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Abstract 
 
Genetic correlation is the correlation of additive genetic effects on two phenotypes.  It is 
an informative metric to quantify the overall genetic similarity between complex traits, 
which provides insights into their polygenic genetic architecture. Several methods have 
been proposed to estimate genetic correlations based on data collected from genome-
wide association studies (GWAS). Due to the easy access of GWAS summary statistics 
and computational efficiency, methods only requiring GWAS summary statistics as input 
have become more popular than methods utilizing individual-level genotype data. Here, 
we present a benchmark study for different summary-statistics-based genetic 
correlation estimation methods through simulation and real data applications. We focus 
on two major technical challenges in estimating genetic correlation: marker dependency 
caused by linkage disequilibrium (LD) and sample overlap between different studies. To 
assess the performance of different methods in the presence of these two challenges, 
we first conducted comprehensive simulations with diverse LD patterns and sample 
overlaps. Then we applied these methods to real GWAS summary statistics for a wide 
spectrum of complex traits. Based on these experiments, we conclude that methods 
relying on accurate LD estimation are less robust in real data applications compared to 
other methods due to the imprecision of LD obtained from reference panels. Our 
findings offer a guidance on how to appropriately choose the method for genetic 
correlation estimation in post-GWAS analysis in interpretation.  
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Introduction 
 
Genetic correlation is the correlation of additive genetic effects contributing to two 
phenotypes. It quantifies the overall genetic similarity and provides insights into the 
polygenic genetic architecture of complex traits1. In the past 15 years, thousands of 
genome-wide association studies (GWAS) have been conducted, successfully 
identifying tens of thousands of single-nucleotide polymorphisms (SNPs) associated 
with complex human traits and diseases2. Beside association mapping for individual 
traits, methods have been developed to estimate genetic correlation based on linear 
mixed models (LMM) which use individual genotype data of independent subjects from 
GWAS as the design matrix3-6. Compared with traditional family-based approaches7,8, 
these GWAS-based methods do not need to collect related samples. Moreover, they do 
not require the studied phenotypes to be measured on the same individuals when 
estimating genetic correlation, which makes it possible to study a wide spectrum of 
human complex traits/diseases simultaneously by using different cohorts. Facilitated by 
the advances in genetic correlation estimation methods, genetic correlation analysis has 
gained popularity in the field and become a routine procedure in post-GWAS analyses. 
For example, a recent study performed genetic correlation analysis on 25 common brain 
disorders and showed that psychiatric disorders (e.g. schizophrenia and bipolar 
disorder) shared significantly correlated genetic risks while neurological disorders (e.g. 
Alzheimer9s disease and ischemic stroke) were more distinct from one another1. 
Bioinformatics servers have also been built to improve the computation and 
visualization of genetic correlations9. 
 
Genetic correlation estimation methods can be classified as methods requiring 
individual-level data6,10-13 and methods that use GWAS summary statistics as input3-5,14-

19. Restricted maximum likelihood (REML) is the most common approach among 
individual-level-data-based methods where genetic correlation is estimated as one of 
the (co)variance component parameters of LMM. Computational tools have been 
released to implement REML, such as Genome-wide Complex Trait Analysis6,20 
(GCTA), MTG213, and BOLT-REML10, which mainly differed by the algorithm for log-
likelihood optimization. However, methods based on individual-level data have not 
gained as much popularity as methods based on GWAS summary statistics because of 
a lack of data availability and computational efficiency. Cross-trait linkage disequilibrium 
(LD) score regression (LDSC) is the first method that uses GWAS summary statistics 
alone as input to estimate genetic correlation3. Built upon LDSC, methods have been 
developed to estimate annotation-stratified4, local14-16, and trans-ethnic17 genetic 
correlation from GWAS summary statistics. Zhang et al.15 showed that most existing 
methods are based on the idea of minimizing the <distance= between the empirical and 
theoretical covariance matrices of marginal z-scores obtained from GWASs of two 
phenotypes. Due to the information loss in GWAS summary statistics, the standard 
errors of estimates from summary-statistics-based methods can be substantially higher 
than those from methods based on individual-level data21. 
 
Genetic correlation analysis has a variety of downstream applications. Properly 
modeling genetic correlation could enhance statistical power in genetic association 
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studies22,23, improve risk prediction accuracy24-26, and facilitate causal inference and 
mediation analysis27-31. However, there has been no consensus regarding which 
method is the most desired one to provide genetic correlation estimation under different 
contexts when only GWAS summary statistics are available. Although LDSC is the most 
widely used method in terms of genome-wide genetic correlation estimation, Lu et al.4 
used numerical and theoretical illustrations to show that the GNOVA estimator is more 
accurate. A recently proposed method, high-definition likelihood (HDL)5, also 
outperformed LDSC in simulations. Although simulations were conducted to investigate 
the performance of these methods in each original publication, the simulation settings 
were largely restricted to those that could demonstrate the merits of each method. 
There is a need for objective and thorough analyses to benchmark and compare the 
performance of different genetic correlation estimation methods under realistic settings. 
 
