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Abstract.

Multi-parent populations (MPPs), genetically segregating model systems derived from two or more inbred founder
strains, are widely used in biomedical and agricultural research. Gene expression profiling by direct RNA sequencing
(RNA-Seq) is commonly applied to MPPs to investigate gene expression regulation and to identify candidate genes. In
genetically diverse populations, including most MPPs, quantification of gene expression is improved when the RNA-
Seq reads are aligned to individualized transcriptomes that incorporate known polymorphic loci. However, the process
of constructing and analyzing individual genomes can be computationally demanding and error prone. We propose
a new approach, genome reconstruction by RNA-Seq (GBRS), that relies on simultaneous alignment of RNA-Seq
reads to the founder strain transcriptomes. GBRS can reconstruct the diploid genome of each individual and quantify
both total and allele-specific gene expression. We demonstrate that GBRS performs as well as methods that rely on
high-density genotyping arrays to reconstruct the founder haplotype mosaic of MPP individuals. Using GBRS in
addition to other genotyping methods provides quality control for detecting sample mix-ups and improves power to
detect expression quantitative trait loci. GBRS software is freely available at https://github.com/churchill-lab/gbrs.
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INTRODUCTION

RNA sequencing (RNA-Seq) has revolutionized our understanding of gene expression in whole
tissues and in single cells [Stark et al., 2019]. While generally used for quantifying transcript abun-
dance, RNA-Seq data can also identify single nucleotide polymorphisms (SNPs) and small inser-
tion and deletions (indels) in the transcribed portion of the genome [Piskol et al., 2013]. Recent de-
velopments in analysis of RNA-Seq data have enabled detection of spontaneous mutations [Miller
et al., 2013], RNA editing events [Gu et al., 2016], and allele-specific expression [Wittkopp et al.,
2004]. Here we examine the potential for using RNA-Seq data for genotype reconstruction and

improved quantification of gene expression in multi-parent populations (MPPs).
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In typical RNA-Seq analysis, transcript abundance is quantified by counting reads that align
to a reference genome-based transcriptome index [Ferragina and Manzini, 2000]. Alignment al-
gorithms make allowance for mismatches due to sequencing errors and polymorphisms that result
in differences between the sample RNA and the reference transcript sequences. Nonetheless, re-
liance on a reference genome can lead to biases in gene expression quantification [Degner et al.,
2009]. Reference bias can be minimized when RNA-Seq reads are aligned to a transcriptome in-
dex that incorporates genetic variants that are expected to be present in the sample RNA. We have
previously shown that alignment to individualized transcriptomes substantially improves expres-
sion quantitative trait locus (eQTL) mapping [Munger et al., 2014]. This approach requires prior
knowledge of the individual genomes, obtained either by whole genome sequencing or by geno-
typing and imputation; it requires the construction of alignment indices for every sample; and it
may be error prone when knowledge of sequence variants in individuals is uncertain.

MPPs are model organism genetic reference populations descendant from two or more inbred
founder strains [de Koning and MclIntyre, 2017]. The genome of each individual in a MPP is com-
posed of a mosaic of founder strain genome segments. For many MPPs, whole genome sequences
of the founder strains have been assembled. Individuals from a MPP can be genetically charac-
terized with genotyping arrays [Morgan et al., 2016] or short-read DNA sequencing [Parker et al.,
2016] to detect known founder strain variants and the genome mosaic can be reconstructed using
a Markov model (HMM) to process the variant call data [Gatti et al., 2014, Broman et al., 2019].
The full (diploid) genome sequence of a MPP individual can then be inferred by imputation of
variants onto the founder haplotype blocks of the mosaic MPP genome [Munger et al., 2014].

In any given tissue, thousands of expressed genes are distributed across the genome. Therefore,
variants that are detected by RNA-Seq could replace genotyping arrays. However, it is not immedi-
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ately clear if RNA-Seq data capture sufficient information to support accurate genome reconstruc-
tion. Direct approaches based on variant calling from RNA-Seq reads require deep sequencing
coverage (Lopez-Maestre et al., 2016 NAR) and may not be reliable, especially for genes with low
expression. Also, the distribution of expressed genes may not be sufficiently dense or uniform to
accurately reconstruct haplotypes in some regions.

We propose a novel solution to the challenges of quantifying RNA-Seq data from MPP samples.
Instead of building a diploid alignment index for each individual in a MPP, we use a single multi-
way alignment index that represents the combined transcriptomes of the MPP founder strains. We
align RNA-Seq reads to the multi-way index and apply a generalized version of our allele-specific
quantification algorithm EMASE [Raghupathy et al., 2018] to allocate read counts to each of the
founder haplotypes. We avoid direct variant calling and instead use information in the pattern
of haplotype-specific read counts. Individual genes may not have sufficient sequence variation to
uniquely identify a haplotype. Therefore, we apply a Hidden Markov Model (HMM) that combines
information across neighboring genes to reconstruct the diploid mosaic genome for each MPP
individual. We demonstrate that the information in RNA-Seq data is sufficient to compute accurate
haplotype reconstructions. The procedure is implemented in an open-source Python package, GBRS

(Genome reconstruction By RNA-Seq), available at https://churchill-lab.github.io/gbrs/.

