
RESEARCH ARTICLE

Linking big biomedical datasets to modular

analysis with Portable Encapsulated Projects
Nathan C. Sheffield1,2,3,4,�, Michał Stolarczyk1, Vincent P. Reuter1,5, and André F. Rendeiro6,7

1Center for Public Health Genomics, University of Virginia
2Department of Public Health Sciences, University of Virginia
3Department of Biomedical Engineering, University of Virginia
4Department of Biochemistry and Molecular Genetics, University of Virginia
5Genomics and Computational Biology Graduate Group, University of Pennsylvania
6Institute for Computational Biomedicine, Weill Cornell Medical College
7Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medical College
� Correspondence: nsheffield@virginia.edu

Organizing and annotating biological sample data is critical in data-intensive bioinformatics. Unfortu-
nately, metadata formats from a data provider are often incompatible with requirements of a processing
tool. There is no broadly accepted standard to organize metadata across biological projects and bioinfor-
matics tools, restricting the portability and reusability of both annotated datasets and analysis software.
To address this, we present Portable Encapsulated Projects (PEP), a formal specification for biological
sample metadata structure. The PEP specification accommodates typical features of data-intensive bioin-
formatics projects with many samples, whether from individual experiments, organisms, or single cells. In
addition to standardization, the PEP specification provides descriptors and modifiers for different organi-
zational layers of a project, which improve portability among computing environments and facilitate use
of different processing tools. PEP includes a schema validator framework, allowing formal definition of
required metadata attributes for any type of biomedical data analysis. We have implemented packages for
reading PEPs in both Python and R to provide a language-agnostic interface for organizing project meta-
data. PEP therefore presents an important step toward unifying data annotation and processing tools in
data-intensive biological research projects.

Introduction

Biological data generation is accelerating, and consider-
able effort is now being invested in how to best share
it. These efforts include expansions of databases1,2 as
well as new data standards and ontologies, including
the FAIR guiding principles and other guidelines for data
sharing3–8. Major effort is being invested in building an
open data ecosystem upon which data of many types
may be easily shared and reused.

As our ability to measure and store data has increased
across scientific disciplines, analysis has frequently
become the bottleneck of scientific advance. To mit-
igate this, new computational pipelines and analysis
approaches are under constant development. These
pipelines are increasingly federated though pipeline
frameworks, leading to now dozens of such frame-
works that simplify developing reusable computational
pipelines9, as well as standards for workflows such
as the common workflow language10, SnakeMake11,
Galaxy12, and Nextflow13. Similarly, new container-
ization technology is making computing environments
more portable14–16 and efforts to build data commons17

and cloud analysis platforms18 are bringing analysis
to data hosted in the cloud. Collectively, these efforts
seek to meet the challenge of reproducible analysis in

a complicated and growing ecosystem that combines
public and private data.

Efforts to both curate open biological data and to
standardize bioinformatics analysis are certainly com-
plementary, but progress in each area independently
does not necessarily make it easier to connect the two.
In fact, relatively less effort has been placed at the
confluence of data and analysis in biology. We may call
this connection a “data interface,” which describes how
a dataset connects to an analysis tool (Fig. 1A). As it
stands, published bioinformatics pipelines, even if repro-
ducibly built in a standard framework, typically describe
a unique data interface, requiring a user to manually
structure data repeatedly to fit each pipeline (Fig. 1B).
On the flipside, data repositories also typically expose
an individual procedure such as an API for accessing the
data. In practice, it requires substantial manual effort
to plug an arbitrary dataset into an arbitrary analysis
tool – even if both adhere to best-practice community
sharing and analysis development standards.

This challenge is surmountable for a typical project that
links one data set to one analysis process – the one lab,

one dataset, one analysis approach, which has been the
dominant model (Fig. 1C). But imagine an attempt to
link multiple datasets from multiple sources to multi-

1· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

mailto:nsheffield@virginia.edu
https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

A

Interface

Analysis

Data B
Data

Analysis

Interface

C
One

lab

One

dataset

One

analysis

D

E
F

Data

Common Interface

Analysis

Analysis tools

Summarizers

Pipelines

Meta-analysis

Databases

Sharing
Portable

Encapsulated
Project

G

Must reshape
Fits natively

Repeated restructuring

Single restructuring

Fig. 1: A data interface links data to analysis. A) Schematic of a data interface. B) Each analysis typically describes its own unique data interface.
C) The one lab, one dataset, one analysis mode of research tightly couples datasets and analysis. D) With individual data interfaces, running a data
set through multiple analyses requires reshaping the data for every pairwise connection of data and analysis. E) The PEP specification provides a
standardized interface that reduces reshaping. F) Using PEP, no reshaping is required to run a data set through a different analytical tool. G) A PEP
may be used in different contexts, and by a variety of tools and programming languages.

ple analysis tools. Each pair of data and tool requires
a unique data description, which probably requires sub-
stantial manual data munging (Fig. 1D). The result is
that analysis done by an individual lab is often restricted
to a particular dataset generated by that lab for that
project. What would it take to build a computing ecosys-
tem that would relax this coupling, making it routine to
mix-and-match data and pipelines across groups?