In this paper, we evaluate the performance of three summary-statistics-based genome-
wide genetic correlation estimation methods, LDSC, GNOVA, and HDL, by 
comprehensive simulations and real data applications. In simulations, the phenotypes 
were generated using real genotype data from four different sources32-35. We also 
investigate the performance of different methods using in-sample, external, and 
mismatched reference panels for LD. Besides the settings satisfying the model 
assumptions, we evaluated the robustness of each method against model 
misspecification. In real data applications, we estimated genetic correlation using 
GWASs conducted on 10 complex traits in the UK Biobank (UKBB)32, 12 phenotypes in 
the Wellcome Trust Case Control Consortium (WTCCC) and Northern Finland Birth 
Cohort (NFBC), and 30 complex traits with publicly available GWAS summary statistics 
(Supplementary Table 1). Our findings provide a guidance on the statistical properties, 
advantages, and limitations of each method under a broad range of contexts. 
 
 
 

Methods 
 
Quality control of genotype data 
 
In our simulations, we used imputed genotype data from four cohorts to simulate 
phenotypes, including UKBB (phase 3; n=487,409)32, WTCCC (n=15,918)33, NFBC 
(n=5,402)34, and Myocardial Infarction Genetics Consortium (MIGen; n=6,042)35. We 
further selected genetically unrelated 276,731 subjects of white British ancestry from 
UKBB in our analysis. Because genotype data in WTCCC were also gathered in Britain, 
WTCCC largely shares the same LD patterns with UKBB. NFBC collected genotype and 
health data from subjects in the two northmost provinces of Finland while subjects in 
MIGen were drawn from Boston, Seattle, Helsinki, Malmo, Barcelona, and Milan. 
Therefore, subjects in NFBC and MIGen may differ in their LD patterns with UKBB. 
 
We restricted the analysis to autosomal variants with genotype missing rate < 0.05, 
imputation quality score > 0.3, Hardy-Weinberg equilibrium p-value > 1e-6, and minor 
allele frequency (MAF) > 0.05. We also removed all the strand-ambiguous SNPs. 
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Methods for genetic correlation estimation 
 
We considered four genetic correlation estimation methods in our comparisons, including 
REML6 which requires individual-level data, and three summary-statistics-based methods, 
LDSC3, GNOVA4, and HDL5. We included REML in the analyses to evaluate the loss of 
estimation precision when using summary statistics only. In the following, we briefly 
describe the underlying statistical framework for all these methods. Assume there are two 
studies with sample sizes �" and �#, respectively, standardized trait values �" and �# 
follow the linear models below: �" = �� + ��# = �� + �, (1) 
where � and � are �" ×� and �# ×� standardized genotype matrices; � is the number 

of shared SNPs between the two studies; �  and �  are the noise terms; and �  and � 

denote the genetic effects for �" and �#. The combined random vector of � and � follows 
a multivariate normal distribution given by: 

4��5 ~�¿
»:0î0= , ££

££/"
#
� �C �E� �C�E� �C /##� �C§§

§§
£
¿ , (2) 

where /"# and /## are the heritability of two traits, respectively; �E is the genetic covariance 

between two traits; and �C is the identity matrix of size �. The random effect assumption 
in model (2) is shared by all the methods we evaluate in this study. Without loss of 
generality, we assume the first �L samples in each study are shared (�L f �" and �L f�#). The non-genetic effects of the shared samples for the two traits are correlated: ���Q�RS , �RTU = V�W , 1 f �" = �# f �L0, ��/������ . 
Since trait values �" and �# are standardized, we have ���a�RSb = 1 2 /"# and ���a�RTb = 1 2 /## for 1 f �" f �" and 1 f �# f �#. Then, genetic correlation is defined 

as �E = �E d/"#/##d . 