METHODS

Overview of GBRS algorithm

The objectives of GBRS are 1) to reconstruct the founder haplotype mosaic of MPP individuals
directly from RNA-Seq data and 2) to quantify total and allele-specific gene expression based

on individual MPP genomes. The importance of using an individual genome or transcriptome
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to quantify RNA-Seq data has been demonstrated [Munger et al., 2014] but the construction of
individual alignment indices is computationally demanding and potentially error prone. Instead,
GBRS employs a single alignment index built with the combined predicted transcript sequences of
the MPP founder strains. We hypothesized that simultaneous alignment of RNA-Seq reads to the
full set of founder transcripts would provide enough information to resolve local haplotypes. The
variants present in any single gene may not uniquely resolve the full set of founder haplotypes but
GBRS combines information across neighboring genes using a Hidden Markov Model (HMM) to
achieve full resolution and accurate estimates of the haplotype mosaic structure of individual MPP
samples.

The GBRS process starts by training the HMM using RNA-Seq data obtained from the founder
strains. For each founder strain sample, we align RNA-Seq reads to a multi-way alignment index
including the full set of predicted founder transcripts. Many reads will align identically to multiple
founder transcripts depending on which polymorphic loci are spanned by the read. We then ap-
ply an extension of the allele-specific weighted allocation algorithm EMASE [Raghupathy et al.,
2018] to reapportion the ambiguous alignments across the founder haplotypes and obtain estimated
expected read counts for each gene. RNA-Seq reads from each founder strain sample will display
a characteristic distribution of expected read counts that we refer to as the founder profile of the
gene (Figure 1). For the DO mice, which have eight founder strains (here denoted as A, B, C,
-+, H), the founder profiles can be represented as a matrix with eight rows, each corresponding to
RNA-Seq data from a founder strain, and eight columns, each corresponding to a founder strain-
specific gene transcript. The rows of the matrix are proportions that sum to one. For a gene with
polymorphisms that uniquely identify a given founder strain, the founder profile will take a value
approaching 1.0 on the corresponding diagonal element. For a gene that lacks sufficient polymor-
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phisms to uniquely identify a founder strain, the weighted allocation of reads from that founder
may be distributed across multiple founder transcripts.

The founder profiles depend only on the predicted transcript sequences and the RNA-Seq reads
obtained from the founder strain samples. Thus, the same profile will be reproduced in weighted
allocation of reads from an MPP individual that is homozygous for the founder haplotype at a gene.
This will be true even if the founder strain transcript is not accurate. In the case of heterozygosity,
the weighted allocation of reads will represent a mixture of two founder haplotypes. This is how
GBRS identifies the founder haplotype of origin at a gene in an uncharacterized sample from an
MPP individual. The use of read alignment proportions distinguishes GBRS from other sequencing-

based genotyping methods that rely on accurate variant calling.

[Figure 1 about here.]

The first step in GBRS analysis of an individual MPP sample is to align the RNA-Seq reads
to the multi-way alignment index and compute the sample profiles — the proportions of reads
that are allocated to each founder haplotype at each gene (Figure 2a). The sample profiles are
the input data for the HMM. We then estimate the genotype states using the forward-backward
algorithm [Rabiner, 1989]. The emission model of the HMM compares the MPP sample profile to
each of the founder profiles including the heterozygote profiles, which we assume to be an equal
mixture of two founder profiles. The transition matrix of the HMM is derived from genetic map
distances between genes [Broman, 2012] (Figure 2b). The HMM combines information across
neighboring genes to resolve genes for which the founder profiles are not fully informative. The
forward-backward algorithm computes the marginal posterior probabilities for the hidden genotype

states at each gene, which accounts for uncertainty in the estimated genotypes. For the DO mice,
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there are 36 possible genotype states. The 36-state genotype probabilities can be collapsed to 8-
state haplotype dosages [Gatti et al., 2014] for quantitative trait locus (QTL) mapping and other
applications.

In order to quantify the allele-specific and total gene expression of each gene in a MPP sample,
we apply a Viterbi algorithm [Viterbi, 1967] to the genotype probabilities to obtain a maximum-
probability reconstruction of the diploid founder mosaic that constitutes the individual MPP genome
(Figure 2c). The Viterbi algorithm selects a single ‘best’ genotype state at each gene. We use the
Viterbi reconstruction to reduce the allowable set of read alignments from all founder transcripts
to just two and repeat the weighted allocation of the RNA-Seq reads to obtain estimated expected
counts of allele-specific expression [Raghupathy et al., 2018] (Figure 2d). This step does not re-

quire re-alignment of the RNA-Seq reads, so it is very fast.