A first step to realize this vision is to standardize the data
interface. This would make both datasets and tools more
portable, facilitating data integration and tool compari-
son. To this end, we present the Portable Encapsulated
Projects (PEP) specification. The PEP specification stan-
dardizes the description of sample-intensive biological
research projects, enabling data providers and data users
to communicate through a common interface (Fig. 1E).
This standardization facilitates using different pipelines
for the same datasets (Fig. 1F). In addition to standard-
ization, the PEP specification provides powerful porta-
bility called project modifiers and sample modifiers that
make project metadata annotation independent of a par-
ticular computing platform. PEP also provides a cus-
tomizable validation framework that can be used to first
define and then to validate the sample properties re-
quired for a particular application. Finally, we provide
tools that read PEPs and handle PEP modifiers in R and
Python, which can be extended by specialized tools.

PEP thus provides a unifying data organization that can
be employed by many tools to make it easier to share
data and tools. The goal of PEP follows the vision of the

Investigation/Study/Assay (ISA) biological metadata
management framework19. Relative to ISA, PEP empha-
sizes generality, programmatic metadata preprocessing,
and integration into workflow systems. Existing tools
can easily accommodate the PEP structure; for example,
SnakeMake includes a special directive to directly
import a PEP into a workflow that functions alongside
earlier, specialized data formats. Similarly, our compan-
ion tool, looper, can be used to submit arbitrary CWL
workflows to a CWL runner for each sample in a PEP
project. This sets the stage for a single data description
that can be used as input for multiple workflows – even
workflows built using different frameworks.

Together, these advantages realize a unified specifica-
tion that can be read and processed by many types of
downstream analysis (Fig. 1G). By standardizing the de-
scription of project metadata and providing standalone,
modular tools to read that standard, we simplify exist-
ing processes and enable new types of analysis. For
instance, standardized PEPs enables meta-analysis that
assesses sample properties across hundreds of projects,
since each project can be read the same way. Databases,
instead of requiring a custom project description and file
naming and organization could instead simply provide
a schema and use PEP to load published projects into
a structured database. Tools that summarize processed
data can be made to use the same PEP that runs the orig-
inal workflows, making these kind of summarizing tools
more broadly applicable. And finally, a shared metadata
structure simplifies sharing across individuals and tools.

2· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

A B

Append Duplicate Imply Derive

E

name: my_project
pep_version: "2.0.0"
sample_table: samples.csv

sample_name, protocol, file
rat_0h, RNA-seq, rat_0h.fq.gz
rat_1h, RNA-seq, rat_1h.fq.gz
rat_2h, RNA-seq, rat_2h.fq.gz
rat_3h, RNA-seq, rat_3h.fq.gz

C

D

yaml
csvyaml

csv

yaml
Import Amend

Sample modifiers

csv csv
?

csv {...}

yaml

csv

csv

Remove

Project modifiers

PEP

Project
config

Sample
table

yaml

Subsample
table

csv

csv

Fig. 2: The PEP specification. A) A PEP consists of a YAML configuration file, a sample table, and a subsample table. B) The YAML file describes
project-level attributes. C) The sample table (and subsample table) describe sample-level attributes. D) Project modifiers allow the PEP to import
values from other PEPs, or embed multiple variations within a single PEP. E) Sample modifiers can change sample attributes by using the project
config YAML file, without actually changing the CSV file.

Results

Basic PEP specification

The PEP specification defines a way to organize project
and sample metadata in files using YAML and CSV for-
mats. The term project refers to a collection of meta-
data that describes a set of samples. A sample is defined
loosely as any unit that can be collected into a project; it
consists of sample attributes, usually with one or more
that point to data files. A PEP is a set of files that conform
to the PEP specification. An common example could be
a typical biological research project made up of a set of
RNA-seq samples grouped to answer a particular ques-
tion.

The specification defines a PEP in two files: A YAML

configuration file, and a tabular comma-separated value
(CSV) annotation file (Fig. 2A). The configuration
file provides project-level descriptions, such as paths
to remote or local sources of data, global analysis
parameters, or other project attributes. The tabular
file is a sample table, providing metadata attributes for
each biological specimen included in the project. An
optional third file, the subsample table, can be used
to specify sample attributes with multiple values (see
http://pep.databio.org for further details). A basic PEP
configuration file has just a few fields in YAML format,
such as this example YAML file (Fig. 2B) that points to a
samples.csv file (Fig. 2C), which contains a header line
of sample attributes and then one data row per sample.
Together, these two files describe a minimal project.
The basic PEP format is thus extremely flexible and
can accommodate assorted sample-intensive biological
research project data. Because PEP uses simple plain
text files, it is universally accessible, easy to version
control, and inexpensive to store.

