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Abstract

Background: Alzheimer’s Disease (AD) is the most common form of dementia with genetic
and environmental risk contributing to its development. Graph theoretical analyses of brain
networks constructed from structural and functional MRI measurements have identified
connectivity changes in AD and individuals with mild cognitive impairment (MCI). However,
brain connectivity in asymptomatic individuals at risk of AD remains poorly understood.

Methods: We analysed diffusion-weighted magnetic resonance imaging (dMRI) data
from 160 asymptomatic individuals (38-71 years) from the Cardiff Ageing and Risk of
Dementia Study (CARDS). We calculated white matter tracts and constructed whole-brain,
default-mode-network and visual structural brain networks that incorporate multiple structural
metrics as edge weights. We then calculated the relationship of three AD risk factors, namely
Apolipoprotein-E ¢4 genotype (APOE4), family history (FH) of dementia, and central obesity,
on graph theoretical measures and hubs.

Results: We observed no risk-related differences in clustering coefficients,
characteristic path lengths, eccentricity, diameter and radius across the whole-brain, default-
mode-network or visual system. However, a hub in the right paracentral lobule was present in
all high-risk groups (FH, APOE4, obese) but absent in low-risk groups (no FH, APOE4-ve,
healthy weight).

Discussion: We identified no risk-related effects on graph theoretical metrics in the
structural brain networks of cognitively healthy individuals. However, high-risk was associated
with a hub in the right paracentral lobule, an area with motor and sensory functions related to
the lower limb. If this phenotype is shown to predict symptom development in longitudinal

studies, it could be used as an early biomarker of AD.
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Impact Statement

Alzheimer’s Disease is a common form of dementia which to date has no cure. Identifying
early biomarkers will aid the discovery and development of treatments that may slow AD
progression in the future. In this paper we report that asymptomatic individuals at heightened
risk of dementia due to their family history, Apolipoprotein-E g4 genotype and body adiposity
have a hub in the right paracentral lobule which is absent in low-risk groups. If this phenotype
were to predict the development of symptoms in a longitudinal study of the same cohort, it

could provide an early biomarker of disease progression.
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Introduction

Alzheimer's disease (AD) is one of the major causes of dementia that affects 10% of
individuals over the age of 65. In the United States, over one million individuals per year will
be affected by AD by 2050 (Hebert et al., 2013). A recent review by the Lancet Commission
concluded that almost half of dementia cases might be prevented or delayed by modifying 12
risk factors (Livingston et al., 2020). It emphasized the importance of improving the early
detection of individuals at risk of developing AD so that preventative therapeutics can be
discovered and developed in the future. It is therefore important to gain a better understanding
of how AD risk factors affect the structure of the brain in healthy individuals and how risk-
related effects differ from those of healthy aging.

The human brain has been characterized as a network of cortical and subcortical areas
(network nodes) which communicate with each other via white matter tracts (connections, or
edges) that carry neuronal signals (E. T. Bullmore & Bassett, 2011; Rubinov & Sporns, 2010).
Structural networks can be derived from diffusion-weighted magnetic resonance imaging
(dMRI) data via tractography (Basser et al., 2000; Mukherjee, Berman, et al., 2008; Mukherijee,
Chung, et al., 2008), and are represented mathematically by graphs. Graph theory can then
be employed to quantify the local and global organizational properties of the brain’s structural
connectome (E. Bullmore & Sporns, 2009). Graph theoretical analyses of brain networks have
provided insight into the effect of AD on the brain’s connectivity (Dai et al., 2019; John et al.,
2017; Lo et al., 2010). More specifically, there is strong evidence that, even though AD
pathology is initially present in localized brain areas, it still affects the whole brain as a network.
It is, therefore, possible that people at risk of developing AD could show alterations in their
structural brain networks and their graph theoretical metrics before developing the disease.
This implies that investigations into possible relationships between AD risk factors and graph
theoretical metrics of structural brain networks could provide biomarkers that signal disease
onset or track disease progression.

In the present study, we used graph theory to characterize the mesoscale of structural
brain networks for the whole-brain connectome and for systems that are affected in AD,
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namely the default mode network (DMN), as well as the visual network as a control (Badhwar
et al.,, 2017), in 165 cognitively healthy individuals from the Cardiff Ageing and Risk of
Dementia Study (CARDS) (38-71 years) (Coad et al., 2020; Metzler-Baddeley, Mole,
Leonaviciute, et al., 2019; Metzler-Baddeley, Mole, Sims, et al., 2019; Mole, Fasano, Evans,
Sims, Hamilton, et al., 2020; Mole, Fasano, Evans, Sims, Kidd, et al., 2020) with different risk
factors for AD. The risk factors investigated were Apolipoprotein-E ¢4 (APOE4), family history
of dementia (FH) and central obesity. A statistical framework was followed to reveal potential
differences in structural network organization between groups of aggregated risk levels. Our
hypothesis was that individuals at the highest risk of dementia, i.e. obese APOE4 carriers with
a family history of dementia, compared to those at lowest risk, i.e. normal-weighted non-
carriers without a family history, would have altered integration and segregation parameters
(increased characteristic path lengths, decreased clustering etc). In our exploratory analysis
of hubs, we aimed to identify any highly interconnected nodes which consistently changed —
gained or lost — in the transition from a low to high-risk group (FH vs. no FH, APOE4 carrier

vs. non-carrier, obese vs. healthy weight).

1. Materials and Methods
Details of the CARDS study have been previously published (Coad et al., 2020; Metzler-
Baddeley, Mole, Leonaviciute, et al., 2019; Metzler-Baddeley, Mole, Sims, et al., 2019; Mole,
Fasano, Evans, Sims, Hamilton, et al., 2020; Mole, Fasano, Evans, Sims, Kidd, et al., 2020)
and will hence only be briefly described in the following. The CARDS study was approved by
the School of Psychology Research Ethics Committee at Cardiff University

(EC.14.09.09.3843R2) and all participants provided written informed consent.

