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Abstract

Genetic correlation is the correlation of additive genetic effects on two phenotypes. It is
an informative metric to quantify the overall genetic similarity between complex traits,
which provides insights into their polygenic genetic architecture. Several methods have
been proposed to estimate genetic correlations based on data collected from genome-
wide association studies (GWAS). Due to the easy access of GWAS summary statistics
and computational efficiency, methods only requiring GWAS summary statistics as input
have become more popular than methods utilizing individual-level genotype data. Here,
we present a benchmark study for different summary-statistics-based genetic
correlation estimation methods through simulation and real data applications. We focus
on two major technical challenges in estimating genetic correlation: marker dependency
caused by linkage disequilibrium (LD) and sample overlap between different studies. To
assess the performance of different methods in the presence of these two challenges,
we first conducted comprehensive simulations with diverse LD patterns and sample
overlaps. Then we applied these methods to real GWAS summary statistics for a wide
spectrum of complex traits. Based on these experiments, we conclude that methods
relying on accurate LD estimation are less robust in real data applications compared to
other methods due to the imprecision of LD obtained from reference panels. Our
findings offer a guidance on how to appropriately choose the method for genetic
correlation estimation in post-GWAS analysis in interpretation.


https://doi.org/10.1101/2020.10.12.336867
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.12.336867; this version posted October 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

Genetic correlation is the correlation of additive genetic effects contributing to two
phenotypes. It quantifies the overall genetic similarity and provides insights into the
polygenic genetic architecture of complex traits’. In the past 15 years, thousands of
genome-wide association studies (GWAS) have been conducted, successfully
identifying tens of thousands of single-nucleotide polymorphisms (SNPs) associated
with complex human traits and diseases?. Beside association mapping for individual
traits, methods have been developed to estimate genetic correlation based on linear
mixed models (LMM) which use individual genotype data of independent subjects from
GWAS as the design matrix®>%. Compared with traditional family-based approaches’?,
these GWAS-based methods do not need to collect related samples. Moreover, they do
not require the studied phenotypes to be measured on the same individuals when
estimating genetic correlation, which makes it possible to study a wide spectrum of
human complex traits/diseases simultaneously by using different cohorts. Facilitated by
the advances in genetic correlation estimation methods, genetic correlation analysis has
gained popularity in the field and become a routine procedure in post-GWAS analyses.
For example, a recent study performed genetic correlation analysis on 25 common brain
disorders and showed that psychiatric disorders (e.g. schizophrenia and bipolar
disorder) shared significantly correlated genetic risks while neurological disorders (e.g.
Alzheimer’s disease and ischemic stroke) were more distinct from one another.
Bioinformatics servers have also been built to improve the computation and
visualization of genetic correlations®.

Genetic correlation estimation methods can be classified as methods requiring
individual-level data®'%-'3 and methods that use GWAS summary statistics as input®>14-
19, Restricted maximum likelihood (REML) is the most common approach among
individual-level-data-based methods where genetic correlation is estimated as one of
the (co)variance component parameters of LMM. Computational tools have been
released to implement REML, such as Genome-wide Complex Trait Analysis®2°
(GCTA), MTG2'3, and BOLT-REML'?, which mainly differed by the algorithm for log-
likelihood optimization. However, methods based on individual-level data have not
gained as much popularity as methods based on GWAS summary statistics because of
a lack of data availability and computational efficiency. Cross-trait linkage disequilibrium
(LD) score regression (LDSC) is the first method that uses GWAS summary statistics
alone as input to estimate genetic correlation3. Built upon LDSC, methods have been
developed to estimate annotation-stratified*, local'*'¢, and trans-ethnic'” genetic
correlation from GWAS summary statistics. Zhang et al.’® showed that most existing
methods are based on the idea of minimizing the “distance” between the empirical and
theoretical covariance matrices of marginal z-scores obtained from GWASs of two
phenotypes. Due to the information loss in GWAS summary statistics, the standard
errors of estimates from summary-statistics-based methods can be substantially higher
than those from methods based on individual-level data?'.