 
When individual-level genotype and phenotype are available, heritability and genetic 
covariance are estimated as the variance components of model (1) by REML. This 
approach has been implemented in multiple packages10,13,20. When only GWAS 
summary statistics are available, LDSC, GNOVA, and HDL can be applied for genetic 
correlation estimation. LDSC regresses the product of marginal z-scores in GWAS 
summary statistics for the two traits on LD scores of each SNP. Instead of regression, 
GNOVA applies a method of moments procedure. HDL calculates the joint distribution 
of z-scores in two GWAS and uses maximum likelihood estimation (MLE). The software 
of LDSC and GNOVA allow users to specify their reference panel while the reference 
panel to implement HDL is restricted to one of the three reference panels, UKBB 
imputed HapMap3 SNPs, UKBB imputed HapMap2 SNPs, and UKBB Axiom Array 
SNPs, provided by the software of HDL. In our simulations, we observed that REML 
outperformed summary-statistics-based methods21. In real data application on 
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phenotypes in UKBB, WTCCC, and NFBC, since the true genetic correlations were 
unknown, we compared the similarity of the estimators of summary-data-based 
methods with REML estimator to evaluate their performance. 
 
 
Simulation settings for in-sample reference panel 
 
In this section, the genotype data used to generate the phenotypes were also used as 
the LD reference panel. To implement the software of HDL, we used its provided 
reference panel based on 307,519 SNPs of 336,000 white British individuals from the 
UKBB Axiom Array data5. We note that both LDSC and GNOVA can use customized 
reference panels, hence we took the SNPs overlapping between quality controlled 
UKBB SNPs and UKBB Axiom Array SNPs in the HDL reference panel to construct the 
reference panel for LDSC and GNOVA. 305,370 SNPs (99.30% of the SNPs in HDL 
reference panel) and 276,731 unrelated UKBB white British individuals remained in the 
data. We simulated phenotypes (�" and �#) based on the SNPs and samples in the 

reference panel. In this simulation setting, �" and �# were measured on the same set of 
samples (i.e. complete sample overlap). 
 
We generated the effect sizes of SNPs by the multivariate normal distribution as in 
model (2) and applied GCTA20 to simulate �" and �#. PLINK36 was then used to 
perform GWAS and obtain summary statistics of simulated traits. Following the 
simulation settings in Ning et al.5, we set the heritability of trait 1 and trait 2 as 0.2 and 
0.4 and fixed both genetic and phenotypic correlations to be 0.5. Under this setting, all 
SNPs were considered causal and had equal contributions to heritability and genetic 
correlation. We also considered scenarios where the true correlation between traits was 
low or the causal SNPs of traits were sparse. We repeated each simulation setting 100 
times. Detailed simulation settings are summarized below. 

1. The true genetic and phenotypic correlations were set to be 0.5. 
2. The true genetic correlation was set to be 0.1. The covariance of non-genetic 

effects (�W) was set to be 0.2. 
3. The true genetic correlation was set to be 0. The covariance of non-genetic 

effects (�W) was set to be 0.2. 
4. 30,537 out of 305,370 SNPs (10%) were randomly selected as causal variants. 

The true genetic and phenotypic correlations were set to be 0.5. 
 
LDSC, GNOVA, and HDL were applied to the GWAS summary statistics. Using the same 
simulated individual-level GWAS data, we also conducted REML by applying BOLT-
REML10 and compared its performance with the summary-statistics-based methods. 
Besides simulations on quantitative traits, we also repeated settings 1 and 3 on binary 
traits using a liability model. The procedure to simulate continuous liability �" and �# was 

same as the procedure to simulate �" and �#. The observed trait is 1[�R > �], where � =1,2 and � is the 80% quantile of standard normal distribution and hence the prevalence of 
the binary traits were set to be 0.2. 
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Simulation settings for external reference panel with matched ancestry 
 
As a more common case in post-GWAS analysis, GWAS genotype data and reference 
panel are likely derived from different cohorts with a similar ancestry background 
(external reference panel). Here, we used the overlapping SNPs between the imputed 
WTCCC genotype data and the HapMap2 reference panel provided by HDL to simulate 
phenotypes. We chose the HapMap2 panel of HDL because it had the largest 
proportion of overlapping SNPs with the imputed WTCCC genotype data (85.43%; 
657,181 overlapping SNPs out of 769,306 SNPs in the HapMap2 reference panel of 
HDL) among the three reference panels available for HDL. The HapMap2 reference 
panel was also used as the LD reference panel for HDL. The SNPs of the 276,731 
UKBB samples in the previous section were then included in the reference panel for 
LDSC and GNOVA in this section. 
 