This very simple approach is then extended in two
critical improvements: First, we added features that
improve portability called project modifiers and sample

modifiers, which enable us to remove environment-
specific file paths and analysis-specific metadata from
the sample table, making it easier to use a single meta-
data representation for multiple analyses in different

computing environments. These modifiers are handled
by implementations of the PEP specification, which
then provide modified, or processed, sample and project
metadata for downstream tools to Consume. Second,
we built a validation framework for PEPs that includes
a base schema to validate generic PEPs along with
tools to extend this schema to more specific use cases.
This generic + specialization approach allows us to
construct a re-usable project definitions that can be
extended modularly to provide increased specificity. To-
gether, these two improvements provide the power and
specificity that enables PEP to unify and enhance our
metadata descriptions for many types of data-intensive
biological research projects. We describe these in more
detail below.

Project modifiers

Project modifiers are special project attributes that pro-
vide additional functionality to a project. The two mod-
ifiers are import and amend, which allow users to either
merge or embed PEPs (Fig. 2D). At times it is useful
to create two projects that are very similar, but differ
just in one or two attributes. For example, you may de-
fine a project with one set of samples, and then want an
identical project that uses a different sample table. Or,
you may define a project to run on a particular reference
genome, and want to define a second project that is iden-
tical, but uses a different reference genome. You could
simply define 2 complete PEPs, but this would duplicate
information and make it harder to maintain. Instead,
project modifiers make it easier to tie projects together
through the import and amend relationships.

Project modifier: import

The import project modifier allows the configuration file
to import other PEPs. The values in the imported files
will be overridden by the corresponding entries in the
current configuration file. Imports are recursive, so an
imported file that imports another file is allowed; the
imports are resolved in cascading order with the most
distant imports happening first, so the closest configu-
ration options override the more distant ones. Imports

3· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

provide a way to decouple project settings so that more
specific projects can inherit attributes from more general
projects. Imports allow users to combine multiple files
into one PEP description. The import modifier handles
sample tables the same way it does any other attribute.
If a sample table is specified in both an imported and
importing PEP, it does not merge or update individual
samples or tables, but simply selects the highest priority
value of the sample table attribute.

Project modifier: amend

The amend project modifier allows the configuration file
to embed multiple independent projects within a sin-
gle PEP. When a PEP is parsed, you may specify one or
more included amendments, which will amend the val-
ues in the processed PEP. Amendments are useful to de-
fine multiple similar projects within a single project con-
figuration file. Under the amend key, you specify names
of amendments, and then underneath these you spec-
ify any project variables that you want to override for
that particular amendment. It is also possible to acti-
vate more than one amendment in priority order, which
allows you to combine different project features on-the-
fly.

Example:

sample_table: annotation.csv

project_modifiers:

amend:

my_project2:

sample_table: annotation2.csv

my_project3:

sample_table: annotation3.csv

When used in tandem, imports and amendments to-
gether make it possible to create powerful links between
projects and analysis settings that can simplify running
multiple analyses across multiple projects.

Sample modifiers

Sample modifiers are project-level settings that adjust
sample attributes. After the sample table is read, sample
modifiers are applied, adding new attributes or changing
attributes from the original sample table. Sample mod-
ifiers enable keeping analysis-specific sample attributes
in the project configuration file so the sample table can
be more easily shared across projects. This allows the
creation of a sample table that does not need to be edited
when moved to either a different project or compute en-
vironment, making both project and sample metadata
more portable.

You can add sample modifiers to a PEP by adding a
sample modifiers section to a project configuration
file. Within this section, there are 5 subsections corre-
sponding to 5 types of sample modifier (Fig. 2E). Three

modifiers – remove, append, and duplicate – are very
simple operations. The more expressive sample modi-
fiers – imply and derive – lend considerable flexibility to
the construction of PEP sample tables.

Sample modifier: remove

The remove modifier simply removes a specified attribute
from all samples. It can be useful if a particular analysis
needs to eliminate a particular attribute without modi-
fying the original sample table.

sample_modifiers:

remove:

- genome

Sample modifier: append

The append modifier adds constant attributes to all
samples in a project. For example, if you write genome:

hg38 as an entry under append, then when the PEP
is parsed, the samples will each have an additional
attribute, genome, with value hg38. This modifier is
useful because it allows keeping static attributes in the
project configuration file. It also allows you to preserve
project-level information (like genome) separate from
sample-level information, but still pass that information
along to pipelines that require it for each sample. This
addresses the structural mismatch in independence that
follows from project composition – very often, samples
may be processed independently while having high
dependence among their metadata. PEPs are friendly to
the don’t repeat yourself principle that improves project
maintainability.

Example:

sample_modifiers:

append:

genome: hg38

Sample modifier: duplicate

The duplicate modifier allows copying an existing sam-
ple attribute into a new one. For example, the “genome”
attribute could be a synonym of the “Genome” attribute.
This allows us to tweak settings at the project level,
which simplifies use of an alternate pipeline with
different requirements, without requiring modification
of the underlying sample table that may break earlier
analysis. In the key:value pair, the old attribute name
listed as key will be duplicated to create a new attribute
named with the corresponding value.