Genetic correlation analysis has a variety of downstream applications. Properly
modeling genetic correlation could enhance statistical power in genetic association
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studies??23, improve risk prediction accuracy?*-?%, and facilitate causal inference and
mediation analysis?’-3'. However, there has been no consensus regarding which
method is the most desired one to provide genetic correlation estimation under different
contexts when only GWAS summary statistics are available. Although LDSC is the most
widely used method in terms of genome-wide genetic correlation estimation, Lu et al.*
used numerical and theoretical illustrations to show that the GNOVA estimator is more
accurate. A recently proposed method, high-definition likelihood (HDL)?, also
outperformed LDSC in simulations. Although simulations were conducted to investigate
the performance of these methods in each original publication, the simulation settings
were largely restricted to those that could demonstrate the merits of each method.
There is a need for objective and thorough analyses to benchmark and compare the
performance of different genetic correlation estimation methods under realistic settings.

In this paper, we evaluate the performance of three summary-statistics-based genome-
wide genetic correlation estimation methods, LDSC, GNOVA, and HDL, by
comprehensive simulations and real data applications. In simulations, the phenotypes
were generated using real genotype data from four different sources®?3%. We also
investigate the performance of different methods using in-sample, external, and
mismatched reference panels for LD. Besides the settings satisfying the model
assumptions, we evaluated the robustness of each method against model
misspecification. In real data applications, we estimated genetic correlation using
GWASs conducted on 10 complex traits in the UK Biobank (UKBB)3?, 12 phenotypes in
the Wellcome Trust Case Control Consortium (WTCCC) and Northern Finland Birth
Cohort (NFBC), and 30 complex traits with publicly available GWAS summary statistics
(Supplementary Table 1). Our findings provide a guidance on the statistical properties,
advantages, and limitations of each method under a broad range of contexts.

Methods
Quality control of genotype data

In our simulations, we used imputed genotype data from four cohorts to simulate
phenotypes, including UKBB (phase 3; n=487,409)%?, WTCCC (n=15,918)%, NFBC
(n=5,402)%*, and Myocardial Infarction Genetics Consortium (MIGen; n=6,042)%°. We
further selected genetically unrelated 276,731 subjects of white British ancestry from
UKBB in our analysis. Because genotype data in WTCCC were also gathered in Britain,
WTCCC largely shares the same LD patterns with UKBB. NFBC collected genotype and
health data from subjects in the two northmost provinces of Finland while subjects in
MIGen were drawn from Boston, Seattle, Helsinki, Malmo, Barcelona, and Milan.
Therefore, subjects in NFBC and MIGen may differ in their LD patterns with UKBB.

We restricted the analysis to autosomal variants with genotype missing rate < 0.05,
imputation quality score > 0.3, Hardy-Weinberg equilibrium p-value > 1e-6, and minor
allele frequency (MAF) > 0.05. We also removed all the strand-ambiguous SNPs.
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Methods for genetic correlation estimation

We considered four genetic correlation estimation methods in our comparisons, including
REML® which requires individual-level data, and three summary-statistics-based methods,
LDSC3, GNOVA?*, and HDLS. We included REML in the analyses to evaluate the loss of
estimation precision when using summary statistics only. In the following, we briefly
describe the underlying statistical framework for all these methods. Assume there are two
studies with sample sizes n; and n,, respectively, standardized trait values ¢, and ¢,
follow the linear models below:

o1 =XL +¢

b2 =Yy +5, (1)
where X and Y are n; X m and n, X m standardized genotype matrices; m is the number
of shared SNPs between the two studies; e and § are the noise terms; and f and y
denote the genetic effects for ¢, and ¢,. The combined random vector of g and y follows
a multivariate normal distribution given by:
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where hi and hj are the heritability of two traits, respectively; p, is the genetic covariance

between two traits; and I,,, is the identity matrix of size m. The random effect assumption
in model (2) is shared by all the methods we evaluate in this study. Without loss of
generality, we assume the first n, samples in each study are shared (ny < n; and ng <
n,). The non-genetic effects of the shared samples for the two traits are correlated:
_[Per1 =1 =0 <1

Cov[£i1'5i2] _{ 0, otherwise
Since trait values ¢, and ¢, are standardized, we have Var(e;,) = 1 — h? and
Var(8;,) =1 —hZfor1 <i, <n, and 1 < i, < n,. Then, genetic correlation is defined

as 1, =pg/yhih3.