Samples in WTCCC were randomly divided into two subgroups each with 7,959 
individuals. We denote these two subgroups as set 1 and set 2, respectively. To assess 
how the performance of the competing methods is affected by sample overlap between 
GWASs, we conducted two sets of simulations for GWASs with complete sample 

overlaps and no sample overlap. We fixed the heritability of �" and �# as 0.5 and the 
value of genetic covariance was set to be 0, 0.1, and 0.2, respectively. The effect sizes 
of the SNPs were generated according to model (2). We also conducted simulations on 
spare causal SNPs where only 10% of the SNPs were randomly set to be causal SNPs. 
We repeated each simulation setting 100 times. Details on simulation settings are 
summarized below. 

1. Complete sample overlap: �" and �# were both simulated on set 1. The 
covariance of non-genetic effects on shared samples was set to be 0.2.  

2. No sample overlap: we used set 1 and set 2 to simulate �" and �#, respectively. 
 
We also simulated binary traits using the liability model described in the previous 
section and compared the performance of different methods on binary traits. Next, 
following the same procedure, we performed additional simulations for HDL using the 
SNPs before quality control in imputed WTCCC genotype data. We only excluded 
ambiguous or multiallelic SNPs. There were 769,236 overlapping SNPs out of the 
769,306 SNPs (99.99%) in the HapMap2 reference panel of HDL. 
 
 
Simulation settings for external reference panel with mismatched LD 
 
We investigated the robustness of LDSC, GNOVA and HDL in the situation that the 
GWAS samples are from a population distinct from the reference panel population, i.e., 
the LD patterns differ between the GWAS population and the reference panel 
population. Here, we used the imputed genotype data from NFBC and MIGen to 
simulate �" and �#, respectively. We still used the HapMap2 reference panel for HDL. 
After qualify control, there were 745,288 (96.88% of the SNPs in the HapMap2 
reference panel of HDL) overlapping SNPs in the imputed NFBC and MIGEN genotype 
data and SNPs in HapMap2 reference panel, which were taken forward to generate �" 
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and �#. Similarly, the UKBB genotype data were still used as the LD reference panel for 
LDSC and GNOVA. 
 
Based on model (2), the heritability for both phenotypes was set to be 0.5 and the 
genetic covariance was set to be 0, 0.1, and 0.2, respectively. We first assumed 
infinitesimal model where all the SNPs were causal SNPs. Then, we generated the 
phenotypes based on 10% randomly selected SNPs from all the SNPs. We compared 
the performance of the competing methods on the GWASs summary data calculated 
from the simulated phenotypes. Each simulation setting was repeated for 100 times. We 
also compared the performance of the three methods on binary traits. 
 
 
Genetic correlation estimation for phenotypes in UKBB, WTCCC and NFBC 
 
We compared the performance of LDSC, GNOVA, and HDL on the phenotypes in 
UKBB, WTCCC, and NFBC where individual-level data are available, so that we could 
also compare the differences between summary-statistics-based estimators and the 
more accurate REML estimator21. The UKBB genotype data were still used as the 
reference panel for the summary-statistics-based methods. Sex, age, and top 4 
principal components were included as covariates to perform GWAS. We included both 
quantitative and binary traits in our analyses. All methods we applied here provided 
justification for applications on binary traits3-6. 
 
We first applied the methods to estimate genetic correlations across 10 common 
phenotypes in the UKBB where we extracted the genotype and phenotype data for 
white British individuals. Note that we are using in-sample reference panel for the UKBB 
phenotypes. We used the same set of SNPs included in our simulation for in-sample 
reference panel to perform GWAS, which accounted for 99.30% of the SNPs in the 
genotype array reference panel of HDL. The details of the phenotypes and the sample 
sizes from the UKBB dataset are summarized in Supplementary Table 2.  
 
Then we further applied the methods to estimate the genetic correlations across 12 
phenotypes in WTCCC and NFBC datasets. Note that in this case we used the UKBB 
genotype data as the external reference panel, which corresponds to matched LD 
structure for phenotypes from WTCCC and mismatched LD structure for phenotypes 
from NFBC. We note that there was no shared sample between WTCCC and NFBC. 
We used the same set of SNPs included in our simulation for WTCCC and NFBC to 
perform GWAS, which accounted for 99.99% and 96.88% of the SNPs in the HapMap2 
reference panel of HDL, respectively. The details of the phenotypes and sample sizes 
are summarized in Supplementary Table 3-4.  
 
 
GWAS summary statistics of 30 complex traits 
 
GWAS summary statistics of 29 complex traits included in our analyses are publicly 
available. We obtained the summary statistics of a recent lung cancer GWAS directly 
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from the authors37. All GWASs were conducted on samples of primarily European 
descent. Our choice of these traits was based on the preference for larger sample sizes 
and higher SNP overlapping rates with the HDL reference panel. The HapMap3 
reference panel of HDL has 1,029,876 SNPs. More than 90% of the SNPs in the HDL 
reference panel also showed up in the GWASs of 26 of the 30 complex traits. Suicide 
attempt (SA) had the least overlapping SNPs with the HDL reference panel (81.81%). 
For fairness, the reference panel for LDSC and GNOVA was also constructed by the 
1,160,014 HapMap3 SNPs in our UKBB dataset. The details about the sample sizes 
and the sources of the 30 traits are given in Supplementary Table 1.  
 
