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Abstract.

Multi-parent populations (MPPs), genetically segregating model systems derived from two or more inbred founder

strains, are widely used in biomedical and agricultural research. Gene expression profiling by direct RNA sequencing

(RNA-Seq) is commonly applied to MPPs to investigate gene expression regulation and to identify candidate genes. In

genetically diverse populations, including most MPPs, quantification of gene expression is improved when the RNA-

Seq reads are aligned to individualized transcriptomes that incorporate known polymorphic loci. However, the process

of constructing and analyzing individual genomes can be computationally demanding and error prone. We propose

a new approach, genome reconstruction by RNA-Seq (GBRS), that relies on simultaneous alignment of RNA-Seq

reads to the founder strain transcriptomes. GBRS can reconstruct the diploid genome of each individual and quantify

both total and allele-specific gene expression. We demonstrate that GBRS performs as well as methods that rely on

high-density genotyping arrays to reconstruct the founder haplotype mosaic of MPP individuals. Using GBRS in

addition to other genotyping methods provides quality control for detecting sample mix-ups and improves power to

detect expression quantitative trait loci. GBRS software is freely available at https://github.com/churchill-lab/gbrs.

Keywords: genome reconstruction, genotyping arrays, RNA-Seq, expression quantitative trait loci, allele-specific

expression.
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INTRODUCTION

RNA sequencing (RNA-Seq) has revolutionized our understanding of gene expression in whole

tissues and in single cells [Stark et al., 2019]. While generally used for quantifying transcript abun-

dance, RNA-Seq data can also identify single nucleotide polymorphisms (SNPs) and small inser-

tion and deletions (indels) in the transcribed portion of the genome [Piskol et al., 2013]. Recent de-

velopments in analysis of RNA-Seq data have enabled detection of spontaneous mutations [Miller

et al., 2013], RNA editing events [Gu et al., 2016], and allele-specific expression [Wittkopp et al.,

2004]. Here we examine the potential for using RNA-Seq data for genotype reconstruction and

improved quantification of gene expression in multi-parent populations (MPPs).
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In typical RNA-Seq analysis, transcript abundance is quantified by counting reads that align

to a reference genome-based transcriptome index [Ferragina and Manzini, 2000]. Alignment al-

gorithms make allowance for mismatches due to sequencing errors and polymorphisms that result

in differences between the sample RNA and the reference transcript sequences. Nonetheless, re-

liance on a reference genome can lead to biases in gene expression quantification [Degner et al.,

2009]. Reference bias can be minimized when RNA-Seq reads are aligned to a transcriptome in-

dex that incorporates genetic variants that are expected to be present in the sample RNA. We have

previously shown that alignment to individualized transcriptomes substantially improves expres-

sion quantitative trait locus (eQTL) mapping [Munger et al., 2014]. This approach requires prior

knowledge of the individual genomes, obtained either by whole genome sequencing or by geno-

typing and imputation; it requires the construction of alignment indices for every sample; and it

may be error prone when knowledge of sequence variants in individuals is uncertain.

MPPs are model organism genetic reference populations descendant from two or more inbred

founder strains [de Koning and McIntyre, 2017]. The genome of each individual in a MPP is com-

posed of a mosaic of founder strain genome segments. For many MPPs, whole genome sequences

of the founder strains have been assembled. Individuals from a MPP can be genetically charac-

terized with genotyping arrays [Morgan et al., 2016] or short-read DNA sequencing [Parker et al.,

2016] to detect known founder strain variants and the genome mosaic can be reconstructed using

a Markov model (HMM) to process the variant call data [Gatti et al., 2014, Broman et al., 2019].

The full (diploid) genome sequence of a MPP individual can then be inferred by imputation of

variants onto the founder haplotype blocks of the mosaic MPP genome [Munger et al., 2014].

In any given tissue, thousands of expressed genes are distributed across the genome. Therefore,

variants that are detected by RNA-Seq could replace genotyping arrays. However, it is not immedi-
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ately clear if RNA-Seq data capture sufficient information to support accurate genome reconstruc-

tion. Direct approaches based on variant calling from RNA-Seq reads require deep sequencing

coverage (Lopez-Maestre et al., 2016 NAR) and may not be reliable, especially for genes with low

expression. Also, the distribution of expressed genes may not be sufficiently dense or uniform to

accurately reconstruct haplotypes in some regions.

We propose a novel solution to the challenges of quantifying RNA-Seq data from MPP samples.

Instead of building a diploid alignment index for each individual in a MPP, we use a single multi-

way alignment index that represents the combined transcriptomes of the MPP founder strains. We

align RNA-Seq reads to the multi-way index and apply a generalized version of our allele-specific

quantification algorithm EMASE [Raghupathy et al., 2018] to allocate read counts to each of the

founder haplotypes. We avoid direct variant calling and instead use information in the pattern

of haplotype-specific read counts. Individual genes may not have sufficient sequence variation to

uniquely identify a haplotype. Therefore, we apply a Hidden Markov Model (HMM) that combines

information across neighboring genes to reconstruct the diploid mosaic genome for each MPP

individual. We demonstrate that the information in RNA-Seq data is sufficient to compute accurate

haplotype reconstructions. The procedure is implemented in an open-source Python package, GBRS

(Genome reconstruction By RNA-Seq), available at https://churchill-lab.github.io/gbrs/.

METHODS

Overview of GBRS algorithm

The objectives of GBRS are 1) to reconstruct the founder haplotype mosaic of MPP individuals

directly from RNA-Seq data and 2) to quantify total and allele-specific gene expression based

on individual MPP genomes. The importance of using an individual genome or transcriptome
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to quantify RNA-Seq data has been demonstrated [Munger et al., 2014] but the construction of

individual alignment indices is computationally demanding and potentially error prone. Instead,

GBRS employs a single alignment index built with the combined predicted transcript sequences of

the MPP founder strains. We hypothesized that simultaneous alignment of RNA-Seq reads to the

full set of founder transcripts would provide enough information to resolve local haplotypes. The

variants present in any single gene may not uniquely resolve the full set of founder haplotypes but

GBRS combines information across neighboring genes using a Hidden Markov Model (HMM) to

achieve full resolution and accurate estimates of the haplotype mosaic structure of individual MPP

samples.