1.1 Patrticipants
Individuals between the ages of 38 and 71 were recruited from the local community via Cardiff
University community panels, notice boards and poster advertisements. Exclusion criteria

included a history of neurological and/or psychiatric disease, severe head injury, drug or
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alcohol dependency, high risk cardio-embolic source or known significant large-vessel
disease. MRI screening criteria were fulfilled by 166 participants. Table 1 summarises their
demographic background, and information about their genetic and lifestyle risk variables.
Depression was screened for with the Patient Health Questionnaire (PHQ-9) (Kroenke et al.,
2001), verbal intellectual function was assessed with the National Adult Reading Test (NART)
(Nelson, 1991) and cognitive impairment with the Mini Mental State Exam (MMSE) (Folstein
et al., 1975). One participant was excluded after assessment of their MMSE score (MMSE =

26).

1.2 Assessment of risk factors

Participants gave saliva samples with the Genotek Oragene-DNA kit (OG-500) for APOE
genotyping. APOE genotypes €2, €3 and €4 were determined by TagMan genotyping of single
nucleotide polymorphism (SNP) rs7412 and KASP genotyping of SNP rs429358 (Metzler-
Baddeley, Mole, Leonaviciute, et al., 2019). Genotyping was successful for 164 of the 165
participants. In addition, 163 participants provided information about their family history of
dementia, i.e. whether a first-grade relative was affected by AD, vascular dementia or any
other type of dementia. We also obtained the number of years spent in education for 164
participants, to include as a covariate in this analysis (Table 1).

Participants’ waist and hip circumferences were measured to calculate the waist-hip-
ratio (WHR). Central obesity was defined as a WHR = 0.9 for men and = 0.85 for women
(Table 1). Other metabolic risk factors were self-reported in a medical history questionnaire
(see for details Mole et al., 2020 Neurobiology of Aging) but were not included in the present

analysis.

1.3 MRI data acquisition

MRI data were collected on a 3T MAGNETOM Prisma clinical scanner (Siemens Healthcare,
Erlangen, Germany) (Coad et al., 2020; Metzler-Baddeley, Mole, Leonaviciute, et al., 2019;
Metzler-Baddeley, Mole, Sims, et al., 2019; Mole, Fasano, Evans, Sims, Hamilton, et al., 2020)
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at the Cardiff University Brain Research Imaging Centre (CUBRIC). A 3D magnetization-
prepared rapid gradient-echo (MP-RAGE) sequence was used to acquire Ti-weighted
anatomical images with the following parameters: 256x256 acquisition matrix, TR = 2300 ms,
TE = 3.06 ms, Tl = 850 ms, flip angle 8 = 9°, 176 slices, 1 mm slice thickness, 1x1x1 mm
isotropic resolution, FOV = 256 mm and acquisition time of ~ 6 min.

Diffusion-weighted MR images were acquired with High Angular Resolution Diffusion
Imaging (HARDI) (Tuch et al., 2002) using a spin-echo echo-planar dual shell HARDI
sequence with diffusion encoded along 90 isotropically distributed orientations (Jones et al.,
1999) (30 directions at b-value = 1200 s/mm?, 60 directions at b-value = 2400 s/mm?) as well
as six non-diffusion weighted images with dynamic field correction using the following
parameters: TR = 9400ms, TE = 67ms, 80 slices, 2 mm slice thickness, 2x2x2 mm voxel, FOV

= 256x256x160 mm, GRAPPA acceleration factor = 2, acquisition time of ~15 min.

1.4 HARDI data processing and whole brain tractography
Diffusion-weighted imaging data processing has been previously detailed in Coad et al., 2020;
Metzler-baddeley, Mole, Leonaviciute, et al., 2019; Metzler-baddeley, Mole, Sims, et al., 2019;
Mole et al., 2020. In brief, dual-shell data were split and b = 1200 and 2400 s/mm? data were
corrected separately for distortions induced by the diffusion-weighted gradients and motion
artefacts in ExploreDTI (v4.8.3) (Leemans et al., 2009). EPI-induced geometrical distortions
were corrected by registering the diffusion-weighted image volumes to the T1-weighted images
(Irfanoglu et al., 2012).

Outliers in the diffusion data were identified with the RESDORE algorithm (Parker,
2014). Whole brain tractography was performed with the damped Richardson-Lucy algorithm
(dRL) (Dell'Acqua et al., 2010) on the 60 direction, b = 2400 s/mm? HARDI data for each
dataset in single-subject space using in-house software (Parker, 2014) coded in MATLAB (the
MathWorks, Natick, MA). Fibre tracts were reconstructed by estimating the dRL fibre
orientation density functions (fODFs) at the centre of each image voxel with seed points
positioned at the vertices of a 2x2x2 mm grid superimposed over the image. At each seed
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point the tracking algorithm interpolated local fODF estimates and then propagated 0.5 mm
along orientations of each fODF lobe above a threshold of a peak amplitude of 0.05. Individual
streamlines were then propagated by interpolating the fODF at their new location and by
propagating 0.5 mm along the minimally subtending fODF peak. This process was repeated
until the minimally subtending peak magnitude fell below 0.05 or the change of direction
exceeded an angle of 45°. Tracking was subsequently repeated in the opposite direction from
the initial seed point. Streamlines with lengths outside a range of 10 mm to 500 mm were

removed.

1.5 Generating integrated weighted structural brain networks: whole-brain analysis

Whole brain tractography maps were used in ExploreDTI v4.8.6 (Leemans et al., 2009), to
create connectivity matrices that describe the structural connectome mathematically. Network
nodes were defined according to the automated anatomical labelling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) using the 90 cortical and subcortical areas of the cerebrum. The edges
of the networks were the tractography-reconstructed tracts: all edges between brain areas not
connected by tracts were therefore equal to zero. This process resulted in 16 90x90
connectivity matrices, the edges of each quantifying if there was a tract or not, number of tracts
between two nodes, percentage of tracts between two nodes, average tract length, Euclidean
distance, density of tracts, tract volume, mean diffusivity, axial diffusivity, radial diffusivity,
fractional anisotropy, second and third eigenvalue of the diffusion tensor, linear anisotropy,
planar anisotropy and spherical anisotropy.

