significant confounder effect acting on both exposure and outcome, we attempted to 

discover what that confounder may be by testing the effect of possible confounders candidates 

on the exposure trait and outcome trait individually using standard MR. We investigated the 

roles of education level and body mass index as possible confounders and tried to match their 

causal effects to those of our estimated confounder effect on the traits. 
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Figure and tables 

Table 1. LHC-MR results for the association between accelerometer-based physical activity 

and general cognitive functioning 

Parameter h2X h2Y tX tY X³Y  Y³X 

Average accelerometer-based physical activity 

Estimate 0.065 0.107 0.476 -0.195 -0.005 0.610 

P-value   1.12e-34 2.65e-07 0.870 1.16e-06 

Moderate accelerometer-based physical activity (fraction of acceleration > 100 mg and < 425 mg) 

Estimate 0.062 0.052 0.597 -0.236 0.675 1.331 

P-value   6.11e-34 2.30e-05 0.234 2.01e-05 

Vigorous accelerometer-based physical activity (fraction of acceleration g 425 mg) 

Estimate 0.062 0.078 0.413 0.115 0.069 0.066 

P-value   1.38e-28 0.072 0.358 0.368 

Notes. Parameters estimates and their p-values correspond to the LHC-MR optimized model 

with the maximum likelihood. Heritability on exposure (X; cognitive functioning) and outcome 

(Y; physical activity) shown as h2X and h2Y, respectively. The effect of the confounder on X 

and Y shown as tX and tY, respectively. Bidirectional associations from X to Y (X³Y) and Y 

to X (Y³X) are also reported. 
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Table 2. Standard MR results for the association between accelerometer-based physical 

activity and general cognitive functioning 

Exposure Outcome MR method Valid SNPs Causal estimate SE P-value 

Average accelerometer-based physical activity – model 1 

CF PA MR Egger 146 0.107 0.181 0.556 

Weighted median 146 -0.029 0.036 0.422 

Inverse variance weighted 146 -0.022 0.031 0.488 

Simple mode 146 -0.058 0.107 0.584 

Weighted mode 146 -0.058 0.110 0.593 

PA CF MR Egger 8 -2.240 0.973 0.061 

Weighted median 8 -0.038 0.059 0.513 

Inverse variance weighted 8 -0.112 0.095 0.238 

Simple mode 8 -0.061 0.086 0.502 

Weighted mode 8 -0.034 0.089 0.710 

Moderate accelerometer-based physical activity (fraction of acceleration > 100 mg and < 425 mg) 

CF PA MR Egger 131 -0.031 0.181 0.864 

Weighted median 131 -0.032 0.038 0.400 

Inverse variance weighted 131 -0.019 0.032 0.554 

Simple mode 131 -0.053 0.103 0.610 

Weighted mode 131 -0.025 0.090 0.780 

PA CF MR Egger 33 0.704 0.930 0.455 

Weighted median 33 0.010 0.037 0.785 

Inverse variance weighted 33 0.041 0.045 0.365 

Simple mode 33 0.003 0.078 0.964 

Weighted mode 33 0.011 0.068 0.876 

Vigorous accelerometer-based physical activity (fraction of acceleration g 425 mg) 

CF PA MR Egger 131 0.055 0.142 0.697 

Weighted median 131 -0.034 0.035 0.328 

Inverse variance weighted 131 0.006 0.025 0.824 

Simple mode 131 -0.147 0.105 0.162 

Weighted mode 131 -0.104 0.092 0.261 

PA CF MR Egger 22 -0.057 0.915 0.951 

Weighted median 22 0.023 0.039 0.551 

Inverse variance weighted 22 0.005 0.043 0.911 

Simple mode 22 0.030 0.069 0.668 

Weighted mode 22 0.026 0.059 0.667 

Notes. CF = general cognitive functioning; PA = accelerometer-based physical activity. Causal 

estimates from 5 standard MR methods on alternating exposure and outcome traits. For both 

moderate and vigorous physical activity as exposure, the cutoff was decreased to 10e-5 because 

of the low number of genome wide significant SNPs to use as instruments. 
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Figure 1. Visual representation of the model in LHC-MR 

 

Notes. G = Genetic instruments; CF = general cognitive functioning; AccAvg = Average 

acceleration from device-based measure (model 1); U = Latent heritable confounder; h2
x = 

direct heritability of exposure; h2
y = direct heritability of the outcome. The figure includes the 

bidirectional causal effects between the two traits as well as the confounder effects on each of 

them. Coefficients are beta values. The P-values are indicated in brackets. 
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-0.005 (0.870) 
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Figure 2. LHC-MR plots for the association between accelerometer-based physical activity 

and general cognitive functioning 

 

Notes. This modified dot-and-whisker plot reports the causal estimate between general 

cognitive functioning (cognition) as exposure and varying PA-related traits as outcome. The 

forward (Cognition³PA) and reverse (PA³Cognition) causal estimates are shown in two 

different colors (grey and black) as dots with 95% CI whiskers. Average PA2 = average 

acceleration from device-based measure (model 1). Average PA2 = average acceleration from 

device-based measure (model 2), Moderate PA = fraction of acceleration corresponding to 

moderate physical activity. Vigorous PA = fraction of acceleration corresponding to vigorous 

physical activity. 
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