The GBRS process starts by training the HMM using RNA-Seq data obtained from the founder

strains. For each founder strain sample, we align RNA-Seq reads to a multi-way alignment index

including the full set of predicted founder transcripts. Many reads will align identically to multiple

founder transcripts depending on which polymorphic loci are spanned by the read. We then ap-

ply an extension of the allele-specific weighted allocation algorithm EMASE [Raghupathy et al.,

2018] to reapportion the ambiguous alignments across the founder haplotypes and obtain estimated

expected read counts for each gene. RNA-Seq reads from each founder strain sample will display

a characteristic distribution of expected read counts that we refer to as the founder profile of the

gene (Figure 1). For the DO mice, which have eight founder strains (here denoted as A, B, C,

· · · , H), the founder profiles can be represented as a matrix with eight rows, each corresponding to

RNA-Seq data from a founder strain, and eight columns, each corresponding to a founder strain-

specific gene transcript. The rows of the matrix are proportions that sum to one. For a gene with

polymorphisms that uniquely identify a given founder strain, the founder profile will take a value

approaching 1.0 on the corresponding diagonal element. For a gene that lacks sufficient polymor-
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phisms to uniquely identify a founder strain, the weighted allocation of reads from that founder

may be distributed across multiple founder transcripts.

The founder profiles depend only on the predicted transcript sequences and the RNA-Seq reads

obtained from the founder strain samples. Thus, the same profile will be reproduced in weighted

allocation of reads from an MPP individual that is homozygous for the founder haplotype at a gene.

This will be true even if the founder strain transcript is not accurate. In the case of heterozygosity,

the weighted allocation of reads will represent a mixture of two founder haplotypes. This is how

GBRS identifies the founder haplotype of origin at a gene in an uncharacterized sample from an

MPP individual. The use of read alignment proportions distinguishes GBRS from other sequencing-

based genotyping methods that rely on accurate variant calling.

[Figure 1 about here.]

The first step in GBRS analysis of an individual MPP sample is to align the RNA-Seq reads

to the multi-way alignment index and compute the sample profiles — the proportions of reads

that are allocated to each founder haplotype at each gene (Figure 2a). The sample profiles are

the input data for the HMM. We then estimate the genotype states using the forward-backward

algorithm [Rabiner, 1989]. The emission model of the HMM compares the MPP sample profile to

each of the founder profiles including the heterozygote profiles, which we assume to be an equal

mixture of two founder profiles. The transition matrix of the HMM is derived from genetic map

distances between genes [Broman, 2012] (Figure 2b). The HMM combines information across

neighboring genes to resolve genes for which the founder profiles are not fully informative. The

forward-backward algorithm computes the marginal posterior probabilities for the hidden genotype

states at each gene, which accounts for uncertainty in the estimated genotypes. For the DO mice,
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there are 36 possible genotype states. The 36-state genotype probabilities can be collapsed to 8-

state haplotype dosages [Gatti et al., 2014] for quantitative trait locus (QTL) mapping and other

applications.

In order to quantify the allele-specific and total gene expression of each gene in a MPP sample,

we apply a Viterbi algorithm [Viterbi, 1967] to the genotype probabilities to obtain a maximum-

probability reconstruction of the diploid founder mosaic that constitutes the individual MPP genome

(Figure 2c). The Viterbi algorithm selects a single ‘best’ genotype state at each gene. We use the

Viterbi reconstruction to reduce the allowable set of read alignments from all founder transcripts

to just two and repeat the weighted allocation of the RNA-Seq reads to obtain estimated expected

counts of allele-specific expression [Raghupathy et al., 2018] (Figure 2d). This step does not re-

quire re-alignment of the RNA-Seq reads, so it is very fast.

[Figure 2 about here.]

Data

We obtained RNA-Seq data on liver tissue samples from 16 mice (8 male and 8 female) from each

of the eight Diversity Outbred (DO) founder strains, 128 mice in total. We also obtained RNA-

Seq data on liver tissue samples from 482 DO mice including equal numbers of male and female

animals from breeding generations 4 to 11 (G4∼G11) [Svenson et al., 2012]. We obtained single-

ended sequence data on a HiSeq2000 [Illumina] producing 100 bp reads at a depth of 20M reads

per sample. In addition, we obtained RNA-Seq data on striatum tissue samples from 416 DO mice

including mice of both sexes spanning generations G21, G22 and G23 [Philip et al, in preparation].

Libraries were pooled and sequenced 100 bp paired end to a depth of 50M reads each on a HiSeq

2500 [Illumina].
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The DO mice were genotyped with three different versions of the mouse universal genotyping

array (MUGA) [Geneseek, Lincoln, NE]. We obtained genotypes for 282 mice from the liver study

on the original MUGA array with ∼7,500 marker loci. The remaining 200 mice were genotyped

on the MegaMUGA array with ∼77,800 markers. All 416 mice from the striatum study were

genotyped on the GigaMUGA array with ∼150,000 markers.