The above-mentioned metrics are chosen because they could reflect the signal
transport and integration abilities of the structural connectome. However, it is not clear yet to
what extent they achieve that (Messaritaki et al., 2021). Additionally, the strength of the
structural connectivity between brain areas depends on the metric used to weight the network
edges. As a result, the network measures derived via the graph theoretical analysis depend
on the connectivity matrix used — i.e. which of the above metrics we chose as an edge weight.
We have recently shown that this ambiguity can be solved by linearly combining nine
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normalised metrics (number of tracts, percentage of tracts, average tract length, Euclidean
distance, density, tract volume, mean diffusivity, radial diffusivity and fractional anisotropy) into
a single graph (Dimitriadis, Drakesmith, et al., 2017) and thresholding the subsequent graphs
using an orthogonal minimal spanning trees scheme (Dimitriadis, Antonakakis, et al., 2017).
This protocol creates connectivity matrices that combine the information from the included
metrics in a data driven manner, so that the maximum information from all metrics is retained
in the final graph; these are termed integrated graphs. The thresholding step can be applied
in dense matrices, resulting in a topographically filtered integrated weighted structural brain
network. The network and nodal reliability of such integrated graphs was improved beyond
that of the 9 individual metrics (Dimitriadis, Drakesmith, et al., 2017). In addition, they were
shown to have very good discrimination capability in a binary classification problem
(Dimitriadis, Drakesmith, et al., 2017), and to exhibit good scan-rescan reliability (Messaritaki
et al., 2019b, 2019a). A recent study demonstrated that community partitions and provincial
hubs are highly reproducible in a test-retest study when structural brain networks were
constructed with the integrated approach (Dimitriadis et al., 2020). For those reasons we
created integrated weighted brain networks instead of pursuing a single-metric structural
connectivity matrix.

In order to reduce the number of false positives possibly resulting from the
tractography, we set to zero all edges in the structural connectivity matrices that corresponded
to tracts with fewer than 5 streamlines (excluding Euclidean distance as this is a biological
metric and has a value regardless of the number of streamlines). All subsequent analyses
were performed on these thresholded connectivity matrices (Figure 1).

In order to decide which metrics to combine into the integrated weighted structural
brain network, we calculated the intercorrelation coefficients (Corrcoef, MATLAB R2015a)
between the number of tracts (NS), percentage of tracts (PS), average tract length (ATL),
Euclidean distance (ED), density of streamlines (SLD), tract volume (TV), mean diffusivity
(MD), radial diffusivity (RD), axial diffusivity (AxD) and fractional anisotropy (FA), see Table 2.
In addition, we performed a multicollinearity test (Collintest, MATLAB R2015a) in an
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endeavour to eliminate metrics representing redundant information within our integrated
graphs. After excluding highly correlated and multi-collinear metrics, the remaining metrics
were integrated into a single graph via a linear graph-distance combination (Dimitriadis,

Drakesmith, et al., 2017)".

1.6 Calculating network measures from integrated graphs
The resulting graphs were weighted and undirected. Using the MATLAB Brain Connectivity
Toolbox (Rubinov & Sporns, 2010) we calculated the following metrics:
e Clustering coefficient: A measure of how interconnected nodes are (averaged across
all nodes)
e Characteristic path length: The average minimum number of connections to span two
nodes
e Eccentricity: Maximum shortest distance between one node and all others (averaged
across all nodes)
e Radius: Minimum eccentricity
e Diameter: Maximum eccentricity

e Global efficiency: Inverse of the characteristic path length?

Network measures were examined for multicollinearity using Belsley collinearity diagnostics
(Collintest, MATLAB R2015a) to ensure only unique predictors were included in our analysis.
The remaining network measures were analysed using multivariate general linear models
described below. We were also interested in identifying potential interactions between our risk

factors.

1.7 Sub-network analysis

! https://github.com/stdimitr/integrated_structural_brain_networks
2 https://github.com/stdimitr/Network_Metrics
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As AD preferentially impacts the DMN we repeated the analysis for this sub-network by
adapting the AAL atlas (Tzourio-Mazoyer et al., 2002) based on the data from Power et al.,
2011. The DMN graphs were comprised of 22 nodes from each hemisphere encompassing
the frontal, temporal, parietal lobes including the precuneus, cingulate gyrus and hippocampus
(Figure 2). To investigate if any changes were specific to the DMN we analysed a separate
control sub-network — the visual system (Wang et al., 2012) by adjusting the regions of interest
specified in Power et al., 2011. The resulting integrated weighted structural brain networks
were composed of 16 nodes from the left and right hemispheres: inferior temporal gyrus,
fusiform gyrus, superior/middle/inferior occipital gyrus, lingual gyrus, cuneus and calcarine

fissure and surrounding cortex (Figure 2).

1.8 Hub analysis

Hubs are nodes of a network that are highly connected to other nodes and act as bridges that
facilitate the transfer of signals in the brain, contributing to its integration abilities (van den
Heuvel & Sporns, 2013). Crucially, hubs appear to play a role in AD (Buckner et al., 2009).
We split the cohort into risk factor groups — positive (N = 59) vs. negative family history (N =
104), APOE4 carriers (N = 64) vs. non-carriers (N = 100), centrally obese (N = 102) vs. healthy
weight (N = 63) — to explore whether hubs changed as a function of risk factor profile in healthy
individuals. Hubs were identified across the whole-brain for each participant by ranking nodal
betweenness centrality and strength, where higher scores indicate hubs. In addition, nodal
local efficiency and clustering coefficients were ranked, with smaller values indicating hubs. A
node was defined as a hub when it was in the top 20% for global measures and the lowest
20% for local measures. Using replicator dynamics (Dimitriadis et al., 2010; Neumann et al.,
2005), hubs which were consistently present across the individual risk factor cohorts were
determined?. This analysis was then repeated using data from the DMN and visual sub-

networks to identify internally important nodes.