Example:

sample_modifiers:

duplicate:

Genome: newattr

4· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

{x}
SCHEMA

PEP

yaml
csv

+
{x}

SCHEMA

PEP

yaml
csv

+
{x}

SCHEMA

PEP

yaml
csv

+

Valid

Valid

Invalid

generic

analysis X

analysis Y

PEP Schema

yaml
csv

A B
{x}

SCHEMA

properties:
 newattr:
 type: string

{x}
a.yaml

{x}
a.yaml

{x}
SCHEMA

import:
 - a.yaml
properties:
 attr:
 type: integer

PEP

yaml
csv

+
Invalid

yaml

Valid

validate

config

sample

modifiers

csv

Valid

validate

samples

project

modifiers

yaml
csv

yaml
C

Fig. 3: PEPs can be validated against generic or specific schemas. A) A generic schema ensures compliance with the PEP specification, while
specialized schemas describe requirements for a particular analysis. B) PEP schemas can import other schemas. C) Validation uses two steps so
samples are validated after PEP modification.

Sample modifier: imply

The imply modifier lets a user add sample attributes that
are modulated based on the value of an existing sample
attribute. For example, a common use case is to use im-

ply to set a genome attribute for any sample with a spe-
cific value in its organism attribute. This enables com-
plete separation of description of sample-intrinsic prop-
erties (like organism) from project-level values (like ref-
erence genome, which may change).

Example:

sample_modifiers:

imply:

- if:

organism: "human"

then:

genome_assembly: "hg38"

Sample modifier: derive

The most expressive sample modifier is called derive.
This modifier allows us to create sample attributes that
are derived from other sample attributes. The most
common use case is to specify paths to data files at the
project level instead of at the sample level. This allows
tabular sample descriptions to avoid including any
environment-specific information (such as a file path),
so that moving a project from one compute environment
to another requires editing only a single line in the
project configuration file.

The derive modifier consists of two pieces of data: First,
the attributes section lists sample attributes to be de-
rived. Second, the sources section contains key-value
pairs, where the keys are source names and values are
string templates. The source names are the original val-
ues of the derived attributes. The string templates are
used to derive new attribute values by the PEP proces-
sor, replacing the source names in the original table.
These templates may contain sample attributes enclosed
by curly braces, such as {sample name}.

Example:

sample_modifiers:

derive:

attributes: [read1, read2]

sources:

key1: "/path/{attr}/{sample_name}.fq"

key2: "/path/{attr}/{sample_name}.fq"

In this example, {attr} and {sample name} represent
other attributes that are present on the sample. These
may be populated from the sample table, or from other
attributes that have been added using a sample modifier
such as append.

When derived source paths include a shell variable, de-
rived attributes enable not only a sample table, but an
entire PEP, to be made completely portable with no edit-
ing. For instance, we could replace /path/ above with
$DATAPATH, and this PEP would then point to the correct
files on any computing environment with the $DATAPATH

environment variable set.

Project and sample validation

To make it easier to build valid PEPs, we also imple-
mented a PEP validation tool called eido. Eido is
a specialized PEP validator based on JSON-schema
(https://json-schema.org/). Complete documentation,
descriptions of schema features, and example schemas
can be found at eido.databio.org. Schema files may be
equivalently saved in either JSON or YAML format. Eido
can be used with a generic PEP specification schema
to validate a PEP in general. Even more important,
tool authors can provide a schema that describes more
specific requirements for a tool, and eido can validate a
given PEP to make sure it conforms to both the generic
schema and the more stringent schema, ensuring that it
can run on a particular tool (Fig. 3A).

For example, an author of a pipeline may write a
schema specifying that samples must have attributes
named read1 and read2, which must be of type string,
and which must point to input files. Furthermore, the
schema specifies that samples must have an attribute
called genome that specifies the genome to align to,

5· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

http://eido.databio.org
https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

perhaps with a list of allowable values. With this schema
published, it is now possible to validate a PEP to ensure
that it fulfills the requirements for this pipeline. PEP
schemas can also import other schemas (Fig. 3B). In
this case, the PEP must validate against all requirements
specified by imported schemas to be valid.

Specific schemas for PEPs are written using JSON-
schema with a few additions that extend the basic
vocabulary to tailor it to the PEP use case. For example,
our validator adds the term required files, which
allows a schema author to indicate which sample
attributes must point to files that exist. Because eido is
based on JSON-schema, it inherits the explicit variable
typing (e.g. string, number, boolean), and restrictions
on values (e.g. ranges, regular expressions, enumerated
values). Eido uses a two-stage validation that first
validates the configuration file, and then validates
individual samples after they have been processed (Fig.
3C). This ensures that sample attributes that are added
or modified can be properly checked. These adjustments
to the basic JSON-schema validation allow eido to
satisfy the requirements of validating bioinformatics
research projects.