Building a multi-way alignment index

We create custom genomes of the founder strains by introducing strain-specific SNPs and short in-

dels (Mouse Genome Project [Keane et al., 2011] release v5 available at ftp://ftp-mouse.sanger.

ac.uk/REL-1505-SNPs Indels/) to the reference genome (Genome Reference Consortium Mouse

Build 38 available at http://ftp.ensembl.org/pub/release-84/fasta/mus musculus/dna/) using

g2gtools (http://churchill-lab.github.io/g2gtools). We adjust the coordinates of the reference

gene annotation (Ensembl Release 84 [Yates et al., 2015] available at http://ftp.ensembl.org/pub/

release-84/gtf/mus musculus/) and extract strain-specific transcripts with g2gtools. We ap-

pend the founder strain code (e.g., A, B, C, · · · , H for A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ,

NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ, respectively) to each transcript ID; collate the

founder transcript sequences in a single fasta file; add 99 bp-long poly-A tail; and then run

bowtie-build command to build a multi-way alignment index representing transcript sequences

from the eight founder strains of the DO.

Estimating an alignment profile for each founder and MPP individual

We align RNA-seq data from each of the founders and from the MPP individuals to the multi-way

alignment index using bowtie1 v1.0.0 with ’all’, ’best’, and ’strata’ options. Many reads
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map to multiple haplotypes of a gene and they may also align to multiple genes. For the DO mouse

data, we find that only ∼2% of the reads uniquely align to a single founder transcript. In order to

count the reads, we transform the raw alignment counts to a vector of estimated expected counts

using a straightforward extension of our expectation maximization for allele-specific expression

(EMASE) algorithm [Raghupathy et al., 2018].

From the multi-way alignment of the founder liver RNA-Seq reads, we detected expression of

12,415 genes after filtering out genes that had mean abundance below 1 TPM. Then we convert

the expected counts to proportions — the founder profile — which indicates how specifically reads

from a founder strain align to their own predicted transcript and to transcripts of the other founder

strains. The more the variants that distinguish a founder haplotype, the more specific the founder

profile will be. We construct alignment profiles for heterozygous genotypes, assuming there is

no imbalance in allelic expression, as the equally weighted average of the corresponding founder

profiles.

Similarly, we obtain sample profiles for every expressed gene from a multi-way alignment

of an MPP individual. In the liver samples we detected expression of 12297.9 ± 423.0 genes

and in the striatum samples we detected 18812.7 ± 328.4 genes after filtering genes with average

expression below 1 TPM. There were 11293.1± 177.7 and 10517.4± 68.2 genes that overlap with

the founder profile data in the liver and striatum samples, respectively. Although the striatum data

was generated in higher depth of coverage, it had less number of genes that are common with the

founder profile data because they are different tissue type.
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Estimating genotype probabilities using Hidden Markov Model

GBRS uses a Hidden Markov Model (HMM) to estimate the genotype of an individual MPP sample

given the sample profiles across the expressed genes, Y =
{

y1, · · · , yt, · · · , yT
}

, as observation.

The HMM has two components: emission model and transition model. The emission model de-

scribes the probability distribution of a sample profile (yt) for a given genotype state (st) at a gene

locus t. The founder profile (xt,g) defines the center of the emission probability distribution. We

have implemented a simple emission probability model based on multivariate normal distribution.

P
(

yt
∣

∣st = g
)

∝ exp

{

−
1

2σ2

(

yt − xt,g

)(

yt − xt,g

)T

}

(1)

where σ2 is a tuning parameter that we set to 0.12, a value that approximates the theoretically

expected number of recombination events [Gatti et al., 2014].

The transition model describes how the genotype states can change across the intervals between

each pair of genes on a chromosome. The transition probability, P
(

st
∣

∣st−1

)

, is a function of

the breeding generation and the distance between neighboring gene loci t-1 and t. We compute

the theoretical transition probability according to [Broman, 2006, Broman, 2012] using genetic

distances between the start sites of neighboring genes. We obtained the transition probabilities for

each breeding generation of DO mice using DOQTL [Gatti et al., 2014] version 1.0.0.

We use these pre-computed emission and transition probabilities in our HMM. This enables us

to process each MPP individual independently. In addition, we can compute the posterior proba-

bility of genotype state on each gene locus, P
(

st
∣

∣Y
)

, with a one-time execution of the forward-

backward algorithm [Rabiner, 1989]. The probabilistic representation of genotypes enables us to

incorporate uncertainty in our genotype calls into the downstream analyses, such as QTL mapping.
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Estimating diploid allele-specific expression

Once we have the genotype probabilities at every expressed gene, we can compute the the most

probable path for s1, s2, · · · , sT using a Viterbi algorithm [Viterbi, 1967].

In order to estimate allele-specific expression in each MPP individual, we mask elements of

the multi-way alignment incidence profile that are inconsistent with the Viterbi genotype calls and

reallocate read counts by running EMASE algorithm once more on this diploid alignment incidence

matrix. This ensures that the allele-specific counts reflect the most probable diploid MPP genome.

Combining genotype probabilities estimated with GBRS and genotyping arrays

Genotype probabilities obtained with GBRS are consistent with and contain additional information

compared to genotyping arrays. GBRS contains information about the haplotypes at expressed

genes whereas genotyping arrays provide information in gene sparse regions. It is straightforward

to combine posterior genotype probabilities, P1 and P2, with the following formula:

P
(

sτ = g
∣

∣Y
)

=
P1

(

sτ = g
∣

∣Y
)

P2

(

sτ = g
∣

∣Y
)

∑

g′

P1

(

sτ = g′
∣

∣Y
)

P2

(

sτ = g′
∣

∣Y
)

(2)

where τ is any locus on the genome. Note P1

(

sτ
∣

∣Y
)

and P2

(

sτ
∣

∣Y
)

are interpolated genotype

probabilities between two markers flanking τ .

eQTL analysis

We applied GBRS to RNA-seq data from liver samples of 482 Diversity Outbred (DO) mice, as

well as striatum samples of 369 DO mice. We genotyped 282 DO liver samples with the Mouse

Universal Geotyping Array (MUGA) and 200 DO liver samples on the MegaMUGA [GeneSeek,
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Lincoln, NE]. All DO striatum samples were genotyped on the GigaMUGA. Low-quality samples

with a high percent missing genotypes were removed, leaving 275, 184 and 358 DO mice with

MUGA, MegaMUGA and GigaMUGA genotypes, respectively. The founder haplotypes of these

DO mice were inferred using a HMM [K. W. Broman, 2009] implemented in the R/qtl2 package

(https://doi.org/10.1534/genetics.118.301595). To facilitate comparisons across genotyping

platforms and with GBRS, we interpolated the genotytpe probabilities onto an evenly-spaced grid

of 69,005 markers.