 
 

Results 
 
Simulation results 

 
We compared the performance of LDSC, GNOVA, and HDL on point estimation of 
genetic covariance and correlation, type I error control, and statistical power. To 
investigate the robustness of these methods to the choice of LD reference panel, we 
performed simulations on in-sample reference panel, external reference panel with 
matched LD, and external reference panel with mismatched LD. Unlike LDSC or 
GNOVA, which can use customized reference panel, the software of HDL provides the 
pre-calculated eigenvalues and eigenvectors of LD matrix and restricts the reference 
samples to the UKBB samples. So, for fairness, the reference panel for LDSC and 
GNOVA was also based on the white British individuals in UKBB. We repeated each 
setting 100 times. 
 
We first followed the simulation settings in Ning et al.5 and simulated phenotypes based 
on the genotype data in the reference panel (i.e. in-sample reference panel) constructed 
by the UKBB samples. A total of 99.30% of the SNPs in the HDL reference panel were 
used to simulate the phenotypes. We also compared the difference between the 
summary-statistics-based methods and REML6. As expected, REML outperformed all 
summary-statistics-based methods even when these methods were provided with the 
in-sample reference panel. Both LDSC and GNOVA provided unbiased estimates for 
genetic covariance (Figure 1A) in all settings. LDSC achieved more accurate estimation 
than GNOVA. By contrast, HDL overestimated genetic covariance when the true genetic 
covariance was relatively high. Nevertheless, estimates of HDL had the least variance 
among the summary-statistics-based methods and were more accurate under weak 
genetic covariance. For genetic correlation estimation, all methods including HDL 
provided unbiased estimates (Figure 1B). Due to the ratio form of genetic correlation, 
the bias of HDL in genetic covariance and heritability estimation was cancelled out. 
Compared with other summary-statistics-based methods, HDL showed the best 
performance on genetic correlation estimation and showed the least difference with 
REML. Though achieving comparable power with REML, HDL had the largest type I 
error. GNOVA showed the largest variance for genetic correlation estimation and the 
lowest statistical power and type I error (Supplementary Figure 1). All methods were 
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robust to model misspecification where 10% SNPs were set as the causal SNPs 
(Supplementary Figure 2). 
 

 
Figure 1. Comparisons of genetic covariance and correlation estimation using in-sample reference 
panel. The estimates for (A) genetic covariance and (B) genetic correlation among LDSC, GNOVA, HDL 
and REML are demonstrated by boxplot which shows the quantiles of the estimates. The red dashed 
lines represent true values. 

 
Next, we used the genotype data in WTCCC to generate phenotypes. The genotype 
data in WTCCC were collected across the UK and should share a similar LD structure 
with UKBB (external reference panel with matched LD). There were 85.43% of the 
SNPs in HDL reference panel also appeared in the imputed WTCCC genotype data 
after quality control, which were used to generate the phenotypes. When the two 
GWASs were simulated on the same group of samples (set 1), LDSC and GNOVA 
could provide similar unbiased estimates for both genetic covariance and correlation. 
HDL consistently overestimated the parameters, except for estimating genetic 
correlation when the true value was relatively large (Figure 2A-B), where the bias in the 
estimation of heritability and genetic covariance was cancelled out. There was severe 
type I error inflation for HDL while GNOVA achieved the lowest type I error across the 
competing methods and comparable power with LDSC (Supplementary Figure 3). The 
bias and type I error inflation of HDL in GWAS with complete sample overlap suggested 
that HDL could not distinguish genetic covariance from technical covariance. On the 
other hand, when there was no overlapping sample between the two studies (set 1 and 
set 2), LDSC and GNOVA still presented consistent estimates while HDL showed 
biased estimates, although the variance of HDL estimator was consistently lower than 
the estimators of LDSC and GNOVA (Supplementary Figure 4). No method showed 
inflated type I error rate and LDSC showed the least type I error. The three methods 
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showed similar statistical power (Supplementary Figure 5). The results were similar 
under model misspecification (Supplementary Figure 6). We performed additional 
simulations to evaluate HDL by using the imputed genotype before quality control from 
WTCCC, where we only excluded ambiguous or multiallelic SNPs and kept the SNPs 
overlapping with the HDL reference panel. Although 99.99% of the SNPs in the HDL 
reference panel were included for the additional simulation, HDL still could not adjust for 
sample overlap (Supplementary Figure 7). However, in the additional simulation, we 
observed that HDL provided more accurate estimates for the parameters on GWAS 
without sample overlap compared with its performance using the WTCCC SNPs after 
quality control (85.43% overlapping SNPs) (Supplementary Figure 4). This indicated 
that the performance of HDL can be affected by the choice of SNP set in GWAS 
(Supplementary Figure 7). 
 