When individual-level genotype and phenotype are available, heritability and genetic
covariance are estimated as the variance components of model (1) by REML. This
approach has been implemented in multiple packages'®'320, When only GWAS
summary statistics are available, LDSC, GNOVA, and HDL can be applied for genetic
correlation estimation. LDSC regresses the product of marginal z-scores in GWAS
summary statistics for the two traits on LD scores of each SNP. Instead of regression,
GNOVA applies a method of moments procedure. HDL calculates the joint distribution
of z-scores in two GWAS and uses maximum likelihood estimation (MLE). The software
of LDSC and GNOVA allow users to specify their reference panel while the reference
panel to implement HDL is restricted to one of the three reference panels, UKBB
imputed HapMap3 SNPs, UKBB imputed HapMap2 SNPs, and UKBB Axiom Array
SNPs, provided by the software of HDL. In our simulations, we observed that REML
outperformed summary-statistics-based methods?'. In real data application on
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phenotypes in UKBB, WTCCC, and NFBC, since the true genetic correlations were
unknown, we compared the similarity of the estimators of summary-data-based
methods with REML estimator to evaluate their performance.

Simulation settings for in-sample reference panel

In this section, the genotype data used to generate the phenotypes were also used as
the LD reference panel. To implement the software of HDL, we used its provided
reference panel based on 307,519 SNPs of 336,000 white British individuals from the
UKBB Axiom Array data®. We note that both LDSC and GNOVA can use customized
reference panels, hence we took the SNPs overlapping between quality controlled
UKBB SNPs and UKBB Axiom Array SNPs in the HDL reference panel to construct the
reference panel for LDSC and GNOVA. 305,370 SNPs (99.30% of the SNPs in HDL
reference panel) and 276,731 unrelated UKBB white British individuals remained in the
data. We simulated phenotypes (¢; and ¢,) based on the SNPs and samples in the
reference panel. In this simulation setting, ¢; and ¢, were measured on the same set of
samples (i.e. complete sample overlap).

We generated the effect sizes of SNPs by the multivariate normal distribution as in
model (2) and applied GCTA? to simulate ¢, and ¢,. PLINK®*® was then used to
perform GWAS and obtain summary statistics of simulated traits. Following the
simulation settings in Ning et al.®, we set the heritability of trait 1 and trait 2 as 0.2 and
0.4 and fixed both genetic and phenotypic correlations to be 0.5. Under this setting, all
SNPs were considered causal and had equal contributions to heritability and genetic
correlation. We also considered scenarios where the true correlation between traits was
low or the causal SNPs of traits were sparse. We repeated each simulation setting 100
times. Detailed simulation settings are summarized below.
1. The true genetic and phenotypic correlations were set to be 0.5.
2. The true genetic correlation was set to be 0.1. The covariance of non-genetic
effects (p,) was set to be 0.2.
3. The true genetic correlation was set to be 0. The covariance of non-genetic
effects (p,) was set to be 0.2.
4. 30,537 out of 305,370 SNPs (10%) were randomly selected as causal variants.
The true genetic and phenotypic correlations were set to be 0.5.

LDSC, GNOVA, and HDL were applied to the GWAS summary statistics. Using the same
simulated individual-level GWAS data, we also conducted REML by applying BOLT-
REML'® and compared its performance with the summary-statistics-based methods.
Besides simulations on quantitative traits, we also repeated settings 1 and 3 on binary
traits using a liability model. The procedure to simulate continuous liability ¥, and i, was
same as the procedure to simulate ¢, and ¢,. The observed trait is 1[y; > 7], where i =
1,2 and 7 is the 80% quantile of standard normal distribution and hence the prevalence of
the binary traits were set to be 0.2.
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Simulation settings for external reference panel with matched ancestry

As a more common case in post-GWAS analysis, GWAS genotype data and reference
panel are likely derived from different cohorts with a similar ancestry background
(external reference panel). Here, we used the overlapping SNPs between the imputed
WTCCC genotype data and the HapMap2 reference panel provided by HDL to simulate
phenotypes. We chose the HapMap2 panel of HDL because it had the largest
proportion of overlapping SNPs with the imputed WTCCC genotype data (85.43%;
657,181 overlapping SNPs out of 769,306 SNPs in the HapMap2 reference panel of
HDL) among the three reference panels available for HDL. The HapMap2 reference
panel was also used as the LD reference panel for HDL. The SNPs of the 276,731
UKBB samples in the previous section were then included in the reference panel for
LDSC and GNOVA in this section.