We examined the agreement of haplotype reconstructions between the genotyping array and

GBRS using the Pearson correlation between each pair of samples. We assumed that a sample was

mismatched if the correlation of the array sample with the same sample ID in the RNA-seq data fell

below 0.6. For each mismatched sample, we then searched for the correct match in the RNA-seq

samples with higher correlation (r > 0.6).

We mapped eQTL, using gene-level expected read counts estimated using GBRS. Genes with

median of count value > 1 were included in the eQTL analysis. Raw counts in each sample were

normalized with the variance-stabilizing transformation (VST) in the DESeq2 R package [Love

et al., 2014]. A linear mixed model with sex, diet and generation as additive covariates and a

random polygenic term to account for genetic relatedness was fit at each genotype locus using qtl2

R package. Significance thresholds were established by performing 1,000 permutations and fitting

an extreme value distribution to the maximum LOD scores [Dudbridge and Koeleman, 2004].

Permutation derived P-values were then converted to q-values with the qvalue R package [Storey

et al., 2020], using the bootstrap method to estimate π0 and the default λ tuning parameters [Storey

et al., 2004]. The significance threshold for declaring a QTL was set at a genome-wide significance

level of FDR = 5%.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.10.11.335323doi: bioRxiv preprint 

https://doi.org/10.1534/genetics.118.301595
https://doi.org/10.1101/2020.10.11.335323
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS

GBRS produces accurate haplotype reconstructions

The genotype probabilities (with dimensions samples×markers×genotypes) are used for QTL

mapping, variant imputation, and other genetic analyses of MPP populations [Broman et al., 2019].

The genotype probabilities, which sum to one across genotypes for each sample and marker, cap-

ture uncertainty in our estimation of the haplotype mosaic of MPP genomes. We compared GBRS

genotype probabilities to the array-based genotype probabilities for our DO datasets. We first

collapsed the 36-state genotype probabilities to 8-state haplotype dosages as described by [Gatti

et al., 2014]. In order to make direct comparison between GBRS and array platforms with differ-

ent marker densities, we interpolated the genotype probabilities onto a common grid of 69,005

pseudo-marker locations with approximately equal spacing in genetic map units across the mouse

genome. We then computed Pearson correlations between GBRS haplotype probabilities and the

corresponding array-based probabilities. We found that ∼90% of samples had Pearson correlation

r > 0.8 (Figure 3). The median correlation coefficient was 0.876, 0.862 and 0.834 between GBRS

and the MUGA, MegaMUGA, and GigaMUGA arrays respectively. Importantly, we identified 29

MUGA, 21 MegaMUGA, and 39 GigaMUGA samples that have correlations near zero.

[Figure 3 about here.]

GBRS can identify and correct sample mix-ups

In studies that generate large numbers of tissue samples for multiple assays, one should always

keep in mind the possibility of sample mix-ups [Broman et al., 2015]. In our comparison of

GBRS haplotype reconstructions, derived from tissue samples collected for RNA analysis, and the
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MUGA reconstructions, derived from tail-tip samples collected for DNA analysis, we identified

89 individuals (∼10% of animals in these studies) with discordant results. While disconcerting,

these errors are easy to identify and to resolve. For each of the 89 samples, we compared the

GBRS genotypes to each of the the array-based genotypes within the same experimental cohorts

(Table 1). This comparison revealed a one-to-one correspondence for 63 of the samples that were

involved in pairwise sample swaps. An additional 5 samples were resolved as 3- or 4-way sample

swaps. We found 17 of the RNA samples to be duplicates and 4 samples could not be identified.

Some additional work was required to determine if the handling errors occurred among the RNA

samples or the DNA samples. All of the sample mix-ups reported here were determined to be due

to plating errors in the DNA samples and were corrected.

[Table 1 about here.]

GBRS accurately detects recombination events

Haplotype reconstruction of MPP individuals identifies the locations of recombination events that

have accumulated since derivation of the population from the founder inbred strains as well as

the founder strain origins of the flanking intervals (Figure 4). In an outbreeding MPP such as

the DO, recombination breakpoints accumulate at a predictable linear rate with each breeding

generation [Gatti et al., 2014].

[Figure 4 about here.]

We assessed whether GBRS could detect recombination breakpoints with the same sensitivity

as the MUGA genotyping arrays (Figure 5). We estimated the number of recombination break-

points for each sample using Viterbi paths through the HMM for GBRS and MUGA data (Meth-
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ods). Compared to the low-density MUGA array, applied to DO mice from generations G4, G5,

and G7, we found that GBRS is more sensitive, detecting on average 36.5% more breakpoints.

Compared to the MegaMUGA array on mice from generation G4, G7, and G11, GBRS detected

3.8% more recombination breakpoints and, in comparison to the highest density GigaMUGA ar-

ray on striatum samples from generations G21, G22, and G23, GBRS detected on average, 0.06%

fewer breakpoints. We conclude that GBRS reconstructions have sensitivity comparable to the high

density (150k markers) GigaMUGA platform. This implies that the number and positional distri-

bution of expressed genes are sufficient to detect most of the recombination events in DO mice

from these outbreeding generations.

[Figure 5 about here.]