 
Figure 2. Comparisons of genetic covariance and correlation estimation using external reference 
panel with matched LD. We compare the estimation of genetic (A) covariance and (B) correlation when 
the two GWASs were simulated on the same dataset with a 100% sample overlap. The red dashed lines 
represent true values. 

 
Finally, we examined the robustness of LDSC, GNOVA and HDL to the reference panel 
with mismatched LD. In practice, if the GWAS is conducted on populations without an 
ideal LD reference panel, researchers might have to use mismatched reference panel 
for post-GWAS analysis. We simulated �" for 5,402 samples from northern Finland in 
NFBC and �# for 6,042 samples across north America and Europe in MIGen. There 
were 96.88% SNPs in the HDL reference panel used to simulate the phenotypes. All 
methods showed unbiased estimators for genetic covariance except the estimation of 
HDL for high genetic covariance. Both LDSC and GNOVA underestimated the genetic 
correlation while HDL, on the contrary, overestimated the genetic correlation (Figure 3). 
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So, genetic covariance estimation was more stable than genetic correlation estimation 
under mismatched LD across the three methods. The results were similar under model 
misspecification (Supplementary Figure 8). All three methods showed moderate type I 
error inflation and similar power (Supplementary Figure 9). Compromised by false 
discovery issues, the results of summary-statistics-based methods should be cautiously 
interpreted when applied to mismatched reference panel with GWAS. 
 

 
Figure 3. Comparisons of genetic covariance and correlation estimation using external reference 
panel with mismatched LD. The estimates for (A) genetic covariance and (B) genetic correlation among 
LDSC, GNOVA and HDL are demonstrated by boxplot which shows the quantiles of the estimates. The 
red dashed lines represent true values. 

 
All these methods can be applied to binary traits. Although the genetic covariance is 
estimated on the observed scale3, the estimates for genetic correlation of binary traits 
were consistent to the estimates for quantitative traits except for larger variations across 
the 100 repeats in each setting (Supplementary Figures 10-12). There was a loss of 
statistical power of the methods from quantitative traits to binary traits due to less 
effective sample sizes (Supplementary Figures 13-16).  
 
 
Application to summary statistics from UKBB, WTCCC and NFBC 
 
We compared the performance of competing methods on GWAS with individual-level 
data so that we could also implement and compare with REML. We used traits in UKBB, 
WTCCC, and NFBC which can be seen as the counterparts for in-sample reference 
panel, external reference panel with matched LD, and external reference panel with 
mismatched LD in our simulation. We included both quantitative and binary traits in our 
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analyses. For binary traits, genetic covariance estimation is on the observed scale but 
there is no distinction between observed- and liability-scale genetic correlation3. In 
addition, we have shown through simulations that REML also outperformed summary-
statistics-based methods in genetic correlation estimation for binary traits. Given these 
considerations, since we do not know the true genetic correlation in real data, the 
performance of different summary-statistics-based methods was assessed by the 
difference from REML results.  
 
We first estimated genetic correlation among 10 common traits from UKBB 
(Supplementary Table 2). After Bonferroni correlation (p < 0.05/45 = 1.11e-3), 31 out 
of 45 pairs were identified by REML, while LDSC, GNOVA, and HDL identified 25, 22 
and 22 trait pairs, respectively (Supplementary Table 5). All the trait pairs identified as 
significantly correlated by summary-statistics-based methods were also identified by 
REML (Figure 4A). The estimators of LDSC, GNOVA, and HDL showed considerable 
similarity with REML estimators with R square 0.99, 0.98, 0.99, respectively 
(Supplementary Figure 17). We note that the absolute values of most of the genetic 
correlations among the 45 trait pairs were less than 0.5, similar to the settings where 
HDL outperformed LDSC and GNOVA in our simulations. 
 