Samples in WTCCC were randomly divided into two subgroups each with 7,959
individuals. We denote these two subgroups as set 1 and set 2, respectively. To assess
how the performance of the competing methods is affected by sample overlap between
GWASSs, we conducted two sets of simulations for GWASs with complete sample
overlaps and no sample overlap. We fixed the heritability of ¢, and ¢, as 0.5 and the
value of genetic covariance was set to be 0, 0.1, and 0.2, respectively. The effect sizes
of the SNPs were generated according to model (2). We also conducted simulations on
spare causal SNPs where only 10% of the SNPs were randomly set to be causal SNPs.
We repeated each simulation setting 100 times. Details on simulation settings are
summarized below.

1. Complete sample overlap: ¢, and ¢, were both simulated on set 1. The

covariance of non-genetic effects on shared samples was set to be 0.2.
2. No sample overlap: we used set 1 and set 2 to simulate ¢, and ¢,, respectively.

We also simulated binary traits using the liability model described in the previous
section and compared the performance of different methods on binary traits. Next,
following the same procedure, we performed additional simulations for HDL using the
SNPs before quality control in imputed WTCCC genotype data. We only excluded
ambiguous or multiallelic SNPs. There were 769,236 overlapping SNPs out of the
769,306 SNPs (99.99%) in the HapMap2 reference panel of HDL.

Simulation settings for external reference panel with mismatched LD

We investigated the robustness of LDSC, GNOVA and HDL in the situation that the
GWAS samples are from a population distinct from the reference panel population, i.e.,
the LD patterns differ between the GWAS population and the reference panel
population. Here, we used the imputed genotype data from NFBC and MIGen to
simulate ¢, and ¢,, respectively. We still used the HapMap2 reference panel for HDL.
After qualify control, there were 745,288 (96.88% of the SNPs in the HapMap?2
reference panel of HDL) overlapping SNPs in the imputed NFBC and MIGEN genotype
data and SNPs in HapMap2 reference panel, which were taken forward to generate ¢,
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and ¢,. Similarly, the UKBB genotype data were still used as the LD reference panel for
LDSC and GNOVA.

Based on model (2), the heritability for both phenotypes was set to be 0.5 and the
genetic covariance was set to be 0, 0.1, and 0.2, respectively. We first assumed
infinitesimal model where all the SNPs were causal SNPs. Then, we generated the
phenotypes based on 10% randomly selected SNPs from all the SNPs. We compared
the performance of the competing methods on the GWASs summary data calculated
from the simulated phenotypes. Each simulation setting was repeated for 100 times. We
also compared the performance of the three methods on binary traits.

Genetic correlation estimation for phenotypes in UKBB, WTCCC and NFBC

We compared the performance of LDSC, GNOVA, and HDL on the phenotypes in
UKBB, WTCCC, and NFBC where individual-level data are available, so that we could
also compare the differences between summary-statistics-based estimators and the
more accurate REML estimator?'. The UKBB genotype data were still used as the
reference panel for the summary-statistics-based methods. Sex, age, and top 4
principal components were included as covariates to perform GWAS. We included both
quantitative and binary traits in our analyses. All methods we applied here provided
justification for applications on binary traits®.

We first applied the methods to estimate genetic correlations across 10 common
phenotypes in the UKBB where we extracted the genotype and phenotype data for
white British individuals. Note that we are using in-sample reference panel for the UKBB
phenotypes. We used the same set of SNPs included in our simulation for in-sample
reference panel to perform GWAS, which accounted for 99.30% of the SNPs in the
genotype array reference panel of HDL. The details of the phenotypes and the sample
sizes from the UKBB dataset are summarized in Supplementary Table 2.

Then we further applied the methods to estimate the genetic correlations across 12
phenotypes in WTCCC and NFBC datasets. Note that in this case we used the UKBB
genotype data as the external reference panel, which corresponds to matched LD
structure for phenotypes from WTCCC and mismatched LD structure for phenotypes
from NFBC. We note that there was no shared sample between WTCCC and NFBC.
We used the same set of SNPs included in our simulation for WTCCC and NFBC to
perform GWAS, which accounted for 99.99% and 96.88% of the SNPs in the HapMap2
reference panel of HDL, respectively. The details of the phenotypes and sample sizes
are summarized in Supplementary Table 3-4.