[Figure 2 about here.]

Data

We obtained RNA-Seq data on liver tissue samples from 16 mice (8 male and 8 female) from each
of the eight Diversity Outbred (DO) founder strains, 128 mice in total. We also obtained RNA-
Seq data on liver tissue samples from 482 DO mice including equal numbers of male and female
animals from breeding generations 4 to 11 (G4~G11) [Svenson et al., 2012]. We obtained single-
ended sequence data on a HiSeq2000 [Illumina] producing 100 bp reads at a depth of 20M reads
per sample. In addition, we obtained RNA-Seq data on striatum tissue samples from 416 DO mice
including mice of both sexes spanning generations G21, G22 and G23 [Philip et al, in preparation].
Libraries were pooled and sequenced 100 bp paired end to a depth of 50M reads each on a HiSeq

2500 [Illumina].
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The DO mice were genotyped with three different versions of the mouse universal genotyping
array (MUGA) [Geneseek, Lincoln, NE]. We obtained genotypes for 282 mice from the liver study
on the original MUGA array with ~7,500 marker loci. The remaining 200 mice were genotyped
on the MegaMUGA array with ~77,800 markers. All 416 mice from the striatum study were

genotyped on the GigaMUGA array with ~150,000 markers.

Building a multi-way alignment index

We create custom genomes of the founder strains by introducing strain-specific SNPs and short in-
dels (Mouse Genome Project [Keane et al., 2011] release v5 available at ftp://ftp-mouse.sanger.
ac.uk/REL-1505-SNPs_Indels/) to the reference genome (Genome Reference Consortium Mouse
Build 38 available at http:/ftp.ensembl.org/pub/release-84/fasta/mus_musculus/dna/) using
g2gtools (http://churchill-lab.github.io/g2gtools). We adjust the coordinates of the reference
gene annotation (Ensembl Release 84 [Yates et al., 2015] available at http://ftp.ensembl.org/pub/
release-84/gtf/mus_musculus/) and extract strain-specific transcripts with g2gtools. We ap-
pend the founder strain code (e.g., A, B, C, - - -, H for A/J, C57BL/6J, 129S1/SvimJ, NOD/Shil.tJ,
NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/E1J, respectively) to each transcript ID; collate the
founder transcript sequences in a single fasta file; add 99 bp-long poly-A tail; and then run
bowtie-build command to build a multi-way alignment index representing transcript sequences

from the eight founder strains of the DO.

Estimating an alignment profile for each founder and MPP individual

We align RNA-seq data from each of the founders and from the MPP individuals to the multi-way

alignment index using bowtiel v1.0.0 with ’all’, ’best’, and ’strata’ options. Many reads
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map to multiple haplotypes of a gene and they may also align to multiple genes. For the DO mouse
data, we find that only ~2% of the reads uniquely align to a single founder transcript. In order to
count the reads, we transform the raw alignment counts to a vector of estimated expected counts
using a straightforward extension of our expectation maximization for allele-specific expression
(EMASE) algorithm [Raghupathy et al., 2018].

From the multi-way alignment of the founder liver RNA-Seq reads, we detected expression of
12,415 genes after filtering out genes that had mean abundance below 1 TPM. Then we convert
the expected counts to proportions — the founder profile — which indicates how specifically reads
from a founder strain align to their own predicted transcript and to transcripts of the other founder
strains. The more the variants that distinguish a founder haplotype, the more specific the founder
profile will be. We construct alignment profiles for heterozygous genotypes, assuming there is
no imbalance in allelic expression, as the equally weighted average of the corresponding founder
profiles.

Similarly, we obtain sample profiles for every expressed gene from a multi-way alignment
of an MPP individual. In the liver samples we detected expression of 12297.9 + 423.0 genes
and in the striatum samples we detected 18812.7 £ 328.4 genes after filtering genes with average
expression below 1 TPM. There were 11293.1 £ 177.7 and 10517.4 4 68.2 genes that overlap with
the founder profile data in the liver and striatum samples, respectively. Although the striatum data
was generated in higher depth of coverage, it had less number of genes that are common with the

founder profile data because they are different tissue type.
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Estimating genotype probabilities using Hidden Markov Model

GBRS uses a Hidden Markov Model (HMM) to estimate the genotype of an individual MPP sample
given the sample profiles across the expressed genes, Y = {yl, e Y, ,yT}, as observation.
The HMM has two components: emission model and transition model. The emission model de-
scribes the probability distribution of a sample profile (y;) for a given genotype state (s;) at a gene
locus t. The founder profile (z; 4) defines the center of the emission probability distribution. We

have implemented a simple emission probability model based on multivariate normal distribution.

1
P<yt|5t = 9) X exp{ - W(yt - It,g) (yt - It,g)T} (D

where 02 is a tuning parameter that we set to 0.12, a value that approximates the theoretically
expected number of recombination events [Gatti et al., 2014].