3 https://github.com/stdimitr/consistent_hubs_cohort
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1.9 Statistical analyses

In SPSS v26 (IBM Corp., 2019), we performed multivariate general linear models with factors
of APOE4 carrier/non-carrier, family history of dementia/no family history and waist-hip ratio
obese/healthy on dependent variables; mean clustering coefficient, characteristic path length,
eccentricity, global efficiency, diameter and radius. The analyses were adjusted for covariates:
age, years of education and sex. To ensure assumptions were met, normality of residuals was
tested using Kolmogorov-Smirnov tests. We adopted Belsley collinearity diagnostics

(MATLAB R2015a) to assess multicollinearity effects between the estimated network metrics.

2. BResults

2.1 Inclusion of metrics into integrated networks using correlation and collinearity tests

A multicollinearity test was performed on the 10 variables with a default cut-off of 30 for the
condition index and 0.5 for proportion of variance-decomposition. This analysis revealed
multicollinearity between AxD, MD and RD (Table 3). Correlation coefficients (Table 4) were
calculated between all 10 connectivity metrics. We used a cut off of R > 0.6 to flag strong
correlations to investigate further. PS, NS and TV were highly inter-correlated, and for that
reason we only included NS in our analysis. AxD, MD and RD exhibit multicollinearity and both
AxD and RD correlated strongly with FA (R = 0.6036, p-value < 108 and R = -0.6721, p-value
< 108, respectively) — thus these two metrics were excluded. This resulted in a final inclusion
of ATL, SLD, FA, ED, MD and NS. We re-ran the correlation and multicollinearity analysis on
these metrics and confirmed no strong correlations (Table 4) or multicollinearity. These six
metrics were then combined into a single graph (Figure 3) with an algorithm introduced in our

previous study (Dimitriadis, Drakesmith, et al., 2017).

2.2. Exclusion of mean eccentricity from further analyses
Belsley collinearity diagnostics applied over the adopted set of network metrics flagged
multicollinearity between diameter and mean eccentricity using whole-brain network measures
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(Table 5). We therefore excluded the eccentricity from further analyses and kept the diameter,
which in combination to radius inform us about the lower (radius) and upper limits (diameter)

of eccentricity.

2.3 Whole-brain analysis

Kolmogorov-Smirnov tests for normality revealed non-Gaussian distributions for all network
measures (p-value < 0.05, Table 6, Figure S1). To alleviate this, diameter, characteristic path
length and radius were log transformed to reduce positive skew, and efficiency and clustering
coefficients were squared to reduce negative skew. After data cleaning, the diameter,
characteristic path length, and radius mimicked normal distributions when assessed by
Kolmogorov-Smirnov tests (p-value > 0.05), but efficiency and clustering coefficients were
non-normal. Despite the latter, the analysis was continued as the graphs, when inspected by
eye, appeared improved beyond the original in regard to skew (Figure S1), and therefore we
decided that the data complied with general linear model assumptions despite formally failing
the tests. One extreme outlier was present in the diameter data after transformation (defined
as > 3 x interquartile range) thus we excluded this participant from further whole-brain
analyses. Four participants had missing data thus the final analysis had a sample size of 160.
Omnibus multivariate analyses revealed no significant main or interaction effects (p-value >
0.05, Table 7), suggesting that there were no differences in whole-brain network measures
between individuals who carry APOE4 vs. non-carriers, have a FH vs. no FH, obese vs.

healthy weight.

2.4 Sub-network analyses

We then investigated whether any individual differences were occurring at a sub-network level.

2.4.1 Default Mode Network analysis
Kolmogorov-Smirnov tests revealed non-normality for all network measures calculated from
the DMN integrated graphs (Table 6, Figure S2). To correct for this, the diameter,
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characteristic path length and radius were log transformed and the efficiency was squared.
Despite being non-Gaussian as determined by Kolmogorov-Smirnov tests, the distribution of
residuals for mean clustering coefficients was not heavily skewed when assessed by eye. We
identified nine extreme outliers (> 3 x interquartile range) within efficiency data and one within
clustering coefficients thus these were removed from the analysis. After data cleaning, the
characteristic path length, efficiency and clustering coefficients were not formally normal when
reassessed with Kolmogorov-Smirnov tests, however the analysis was continued (Figure S2)
as not to lose value in our raw data as a result another round of data cleaning. Multivariate
analyses revealed no significant effects (N = 151, p-value > 0.05, Table 7) suggesting that

there are no differences in default mode network measures as a result of risk-factor profile.

2.4.2 Visual network analysis

Kolmogorov-Smirnov tests revealed non-normality for all six network measures for the visual
system (Table 6, Figure S3). Following the same process as before, the diameter,
characteristic path length and radius were log transformed and the efficiency and clustering
coefficients were squared. No outliers were identified in the transformed metrics. Diameter,
characteristic path length, radius and efficiency were non-normal, however the analysis was
continued (Figure S3), with a sample size of 161, as the distributions were improved beyond
the untransformed metrics to a point which we believe meets the underlying assumptions of
the analysis. The general linear model (N = 161) revealed no significant multivariate effects

(Table 7).

2.5 Analysis of network hubs in the whole-brain

Replicator dynamics identified hubs consistent across the individual risk factor groups.
Individuals with no FH (N = 104) had hubs located in the left and right rolandic operculum,
right inferior parietal gyrus, left angular gyrus and right Heschl’s gyrus, whereas individuals
with a positive FH (N = 59) had hubs at the right rolandic operculum, left inferior frontal gyrus
opercular part, left and right paracentral lobule and the right Heschl’s gyrus (Figure 4).
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Individuals who were of healthy weight (N = 63), and thus considered at less risk of developing
AD, had hubs within the left inferior frontal gyrus opercular part, right rolandic operculum, right
inferior parietal gyrus and right Heschl’s gyrus, whereas individuals who were obese (N = 102)
had hubs within the right rolandic operculum, right paracentral lobule and both left and right
Heschl’s gyrus (Figure 4). Participants who were negative for the APOE4 allele (and thus
considered low-risk), had hubs in the left inferior frontal gyrus opercular part, right rolandic
operculum, right precuneus and right Heschl's gyrus (N = 100) whereas APOE4 positive
individuals (N = 64) had hubs in the right rolandic operculum, right inferior parietal gyrus, left
angular gyrus, right paracentral lobule and right Heschl’'s gyrus (Figure 4).