GWAS summary statistics of 30 complex traits

GWAS summary statistics of 29 complex traits included in our analyses are publicly
available. We obtained the summary statistics of a recent lung cancer GWAS directly
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from the authors®’. All GWASs were conducted on samples of primarily European
descent. Our choice of these traits was based on the preference for larger sample sizes
and higher SNP overlapping rates with the HDL reference panel. The HapMap3
reference panel of HDL has 1,029,876 SNPs. More than 90% of the SNPs in the HDL
reference panel also showed up in the GWASs of 26 of the 30 complex traits. Suicide
attempt (SA) had the least overlapping SNPs with the HDL reference panel (81.81%).
For fairness, the reference panel for LDSC and GNOVA was also constructed by the
1,160,014 HapMap3 SNPs in our UKBB dataset. The details about the sample sizes
and the sources of the 30 traits are given in Supplementary Table 1.

Results
Simulation results

We compared the performance of LDSC, GNOVA, and HDL on point estimation of
genetic covariance and correlation, type | error control, and statistical power. To
investigate the robustness of these methods to the choice of LD reference panel, we
performed simulations on in-sample reference panel, external reference panel with
matched LD, and external reference panel with mismatched LD. Unlike LDSC or
GNOVA, which can use customized reference panel, the software of HDL provides the
pre-calculated eigenvalues and eigenvectors of LD matrix and restricts the reference
samples to the UKBB samples. So, for fairness, the reference panel for LDSC and
GNOVA was also based on the white British individuals in UKBB. We repeated each
setting 100 times.

We first followed the simulation settings in Ning et al.®> and simulated phenotypes based
on the genotype data in the reference panel (i.e. in-sample reference panel) constructed
by the UKBB samples. A total of 99.30% of the SNPs in the HDL reference panel were
used to simulate the phenotypes. We also compared the difference between the
summary-statistics-based methods and REML®. As expected, REML outperformed all
summary-statistics-based methods even when these methods were provided with the
in-sample reference panel. Both LDSC and GNOVA provided unbiased estimates for
genetic covariance (Figure 1A) in all settings. LDSC achieved more accurate estimation
than GNOVA. By contrast, HDL overestimated genetic covariance when the true genetic
covariance was relatively high. Nevertheless, estimates of HDL had the least variance
among the summary-statistics-based methods and were more accurate under weak
genetic covariance. For genetic correlation estimation, all methods including HDL
provided unbiased estimates (Figure 1B). Due to the ratio form of genetic correlation,
the bias of HDL in genetic covariance and heritability estimation was cancelled out.
Compared with other summary-statistics-based methods, HDL showed the best
performance on genetic correlation estimation and showed the least difference with
REML. Though achieving comparable power with REML, HDL had the largest type |
error. GNOVA showed the largest variance for genetic correlation estimation and the
lowest statistical power and type | error (Supplementary Figure 1). All methods were
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robust to model misspecification where 10% SNPs were set as the causal SNPs
(Supplementary Figure 2).
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Figure 1. Comparisons of genetic covariance and correlation estimation using in-sample reference
panel. The estimates for (A) genetic covariance and (B) genetic correlation among LDSC, GNOVA, HDL
and REML are demonstrated by boxplot which shows the quantiles of the estimates. The red dashed

lines represent true values.

Next, we used the genotype data in WTCCC to generate phenotypes. The genotype
data in WTCCC were collected across the UK and should share a similar LD structure
with UKBB (external reference panel with matched LD). There were 85.43% of the
SNPs in HDL reference panel also appeared in the imputed WTCCC genotype data
after quality control, which were used to generate the phenotypes. When the two
GWASSs were simulated on the same group of samples (set 1), LDSC and GNOVA
could provide similar unbiased estimates for both genetic covariance and correlation.
HDL consistently overestimated the parameters, except for estimating genetic
correlation when the true value was relatively large (Figure 2A-B), where the bias in the
estimation of heritability and genetic covariance was cancelled out. There was severe
type | error inflation for HDL while GNOVA achieved the lowest type | error across the
competing methods and comparable power with LDSC (Supplementary Figure 3). The
bias and type | error inflation of HDL in GWAS with complete sample overlap suggested
that HDL could not distinguish genetic covariance from technical covariance. On the
other hand, when there was no overlapping sample between the two studies (set 1 and
set 2), LDSC and GNOVA still presented consistent estimates while HDL showed
biased estimates, although the variance of HDL estimator was consistently lower than
the estimators of LDSC and GNOVA (Supplementary Figure 4). No method showed
inflated type | error rate and LDSC showed the least type | error. The three methods
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showed similar statistical power (Supplementary Figure 5). The results were similar
under model misspecification (Supplementary Figure 6). We performed additional
simulations to evaluate HDL by using the imputed genotype before quality control from
WTCCC, where we only excluded ambiguous or multiallelic SNPs and kept the SNPs
overlapping with the HDL reference panel. Although 99.99% of the SNPs in the HDL
reference panel were included for the additional simulation, HDL still could not adjust for
sample overlap (Supplementary Figure 7). However, in the additional simulation, we
observed that HDL provided more accurate estimates for the parameters on GWAS
without sample overlap compared with its performance using the WTCCC SNPs after
quality control (85.43% overlapping SNPs) (Supplementary Figure 4). This indicated
that the performance of HDL can be affected by the choice of SNP set in GWAS
(Supplementary Figure 7).
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Figure 2. Comparisons of genetic covariance and correlation estimation using external reference
panel with matched LD. We compare the estimation of genetic (A) covariance and (B) correlation when
the two GWASs were simulated on the same dataset with a 100% sample overlap. The red dashed lines
represent true values.