GBRS increases the power of expression QTL mapping

Thousands of genes have expression levels that are influenced by genetic variation at or near the

location of their coding sequences [Chick et al., 2016, Aguet et al., 2017]. These associations can

be identified by mapping local gene expression QTL (eQTL), which are prevalent and generally

stronger than eQTL that map to distant loci. Incorrect genotypes are likely to reduce the apparent

effect of a local eQTL. Therefore, if the genotype probabilities that we use for eQTL mapping are

more accurate, the association between eQTL genotype and gene expression should be stronger. In

order to assess the mapping quality of GBRS genotypes relative to array-based genotypes, we first

performed a full eQTL analysis with genotype probabilities obtained from GBRS and genotyping

arrays. We then compared the magnitude of LOD scores from GBRS with MUGA, MegaMUGA,

and GigaMUGA arrays for all eQTL peaks, local and distal (Figure 6, 7, and 8). When we use

the original sample labels without fixing the sample mix-ups, we find that 6998, 5257, and 9682
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genes have higher LOD scores and that 465, 520, and 856 genes have lower LOD scores using

GBRS in comparison to MUGA, MegaMUGA, and GigaMUGA, respectively for the local eQTL

(Figure 6a, 7a, and 8a). Similarly, for the distal eQTL, we find that 3158, 3605, and 3581 genes

have higher LOD scores and that 997, 836, and 1015 genes have lower scores using GBRS com-

pared to MUGA, MegaMUGA, and GigaMUGA, respectively (Figure 6b, 7b, and 8b). After we

identify and correct sample mix-ups, we find that 5910, 3673, and 8051 genes have higher LOD

scores and that 1662, 2238, and 2680 genes have lower LOD scores using GBRS in comparison to

MUGA, MegaMUGA, and GigaMUGA, respectively for the local eQTL (Figure 6c, 7c, and 8c).

For the distal eQTL, we find that 2843, 3341, and 3796 genes have higher LOD scores and that

2152, 3435, and 2016 genes have lower scores using GBRS compared to MUGA, MegaMUGA, and

GigaMUGA, respectively (Figure 6d, 7d, and 8d). Correcting sample mix-ups improved the LOD

score 23.1%, 25.3%, 19.5% for local and 11.1%, 11.1%, 9.5% for distal eQTL in MUGA, Mega-

MUGA and GigaMUGA, respectively. This shows the importance of identifying and correcting

sample mix-ups before mapping analysis. We still find the GBRS genotype probabilities improve

both the local and distal eQTL even after the removal of sample swaps. Overall, the local eQTL

show greater improvements but distal eQTL results are also as good or better with the GBRS geno-

type probabilities. We note that the overall improvement in LOD scores of both local and distal

QTL is greater in the MUGA and GigaMUGA comparisons. MegaMUGA delivered LOD scores

similar to GBRS for the dataset we examined.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]
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Combined estimation of genotype probabilities

Genotyping arrays have the advantages of a relatively even distribution of markers across the

genome and higher density of coverage. GBRS uses genotyping information at expressed genes

which are unevenly distributed and less dense than the most recent versions of the MUGA array.

On the other hand GBRS markers are concentrated in some of the most important functional re-

gions of the genome - coding regions. We hypothesized that combining genotype probabilities

would draw on the strengths of both approaches. We evaluated the mapping results from geno-

type probability that combines GBRS and each genotyping array by comparing its LOD scores with

GBRS-based results. For the local eQTL, we find that 5499, 3871, and 7068 genes have higher

LOD scores and that 1990, 1925, and 3228 genes have lower LOD scores using GBRS in compar-

ison to GBRS combined with MUGA, MegaMUGA, and GigaMUGA, respectively (Figure 6e, 7e,

and 8e). For the distal eQTL, we find that 3164, 3258, and 3259 genes have higher LOD scores and

that 2077, 1779, and 2894 genes have lower scores using GBRS compared to GBRS combined with

MUGA, MegaMUGA, and GigaMUGA, respectively 6f, 7f, and 8f). On average, GBRS performed

better than the combined genotype probabilities. It appears that GBRS offers genome coverage suf-

ficient to identify most recombination events for the current outbreeding generations of the DO. It

is puzzling that combining genotype probabilities did yield improved eQTL mapping, especially

for distal eQTL. It would be worthwhile to look at the power of combined genotypes in other

MPPs, especially those with a higher density of recombination events.

DISCUSSION

GBRS reconstructs the individual genomes of MPP individuals directly from RNA-Seq data and

simultaneously quantifies total and allele-specific gene expression. It uses the weighted allocation
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of reads aligned to a multi-way index of predicted founder transcripts to characterize the genotype

at each expressed gene locus. Unlike other genotyping strategies that use sequencing data, GBRS

does not rely on variant calling. GBRS can deliver the advantages of aligning RNA-Seq reads to in-

dividual genomes [Munger et al., 2014] without the need to construct a large number of individual

alignment indices.

The HMM component of GBRS, can be trained using RNA-Seq data obtained from founder

strain tissues to estimate a founder profile at each gene. The founder profile is compared to sample

profiles of MPP individuals to determine the founder strain genotypes. Variants in the predicted

transcript sequences of any given gene may not fully resolve the founder haplotypes but application

of a forward-backward algorithm effectively borrows information from nearby genes to improve

resolution. The founder profiles depend only on the predicted transcript sequences and therefore,

are agnostic to experimental conditions and tissue type(s) in the training data — although it is de-

sirable to obtain the highest possible representation of genes. Highly expressed genes will provide

the most precise founder profiles, but deep sequencing of multiple tissues will ensure broad and

accurate profiles for most genes. In the work presented here, we trained a GBRS HMM for DO

mice with a single training set from liver tissue samples. Recently we have expanded the training

set to include multiple tissues (see Data and Software Availability).