To summarise the above described pattern, the right rolandic operculum and Heschl’s
gyrus remain present as hubs regardless of risk factor. In contrast, at risk individuals (obese,
positive FH and APOE4 carriers) consistently have a hub in the right paracentral lobule which

is absent in their respective low-risk group (Table 8, Figure 4).

2.6 Analysis of internally important nodes/hubs in the DMN
Hubs were identified within the left and right opercular parts of the inferior frontal gyrus, right
inferior parietal gyrus and left angular gyrus in individuals with no FH, whereas individuals with
FH had hubs within the left and right opercular parts of the inferior frontal gyrus, right inferior
parietal gyrus, left angular gyrus and right precuneus. Both individuals of healthy weight and
individuals who were obese had hubs within the left and right opercular parts of the inferior
frontal gyrus, right inferior parietal gyrus and left angular gyrus. In participants without the
APOE4 allele, hubs were identified in the left and right opercular parts of the inferior frontal
gyrus, right inferior parietal gyrus, left angular gyrus and right precuneus, whereas individuals
who carry APOE4 had hubs within the left and right opercular part of the inferior frontal gyrus,
left and right inferior parietal gyrus and left angular gyrus.

As opposed to the analysis of the whole brain, there were no consistent changes of
hubs within the DMN as a result of risk factor profile. Individuals without a FH compared to
those with a FH gained a hub within the right precuneus whereas this hub was lost in the
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transition between APOE4 non-carriers to carriers and instead they gained a hub in the left

inferior parietal gyrus (Table 8).

2.7 Analysis of internally important nodes/hubs in the visual sub-network

Replicator dynamics identified internally important nodes within the right calcarine fissure, right
middle occipital lobe and right inferior occipital lobe of the visual sub-network. Each of these
hubs were identified regardless of risk factor profile, suggesting AD risk has no effect on hubs

within the visual network (Table 8).

3. Discussion

To the best of our knowledge, our study investigated for the first time the effects of APOE4
genotypes, central obesity, and family history of dementia on the graph theoretical metrics of
structural brain networks derived via tractography, in cognitively healthy adults. The
advantage of our analysis methods over conventional structural network analyses lies in the
use of integrated structural network matrices which combine, in a data-driven manner, multiple
metrics of the white-matter tracts, rather than arbitrarily using one metric. This means that
more information is included in the individual structural network matrices.

Graph theoretical metrics expressing segregation and integration of each participant’s
structural brain connectome were calculated for the whole-brain and for two sub-networks, the
DMN (which is known to be impaired in AD) and the visual network (used here as a control
network). Multivariate analyses revealed no significant effects for either whole-brain or for the
sub-networks, which suggests that there are no differences in network measures for any of
the risk factors (APOE4, family history of dementia or central obesity). This interesting finding,
which indicates that the integration and segregation properties of these structural networks
are preserved in asymptomatic individuals at heightened risk of developing AD, could point to
a possible compensatory mechanism that leads to minimal functional disruption (as indicated
by the normal cognitive abilities of our sample). We note, however, that it is not known when,
or indeed if, any of these individuals would develop AD. Cortical-thickness based structural
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brain networks, which reflect different organisational properties to the tractography-derived
networks used in our analysis, demonstrated altered properties in subjects with MCI and AD
compared to healthy controls following the progress of the disease (Zhou & Liu, 2013).
Additionally, Brown et al., 2011 found that tractography-derived structural brain networks in
older APOE4 carriers exhibited loss of local interconnectivity in contrast to those of older non-
carriers, and that the carriers had impaired memory abilities as well. Finally, Ma et al., 2017
found that structural brain connectivity was disrupted in adults (older than 55 years of age) as
a result of an interaction between APOE4 status and developed MCI, more so than it was for
APQOEA4 carriers only. These findings may suggest that structural connectivity changes are not
present in cognitively healthy individuals at risk, and reflect a manifestation of established
disease and/or of older age.

Looking at the hubs of the whole-brain structural networks of low-risk versus high-risk
individuals, we identified that the three subgroups of high-risk individuals (centrally obese,
positive FH, and positive APOE4) when compared with individuals in the respective low-risk
groups (normal weight, negative FH, and negative APOE4) consistently exhibited a hub in the
right paracentral lobule. Importantly, there were no consistent changes of hubs within the DMN
and visual network as a result of risk factor profile. The paracentral lobule is located on the
medial surface of the cerebral hemisphere and includes parts of both the frontal and parietal
lobes. It has gyral projections to the medial frontal gyrus, cingulate sulcus, and precuneus and
sulcal projections to the paracentral, cingulate, precentral sulci and the pars marginalis of
cingulate sulcus. The paracentral lobule controls motor and sensory innervations of the
contralateral lower limb. In a recent study, widespread cortical thinning in left hemisphere
regions including pericalcarine cortex, supramarginal gyrus, cuneus cortex, lateral occipital
cortex, precuneus cortex, fusiform gyrus, superior frontal gyrus, lateral occipital cortex,
entorhinal cortex, inferior parietal cortex, isthmus-cingulate cortex, postcentral gyrus, superior
parietal cortex, caudal middle frontal gyrus, insula cortex, precentral gyrus and paracentral
lobule was observed in patients with AD compared to normal controls (Yang et al., 2019).
Another structural MRI study on nondemented aging subjects revealed a modulation of the
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cortical thickness covariance between the left parahippocampal gyrus and left medial cortex,
supplementary motor area, the left medial superior frontal gyrus, and paracentral lobule driven
by the interaction of the rs405509 genotype and age (Chen et al., 2015). In our previous
genetic risk for dementia study on the same cohort, we explored the impact of these three
factors on white matter microstructure (Mole, Fasano, Evans, Sims, Hamilton, et al., 2020).
Individuals with the highest genetic risk (FH+ and APOE-¢4) showed a  reduced
macromolecular proton fraction in the right parahippocampal cingulum associated with
obesity. However, we observed effects of cortical thickness only on left thalamus (Mole,
Fasano, Evans, Sims, Kidd, et al., 2020). Rs405509 is an AD-related polymorphism located
in the APOE promoter region that regulates the transcriptional activity of the APOE gene.
Abnormal structural brain connectivity was identified between the angular gyrus, superior
parietal gyrus, precuneus, posterior cingulum, putamen, precentral gyrus, postcentral gyrus,
and paracentral lobule in elders with subjective cognitive decline compared to healthy controls
(Kim et al., 2019). These aberrant structural connections were also associated with cognitive
scores.