Finally, we examined the robustness of LDSC, GNOVA and HDL to the reference panel
with mismatched LD. In practice, if the GWAS is conducted on populations without an
ideal LD reference panel, researchers might have to use mismatched reference panel
for post-GWAS analysis. We simulated ¢, for 5,402 samples from northern Finland in
NFBC and ¢, for 6,042 samples across north America and Europe in MIGen. There
were 96.88% SNPs in the HDL reference panel used to simulate the phenotypes. All
methods showed unbiased estimators for genetic covariance except the estimation of
HDL for high genetic covariance. Both LDSC and GNOVA underestimated the genetic
correlation while HDL, on the contrary, overestimated the genetic correlation (Figure 3).
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So, genetic covariance estimation was more stable than genetic correlation estimation
under mismatched LD across the three methods. The results were similar under model
misspecification (Supplementary Figure 8). All three methods showed moderate type |
error inflation and similar power (Supplementary Figure 9). Compromised by false
discovery issues, the results of summary-statistics-based methods should be cautiously
interpreted when applied to mismatched reference panel with GWAS.
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Figure 3. Comparisons of genetic covariance and correlation estimation using external reference
panel with mismatched LD. The estimates for (A) genetic covariance and (B) genetic correlation among
LDSC, GNOVA and HDL are demonstrated by boxplot which shows the quantiles of the estimates. The
red dashed lines represent true values.

All these methods can be applied to binary traits. Although the genetic covariance is
estimated on the observed scale®, the estimates for genetic correlation of binary traits
were consistent to the estimates for quantitative traits except for larger variations across
the 100 repeats in each setting (Supplementary Figures 10-12). There was a loss of
statistical power of the methods from quantitative traits to binary traits due to less
effective sample sizes (Supplementary Figures 13-16).

Application to summary statistics from UKBB, WTCCC and NFBC

We compared the performance of competing methods on GWAS with individual-level
data so that we could also implement and compare with REML. We used traits in UKBB,
WTCCC, and NFBC which can be seen as the counterparts for in-sample reference
panel, external reference panel with matched LD, and external reference panel with
mismatched LD in our simulation. We included both quantitative and binary traits in our
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analyses. For binary traits, genetic covariance estimation is on the observed scale but
there is no distinction between observed- and liability-scale genetic correlation®. In
addition, we have shown through simulations that REML also outperformed summary-
statistics-based methods in genetic correlation estimation for binary traits. Given these
considerations, since we do not know the true genetic correlation in real data, the
performance of different summary-statistics-based methods was assessed by the
difference from REML results.

We first estimated genetic correlation among 10 common traits from UKBB
(Supplementary Table 2). After Bonferroni correlation (p < 0.05/45 = 1.11e-3), 31 out
of 45 pairs were identified by REML, while LDSC, GNOVA, and HDL identified 25, 22
and 22 trait pairs, respectively (Supplementary Table 5). All the trait pairs identified as
significantly correlated by summary-statistics-based methods were also identified by
REML (Figure 4A). The estimators of LDSC, GNOVA, and HDL showed considerable
similarity with REML estimators with R square 0.99, 0.98, 0.99, respectively
(Supplementary Figure 17). We note that the absolute values of most of the genetic
correlations among the 45 trait pairs were less than 0.5, similar to the settings where
HDL outperformed LDSC and GNOVA in our simulations.