The transition model describes how the genotype states can change across the intervals between
each pair of genes on a chromosome. The transition probability, P (st‘st_l), is a function of
the breeding generation and the distance between neighboring gene loci ¢-1 and ¢. We compute
the theoretical transition probability according to [Broman, 2006, Broman, 2012] using genetic
distances between the start sites of neighboring genes. We obtained the transition probabilities for
each breeding generation of DO mice using DOQTL [Gatti et al., 2014] version 1.0.0.

We use these pre-computed emission and transition probabilities in our HMM. This enables us
to process each MPP individual independently. In addition, we can compute the posterior proba-
bility of genotype state on each gene locus, P(st|Y), with a one-time execution of the forward-
backward algorithm [Rabiner, 1989]. The probabilistic representation of genotypes enables us to

incorporate uncertainty in our genotype calls into the downstream analyses, such as QTL mapping.
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Estimating diploid allele-specific expression

Once we have the genotype probabilities at every expressed gene, we can compute the the most
probable path for s, so, - - - , s using a Viterbi algorithm [ Viterbi, 1967].

In order to estimate allele-specific expression in each MPP individual, we mask elements of
the multi-way alignment incidence profile that are inconsistent with the Viterbi genotype calls and
reallocate read counts by running EMASE algorithm once more on this diploid alignment incidence

matrix. This ensures that the allele-specific counts reflect the most probable diploid MPP genome.

Combining genotype probabilities estimated with GBRS and genotyping arrays

Genotype probabilities obtained with GBRS are consistent with and contain additional information
compared to genotyping arrays. GBRS contains information about the haplotypes at expressed
genes whereas genotyping arrays provide information in gene sparse regions. It is straightforward

to combine posterior genotype probabilities, P; and P, with the following formula:

_ Pl(sT = g‘Y)PQ(sT = g’Y)
> Pilse =g V) Pals- = g|Y)

g

(2)

where 7 is any locus on the genome. Note P; (ST‘Y) and P, (ST‘Y) are interpolated genotype

probabilities between two markers flanking 7.

eQTL analysis

We applied GBRS to RNA-seq data from liver samples of 482 Diversity Outbred (DO) mice, as
well as striatum samples of 369 DO mice. We genotyped 282 DO liver samples with the Mouse

Universal Geotyping Array (MUGA) and 200 DO liver samples on the MegaMUGA [GeneSeek,
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Lincoln, NE]. All DO striatum samples were genotyped on the GigaMUGA. Low-quality samples
with a high percent missing genotypes were removed, leaving 275, 184 and 358 DO mice with
MUGA, MegaMUGA and GigaMUGA genotypes, respectively. The founder haplotypes of these
DO mice were inferred using a HMM [K. W. Broman, 2009] implemented in the R/qtl2 package
(https://doi.org/10.1534/genetics.118.301595). To facilitate comparisons across genotyping
platforms and with GBRS, we interpolated the genotytpe probabilities onto an evenly-spaced grid
of 69,005 markers.

We examined the agreement of haplotype reconstructions between the genotyping array and
GBRS using the Pearson correlation between each pair of samples. We assumed that a sample was
mismatched if the correlation of the array sample with the same sample ID in the RNA-seq data fell
below 0.6. For each mismatched sample, we then searched for the correct match in the RNA-seq
samples with higher correlation (r > 0.6).

We mapped eQTL, using gene-level expected read counts estimated using GBRS. Genes with
median of count value > 1 were included in the eQTL analysis. Raw counts in each sample were
normalized with the variance-stabilizing transformation (VST) in the DESeq2 R package [Love
et al., 2014]. A linear mixed model with sex, diet and generation as additive covariates and a
random polygenic term to account for genetic relatedness was fit at each genotype locus using qt12
R package. Significance thresholds were established by performing 1,000 permutations and fitting
an extreme value distribution to the maximum LOD scores [Dudbridge and Koeleman, 2004].
Permutation derived P-values were then converted to g-values with the gvalue R package [Storey
et al., 2020], using the bootstrap method to estimate 7, and the default \ tuning parameters [Storey
et al., 2004]. The significance threshold for declaring a QTL was set at a genome-wide significance

level of FDR =5%.
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RESULTS

GBRS produces accurate haplotype reconstructions

The genotype probabilities (with dimensions samplesx markers x genotypes) are used for QTL
mapping, variant imputation, and other genetic analyses of MPP populations [Broman et al., 2019].
The genotype probabilities, which sum to one across genotypes for each sample and marker, cap-
ture uncertainty in our estimation of the haplotype mosaic of MPP genomes. We compared GBRS
genotype probabilities to the array-based genotype probabilities for our DO datasets. We first
collapsed the 36-state genotype probabilities to 8-state haplotype dosages as described by [Gatti
et al., 2014]. In order to make direct comparison between GBRS and array platforms with differ-
ent marker densities, we interpolated the genotype probabilities onto a common grid of 69,005
pseudo-marker locations with approximately equal spacing in genetic map units across the mouse
genome. We then computed Pearson correlations between GBRS haplotype probabilities and the
corresponding array-based probabilities. We found that ~90% of samples had Pearson correlation
r > 0.8 (Figure 3). The median correlation coefficient was 0.876, 0.862 and 0.834 between GBRS
and the MUGA, MegaMUGA, and GigaMUGA arrays respectively. Importantly, we identified 29

MUGA, 21 MegaMUGA, and 39 GigaMUGA samples that have correlations near zero.