In addition to MRI, PET imaging has identified reduced metabolism in parietal areas in
both APOE-€4 carriers with mild cognitive impairment (Paranjpe et al., 2019) and clinical AD
(Mosconi et al., 2004). Furthermore, MEG in young healthy APOE-¢4 carriers (Koelewijn et
al., 2019) has identified hyperconnectivity in right parietal regions, supporting our findings. If
the novel phenotype we have identified can potentially predict the development of symptoms

in a longitudinal study of the same cohort, it could be used as an early biomarker of dementia.

Assessment of our analysis

Our findings would benefit from replication in a larger sample due to the fragmentation of the
initial sample into subgroups with the different risk profiles. It would also be beneficial for
structural network analyses to include measures which are believed to play a more important
role in the functional performance of the brain, such as myelination of the white matter tracts

(Messaritaki et al., 2021) and axonal diameter. We finally note that the thresholding of
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structural connectivity matrices derived from tractography is still issue of debate. Buchanan et
al., 2020; Civier et al., 2019; Drakesmith et al., 2015 have shown the possible effects of
thresholding when different tractography methods are used. In our analysis, we adopted a

modest thresholding of 5 streamlines, to reduce possible false positives.

4. Conclusion
In conclusion, our study did not detect any changes in structural brain networks that would
imply alterations in the integration and segregation structural network properties in cognitively
healthy individuals with different risk factors. We identified the right paracentral lobule as a
hub brain area in high-risk individuals but not in low-risk individuals. A longitudinal study of the
same cohort with the incorporation of functional neuroimaging data could evaluate this

phenotype further.
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Tables
Table 1:
Mean (o)
Age 55.76 (8.22), Range: 38-71
Males 71/165
Years of Education 16.55 (3.32), Range: 9.5-26
FH of dementia 59/163
APOQOEA4 carriers 64/164
Waist Hip Ratio — Obese 102/165
Demographics broken down by risk factor
N (M) N (F) Mean age, M (o) | Mean age, F (o)
No FH, No APOE4, Healthy weight | 4 16 53.75 (4.03) 53.69 (8.68)
FH, No APOE4, Heathy weight 0 13 - 53.85 (6.87)
No FH, APOE4, Healthy weight 3 16 49.00 (7.21) 52.88 (9.64)
No FH, No APOE4, Obese 18 21 56.17 (8.74) 56.05 (7.68)
FH, APOE4, Healthy weight 4 6 59.00 (2.45) 59.83 (5.19)
No FH, APOE4, Obese 20 6 54.00 (9.61) 58.67 (6.56)
FH, No APOE4, Obese 17 10 58.71 (7.71) 56.60 (9.35)
FH, APOE4, Obese 5 3 57.00 (8.22) 62.00 (7.94)

Table 1. Participant Demographics. This table lists the demographics (age, years of
education, sex) of the participants that took part in this study, and splits male (M) and female
(F) data by risk factor group. FH = family history of dementia, APOE4 = Apolipoprotein €4, and
waist-hip ratio. Mean age and years of education, accurate to 2 decimal places, are quoted

with standard deviations reported in brackets (o).

Name of dMRI metric Abbreviation
Number of tracts NS
Percentage of tracts, PS

Average tract length ATL
Euclidean distance ED
Streamline density SLD

Tract volume TV

Mean diffusivity MD

Radial diffusivity RD

Axial diffusivity AxD
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| Fractional anisotropy | FA
Table 2:

Table 2. Abbreviations used for the dMRI metrics. This table defines the abbreviations
used throughout the manuscript for each of the diffusion-weighted magnetic resonance

imaging (dMRI) metrics.

Table 3:
sValue | Condldx | AxD | ATL ED FA MD | NS PS RD | SLD TV
27153 | 1 0 0.001 | 0.0013 | 0.0001 | 0 0.0004 | 0.0005 | 0 | 0.0029 | 0.001
1.3103 | 2.0722 0 0.0021 | 0.0047 | 0.0001 |0 0.0074 [ 0.0104 [0 [0 0.0082
0.7989 | 3.399 0 0.0073 | 0.0065 | 0O 0 0.0002 | 0.0005 | 0 | 0.4447 | 0.0034
0.3047 | 8.91 0 0.0299 | 0.3087 | 0.0001 [0 0.0155 [ 0.1257 | 0 | 0.0001 | 0.3775
0.2837 | 9.5698 0 0.0521 | 0.3839 | 0.0063 | 0 0.0018 | 0.043 |0 [ 0.3094 | 0.1527
0.2258 | 12.0263 |0 0.7593 | 0.1808 | 0 0 0.0041 | 0.1228 | 0 | 0.1427 | 0.1425
0.1587 | 17.1051 0 0.0497 | 0.0493 | 0.0007 | 0 0969 [0.693 |0 [0.0078 | 0.3067
0.1433 | 18.9544 |0 0.085 | 0.0034 | 0.2084 | 0 0.0016 | 0.0037 | 0 | 0.0732 | 0.0074
0.0414 | 655353 [0 0.0135 | 0.0614 | 0.7839 | 0 0 0.0003 | 0 | 0.0192 | 0.0005
0 2.26E+14 | 1 0 0.0001 | 0.0004 | 1 0 0 1 0 0

Table 3. Belsley collinearity diagnostics results for dMRI connectivity matrices. Belsley
collinearity diagnostics run across the diffusion-weighted magnetic resonance imaging (dMRI)
metrics demonstrated multicollinearity between AxD, MD and RD. The highlighted cells
identify metrics which meet our exclusion criteria, condition index > 30 and variance
decomposition > 0.5. sValue = Singular values, Condldx = Condition Index. Abbreviations of

the dMRI metrics are defined in Table 2.