We then estimated genetic correlation across 12 traits in WTCCC and NFBC using the
external reference panel. After Bonferroni correlation (p < 0.05/66 = 7.58e-4), 10 out of
66 pairs were identified by REML, while LDSC, GNOVA, and HDL identified 3, 2 and 5
trait pairs, respectively (Supplementary Table 6). GNOVA was the most conservative
method in this analysis. We observed that all the trait pairs reported by LDSC or
GNOVA were also reported by REML. However, the genetic correlation of one trait pair,
hypertension (HT) and Crohn’s disease, which was not identified by REML (p=0.24),
was identified by HDL (p = 3.4e-4; Figure 4B). There was a caveat of false discovery
for this trait pair, because HDL failed to adjust for non-genetic covariance and suffered
from severe type | error inflation with external reference panel and complete sample
overlap in our simulation. Due to limited sample size and information loss because of
using external reference panel, less consistency with REML results was shown by the
summary-statistics-based estimators (Supplementary Figure 18). LDSC showed the
highest correlation with REML in genetic correlation estimation compared with other
methods (R square = 0.66).
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Figure 4. Trait pairs with significant genetic correlation identified by LDSC, GNOVA, HDL and
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diagram of overlapped regions in different categories. The four categories shown in the lower panel are
correlated trait pairs in (A) UKBB (in-sample reference panel) and (B) WTCCC + NFBC (external
reference panel) identified by LDSC, GNOVA, HDL, and REML.

Genetic correlation of 30 complex traits

We applied LDSC, GNOVA, and HDL to estimate genetic correlation among 30 complex
traits including neuropsychiatric disorders, immune diseases, cardiovascular diseases,
cancer, anthropometric traits, and metabolic traits for European population. We
summarized detailed information about each trait, including abbreviations and data
sources, in Supplementary Table 1. There were 126, 112, and 166 trait pairs identified
by LDSC, GNOVA, and HDL, respectively (p < 0.05/435 = 1.15e-4; Supplementary
Figure 19 and Supplementary Table 7). 104 trait pairs were identified by all three
methods and 42 trait pairs were exclusively identified by HDL (Supplementary Figure
20). The point estimates for genetic correlation showed consistency across three
methods (Figure 5). The estimates of LDSC and GNOVA were more similar to each
other compared with HDL (R square = 0.91). Three trait pairs, including body mass
index (BMI) and Hemoglobin A1(C) (HBA1C), coronary artery disease (CAD) and
HBA1C, and type-Il diabetes (T2D) and HBA1C, showed high genetic correlation
estimation across the three methods were identified as significantly correlated by LDSC
and GNOVA but were not identified by HDL (Figure 5B-C and Supplementary Figure
21). HBA1C measures the long-term blood glucose concentrations and has been widely
used as a diagnostic test for T2D%3°. The positive associations between HBA1C and
CAD has long been observed in epidemiological studies*®. A recent Mendelian
Randomization analysis further confirmed the causal role of HBA1C in developing
CAD*'. Obesity (BMI) is also known to be correlated with poor control of HBA1C and
T2D*2.
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Figure 5. Comparisons of point estimates of genetic correlation among LDSC, GNOVA, and HDL.
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Discussion

Owing to increasingly accessible GWAS summary statistics and advances in statistical
methods, genetic correlation estimation has become a routine procedure in post-GWAS
analyses. The statistical challenges of summary-statistics-based methods are mainly
reflected in two technical issues: (1) extensive LD between SNPs; and (2) pervasive
sample overlap across GWASs. The utility of a method is largely determined by the
ability to adjust for LD and overlapping samples. Through a plethora of simulations and
real data applications, we have demonstrated that LDSC and GNOVA were more
similar methods and robust to LD and sample overlap compared with HDL.