[Figure 3 about here.]

GBRS can identify and correct sample mix-ups

In studies that generate large numbers of tissue samples for multiple assays, one should always
keep in mind the possibility of sample mix-ups [Broman et al., 2015]. In our comparison of

GBRS haplotype reconstructions, derived from tissue samples collected for RNA analysis, and the
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MUGA reconstructions, derived from tail-tip samples collected for DNA analysis, we identified
89 individuals (~10% of animals in these studies) with discordant results. While disconcerting,
these errors are easy to identify and to resolve. For each of the 89 samples, we compared the
GBRS genotypes to each of the the array-based genotypes within the same experimental cohorts
(Table 1). This comparison revealed a one-to-one correspondence for 63 of the samples that were
involved in pairwise sample swaps. An additional 5 samples were resolved as 3- or 4-way sample
swaps. We found 17 of the RNA samples to be duplicates and 4 samples could not be identified.
Some additional work was required to determine if the handling errors occurred among the RNA
samples or the DNA samples. All of the sample mix-ups reported here were determined to be due

to plating errors in the DNA samples and were corrected.

[Table 1 about here.]

GBRS accurately detects recombination events

Haplotype reconstruction of MPP individuals identifies the locations of recombination events that
have accumulated since derivation of the population from the founder inbred strains as well as
the founder strain origins of the flanking intervals (Figure 4). In an outbreeding MPP such as
the DO, recombination breakpoints accumulate at a predictable linear rate with each breeding

generation [Gatti et al., 2014].

[Figure 4 about here.]

We assessed whether GBRS could detect recombination breakpoints with the same sensitivity
as the MUGA genotyping arrays (Figure 5). We estimated the number of recombination break-
points for each sample using Viterbi paths through the HMM for GBRS and MUGA data (Meth-
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ods). Compared to the low-density MUGA array, applied to DO mice from generations G4, G5,
and G7, we found that GBRS is more sensitive, detecting on average 36.5% more breakpoints.
Compared to the MegaMUGA array on mice from generation G4, G7, and G11, GBRS detected
3.8% more recombination breakpoints and, in comparison to the highest density GigaMUGA ar-
ray on striatum samples from generations G21, G22, and G23, GBRS detected on average, 0.06%
fewer breakpoints. We conclude that GBRS reconstructions have sensitivity comparable to the high
density (150k markers) GigaMUGA platform. This implies that the number and positional distri-
bution of expressed genes are sufficient to detect most of the recombination events in DO mice

from these outbreeding generations.

[Figure 5 about here.]

GBRS increases the power of expression QTL mapping

Thousands of genes have expression levels that are influenced by genetic variation at or near the
location of their coding sequences [Chick et al., 2016, Aguet et al., 2017]. These associations can
be identified by mapping local gene expression QTL (eQTL), which are prevalent and generally
stronger than eQTL that map to distant loci. Incorrect genotypes are likely to reduce the apparent
effect of a local eQTL. Therefore, if the genotype probabilities that we use for eQTL mapping are
more accurate, the association between eQTL genotype and gene expression should be stronger. In
order to assess the mapping quality of GBRS genotypes relative to array-based genotypes, we first
performed a full eQTL analysis with genotype probabilities obtained from GBRS and genotyping
arrays. We then compared the magnitude of LOD scores from GBRS with MUGA, MegaMUGA,
and GigaMUGA arrays for all eQTL peaks, local and distal (Figure 6, 7, and 8). When we use
the original sample labels without fixing the sample mix-ups, we find that 6998, 5257, and 9682
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genes have higher LOD scores and that 465, 520, and 856 genes have lower LOD scores using
GBRS in comparison to MUGA, MegaMUGA, and GigaMUGA, respectively for the local eQTL
(Figure 6a, 7a, and 8a). Similarly, for the distal eQTL, we find that 3158, 3605, and 3581 genes
have higher LOD scores and that 997, 836, and 1015 genes have lower scores using GBRS com-
pared to MUGA, MegaMUGA, and GigaMUGA, respectively (Figure 6b, 7b, and 8b). After we
identify and correct sample mix-ups, we find that 5910, 3673, and 8051 genes have higher LOD
scores and that 1662, 2238, and 2680 genes have lower LOD scores using GBRS in comparison to
MUGA, MegaMUGA, and GigaMUGA, respectively for the local eQTL (Figure 6¢c, 7c, and 8c).
For the distal eQTL, we find that 2843, 3341, and 3796 genes have higher LOD scores and that
2152, 3435, and 2016 genes have lower scores using GBRS compared to MUGA, MegaMUGA, and
GigaMUGA, respectively (Figure 6d, 7d, and 8d). Correcting sample mix-ups improved the LOD
score 23.1%, 25.3%, 19.5% for local and 11.1%, 11.1%, 9.5% for distal eQTL in MUGA, Mega-
MUGA and GigaMUGA, respectively. This shows the importance of identifying and correcting
sample mix-ups before mapping analysis. We still find the GBRS genotype probabilities improve
both the local and distal eQTL even after the removal of sample swaps. Overall, the local eQTL
show greater improvements but distal eQTL results are also as good or better with the GBRS geno-
type probabilities. We note that the overall improvement in LOD scores of both local and distal
QTL is greater in the MUGA and GigaMUGA comparisons. MegaMUGA delivered LOD scores