Table 4:
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ATL AxD SLD FA ED MD NS PS RD TV
ATL 1
AD 0.4033 | 1
SLD | -0.5558 | -0.2418 | 1
FA 0.4772 | 0.6036 | -0.4588 | 1
ED 0.5727 | 0.1300 | -0.4509 | 0.2474 | 1
MD 0.1638 | 0.7722 | 0.0311 | -0.0300 | -0.0089 | 1
NS -0.2631 | -0.0373 | 0.1426 | 0.0101 | -0.4070 | -0.0680 | 1
PS -0.2599 | -0.0270 | 0.1253 | 0.0262 | -0.4122 | -0.0679 | 0.9564 | 1
RD -0.1635 | 0.1630 | 0.2989 | -0.6721 | -0.1485 | 0.7527 | -0.0669 | -0.0775 | 1

TV -0.0986 | 0.0446 | 0.0322 | 0.0871 | -0.3529 | -0.0146 | 0.9021 | 0.8600 | -0.0689 | 1
After Excluding AxD, PS, RD and TV

ATL SLD FA ED MD NS
ATL 1

SLD -0.5558 | 1
FA 0.4772 | -0.4588 | 1
ED 0.5727 | -0.4509 | 0.2474 | 1
MD 0.1638 | 0.0311 | -0.0300 | -0.0089 | 1
NS -0.2631 | 0.1426 | 0.0101 | -0.4070 | -0.0680 | 1

Table 4. Correlation coefficients (R) as determined by MATLAB (corrcoef) between the
individual connectivity metrics (abbreviations defined in table 2). Highlighted cells identify
inter-correlations with an R > 0.6. The lower half of the table shows reduced inter-correlation

coefficients after the analysis has been re-run with AxD, PS, RD and TV excluded.

Table 5:
sValue Condldx Diameter Efficiency | Lambda Radius Clustering | Eccentricity
coefficient
2.4172 1.0000 0.0001 0.0003 0.0001 0.0000 0.0004 0.0000
0.3748 6.4489 0.0006 0.0257 0.0038 0.0010 0.0374 0.0003
0.0890 27.1550 0.0440 0.3625 0.1359 0.0011 0.5189 0.0002
0.0812 29.7691 0.0640 0.5520 0.1607 0.0000 0.3796 0.0018
0.0395 61.2534 0.2325 0.0107 0.2996 0.7250 0.0146 0.0004
0.0205 118.0614 0.6589 0.0487 0.4000 0.2729 0.0492 0.9972

Table 5. Belsley collinearity diagnostics results - network measures. This table
demonstrates multicollinearity between whole-brain diameter and mean eccentricity when
assessed with Belsley collinearity diagnostics. The highlighted cells meet exclusion criteria.

sValue = Singular values, Condldx = Condition Index.
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Table 6:
Before Data Cleaning
Standardised Residual Statistic DF p-value
Whole | Diameter 0.078 161 0.019
Global efficiency 0.114 161 0.000
Characteristic path length 0.082 161 0.010
Radius 0.083 161 0.008
Clustering coefficient 0.115 161 0.000
DMN Diameter 0.118 161 0.000
Global efficiency 0.200 161 0.000
Characteristic path length 0.158 161 0.000
Radius 0.120 161 0.000
Clustering coefficient 0.146 161 0.000
Visual | Diameter 0.128 161 0.000
Global efficiency 0.128 161 0.000
Characteristic path length 0.124 161 0.000
Radius 0.135 161 0.000
Clustering coefficient 0.086 161 0.006
After Data Cleaning
Standardised Residual Statistic DF p-value
Whole | Logged diameter 0.067 160 0.080
Squared global efficiency 0.091 160 0.003
Logged characteristic path length 0.047 160 0.200
Logged radius 0.053 160 0.200
Squared clustering coefficient 0.083 160 0.009
DMN Logged diameter 0.059 151 0.200
Squared global efficiency 0.151 151 0.000
Logged characteristic path length 0.084 151 0.010
Logged Radius 0.060 151 0.200
Clustering coefficient 0.123 151 0.000
Visual | Logged diameter 0.091 161 0.003
Squared global efficiency 0.108 161 0.000
Logged characteristic path length 0.082 161 0.009
Logged radius 0.088 161 0.004
Squared clustering coefficient 0.060 161 0.200