We then estimated genetic correlation across 12 traits in WTCCC and NFBC using the 
external reference panel. After Bonferroni correlation (p < 0.05/66 = 7.58e-4), 10 out of 
66 pairs were identified by REML, while LDSC, GNOVA, and HDL identified 3, 2 and 5 
trait pairs, respectively (Supplementary Table 6). GNOVA was the most conservative 
method in this analysis. We observed that all the trait pairs reported by LDSC or 
GNOVA were also reported by REML. However, the genetic correlation of one trait pair, 
hypertension (HT) and Crohn9s disease, which was not identified by REML (p=0.24), 
was identified by HDL (p = 3.4e-4; Figure 4B). There was a caveat of false discovery 
for this trait pair, because HDL failed to adjust for non-genetic covariance and suffered 
from severe type I error inflation with external reference panel and complete sample 
overlap in our simulation. Due to limited sample size and information loss because of 
using external reference panel, less consistency with REML results was shown by the 
summary-statistics-based estimators (Supplementary Figure 18). LDSC showed the 
highest correlation with REML in genetic correlation estimation compared with other 
methods (R square = 0.66). 
 

 
Figure 4. Trait pairs with significant genetic correlation identified by LDSC, GNOVA, HDL and 
REML for real GWAS data in UKBB, WTCCC, and NFBC. This plot uses bars to break down the Venn 
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diagram of overlapped regions in different categories. The four categories shown in the lower panel are 
correlated trait pairs in (A) UKBB (in-sample reference panel) and (B) WTCCC + NFBC (external 
reference panel) identified by LDSC, GNOVA, HDL, and REML. 

 
 
Genetic correlation of 30 complex traits 
 
We applied LDSC, GNOVA, and HDL to estimate genetic correlation among 30 complex 
traits including neuropsychiatric disorders, immune diseases, cardiovascular diseases, 
cancer, anthropometric traits, and metabolic traits for European population. We 
summarized detailed information about each trait, including abbreviations and data 
sources, in Supplementary Table 1. There were 126, 112, and 166 trait pairs identified 
by LDSC, GNOVA, and HDL, respectively (p < 0.05/435 = 1.15e-4; Supplementary 
Figure 19 and Supplementary Table 7). 104 trait pairs were identified by all three 
methods and 42 trait pairs were exclusively identified by HDL (Supplementary Figure 
20). The point estimates for genetic correlation showed consistency across three 
methods (Figure 5). The estimates of LDSC and GNOVA were more similar to each 
other compared with HDL (R square = 0.91). Three trait pairs, including body mass 
index (BMI) and Hemoglobin A1(C) (HBA1C), coronary artery disease (CAD) and 
HBA1C, and type-II diabetes (T2D) and HBA1C, showed high genetic correlation 
estimation across the three methods were identified as significantly correlated by LDSC 
and GNOVA but were not identified by HDL (Figure 5B-C and Supplementary Figure 
21). HBA1C measures the long-term blood glucose concentrations and has been widely 
used as a diagnostic test for T2D38,39. The positive associations between HBA1C and 
CAD has long been observed in epidemiological studies40. A recent Mendelian 
Randomization analysis further confirmed the causal role of HBA1C in developing 
CAD41. Obesity (BMI) is also known to be correlated with poor control of HBA1C and 
T2D42. 
 

 
Figure 5. Comparisons of point estimates of genetic correlation among LDSC, GNOVA, and HDL. 
The comparisons are presented by scatter plots for (A) LDSC vs. GNOVA, (B) LDSC vs. HDL, and (C) 
GNOVA vs. HDL with R square 0.91, 0.85, 0.73. Each point represents a trait pair. Color and shape of 
each data point denote the significance level. The grey dashed lines are � = �. 
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Discussion 
 
Owing to increasingly accessible GWAS summary statistics and advances in statistical 
methods, genetic correlation estimation has become a routine procedure in post-GWAS 
analyses. The statistical challenges of summary-statistics-based methods are mainly 
reflected in two technical issues: (1) extensive LD between SNPs; and (2) pervasive 
sample overlap across GWASs. The utility of a method is largely determined by the 
ability to adjust for LD and overlapping samples. Through a plethora of simulations and 
real data applications, we have demonstrated that LDSC and GNOVA were more 
similar methods and robust to LD and sample overlap compared with HDL. 
 