similar to GBRS for the dataset we examined.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]
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Combined estimation of genotype probabilities

Genotyping arrays have the advantages of a relatively even distribution of markers across the
genome and higher density of coverage. GBRS uses genotyping information at expressed genes
which are unevenly distributed and less dense than the most recent versions of the MUGA array.
On the other hand GBRS markers are concentrated in some of the most important functional re-
gions of the genome - coding regions. We hypothesized that combining genotype probabilities
would draw on the strengths of both approaches. We evaluated the mapping results from geno-
type probability that combines GBRS and each genotyping array by comparing its LOD scores with
GBRS-based results. For the local eQTL, we find that 5499, 3871, and 7068 genes have higher
LOD scores and that 1990, 1925, and 3228 genes have lower LOD scores using GBRS in compar-
ison to GBRS combined with MUGA, MegaMUGA, and GigaMUGA, respectively (Figure 6e, 7e,
and 8e). For the distal eQTL, we find that 3164, 3258, and 3259 genes have higher LOD scores and
that 2077, 1779, and 2894 genes have lower scores using GBRS compared to GBRS combined with
MUGA, MegaMUGA, and GigaMUGA, respectively 6f, 7f, and 8f). On average, GBRS performed
better than the combined genotype probabilities. It appears that GBRS offers genome coverage suf-
ficient to identify most recombination events for the current outbreeding generations of the DO. It
is puzzling that combining genotype probabilities did yield improved eQTL mapping, especially
for distal eQTL. It would be worthwhile to look at the power of combined genotypes in other

MPPs, especially those with a higher density of recombination events.

DISCUSSION

GBRS reconstructs the individual genomes of MPP individuals directly from RNA-Seq data and

simultaneously quantifies total and allele-specific gene expression. It uses the weighted allocation

16


https://doi.org/10.1101/2020.10.11.335323
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.11.335323; this version posted November 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of reads aligned to a multi-way index of predicted founder transcripts to characterize the genotype
at each expressed gene locus. Unlike other genotyping strategies that use sequencing data, GBRS
does not rely on variant calling. GBRS can deliver the advantages of aligning RNA-Seq reads to in-
dividual genomes [Munger et al., 2014] without the need to construct a large number of individual
alignment indices.

The HMM component of GBRS, can be trained using RNA-Seq data obtained from founder
strain tissues to estimate a founder profile at each gene. The founder profile is compared to sample
profiles of MPP individuals to determine the founder strain genotypes. Variants in the predicted
transcript sequences of any given gene may not fully resolve the founder haplotypes but application
of a forward-backward algorithm effectively borrows information from nearby genes to improve
resolution. The founder profiles depend only on the predicted transcript sequences and therefore,
are agnostic to experimental conditions and tissue type(s) in the training data — although it is de-
sirable to obtain the highest possible representation of genes. Highly expressed genes will provide
the most precise founder profiles, but deep sequencing of multiple tissues will ensure broad and
accurate profiles for most genes. In the work presented here, we trained a GBRS HMM for DO
mice with a single training set from liver tissue samples. Recently we have expanded the training
set to include multiple tissues (see Data and Software Availability).

We obtained training data from inbred founder strain tissue samples, but we were able to apply
GBRS to outbred samples by approximating the profiles for heterozygous genotypes as an equal
mixture of the corresponding (homozygous) founder profiles. While this does not account for the
possibility of allelic imbalance or non-allelic expression, we demonstrated that for DO mice, which
are ~85% heterozygous with respect to founder strain haplotypes, this approximation works well.

It would be possible to include F1 hybrids in the training data but the number of combinations
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required may be prohibitive. Alternatively, the HMM could be trained using the Baum-Welch
algorithm [Baum, 1972] directly on the individual MPP sample data. We have not tested this
strategy but expect that, in the absence of other training data, with carefully chosen initial values
of the emission distribution parameters, this would be an effective method to train the HMM.