Table 6. Kolmogorov-Smirnov test results for the whole-brain, DMN and visual system.
Lack of normality of standardized residuals assessed with Kolmogorov-Smirnov tests of the
whole-brain, DMN (default mode network) and visual system. The lower part of the table
demonstrates how the normality of the metrics are improved after data cleaning (removing

outliers and transforming the data). DF = degrees of freedom.
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Table 7:
Whole-brain analysis
Effect F DF p-value
Intercept 48.648 5,145 0.000
Sex 0.841 5,145 0.523
Age 1.325 5,145 0.257
Years of Education 1.904 5,145 0.097
FH 1.307 5,145 0.264
APOE4 0.351 5,145 0.881
WHR 0.981 5,145 0.432
FH X APOE4 1.019 5,145 0.409
FH X WHR 0.532 5,145 0.752
APOE4 X WHR 0.533 5,145 0.751
FH X APOE4 X WHR 1.666 5,145 0.147
Default mode network analysis
Intercept 84.361 5,136 0.000
Sex 1.315 5,136 0.261
Age 1.867 5,136 0.104
Years of Education 1.010 5,136 0.414
FH 1.523 5,136 0.187
APOE4 0.924 5,136 0.567
WHR 0.201 5,136 0.961
FH X APOE4 0.242 5,136 0.242
FH X WHR 0.733 5,136 0.733
APOE4 X WHR 0.940 5,136 0.940
FH X APOE4 X WHR 0.444 5,136 0.444
Visual system analysis
Intercept 73.555 5,146 0.000
Sex 0.534 5,146 0.750
Age 1.989 5,146 0.084
Years of Education 1.314 5,146 0.261
FH 0.351 5,146 0.881
APOE4 0.901 5,146 0.482
WHR 1.179 5,146 0.322
FH X APOE4 0.284 5,146 0.921
FH X WHR 0.986 5,146 0.429
APOE4 X WHR 1.365 5,146 0.241
FH X APOE4 X WHR 2.089 5,146 0.070

Table 7. Multivariate results. There were no significant differences in network measures as
a function of risk factors: family history of dementia (FH), Apolipoprotein €4 genotype (APOE4)
and waist-hip ratio (WHR) across the whole-brain, default mode network or a control sub-

network (visual system). F = F statistic, DF = degrees of freedom.
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Table 8:
Risk factor Hubs which remain the Hubs which are lost Hubs which are gained
change same

Whole brain network

Negative FH >

Left rolandic operculum

Left inferior frontal gyrus

carrier > APOE4
carrier

Right rolandic operculum
Right Heschl’'s gyrus

Left inferior frontal gyrus
opercular part
Right Precuneus

Positive FH Right rolandic operculum P . opercular part
Right Heschl's gyrus nghlt_ler;;‘e;lqorurl):rrlet?:]gyrus Left paracentral lobule
9 9y Right paracentral lobule
APOE4 non-

Right inferior parietal gyrus
Left angular gyrus
Right paracentral lobule

WHR healthy >

Right rolandic operculum

Left inferior frontal gyrus

Right paracentral lobule

carrier > APOE4
carrier

opercular part
Right inferior frontal gyrus
opercular part
Right inferior parietal gyrus
Left angular gyrus

Right precuneus

WHR obese Right Heschl’'s gyrus Right ir?%erirgr?a:r?eigl gyrus Left Heschl's gyrus
DMN
Negative FH > Left inferior frontal gyrus
Positive FH opercular part

Right inferior frontal gyrus N/A Right precuneus

opercular part
Right inferior parietal gyrus
Left angular gyrus

APOE4 non- Left inferior frontal gyrus

Left inferior parietal gyrus

WHR healthy >

Left inferior frontal gyrus

Right inferior occipital lobe

WHR obese opercular part
Right inferior frontal gyrus N/A N/A
opercular part
Right inferior parietal gyrus
Left angular gyrus
Visual sub-network
Negative FH > Right calcarine fissure
Positive FH Right middle occipital lobe N/A N/A
Right inferior occipital lobe
APOE4 non- Right calcarine fissure
carrier > APOE4 Right middle occipital lobe N/A N/A
carrier Right inferior occipital lobe
WHR healthy > Right calcarine fissure
WHR obese Right middle occipital lobe N/A N/A

Table 8. Hub changes as a function of risk factor. For the whole brain analysis (top): The
right rolandic operculum and right Heschl’s gyrus remain constant when switching from a low-
risk - no family history of dementia (FH), no Apolipoprotein €4 (APOE4) allele, healthy waist-
hip ratio (WHR) score - to a high-risk group (FH, APOE4 or obese). Whereas the right
paracentral lobule is consistently gained. Furthermore, a few more hubs are gained or lost,
albeit inconsistent across risk factor groups. In the DMN analysis (middle): Individuals with a

FH had a hub in the right precuneus in contrast to those without. Conversely this hub is lost
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between individuals with no APOE4 in comparison to those that carry APOE4 and instead a
hub is gained within left inferior parietal gyrus. In the visual sub-network analysis (bottom):
Hubs within the Right calcarine fissure Right middle occipital lobe Right inferior occipital lobe

remained in all risk factor manipulations.
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Figure 1. An example of the conservative threshold added to all dMRI connectivity
matrices. A) Fractional anisotropy (FA) connectivity matrix for one participant before
thresholding. B) After a conservative threshold of 5 streamlines was applied to FA for the same

participant.
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Figure 2. Nodes included in the subnetwork analysis for the default mode network
(DMN) and visual system. The top figure shows the 44 nodes included in the DMN adapted
from Power et al., 2011 whereas the bottom picture shows the 16 nodes included in the visual

network adapted from Power et al., 2011. Images were created using ExploreDTI v4.8.6.
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Figure 3. An example of the six Individual network measures that were combined into
an integrated weighted structural brain network for one participant. A) FA, fractional
anisotropy, B) ATL, average tract length C) SLD, streamline density, D) ED, Euclidean
distance, E) MD, mean diffusivity F) NS, number of streamlines were combined into a G)

integrated weighted structural brain network. CW = connectivity weight.
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Figure 4. Nodes identified as hubs change dependent on risk factor profile. This figure
shows the changes in nodes defined as hub regions, when you transition from a low-risk group
to a high-risk group. A) Comparing individuals without a family history of dementia (FH) to
those with a positive FH indicates that 2 hubs remain unchanged (blue), whereas 3 are gained
(green) and 3 are lost (red). B) Comparing APOE4 non-carriers to carriers results in a gain of
3 hubs (green), loss of 2 hubs (red) but leaves 2 hubs unchanged (blue). C) In comparison to
healthy individuals, obese participants gained 2 hubs (green), lost 2 hubs (red) and 2 hubs

remains (blue).
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