PEP implementations in R and Python

The reference implementation of the PEP specification
is the peppy python package, available from the Python
Package Index (PyPI). Peppy instantiates in-memory
project objects and provides a Python API for pro-
grammatic access to any project metadata from within
Python. A user simply creates a Project object (prj =

Project("config.yaml")) and may now interact with
the project metadata within Python. This package is
a generic, extensible object framework that enables
developers to build additional tools using these objects.
For instance, SnakeMake relies on the peppy package
to handle parsing and reading PEP-formatted project
metadata to power a workflow run.

We have also developed an R implementation of PEP
in the pepr package, available on CRAN. PEP files
can be parsed in R with a similar function call, prj =

pepr::Project("config.yaml"), which provides an R
API for interacting with PEPs in R. These tools provide
a PEP project interface to programmers of two of the
most popular data science programming languages,
increasing portability of PEP projects. We and others
have successfully used this infrastructure in dozens
of projects with hundreds to thousands of individual
samples.

We are interested in future efforts to expand this to other
computing frameworks. These APIs provide basic func-
tions for interacting with projects and samples, including
setting and accessing variables, extracting the sample
attributes and sub-attributes as a tabular object (using
pandas in Python and data.table in R), accessing indi-
vidual samples as objects. In each case, all the sample

and project modifiers are processed behind the scenes so
downstream tools can easily make use of the PEP porta-
bility features. The formal API is documented in the re-
spective package documentation.

Discussion
The promise of PEP

As the amount of available data increases, it is useful
to build a common infrastructure to link it to analytical
tools. Currently, downloading and analyzing an external
dataset requires significant manual investment. Because
each analytical pipeline typically has a unique interface
to input data, testing multiple competing pipelines on
a single dataset requires describing the dataset multiple
times. These manual steps hinder re-analysis and re-use
of existing data.

We here propose reducing this barrier with the concept
of Portable Encapsulated Projects. The PEP specification
is at once standardized and flexible. It provides a loose
generic specification that can be easily extended for spe-
cific use cases. It also provides a validation framework
that can easily accommodate both generic and special-
ized PEPs.

Together, PEP provides an interface between data and
tools that makes each more useful. If a tool developer
designs a tool to read PEPs, then it is immediately pos-
sible to apply the tool to any published, compliant PEPs.
To describe how to use the tool, the developer needs
only define a PEP schema, which can be validated us-
ing eido; any project defining these attributes would
then work without modification. Users then immedi-
ately know how to format a project for the tool, and
by describing newly generated data in PEP format, they
may immediately plug that project into the tool. As
developers build pipelines that understand PEP format,
they make it simple to apply their pipeline to new PEP-
compatible projects as they emerge.

On the flipside, as data producers publish datasets in
PEP format, they make it easy for pipeline developers
to test new analytical techniques on data from a variety
of sources. This will incentivize data sharing and re-use,
driving innovation and discovery both in tool develop-
ment and in understanding of data.

Together, these tools create a programmable link be-
tween data and analysis, making it simple to re-analyze
an existing dataset with a newly developed pipeline,
grab a relevant public dataset to include with newly
generated data in a private project, or test a published
PEP-compatible pipeline on some in-house data.

PEP in practice

Several projects have been published that make use of
PEP. From our research group, we have produced PEP-
compatible pipelines for several biological data types, in-
cluding nascent RNA sequencing20 and ATAC-seq21. We

6· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

also rely on PEP for listing reference genome assets for
refgenie server22,23, and we used PEP in a study of gen-
erating simulated genomic intervals24. These examples
and others provide a starting point for interested devel-
opers or users who would like to see PEP in action. They
also demonstrate the breadth and versatility of PEP.

A call for community involvement

To conclude, we offer a call for community involvement
to support reaching the vision of metadata interoper-
ability. Three key steps will be required before this can
happen: First, we need tools that support and extend
the PEP specification; second, we need adoption by
workflow engines; and finally, we need support of public
datasets and data repositories to accept and provide
data that fits the system.

A first step will be to build tools that operate in this
area. To facilitate community uptake, we are developing
a series of tools that subscribe to the PEP standard.
Above, we described Python and R packages that read
PEPs, along with eido for PEP validation. These core
tools can form the foundation of new tools, and we
hope that others in the community will use them to add
functionality to the PEP ecosystem. For our needs, we
are extending these capabilities with several ongoing
projects: First, geofetch is a data fetcher that accepts
a list of SRA or GEO accession numbers and then
downloads raw sequence data from the Sequence Read
Archive and constructs a PEP, ready to be plugged into
a PEP-compatible analysis tool. Second, looper is a
workflow-engine-agnostic command submission engine
that reads PEP-formatted sample data and runs arbitrary
commands. Finally, BiocProject is an upcoming project
that adds bioconductor-specific functionality to PEPs,
simplifying biological data analysis of PEPs in R.