In our past experience, HMMs for genotype reconstruction are fairly robust to the magnitude
of the transition probabilities. However, high transition rates can result in ‘choppy’ genome recon-
structions with clusters of presumably false positive recombination breakpoints. Low transition
rates could result in ‘smoothing over’ of small haplotype segments. On the whole results are best
when the emission models are accurate and the gene/marker loci are dense relative to the expected
rate of recombination breakpoints. GBRS may not perform well across genomic regions in which
expressed genes are sparse. This could result in missing recombination events especially in distal
regions of chromosome that lack support from neighboring gene-rich regions on one side.

Our evaluation of GBRS using eQTL mapping examines traits (gene expression) that are asso-
ciated with the same expressed genes that we use as marker loci. This choice of evaluation data
may be biased in favor of GBRS, and therefore, improvement in local eQTL LOD scores might be
expected when using GBRS because the local genotypes are inferred directly from nearby gene
expression. However, GBRS also outperforms the genotyping arrays at distal eQTL.

The current implementation of GBRS treats whole genes as units and the model does not account
for recombination breakpoints within a gene. One solution to alleviate this would be to estimate
genotype probabilities at the level of individual exons. In cases where recombination breakpoints
do occur within a gene (or exon) the marginal genotype probabilities from the HMM will reflect
uncertainty and will be more influenced by the genotypes at flanking genes.

We have demonstrated that GBRS as a stand-alone genotyping strategy can perform well in
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comparison to genotyping arrays. However, GBRS precision is limited by the numbers of expressed
genes in both the training and target samples — which is usually on the order of ~10,000 — and the
distribution of genes can be uneven across the genome. As the DO mice, and other outbred MPPs
evolve, the density of recombination breakpoints will increase but the gene density and distribution
does not. Perhaps, the most compelling use for GBRS is for quality control to detect and correct
sample mix-ups. In cases where array or sequence-based genotyping has failed, GBRS provides
a suitable replacement for the missing sample genotypes. When GBRS is applied in conjunction
with another method of estimating genotype probabilities the results can be combined to improve
the precision of either method alone. For these reasons we still advise the use of genotyping arrays
or DNA sequenced based genotyping.

We have recently adapted GBRS to work with other types of sequencing data and see potential
for applications to low-coverage DNA-Seq, ChIP-Seq, ATAC-Seq, and Hi-C. Of note, we have
applied GBRS successfully to single-cell RNA-Seq deconvolute cells from sample mixtures and
to reconstruct the individual genomes of each sample. The current implementation of GBRS is
tailored to work with DO, Collaborative Cross and related mouse MPPs. We want to encourage
and support the development of GBRS for applications to MPPs derived in other model systems

through open-source software development platforms.

DATA AVAILABILITY

The founder mice liver RNA-Seq data is available at the Gene Expression Omnibus (GEO) with the
accession ID GSE45684. DO mice liver RNA-Seq data is archived at the Short Read Archive under
project number PRINA35625. The striatum data is archived at Sequence Read Archive (Accession

number will be provided as sonn as it is available).
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SOFTWARE AVAILABILITY

We have implemented the GBRS algorithm in an open-source python package available at http:
/[churchill-lab.github.io/gbrs/ with MIT license. The package is dockerized and available for
pulling and executing at the docker hub (https://hub.docker.com/r/kbchoi/gbrs). A tutorial that
describe the whole analysis pipeline is also available on the front page of the github and dockerhub
repositories. For the DO, required data files are available at ftp://churchill-lab.jax.org/software/
GBRS/. R scripts for eQTL mapping is available at https://thejacksonlaboratory.github.io/