Because GWAS summary statistics are constructed by marginal regression statistics, 
LD between SNPs is embraced in the covariance of marginal effect sizes which impede 
us from directly estimating genetic correlation by calculating the correlation between 
marginal effect sizes. When only GWAS summary statistics are available, we still need 
additional individual-level genotype data as the reference panel to adjust for LD even for 
summary-statistics-based methods. So, the choice of reference panel is central to their 
performances. We used different types of reference panel, including in-sample 
reference panel and external reference panel with or without matched LD to investigate 
the influence of reference panel. For in-sample reference panel, GWAS and reference 
samples are from the same samples where the information loss of summary-statistics-
based methods is minimal. However, we demonstrated that REML was actually a better 
choice for both quantitative and binary traits when individual-level phenotype and 
genotype data in GWAS are available if computational efficiency is not a concern. For 
external reference panel with matched LD, GWAS and reference samples are 
independent but share the same LD structure, i.e. are from the same population. For 
example, UKBB genotype data can be used as matched reference panel for GWAS 
performed on white British individuals. In practice, this is the most common case that 
the access to individual information from GWAS dataset is limited due to logistical 
challenges in data sharing. For reference panel with mismatched LD, GWAS and 
reference samples are from different populations. This can happen when the GWASs 
are conducted on minority population which may not have corresponding reference 
panel. To estimate genetic correlation, researchers have to use the reference panel 
from another population with similar LD structure which might lead to bias in the 
estimation of LD scores.  
 
Two GWASs often share a subset of samples especially for meta-analyses. For 
example, part of the control samples of Grove et al.43 for autism spectrum disorder 
(ASD) and Demontis et al.44 for attention deficit/hyperactivity disorder (ADHD) were 
collected on the same cohort from Denmark by the Lundbeck Foundation Initiative for 
Integrative Psychiatric Research45 (iPSYCH). The exact number of overlapping sample 
sizes is often unavailable for large GWAS meta-analyses. We compared the 
performance of LDSC, GNOVA, and HDL on GWAS summary data with or without 
sample overlap to assess their ability to distinguish genetic correlation from non-genetic 
correlation. 
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LDSC and GNOVA can provide unbiased estimation for genetic covariance across all 
the simulation settings, except for in-sample reference panel where the estimates of 
GNOVA were sub-optimal. Overall, LDSC and GNOVA had similar performance. Both 
methods presented relatively consistent estimators with REML when applied to real 
GWAS data. On the other hand, HDL is sensitive to the choice of the reference panel 
because HDL used more information from the LD matrix to implement MLE5 but the 
procedure to select eigenvalues and eigenvectors of the LD matrix did not consider 
potential departure from the LD matrix in the GWAS data to be analyzed. Hence the 
results were not robust. Genetic covariance estimation of HDL was biased in most 
settings. The only setting in our simulation where HDL could provide unbiased estimator 
of genetic covariance was that 99.99% of the SNPs in the reference panel of HDL were 
included in the two GWAS without any sample overlap. Due to the ratio form, the 
genetic correlation estimation of HDL was more reliable than genetic covariance 
estimation and outperformed LDSC and GNOVA with in-sample reference panel. 
However, when applied on external reference panel, the genetic correlation estimation 
of HDL was unstable and had type I error inflation in simulations. For computational 
reasons, the software of HDL restricted the users to three reference panels but the 
method is not robust to the SNP set in GWAS. Therefore, in real data applications, we 
caution the users for potential false discovery of HDL especially for GWASs with 
overlapping samples. There was also significant deterioration of performance when the 
SNPs in GWAS decreased from 99.99% to 85.43% of the SNPs in the refence panel. In 
comparison, there is more flexibility of choosing the reference panel for LDSC and 
GNOVA by the users. None of the methods worked well for genetic correlation 
estimation under a mismatched reference panel. Therefore, it is always crucial to have 
an appropriate reference panel for summary-statistics-based methods. However, 
genetic covariance can be a more robust quantity to estimate with a mismatched 
reference panel compared with genetic correlation. Simulations under model 
misspecifications showed that all the methods were robust to sparsity of causal SNPs. 
 
In summary, we have evaluated three summary-statistics-based genetic correlation 
estimation methods using simulations and real data applications. We compared the 
robustness of the methods to LD estimation and sample overlap. However, our study 
has several limitations. First, genome-wide genetic correlation only reflects the average 
concordance of genetic effects across the genome and often fails to reveal the stratified, 
heterogenous pleiotropic effects, especially when the underlying genetic basis involves 
multiple etiologic pathways15. Second, Speed et at.18 introduced a statistical framework 
to estimate heritability where allelic effects are function of LD and MAF. However, we 
restricted the methods compared in this paper established on model (2). It is possible 
that a more general model can also improve genetic correlation estimation. Third, there 
is no gold standard to compare the methods in real data application as the true genetic 
correlation between trait pairs is unknown. Downstream analyses of genetic correlation 
estimation such as multi-trait association mapping22, genomic structural equation 
modeling23 (GenomicSEM) and Mendelian randomization27,28 might help assess the 
performance of these methods in real data applications.  
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