A second step will be for workflow engines to adopt PEP
as a way to specify samples. Workflow engines are be-
coming a critical component of biological data analysis,
and as such, they provide an important incentive for
the way users and tool developers organize metadata.
Unfortunately, most workflow engines still require a
custom format for describing input metadata. We have
been reaching out to workflow engine communities,
such as the SnakeMake10 and CWL11 communities,
which already have some support for PEP-formatted
metadata. We are also working on a conversion function
in eido that would allow users to write custom for-
matters, making it easier to fit PEP-formatted metadata
into custom analyses. We invite collaboration and
involvement from other workflow-oriented communities
who could support a community effort for standardized
metadata organization that spans workflow engines.

And third, another important step will be for datasets
and data repositories that understand this format, both
for submission and download. We encourage authors

of individual papers to consider using a PEP-structured
sample table when publishing descriptions for individ-
ual projects. And we invite large-scale data providers to
make it possible to download data descriptions in PEP-
compatible files, and even to submit data in PEP-valid
format.

To our knowledge, this is the first major effort to pro-
duce a universal specification and framework for collec-
tions of biological sample metadata geared toward meta-
data and data processing. PEP can be tailored with ease
to specific use cases with schemas that define specific
tool requirements. We anticipate that these tools will
encourage both bioinformatics pipeline developers and
data producers to subscribe to a common format, ben-
efiting both and leading to increased ability to extract
useful information from biological data.

Availability

All described software is BSD2-licensed and developed
on GitHub at github.com/pepkit. The Python imple-
mentation is on PyPI and the R implementation is on
CRAN. The formal PEP specification can be found at
pep.databio.org.

Identifiers:

• eido: RRID:SCR 021076; biotools:eido-python-
package

• pepr: RRID:SCR 021077; biotools:pepr-R-package

• peppy: RRID:SCR 021078; biotools:peppy-python-
package

Acknowledgments

We thank Johannes Köster, Jason Smith, Aaron Gu, and
the Sheffield lab for input. This work is funded by the
National Institutes of Health Institute for General Medi-
cal Sciences (NIGMS) award R35GM128636 to NCS.

References

1. Barrett, T. et al. NCBI GEO: Archive for functional genomics

data sets–update. Nucleic Acids Res. 41, D991–D995 (2013).

2. Leinonen, R., Sugawara, H., Shumway, M. & Collaboration,

I. N. S. D. The sequence read archive. Nucleic Acids Res. 39,

D19–D21 (2011).

3. Hoehndorf, R., Slater, L., Schofield, P. N. & Gkoutos, G.

V. Aber-OWL: A framework for ontology-based data access in

biology. BMC Bioinformatics 16, 26 (2015).

4. Malladi, V. S. et al. Ontology application and use at the

ENCODE DCC. Database 2015, (2015).

5. Wilkinson, M. D. et al. The FAIR guiding principles for scien-

tific data management and stewardship. Sci. Data 3, 160018

(2016).

7· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

http://github.com/pepkit
http://pep.databio.org
https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

6. Birney, E., Vamathevan, J. & Goodhand, P. Ge-

nomics in healthcare: GA4GH looks to 2022. (2017)

doi:10.1101/203554.

7. Krumholz, H. M. & Waldstreicher, J. The yale open data

access (YODA) project–a mechanism for data sharing. The New

England journal of medicine 375, 403–405 (2016).

8. Jupp, S. et al. The EBI RDF platform: Linked open data for

the life sciences. Bioinformatics 30, 1338–1339 (2014).

9. Leipzig, J. A review of bioinformatic pipeline frameworks.

Brief Bioinform (2016) doi:10.1093/bib/bbw020.

10. Amstutz, P. et al. Common workflow language, v1.0.

(2016) doi:10.6084/m9.figshare.3115156.v2.

11. Köster, J. & Rahmann, S. Snakemake–a scalable bioin-

formatics workflow engine. Bioinformatics 28, 2520–2522

(2012).

12. Afgan, E. et al. The galaxy platform for accessible, repro-

ducible and collaborative biomedical analyses: 2016 update.

Nucleic Acids Research 44, W3–W10 (2016).

13. Ewels, P. A. et al. The nf-core framework for community-

curated bioinformatics pipelines. Nature Biotechnology 38,

276–278 (2020).

14. Merkel, D. Docker: Lightweight linux containers for con-

sistent development and deployment. Linux Journal 2014, 2

(2014).

15. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity:

Scientific containers for mobility of compute. PLOS ONE 12,

e0177459 (2017).

16. Sheffield, N. C. Bulker: A multi-container environment

manager. OSF Preprints (2019) doi:10.31219/osf.io/natsj.

17. Volchenboum, S. L. et al. Data commons to support pe-

diatric cancer research. American Society of Clinical Oncology

Educational Book 37, 746–752 (2017).

18. Fenstermacher, D. et al. The cancer biomedical informatics

grid (caBIG). Conference proceedings : ... Annual International

Conference of the IEEE Engineering in Medicine and Biology So-

ciety. IEEE Engineering in Medicine and Biology Society. Annual

Conference 1, 743–746 (2005).

19. Rocca-Serra, P. et al. ISA software suite: Supporting

standards-compliant experimental annotation and en-

abling curation at the community level. Bioinformatics 26,

2354–2356 (2010).