Workflowr_Array GBRS/index.html.
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Figure 1: Founder profiles for genotyping diversity outbred mice. A founder profile for a gene is
estimated by aligning RNA-Seq reads from the founder strain to a multi-way alignment index and
applying weighted allocation to obtain the proportions of reads that align to each of the predicted
founder transcripts. GBRS compares a sample profile from a DO individual to the founder profiles
and predicts its genotype. (a) RNA-Seq reads from founder samples are allocated to the gene Ladl
with proportions indicated by colored (smaller) circles on the right. The label at the center of each
circle indicates the founder strain origin of the sample and the colors in the circular bar graphs are
proportional to the weighted allocation of reads to the founder transcripts. For Ladl, the founder
profiles B, D and H are identical because there are no polymorphisms that distinguish these strains.
The founder profile A is nearly identical to B, D, and H profiles due to high sequence similarity.
The founder profiles C and E are closely related and distinct from the other six founders. These
two founder sequences identify themselves after weighted allocation as they are able to attract a
majority of reads originating from themselves. Founder profiles F and G each uniquely identify
these strains due to their high levels of divergence. According to the sample profile from a DO
individual (a larger circle on the left), GBRS predicts its genotype to be CE heterozygote as it is an
equally-weighted mixture of the C and E founder profiles. (b) At the Mrpll5 gene locus, founder
profiles A, D and E are identical as are profiles B and C. It is interesting to note that RNA-Seq
reads from the A and E founder strains show a higher proportion of reads allocated to predicted
transcripts from strain D presumably due to inaccurate annotation. The profile of heterozygote —
AD, AE, and DE — would be identical to the A, D and E homozygotes for this gene. Given the
sample profile of a DO individual (a large circle on the left), it is difficult to call its genotype by just
comparing it to the founder profiles. GBRS gets around this challenge by combining information
from the neighboring genes, and predicts the genotype, for example, AD for this example. The
numbers in the sample profiles are the expression levels in TPM.
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Figure 2: An overview of GBRS algorithm. (a) GBRS employs multi-way alignment to estimate
the MPP sample profiles — the proportion of reads from an MPP individual that are allocated to
founder transcripts at each gene. (b) A HMM forward-backward algorithm uses the sample profiles
as input data and estimates genotype state probabilities at each gene. The emission probabilities
(green solid arrows) of the HMM are estimated from the founder profiles. Transition probabilities
(green dotted arrows) are derived theoretically [Broman et al., 2015] based on intergenic distances.
(c) A Viterbi algorithm identifies the maximum-probability path across genotype states (orange
arrows) to define a diploid genotype at each gene loci. (d) The diploid genome reconstruction is
used to mask components of the multi-way alignment index (boxes denoted with *X”) and repeats

the weighted allocation to generate diploid allele-specific expression estimates.
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Figure 3: Correlation of GBRS and array-based genotype probabilities. Individual genomes recon-
structed by GBRS are concordant with MUGA (light blue), MegaMUGA (blue), and GigaMUGA
(dark blue) reconstructions (r > 0.8) for the majority of MPP samples. The median of Pearson
correlation of genotype probabilities is 0.876, 0.862 and 0.834 respectively. Approximately 10%
of samples in each group show low Pearson correlation, indicating that the DNA and RNA samples
do not correspond due to possible mix ups in sample handling.
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Figure 4: A Viterbi reconstruction of the haplotype mosaic of an individual MPP genome. GBRS
reconstructed the diploid genome for a female sample from the striatum data set (ID 8684) and
identified 545 recombination breakpoints. The founder origins of haplotype blocks in indicated by
color coding.
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Figure 5: GBRS detects recombination breakpoints. (a) The number of recombination break-
points identified by GBRS (orange) in comparison to MUGA (light blue), MegaMUGA (blue), and
GigaMUGA (dark blue) genotyping arrays is shown for each array type. (b) The numbers of re-
combination breakpoints detected by GBRS and by each genotyping array is shown as a function
of outbreeding generation of the DO samples.
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Figure 6: LOD scores for eQTL obtained with GBRS and MUGA array genotype probabilities.
The LOD scores of all local (a,c,e) and distal (b,d,f) eQTL that exceed a suggestive significance
threshold (LOD>6) are shown in comparison to LOD scores obtained using genotypes from before
correcting sample mix-ups (a)(b), after correcting sample mix-ups (c)(d), and the MUGA genotype
probability combined with GBRS genotype probability (e)(f). An identity line is drawn on each
scatterplot for reference. Points to the right and below this line indicate better performance with
GBRS.
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Figure 7: LOD scores for eQTL obtained with GBRS and MegaMUGA array genotype probabilities.
The LOD scores of all local (a,c,e) and distal (b,d,f) eQTL that exceed a suggestive significance
threshold (LOD>6) are shown in comparison to LOD scores obtained using genotypes from before
correcting sample mix-ups (a)(b), after correcting sample mix-ups (c)(d), and the MegaMUGA
genotype probability combined with GBRS genotype probability (e)(f). An identity line is drawn on
each scatterplot for reference. Points to the right and below this line indicate better performance
with GBRS.
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Figure 8: LOD scores for eQTL obtained with GBRS and GigaMUGA array genotype probabilities.
The LOD scores of all local (a,c,e) and distal (b,d,f) eQTL that exceed a suggestive significance
threshold (LOD>6) are shown in comparison to LOD scores obtained using genotypes from before
correcting sample mix-ups (a)(b), after correcting sample mix-ups (c)(d), and the GigaMUGA
genotype probability combined with GBRS genotype probability (e)(f). An identity line is drawn on
each scatterplot for reference. Points to the right and below this line indicate better performance

with GBRS.
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Table 1: Sample mismatches identified.

(a)
match mismatch fixed failed
MUGA 275 29 24 5¢
MegaMUGA 184 21 18 3b
GigaMUGA 358 39 26 13¢

44 duplications and 1 new sample
b1 duplication and 2 new samples
€12 duplications and 1 new sample
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