Because GWAS summary statistics are constructed by marginal regression statistics,
LD between SNPs is embraced in the covariance of marginal effect sizes which impede
us from directly estimating genetic correlation by calculating the correlation between
marginal effect sizes. When only GWAS summary statistics are available, we still need
additional individual-level genotype data as the reference panel to adjust for LD even for
summary-statistics-based methods. So, the choice of reference panel is central to their
performances. We used different types of reference panel, including in-sample
reference panel and external reference panel with or without matched LD to investigate
the influence of reference panel. For in-sample reference panel, GWAS and reference
samples are from the same samples where the information loss of summary-statistics-
based methods is minimal. However, we demonstrated that REML was actually a better
choice for both quantitative and binary traits when individual-level phenotype and
genotype data in GWAS are available if computational efficiency is not a concern. For
external reference panel with matched LD, GWAS and reference samples are
independent but share the same LD structure, i.e. are from the same population. For
example, UKBB genotype data can be used as matched reference panel for GWAS
performed on white British individuals. In practice, this is the most common case that
the access to individual information from GWAS dataset is limited due to logistical
challenges in data sharing. For reference panel with mismatched LD, GWAS and
reference samples are from different populations. This can happen when the GWASs
are conducted on minority population which may not have corresponding reference
panel. To estimate genetic correlation, researchers have to use the reference panel
from another population with similar LD structure which might lead to bias in the
estimation of LD scores.

Two GWASSs often share a subset of samples especially for meta-analyses. For
example, part of the control samples of Grove et al.*? for autism spectrum disorder
(ASD) and Demontis et al.** for attention deficit/hyperactivity disorder (ADHD) were
collected on the same cohort from Denmark by the Lundbeck Foundation Initiative for
Integrative Psychiatric Research*® (iPSYCH). The exact number of overlapping sample
sizes is often unavailable for large GWAS meta-analyses. We compared the
performance of LDSC, GNOVA, and HDL on GWAS summary data with or without
sample overlap to assess their ability to distinguish genetic correlation from non-genetic
correlation.
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LDSC and GNOVA can provide unbiased estimation for genetic covariance across all
the simulation settings, except for in-sample reference panel where the estimates of
GNOVA were sub-optimal. Overall, LDSC and GNOVA had similar performance. Both
methods presented relatively consistent estimators with REML when applied to real
GWAS data. On the other hand, HDL is sensitive to the choice of the reference panel
because HDL used more information from the LD matrix to implement MLE® but the
procedure to select eigenvalues and eigenvectors of the LD matrix did not consider
potential departure from the LD matrix in the GWAS data to be analyzed. Hence the
results were not robust. Genetic covariance estimation of HDL was biased in most
settings. The only setting in our simulation where HDL could provide unbiased estimator
of genetic covariance was that 99.99% of the SNPs in the reference panel of HDL were
included in the two GWAS without any sample overlap. Due to the ratio form, the
genetic correlation estimation of HDL was more reliable than genetic covariance
estimation and outperformed LDSC and GNOVA with in-sample reference panel.
However, when applied on external reference panel, the genetic correlation estimation
of HDL was unstable and had type | error inflation in simulations. For computational
reasons, the software of HDL restricted the users to three reference panels but the
method is not robust to the SNP set in GWAS. Therefore, in real data applications, we
caution the users for potential false discovery of HDL especially for GWASs with
overlapping samples. There was also significant deterioration of performance when the
SNPs in GWAS decreased from 99.99% to 85.43% of the SNPs in the refence panel. In
comparison, there is more flexibility of choosing the reference panel for LDSC and
GNOVA by the users. None of the methods worked well for genetic correlation
estimation under a mismatched reference panel. Therefore, it is always crucial to have
an appropriate reference panel for summary-statistics-based methods. However,
genetic covariance can be a more robust quantity to estimate with a mismatched
reference panel compared with genetic correlation. Simulations under model
misspecifications showed that all the methods were robust to sparsity of causal SNPs.

In summary, we have evaluated three summary-statistics-based genetic correlation
estimation methods using simulations and real data applications. We compared the
robustness of the methods to LD estimation and sample overlap. However, our study
has several limitations. First, genome-wide genetic correlation only reflects the average
concordance of genetic effects across the genome and often fails to reveal the stratified,
heterogenous pleiotropic effects, especially when the underlying genetic basis involves
multiple etiologic pathways's. Second, Speed et at.'® introduced a statistical framework
to estimate heritability where allelic effects are function of LD and MAF. However, we
restricted the methods compared in this paper established on model (2). It is possible
that a more general model can also improve genetic correlation estimation. Third, there
is no gold standard to compare the methods in real data application as the true genetic
correlation between trait pairs is unknown. Downstream analyses of genetic correlation
estimation such as multi-trait association mapping??, genomic structural equation
modeling?® (GenomicSEM) and Mendelian randomization®”?8 might help assess the
performance of these methods in real data applications.
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