20. Smith, J. P., Dutta, A. B., Sathyan, K. M., Guertin, M. J.

& Sheffield, N. C. PEPPRO: Quality control and processing of

nascent RNA profiling data. Genome Biology 22, (2021).

21. Smith, J. P. et al. PEPATAC: An optimized ATAC-

seq pipeline with serial alignments. bioRxiv (2020)

doi:10.1101/2020.10.21.347054.

22. Stolarczyk, M., Reuter, V. P., Smith, J. P., Magee, N. E. &

Sheffield, N. C. Refgenie: A reference genome resource man-

ager. GigaScience 9, (2020).

23. Stolarczyk, M., Xue, B. & Sheffield, N. C. Identity and

compatibility of reference genome resources. NAR Genomics

and Bioinformatics 3, (2021).
24. Gu, A., Cho, H. J. & Sheffield, N. C. Bedshift:

Perturbation of genomic interval sets. bioRxiv (2020)

doi:10.1101/2020.11.11.378554.

8· Linking data to analysis · bioRχiv

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.10.08.331322doi: bioRxiv preprint

https://doi.org/10.1101/203554
https://doi.org/10.1093/bib/bbw020
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.31219/osf.io/natsj
https://doi.org/10.1101/2020.10.21.347054
https://doi.org/10.1101/2020.11.11.378554
https://doi.org/10.1101/2020.10.08.331322
http://creativecommons.org/licenses/by/4.0/