We obtained training data from inbred founder strain tissue samples, but we were able to apply

GBRS to outbred samples by approximating the profiles for heterozygous genotypes as an equal

mixture of the corresponding (homozygous) founder profiles. While this does not account for the

possibility of allelic imbalance or non-allelic expression, we demonstrated that for DO mice, which

are ∼85% heterozygous with respect to founder strain haplotypes, this approximation works well.

It would be possible to include F1 hybrids in the training data but the number of combinations
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required may be prohibitive. Alternatively, the HMM could be trained using the Baum-Welch

algorithm [Baum, 1972] directly on the individual MPP sample data. We have not tested this

strategy but expect that, in the absence of other training data, with carefully chosen initial values

of the emission distribution parameters, this would be an effective method to train the HMM.

In our past experience, HMMs for genotype reconstruction are fairly robust to the magnitude

of the transition probabilities. However, high transition rates can result in ‘choppy’ genome recon-

structions with clusters of presumably false positive recombination breakpoints. Low transition

rates could result in ‘smoothing over’ of small haplotype segments. On the whole results are best

when the emission models are accurate and the gene/marker loci are dense relative to the expected

rate of recombination breakpoints. GBRS may not perform well across genomic regions in which

expressed genes are sparse. This could result in missing recombination events especially in distal

regions of chromosome that lack support from neighboring gene-rich regions on one side.

Our evaluation of GBRS using eQTL mapping examines traits (gene expression) that are asso-

ciated with the same expressed genes that we use as marker loci. This choice of evaluation data

may be biased in favor of GBRS, and therefore, improvement in local eQTL LOD scores might be

expected when using GBRS because the local genotypes are inferred directly from nearby gene

expression. However, GBRS also outperforms the genotyping arrays at distal eQTL.

The current implementation of GBRS treats whole genes as units and the model does not account

for recombination breakpoints within a gene. One solution to alleviate this would be to estimate

genotype probabilities at the level of individual exons. In cases where recombination breakpoints

do occur within a gene (or exon) the marginal genotype probabilities from the HMM will reflect

uncertainty and will be more influenced by the genotypes at flanking genes.

We have demonstrated that GBRS as a stand-alone genotyping strategy can perform well in
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comparison to genotyping arrays. However, GBRS precision is limited by the numbers of expressed

genes in both the training and target samples — which is usually on the order of ∼10,000 — and the

distribution of genes can be uneven across the genome. As the DO mice, and other outbred MPPs

evolve, the density of recombination breakpoints will increase but the gene density and distribution

does not. Perhaps, the most compelling use for GBRS is for quality control to detect and correct

sample mix-ups. In cases where array or sequence-based genotyping has failed, GBRS provides

a suitable replacement for the missing sample genotypes. When GBRS is applied in conjunction

with another method of estimating genotype probabilities the results can be combined to improve

the precision of either method alone. For these reasons we still advise the use of genotyping arrays

or DNA sequenced based genotyping.

We have recently adapted GBRS to work with other types of sequencing data and see potential

for applications to low-coverage DNA-Seq, ChIP-Seq, ATAC-Seq, and Hi-C. Of note, we have

applied GBRS successfully to single-cell RNA-Seq deconvolute cells from sample mixtures and

to reconstruct the individual genomes of each sample. The current implementation of GBRS is

tailored to work with DO, Collaborative Cross and related mouse MPPs. We want to encourage

and support the development of GBRS for applications to MPPs derived in other model systems

through open-source software development platforms.

DATA AVAILABILITY

The founder mice liver RNA-Seq data is available at the Gene Expression Omnibus (GEO) with the

accession ID GSE45684. DO mice liver RNA-Seq data is archived at the Short Read Archive under

project number PRJNA35625. The striatum data is archived at Sequence Read Archive (Accession

number will be provided as sonn as it is available).
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SOFTWARE AVAILABILITY

We have implemented the GBRS algorithm in an open-source python package available at http:

//churchill-lab.github.io/gbrs/ with MIT license. The package is dockerized and available for

pulling and executing at the docker hub (https://hub.docker.com/r/kbchoi/gbrs). A tutorial that

describe the whole analysis pipeline is also available on the front page of the github and dockerhub

repositories. For the DO, required data files are available at ftp://churchill-lab.jax.org/software/

GBRS/. R scripts for eQTL mapping is available at https://thejacksonlaboratory.github.io/

Workflowr Array GBRS/index.html.
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Yandell, B. S., and Churchill, G. A., 2019. R/qtl2: Software for mapping quantitative trait loci

with high-dimensional data and multiparent populations. Genetics, 211(2):495–502.

[Broman et al., 2015] Broman, K. W., Keller, M. P., Broman, A. T., Kendziorski, C., Yandell,

B. S., Sen, Ś., and Attie, A. D., 2015. Identification and correction of sample mix-ups in

expression genetic data: A case study. G3 (Bethesda, Md.), 5(10):2177–2186.

[Chick et al., 2016] Chick, J. M., Munger, S. C., Simecek, P., Huttlin, E. L., Choi, K., Gatti, D. M.,

Raghupathy, N., Svenson, K. L., Churchill, G. A., and Gygi, S. P., et al., 2016. Defining the

consequences of genetic variation on a proteome-wide scale. Nature, 534(7608):500–505.

[de Koning and McIntyre, 2017] de Koning, D.-J. and McIntyre, L. M., 2017. Back to the future:

Multiparent populations provide the key to unlocking the genetic basis of complex traits. G3:

Genes, Genomes, Genetics, 7(6):1617–1618.

[Degner et al., 2009] Degner, J. F., Marioni, J. C., Pai, A. A., Pickrell, J. K., Nkadori, E., Gilad, Y.,

and Pritchard, J. K., 2009. Effect of read-mapping biases on detecting allele-specific expression

from RNA-sequencing data. Bioinformatics, 25(24):3207–3212.

[Dudbridge and Koeleman, 2004] Dudbridge, F. and Koeleman, B. P. C., 2004. Efficient computa-

tion of significance levels for multiple associations in large studies of correlated data, including

genomewide association studies. Am J Hum Genet, 75(3):424–435.

[Ferragina and Manzini, 2000] Ferragina, P. and Manzini, G., 2000. Opportunistic data structures

with applications. In Proceedings 41st Annual Symposium on Foundations of Computer Science,

pages 390–398.

[Gatti et al., 2014] Gatti, D. M., Svenson, K. L., Shabalin, A., Wu, L.-Y., Valdar, W., Simecek, P.,

Goodwin, N., Cheng, R., Pomp, D., Palmer, A., et al., 2014. Quantitative trait locus mapping

methods for diversity outbred mice. G3 (Bethesda), 4(9):1623–1633.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.10.11.335323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.335323
http://creativecommons.org/licenses/by-nc-nd/4.0/


[Gu et al., 2016] Gu, T., Gatti, D. M., Srivastava, A., Snyder, E. M., Raghupathy, N., Simecek,

P., Svenson, K. L., Dotu, I., Chuang, J. H., Keller, M. P., et al., 2016. Genetic architectures of

quantitative variation in rna editing pathways. Genetics, 202(2):787–798.

[K. W. Broman, 2009] K. W. Broman, S. S., 2009. Guide to qtl mapping with r/qtl. Springer-

Verlag New York.

[Keane et al., 2011] Keane, T. M., Goodstadt, L., Danecek, P., White, M. A., Wong, K., Yalcin,

B., Heger, A., Agam, A., Slater, G., Goodson, M., et al., 2011. Mouse genomic variation and

its effect on phenotypes and gene regulation. Nature, 477(7364):289–294.

[Love et al., 2014] Love, M. I., Huber, W., and Anders, S., 2014. Moderated estimation of fold

change and dispersion for rna-seq data with deseq2. Genome Biol, 15(12):550.

[Miller et al., 2013] Miller, A. C., Obholzer, N. D., Shah, A. N., Megason, S. G., and Moens,

C. B., 2013. Rna-seq-based mapping and candidate identification of mutations from forward

genetic screens. Genome Res, 23(4):679–686.

[Morgan et al., 2016] Morgan, A. P., Fu, C.-P., Kao, C.-Y., Welsh, C. E., Didion, J. P., Yadgary,

L., Hyacinth, L., Ferris, M. T., Bell, T. A., Miller, D. R., et al., 2016. The mouse universal

genotyping array: From substrains to subspecies. G3: Genes, Genomes, Genetics, 6(2):263–

279.

[Munger et al., 2014] Munger, S. C., Raghupathy, N., Choi, K., Simons, A. K., Gatti, D. M.,

Hinerfeld, D. A., Svenson, K. L., Keller, M. P., Attie, A. D., Hibbs, M. A., et al., 2014. Rna-seq

alignment to individualized genomes improves transcript abundance estimates in multiparent

populations. Genetics, 198(1):59–73.

[Parker et al., 2016] Parker, C. C., Gopalakrishnan, S., Carbonetto, P., Gonzales, N. M., Leung, E.,

Park, Y. J., Aryee, E., Davis, J., Blizard, D. A., Ackert-Bicknell, C. L., et al., 2016. Genome-

wide association study of behavioral, physiological and gene expression traits in outbred cfw

mice. Nature Genetics, 48(8):919–926.

[Piskol et al., 2013] Piskol, R., Ramaswami, G., and Li, J. B., 2013. Reliable identification of

genomic variants from rna-seq data. American journal of human genetics, 93(4):641–651.

[Rabiner, 1989] Rabiner, L. R., 1989. A tutorial on hidden markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77(2):257–286.

[Raghupathy et al., 2018] Raghupathy, N., Choi, K., Vincent, M. J., Beane, G. L., Sheppard, K. S.,

Munger, S. C., Korstanje, R., Pardo-Manual de Villena, F., and Churchill, G. A., 2018. Hierar-

chical analysis of RNA-seq reads improves the accuracy of allele-specific expression. Bioinfor-

matics, 34(13):2177–2184.

[Stark et al., 2019] Stark, R., Grzelak, M., and Hadfield, J., 2019. Rna sequencing: the teenage

years. Nature Reviews Genetics, 20(11):631–656.

[Storey et al., 2020] Storey, J. D., Bass, A. J., Dabney, A., and Robinson, D., 2020. qvalue: Q-

value estimation for false discovery rate control. R package version 2.22.0.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.10.11.335323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.335323
http://creativecommons.org/licenses/by-nc-nd/4.0/


[Storey et al., 2004] Storey, J. D., Taylor, J. E., and Siegmund, D., 2004. Strong control, conser-

vative point estimation and simultaneous conservative consistency of false discovery rates: a

unified approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

66(1):187–205.

[Svenson et al., 2012] Svenson, K. L., Gatti, D. M., Valdar, W., Welsh, C. E., Cheng, R., Chesler,

E. J., Palmer, A. A., McMillan, L., and Churchill, G. A., 2012. High-resolution genetic mapping

using the mouse diversity outbred population. Genetics, 190(2):437–447.

[Viterbi, 1967] Viterbi, A., 1967. Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269.

[Wittkopp et al., 2004] Wittkopp, P. J., Haerum, B. K., and Clark, A. G., 2004. Evolutionary

changes in cis and trans gene regulation. Nature, 430(6995):85–88.

[Yates et al., 2015] Yates, A., Akanni, W., Amode, M. R., Barrell, D., Billis, K., Carvalho-Silva,

D., Cummins, C., Clapham, P., Fitzgerald, S., Gil, L., et al., 2015. Ensembl 2016. Nucleic

Acids Research, 44(D1):D710–D716.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.10.11.335323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.335323
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a)

(b)

Figure 1: Founder profiles for genotyping diversity outbred mice. A founder profile for a gene is

estimated by aligning RNA-Seq reads from the founder strain to a multi-way alignment index and

applying weighted allocation to obtain the proportions of reads that align to each of the predicted

founder transcripts. GBRS compares a sample profile from a DO individual to the founder profiles

and predicts its genotype. (a) RNA-Seq reads from founder samples are allocated to the gene Lad1

with proportions indicated by colored (smaller) circles on the right. The label at the center of each

circle indicates the founder strain origin of the sample and the colors in the circular bar graphs are

proportional to the weighted allocation of reads to the founder transcripts. For Lad1, the founder

profiles B, D and H are identical because there are no polymorphisms that distinguish these strains.

The founder profile A is nearly identical to B, D, and H profiles due to high sequence similarity.

The founder profiles C and E are closely related and distinct from the other six founders. These

two founder sequences identify themselves after weighted allocation as they are able to attract a

majority of reads originating from themselves. Founder profiles F and G each uniquely identify

these strains due to their high levels of divergence. According to the sample profile from a DO

individual (a larger circle on the left), GBRS predicts its genotype to be CE heterozygote as it is an

equally-weighted mixture of the C and E founder profiles. (b) At the Mrpl15 gene locus, founder

profiles A, D and E are identical as are profiles B and C. It is interesting to note that RNA-Seq

reads from the A and E founder strains show a higher proportion of reads allocated to predicted

transcripts from strain D presumably due to inaccurate annotation. The profile of heterozygote —

AD, AE, and DE — would be identical to the A, D and E homozygotes for this gene. Given the

sample profile of a DO individual (a large circle on the left), it is difficult to call its genotype by just

comparing it to the founder profiles. GBRS gets around this challenge by combining information

from the neighboring genes, and predicts the genotype, for example, AD for this example. The

numbers in the sample profiles are the expression levels in TPM.
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Figure 2: An overview of GBRS algorithm. (a) GBRS employs multi-way alignment to estimate

the MPP sample profiles — the proportion of reads from an MPP individual that are allocated to

founder transcripts at each gene. (b) A HMM forward-backward algorithm uses the sample profiles

as input data and estimates genotype state probabilities at each gene. The emission probabilities

(green solid arrows) of the HMM are estimated from the founder profiles. Transition probabilities

(green dotted arrows) are derived theoretically [Broman et al., 2015] based on intergenic distances.

(c) A Viterbi algorithm identifies the maximum-probability path across genotype states (orange

arrows) to define a diploid genotype at each gene loci. (d) The diploid genome reconstruction is

used to mask components of the multi-way alignment index (boxes denoted with ’X’) and repeats

the weighted allocation to generate diploid allele-specific expression estimates.
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Figure 3: Correlation of GBRS and array-based genotype probabilities. Individual genomes recon-

structed by GBRS are concordant with MUGA (light blue), MegaMUGA (blue), and GigaMUGA

(dark blue) reconstructions (r > 0.8) for the majority of MPP samples. The median of Pearson

correlation of genotype probabilities is 0.876, 0.862 and 0.834 respectively. Approximately 10%

of samples in each group show low Pearson correlation, indicating that the DNA and RNA samples

do not correspond due to possible mix ups in sample handling.
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(a)

Figure 4: A Viterbi reconstruction of the haplotype mosaic of an individual MPP genome. GBRS

reconstructed the diploid genome for a female sample from the striatum data set (ID 8684) and

identified 545 recombination breakpoints. The founder origins of haplotype blocks in indicated by

color coding.
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(b)

Figure 5: GBRS detects recombination breakpoints. (a) The number of recombination break-

points identified by GBRS (orange) in comparison to MUGA (light blue), MegaMUGA (blue), and

GigaMUGA (dark blue) genotyping arrays is shown for each array type. (b) The numbers of re-

combination breakpoints detected by GBRS and by each genotyping array is shown as a function

of outbreeding generation of the DO samples.
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Figure 6: LOD scores for eQTL obtained with GBRS and MUGA array genotype probabilities.

The LOD scores of all local (a,c,e) and distal (b,d,f) eQTL that exceed a suggestive significance

threshold (LOD>6) are shown in comparison to LOD scores obtained using genotypes from before

correcting sample mix-ups (a)(b), after correcting sample mix-ups (c)(d), and the MUGA genotype

probability combined with GBRS genotype probability (e)(f). An identity line is drawn on each

scatterplot for reference. Points to the right and below this line indicate better performance with

GBRS.
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Figure 7: LOD scores for eQTL obtained with GBRS and MegaMUGA array genotype probabilities.

The LOD scores of all local (a,c,e) and distal (b,d,f) eQTL that exceed a suggestive significance

threshold (LOD>6) are shown in comparison to LOD scores obtained using genotypes from before

correcting sample mix-ups (a)(b), after correcting sample mix-ups (c)(d), and the MegaMUGA

genotype probability combined with GBRS genotype probability (e)(f). An identity line is drawn on

each scatterplot for reference. Points to the right and below this line indicate better performance

with GBRS.
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Figure 8: LOD scores for eQTL obtained with GBRS and GigaMUGA array genotype probabilities.

The LOD scores of all local (a,c,e) and distal (b,d,f) eQTL that exceed a suggestive significance

threshold (LOD>6) are shown in comparison to LOD scores obtained using genotypes from before

correcting sample mix-ups (a)(b), after correcting sample mix-ups (c)(d), and the GigaMUGA

genotype probability combined with GBRS genotype probability (e)(f). An identity line is drawn on

each scatterplot for reference. Points to the right and below this line indicate better performance

with GBRS.
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Table 1: Sample mismatches identified.

(a)

match mismatch fixed failed

MUGA 275 29 24 5a

MegaMUGA 184 21 18 3b

GigaMUGA 358 39 26 13c

a4 duplications and 1 new sample
b1 duplication and 2 new samples
c12 duplications and 1 new sample
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