	ㄱ㈠〠潢樊㰼 呩瑬攨﻿ㄱ㌠〠潢樊㰼 呩瑬攨﻿ㄱ㐠〠潢樊㰼 呩瑬攨﻿ㄱ㔠〠潢樊㰼 呩瑬攨﻿ㄱ㘠〠潢樊㰼 呩瑬攨﻿ㄱ㜠〠潢樊㰼 呩瑬攨﻿ㄱ㠠〠潢樊㰼 呩瑬攨﻿ㄱ㤠〠潢樊㰼 呩瑬攨﻿ㄲ〠〠潢樊㰼 呩瑬攨﻿ㄲㄠ〠潢樊㰼 呩瑬攨﻿ㄲ㈠〠潢樊㰼 呩瑬攨﻿ㄲ㌠〠潢樊㰼 呩瑬攨﻿ㄲ㐠〠潢樊㰼 呩瑬攨﻿ㄲ㔠〠潢樊㰼 呩瑬攨﻿ㄲ㘠〠潢樊㰼 呩瑬攨﻿ㄲ㜠〠潢樊㰼 呩瑬攨﻿ㄲ㠠〠潢樊㰼 呩瑬攨﻿ㄲ㤠〠潢樊㰼 呩瑬攨﻿ㄳ〠〠潢樊㰼 呩瑬攨﻿ㄳㄠ〠潢樊㰼 呩瑬攨﻿ㄳ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㈳⸴㈹‵㘷⸴㐵‱㤸⸰㔴‵㜶⸱㈲崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡭慩汴漺湳桥晦楥汤䁶楲杩湩愮敤甩㸾ਯ卵扴祰支䱩湫㸾敮摯扪਱㌳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔱〮〹㈠㈴㈮〹㔠㔱㜮㘲㐠㈵㌮㘳㙝ਯ䑥獴⁛㔠〠删⽘奚‵㜮㘰〰‷㐰⸳㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌴⸹㈳‱㤴⸲㜴‵㐲⸴㔵′〵⸸ㄶ崊⽄敳琠嬵‰⁒ 塙娠㔷⸶〰〠㜴〮㌷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐱㈮㤹㐠㘸⸷㐵‴㈰⸵㈶‸〮㈸㝝ਯ䑥獴⁛㔠〠删⽘奚‵㜮㘰〰‷㐰⸳㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈰⸱〮〸⸳㌱㌲㈩㸾敮摯扪਱㌷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㐮〰㠠㜷㠠㈷㘮㜸㐠㜸㡝ਯ䄠‱㌶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਱㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‱㌸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄴ〠〠潢樊㰼⽔祰支䝲潵瀊⽓⽔牡湳灡牥湣礊⽉⁴牵攊⽃匯䑥癩捥則䈾㹥湤潢樊ㄴㄠ〠潢樊㰼⽆畮捴楯湔祰攠㈊⽄潭慩湛《ㅝਯ䌰嬰⸳㔲㤴ㄊ〮㘲㌵㈹ਰ⸸㌱㌷㍝ਯ䌱嬰⸱㠸㈳㔊〮㐱ㄷ㘵ਰ⸵㤶〷㡝ਯ丠ㄾ㹥湤潢樊ㄴ㈠〠潢樊㰼⽆畮捴楯湔祰攠㈊⽄潭慩湛《ㅝਯ䌰嬱ਰ⸸㌱㌷㌊〮㈳ㄳ㜳崊⽃ㅛㄊ〮㤰㤸〴ਰ⸴㔰㤸崊⽎‱㸾敮摯扪਱㐳‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䍓⽄敶楣敇牡社㹥湤潢樊ㄴ㐠〠潢樊㰼⽆畮捴楯湔祰攠㈊⽄潭慩湛《ㅝਯ䌰嬰⸴㤸〳㥝ਯ䌱嬰崊⽎‱㸾敮摯扪਱㐵‰⁯扪਼㰯匯䱵浩湯獩瑹ਯ䜠ㄹ‰⁒㸾敮摯扪਱㐶‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹㸾敮摯扪਱㐷‰⁯扪਼㰯䙵湣瑩潮呹灥′ਯ䑯浡楮嬰਱崊⽃せ〮㜲ㄵ㘹ਰ⸷㈱㔶㤊〮㜲ㄵ㘹崊⽃ㅛ〮㐹㠰㌹ਰ⸴㤸〳㤊〮㐹㠰㌹崊⽎‱㸾敮摯扪਱㐸‰⁯扪਼㰯䙵湣瑩潮呹灥′ਯ䑯浡楮嬰਱崊⽃せ〮㜹㘰㜸ਰ⸸〷㠴㌊〮㠱㔶㠶崊⽃ㅛ〮㔱㜶㐷ਰ⸵ㄳ㜲㘊〮㔴㔰㤸崊⽎‱㸾敮摯扪਱㐹‰⁯扪਼㰯䙵湣瑩潮呹灥′ਯ䑯浡楮嬰਱崊⽃せ〮ㄵ㈹㐱ਰ⸴㈷㐵ㄊ〮㜶㐷〶崊⽃ㅛ〮〸㘲㜵ਰ⸳㘰㜸㐊〮㘶㘶㘷崊⽎‱㸾敮摯扪਱㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㜲⸵㐷‴㜹⸲㔠㜹⸲ㄠ㐸㤮㘲ㅝਯ䑥獴⁛㔠〠删⽘奚‵㜮㘰〰‷㐰⸳㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄵㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㈱⸳㐳″㠹⸳ㄲ′㈸⸸㜵‴〰⸸㔴崊⽄敳琠嬵‰⁒ 塙娠㔷⸶〰〠㜴〮㌷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈸ㄮ㠲ㄠ㈲㜮㤱㜠㈸㤮㌵㈠㈳㤮㐵㥝ਯ䑥獴⁛㔠〠删⽘奚‵㜮㘰〰‷㐰⸳㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄵ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㜵⸶㤴′〴⸰〷‱㠳⸲㈵′ㄵ⸵㐹崊⽄敳琠嬵‰⁒ 塙娠㔷⸶〰〠㜴〮㌷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐲㘮㔲㠠㈲㜮㤱㜠㐳㐮〶′㌹⸴㔹崊⽄敳琠嬵‰⁒ 塙娠㔷⸶〰〠㜴〮㌷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲〮㄰⸰㠮㌳ㄳ㈲⤾㹥湤潢樊ㄵ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈴⸰〸‷㜸′㜶⸷㠴‷㠸崊⽁†ㄵ㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㔷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊ㄵ㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†ㄵ㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㜳⸴㤱‶〰⸷㘷‸〮ㄵ㐠㘱ㄮㄳ㡝ਯ䑥獴⁛ㄠ〠删⽘奚‵㜮㘰〰‷㐰⸳㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㤴⸱㘸″㔳⸰㌳′〱⸷″㘴⸵㜴崊⽄敳琠嬱‰⁒ 塙娠㔷⸶〰〠㜴〮㌷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㘱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈱㐮㔴′㌳⸴㠱′㈲⸰㜱′㐵⸰㈳崊⽄敳琠嬱‰⁒ 塙娠㔷⸶〰〠㜴〮㌷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㘲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄵ㔮㠷㤠㈲ㄮ㐸㤠ㄶ㌮㐱ㄠ㈳㌮〶㡝ਯ䑥獴⁛ㄠ〠删⽘奚‵㜮㘰〰‷㐰⸳㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㐰⸹㔹′㤹⸲㐸‴㐸⸴㤱″㄰⸷㥝ਯ䑥獴⁛ㄠ〠删⽘奚‵㜮㘰〰‷㐰⸳㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈰⸱〮〸⸳㌱㌲㈩㸾敮摯扪਱㘵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㐮〰㠠㜷㠠㈷㘮㜸㐠㜸㡝ਯ䄠‱㘴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਱㘷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‱㘶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㔳⸷㌷‴㤮㜸㈠㈶ㄮ㈶㤠㘱⸳㈴崊⽄敳琠嬱‰⁒ 塙娠㔷⸶〰〠㜴〮㌷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㘹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲〮㄰⸰㠮㌳ㄳ㈲⤾㹥湤潢樊ㄷ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈴⸰〸‷㜸′㜶⸷㠴‷㠸崊⽁†ㄶ㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㜱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊ㄷ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†ㄷㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㜳‰⁯扪਼㰊⽒敧楳瑲礨䅤潢�

