

1 Evidence of hippocampal learning in human infants

2 Ellis, C. T.¹, Skalaban, L. J.¹, Yates, T. S.¹, Bejjanki, V. R.², Córdova, N. I.¹, & Turk-Browne,
3 N. B.^{1,*}

4

5 ¹Department of Psychology, Yale University, New Haven, CT 06511

6 ²Department of Psychology, Hamilton College, Clinton, NY 13323, USA

7 *Corresponding author. E-mail: nicholas.turk-browne@yale.edu

8 **The hippocampus is essential for human memory. Thus, memory deficiencies in infants**
9 are often attributed to hippocampal immaturity. However, the functionality of the infant
10 hippocampus has never been tested directly. Here we report that the human hippocampus
11 is indeed active in infancy. We recorded hippocampal activity using fMRI while awake
12 infants aged 3-24 months viewed sequences of objects. Greater activity was observed when
13 the order of the sequence contained regularities that could be learned compared to when
14 the order was random. The involvement of the hippocampus in such statistical learning,
15 with additional recruitment of the medial prefrontal cortex, is consistent with findings
16 from adults. These results suggest that the hippocampus supports the important ability of
17 infants to extract the structure of their environment through experience.

18 Memory is at the root of human identity, bridging the present into the past and future,
19 fundamental to personality, relationships, expertise, navigation, and imagination. This ability to
20 store and recall life events (episodic memory) requires a brain region known as the hippocampus
21 (Corkin, 2013). The fact that episodic memory is minimal in infants (Richmond and Nelson,
22 2009), only becoming detailed and stable later in childhood (Keresztes et al., 2018), and that
23 adults remember very little from infancy (infantile amnesia (Akhtar et al., 2018)), has raised the
24 possibility that the hippocampus may not be functional in human infants (Gómez and Edgin,
25 2016; Nelson, 1995; Schacter and Moscovitch, 1984). However, this has never been evaluated
26 directly. The hippocampus undergoes structural changes well into adolescence (Arnold and
27 Trojanowski, 1996; Gogtay et al., 2006; Schlichting et al., 2017; Uematsu et al., 2012), but
28 what is its function in infancy?

29 We test the hypothesis that the human infant hippocampus supports the ability to extract
30 regularities across experiences (Fiser and Aslin, 2002; Saffran et al., 1996). Such statistical
31 learning is critical to cognitive development, for acquiring language (Romberg and Saffran,
32 2010; Werker et al., 2012) and understanding objects (Smith et al., 2018). This hypothesis
33 is based on evidence from human adults that the hippocampus supports statistical learning
34 in addition to episodic memory (Covington et al., 2018; Schapiro et al., 2014, 2012; Turk-
35 Browne et al., 2009). These two functions are thought to rely on separate hippocampal path-
36 ways (Schapiro et al., 2017): The trisynaptic or perforant pathway, represented more in the
37 posterior hippocampus, connects entorhinal cortex to dentate gyrus, CA3, and CA1 to enable
38 pattern separation and rapid episodic encoding. The monosynaptic or temporoammonic path-
39 way, represented more in the anterior hippocampus, connects the entorhinal cortex to CA1
40 directly and supports the integration of inputs to extract regularities. Anatomical connections in
41 the monosynaptic pathway develop earlier than in the trisynaptic pathway (Hevner and Kinney,

42 1996; Lavenex and Lavenex, 2013), further supporting the hypothesis that the infant hippocam-
43 pus is involved in statistical learning.

44 This hypothesis can only be tested in healthy human infants with functional magnetic
45 resonance imaging (fMRI), because of its unique ability to resolve deep-brain structures like
46 the hippocampus (Ellis and Turk-Browne, 2018). This is a challenging technique to use with
47 awake infants during cognitive tasks, including because of head and body motion, an inability
48 to understand or follow task instructions, and general fussiness. This challenge is evident in
49 the extremely small number of published studies of this type (Biagi et al., 2015; Deen et al.,
50 2017; Dehaene-Lambertz et al., 2002). Here we exploit recently developed methods for awake
51 infant fMRI (Ellis et al., 2020) to provide the first evidence of hippocampal function in human
52 infants. Namely, we show that the infant hippocampus is activated by a learning task that
53 requires encoding and integrating visual experiences.

54 **Role of infant hippocampus in statistical learning**

55 We collected brain imaging data from 24 sessions with infants aged 3–24 months. We
56 defined anatomical regions of interest (ROIs) using a structural MRI obtained in each session
57 (Fig. 1A). We manually segmented the hippocampus bilaterally from the surrounding medial
58 temporal lobe (MTL) cortex. The volume of the hippocampal ROIs was strongly related to
59 age (left $b=68.0 \text{ mm}^3/\text{month}$, $r=0.88$, $p<.001$; right $b=68.5 \text{ mm}^3/\text{month}$, $r=0.84$, $p<.001$), with
60 the hippocampus approximately doubling in volume over this age range (Fig. 1B). Global
61 brain volume increased dramatically with age too ($r=0.90$, $p<.001$), but the change in bilateral
62 hippocampal volume persisted after controlling for this global growth ($r_{\text{partial}}=0.44$, $p=.005$).

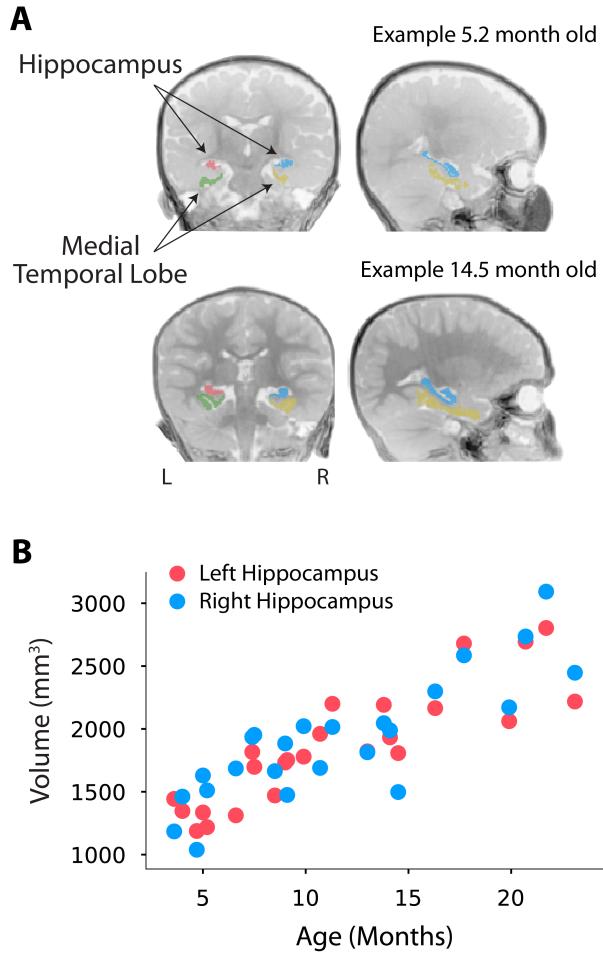


Fig. 1. Hippocampal regions of interest. (A) Anatomical segmentation of the infant hippocampus and medial temporal lobe cortex in two representative participants, aged 5.2 months old (top) and 14.5 months old (bottom). (B) Volume of the left and right hippocampus by participant age in months. Each participant is represented by both a red and blue dot at the same age coordinate.

63 This suggests that the hippocampus grows rapidly in size during infancy, at a rate that is faster
64 than average in the brain.

65 We used fMRI to measure activity in the hippocampus during a statistical learning ex-
66 periment. Infants viewed continuous sequences of colorful, fractal-like images that appeared
67 dynamically in a looming motion. The sequences were presented in blocks that alternated be-
68 tween Structured and Random conditions (Kirkham et al., 2002). In Structured blocks (Fig.
69 2A), temporal regularities were embedded in the sequence; fractals appeared in pairs, with the
70 first fractal always followed by the second. In Random blocks (Fig. 2B), there were no regular-
71 ities in the sequence; rather, all fractals were equally likely to follow each other. Different sets
72 of fractals were used for Structured and Random blocks (counterbalanced across participants),
73 but the fractal set for a given condition was held constant across blocks, as were the pairs gen-
74 erated from the Structured set. Other than the lack of regularities, the Random condition was
75 matched to the Structured condition, including in terms of the number of unique fractals and
76 their frequency across blocks. Any difference in brain activity between Structured and Random
77 blocks can thus be attributed to the presence of regularities in Structured blocks (Turk-Browne
78 et al., 2009). Importantly, representing these regularities required learning: it was necessary to
79 encode and integrate co-occurrences of fractals to extract the pairs from non-paired transitions
80 in the sequence. In other words, because the pairings were arbitrary, at any isolated moment in
81 a Structured block it was impossible to know which fractals were paired; the pairs only exist in
82 the mind of the observer because of the history of how the fractals appeared together earlier in
83 the block or in preceding blocks.

84 To capture this learning over time, we divided the blocks in each condition into the first
85 half of exposure (when we expected less evidence of learning) and the second half of exposure

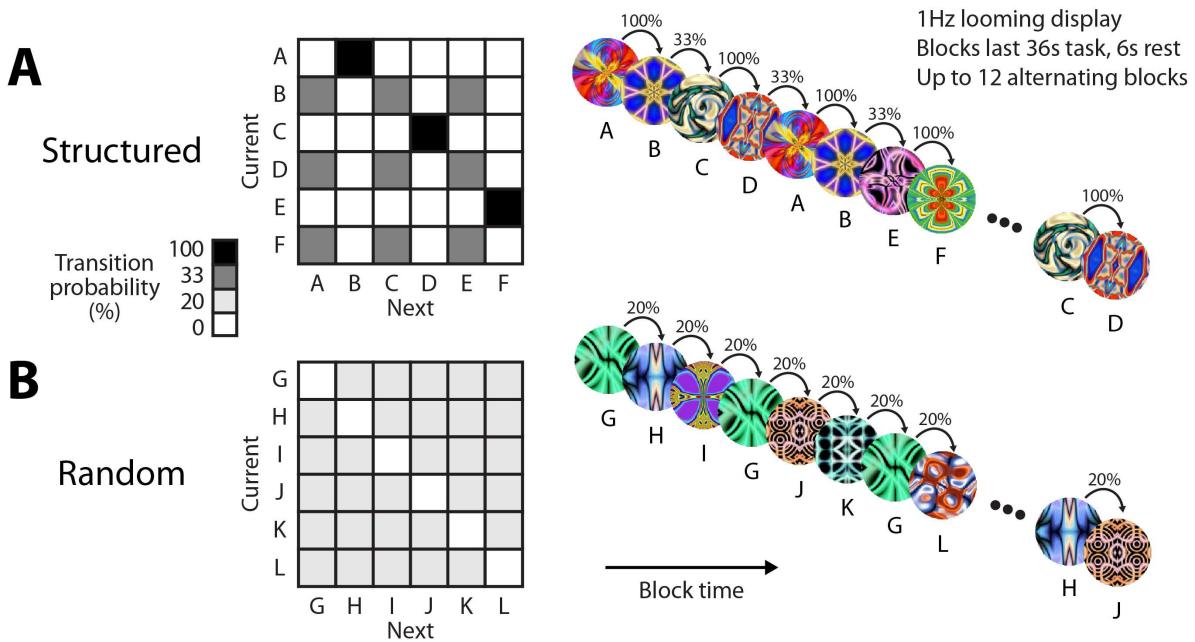


Fig. 2. Statistical learning task design. Participants viewed colorful fractals one at a time in blocks. The blocks alternated between a Structured condition and a Random condition within-participant. Different fractals were shown in each condition, but remained consistent over blocks. (A) In Structured blocks, fractals were grouped into three pairs (AB, CD, EF), with the first member of a pair (e.g., A) always followed by the second (e.g., B); this was followed by the beginning of the next pair without interruption. As a result, the pairs could only be learned based on the transition probabilities in the sequence (100% within pair, 33% between pairs). (B) In Random blocks, fractals (G, H, I, J, K, L) appeared in a random order with no back-to-back repetitions. As a result, there was no structure in their transition probabilities (uniform 20%). Because fractals were randomly assigned to the conditions, and individually appeared an equal number of times within and across blocks (to equate familiarity), the conditions differed only in the opportunity for statistical learning. Participants completed up to 12 blocks and usable blocks were split into the first and second half of exposure.

86 (when we expected more robust learning effects). We then calculated the difference in blood-
87 oxygenation level dependent (BOLD) response in the bilateral hippocampus between Structured
88 and Random blocks (Fig. 3A). In the first half, there was no difference in hippocampal activity
89 between Structured and Random blocks ($M=0.14$, $CI=[-0.358, 0.656]$, $p=.614$). However, in
90 the second half, there was significantly greater hippocampal activity in Structured than Random
91 blocks ($M=0.67$, $CI=[0.172, 1.176]$, $p=.007$). This difference in the second half was larger
92 than in the first half, as revealed by significant interaction between condition and half ($M=0.50$,
93 $CI=[0.028, 0.966]$, $p=.037$). This learning-related interaction did not differ based on whether
94 infants encountered a Structured or Random block first ($M=-0.51$, $CI=[-1.503, 0.454]$, $p=.296$),
95 nor did it correlate with the age of the infants (Fig. 3B; $r=-0.03$, $p=.893$). The lack of an age
96 relationship did not reflect a general inability to resolve such relationships in our sample, as the
97 volume of the hippocampus reliably increased over this interval (Fig. 1). These findings suggest
98 that from as young as three months old, the hippocampus is able to support statistical learning.
99 This represents the first evidence of task-related activity in the hippocampus of human infants
100 to our knowledge.

101 **Functional divisions within the hippocampus**

102 We hypothesized that the hippocampus is involved in infant statistical learning partly be-
103 cause of the early development of the monosynaptic pathway from entorhinal cortex to CA1
104 (Hevner and Kinney, 1996; Lavenex and Lavenex, 2013; Schapiro et al., 2017). There are no
105 established protocols for segmenting hippocampal subfields in infants that would allow us to
106 directly evaluate the role of CA1, and so instead we used the longitudinal axis of the hippocam-
107 pus as a proxy. Namely, the anterior hippocampus contains more of CA1 than the posterior
108 hippocampus (Malykhin et al., 2010), and so we predicted clearer evidence of statistical learn-

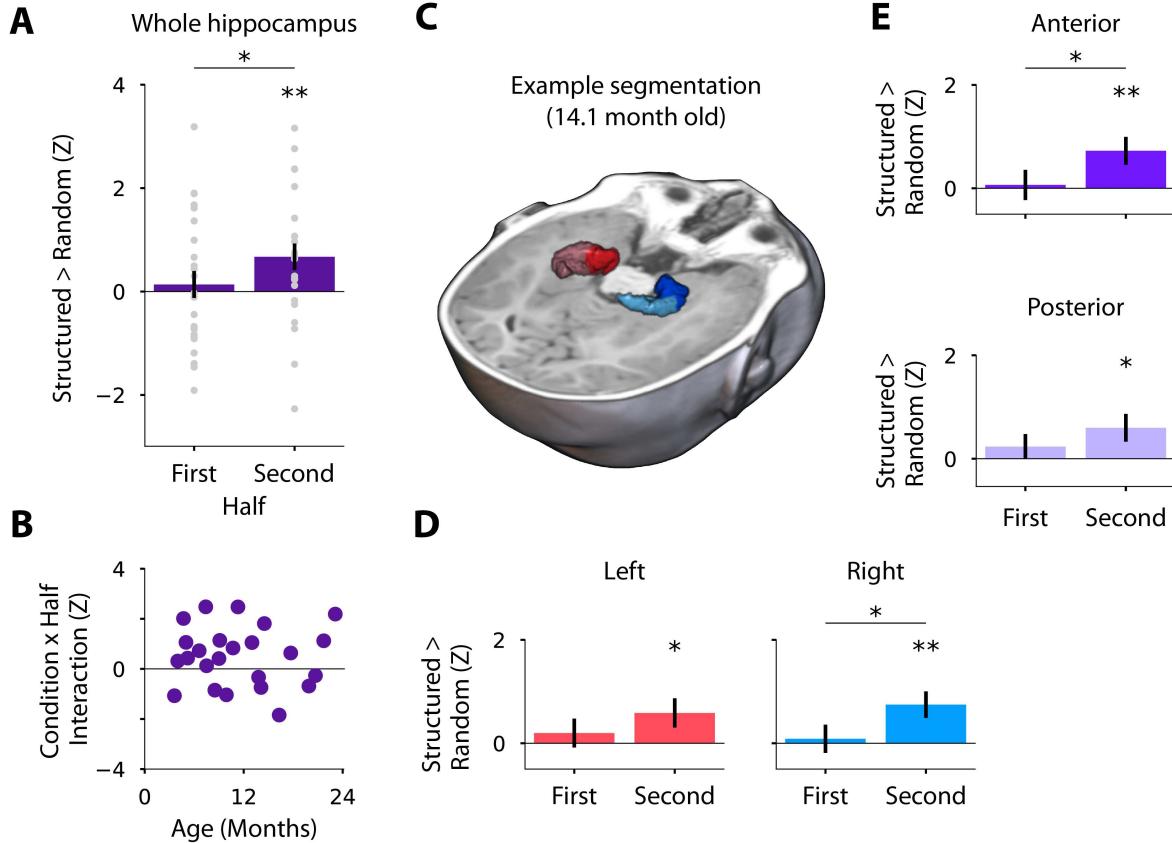


Fig. 3. Neural evidence of statistical learning in the infant hippocampus. (A) Mean difference in normalized parameter estimates of BOLD activity between Structured and Random blocks in bilateral hippocampus. A reliable difference emerged by the second half, which was significantly greater than in the first half. Each gray dot is one participant. (B) Using the interaction between condition and half as a metric of hippocampal statistical learning, there was no relationship with participant age in months. (C) Three-dimensional rendering of an example hippocampal segmentation (14.1 month old). Mean difference in BOLD activity between Structured and Random blocks in (D) left (red) and right (blue) hippocampus, and in (E) anterior (dark) and posterior (light) hippocampus. Error bars reflect standard error of the mean across participants within half. * indicates $p < .05$, ** indicates $p < .01$.

109 ing in the anterior hippocampus (Fig. 3C). Indeed, whereas the anterior hippocampus showed
110 no difference between Structured and Random blocks in the first half ($M=0.07$, $CI=[-0.489$,
111 $0.648]$, $p=.846$), there was a robust difference in the second half ($M=0.73$, $CI=[0.202$, $1.257]$,
112 $p=.006$) and a significant interaction between condition and half ($M=0.58$, $CI=[0.091$, $1.063]$,
113 $p=.018$). The posterior hippocampus again showed no difference in the first half ($M=0.23$,
114 $CI=[-0.216$, $0.727]$, $p=.328$), but the difference in the second half was numerically weaker than
115 in the anterior hippocampus ($M=0.60$, $CI=[0.062$, $1.112]$, $p=.028$) and the interaction did not
116 reach significance ($M=0.39$, $CI=[-0.106$, $0.879]$, $p=.119$); the interaction in posterior was not
117 significantly weaker than in anterior ($M=0.19$, $CI=[-0.086$, $0.477]$, $p=.174$).

118 In addition to subdividing the longitudinal axis of the hippocampus, we also separated
119 the hippocampus into left and right hemispheres. Adult fMRI studies have reported statistical
120 learning effects more consistently in the right hippocampus (Schapiro et al., 2012; Turk-Browne
121 et al., 2009). This same pattern was found in infants, with numerically stronger evidence of sta-
122 tistical learning in the right hippocampus (first half: $M=0.09$, $CI=[-0.428$, $0.635]$, $p=.759$; sec-
123 ond half: $M=0.75$, $CI=[0.243$, $1.243]$, $p=.003$; interaction: $M=0.60$, $CI=[0.116$, $1.090]$, $p=.013$)
124 than in the left hippocampus (first half: $M=0.20$, $CI=[-0.345$, $0.754]$, $p=.500$; second half:
125 $M=0.59$, $CI=[0.021$, $1.132]$, $p=.043$; interaction: $M=0.38$, $CI=[-0.135$, $0.890]$, $p=.155$); the in-
126 teraction in left was not significantly weaker than in right ($M=0.22$, $CI=[-0.106$, $0.574]$, $p=.207$).
127 Thus, the overall pattern of learning-related signals across longitudinal and hemispheric axes of
128 the infant hippocampus is consistent with primate anatomy (Hevner and Kinney, 1996; Lavenex
129 and Lavenex, 2013), computational models (Schapiro et al., 2017), and adult function (Schapiro
130 et al., 2012; Turk-Browne et al., 2009).

131 **Timecourse of hippocampal involvement**

132 Splitting the fMRI data into the first and second half of exposure was an attempt to capture
133 learning over time while retaining enough blocks per time bin to estimate stable effects. We
134 also examined learning over time more continuously at the block level (Fig. S1). Adopting
135 a supersubject approach, we pooled usable blocks across participants and assessed statistical
136 significance with bootstrap resampling. The difference between Structured and Random blocks
137 was largest and only statistically significant in the fifth and sixth blocks (of six). In other
138 words, evidence of statistical learning emerged after approximately two minutes of exposure to
139 Structured blocks (four blocks of 36 s).

140 The amount of exposure needed to obtain neural evidence of statistical learning is consis-
141 tent with the duration of classic behavioral studies of infant statistical learning (Kirkham et al.,
142 2002; Saffran et al., 1996). This suggests that fMRI can serve as a sensitive, converging measure
143 of infant cognition, even for relatively short task designs. An important limitation of the current
144 study is that we did not obtain a behavioral measure of statistical learning that could be directly
145 related to the fMRI findings. Nevertheless, the design of our study, in which Random blocks
146 carefully controlled for all aspects of Structured blocks other than the presence of regularities
147 to be learned, allows us to attribute the observed neural differences to statistical learning.

148 **Engagement of neocortical systems**

149 The focus of this study was on examining the function of the infant hippocampus, with the
150 hypothesis that it supports statistical learning. However, we also compared Structured and Ran-
151 dom blocks in the surrounding MTL cortex and found weak evidence of statistical learning (Fig.
152 S2). Given that MTL cortex is anatomically adjacent and a larger ROI, this highlights the speci-

153 ficity of our findings in the hippocampus. We additionally performed exploratory voxelwise
154 analyses across the whole brain with data aligned to standard space across participants (Fig.
155 S3). The key learning interaction observed in the hippocampus between condition (Structured
156 vs. Random) and half (second vs. first) was found only in medial prefrontal cortex (mPFC;
157 corrected $p=.048$, 116 voxels, MNI: -5, 53, 3).

158 This involvement of mPFC in infants is striking given the dramatic changes in frontal
159 lobe anatomy over development (Matsuzawa et al., 2001). In adults, mPFC strongly interacts
160 with the hippocampus during memory formation, facilitating encoding based on related past
161 experiences (i.e., schemas) to promote memory integration (Schlichting et al., 2015) and con-
162 solidation (Tse et al., 2011). Indeed, mPFC has been linked to gradual statistical learning over
163 days and weeks in rodents (Richards et al., 2014). It remains to be seen whether this mechanism
164 contributes to rapid statistical learning over minutes in human infants, as tested here. An im-
165 portant limitation of the current study is the inability of fMRI to distinguish whether evidence
166 of statistical learning in the hippocampus originates in the hippocampus or is a reflection of
167 processing in the mPFC, given their connectivity.

168 **Open questions and theoretical implications**

169 The key finding of this study is that activity in the hippocampus of human infants increases
170 through exposure to regularities. This activity may correspond to different stages of statistical
171 learning. It could reflect the process of extracting regularities during learning, with differences
172 emerging in the second half because a certain amount of exposure was needed to compute the
173 transition probabilities between fractals and represent the pairs. Alternatively, the hippocam-
174 pal activity could reflect the impact of known regularities on other processes after learning is

175 complete, including on perception of the fractals, segmentation of the sequence, recognition of
176 the pairs, and/or prediction based on transition probabilities. In addition to clarifying at which
177 of these stages the hippocampus participates in infant statistical learning, future research will
178 be needed to determine whether this role is necessary for behavioral expression of statistical
179 learning. This will be difficult to test in infants, but studies in adult patients with hippocampal
180 damage suggest that the hippocampus may in fact be necessary for normal statistical learning
181 behavior (Covington et al., 2018; Schapiro et al., 2014).

182 The involvement of the infant hippocampus in statistical learning has implications for
183 theories of memory. For example, according to complementary learning systems (McClelland
184 et al., 1995), episodic memory is a precursor to statistical learning. The hippocampus rapidly
185 encodes individual experiences and then, through a process of consolidation, the neocortex
186 gradually generalizes across these episodic memories to extract regularities. Infants present
187 a conundrum for this framework: they show robust statistical learning (Kirkham et al., 2002;
188 Saffran et al., 1996) despite impoverished episodic memory (Akhtar et al., 2018; Keresztes
189 et al., 2018; Richmond and Nelson, 2009). A recent update to complementary learning systems
190 (Schapiro et al., 2017) provides a potential resolution, at least for the rapid form of statistical
191 learning in our study. Neural network simulations showed that such statistical learning can occur
192 within the hippocampus itself in a way that bypasses the circuitry for episodic memory. Thus,
193 the hippocampus may support statistical learning in infants, as reported in this study, before it
194 can support episodic memory. It also remains possible that episodic memory is more developed
195 in infants than currently thought—consistent with recent rodent work (Farooq and Dragoi, 2019;
196 Guskjolen et al., 2018)—such that the hippocampal statistical learning we report may in fact be
197 dependent upon episodic memory. Future research could address these possibilities by using

198 fMRI with awake infants to capture sensitive neural measures of episodic memory functions in
199 the hippocampus, including pattern separation, relational binding, and pattern completion.

200 To conclude, we present the first evidence that the hippocampus is recruited for learning in
201 human infants. This demonstrates that brain systems used for learning throughout the lifespan
202 can be available from some of the earliest stages of life. In turn, this provides a starting point
203 for understanding how the human brain supports the prodigious amount of learning that occurs
204 during infancy, establishing building blocks critical for subsequent growth and education.

205 **References**

- 206 Akhtar, S., Justice, L. V., Morrison, C. M., and Conway, M. A. (2018). Fictional first memories.
207 *Psychological Science*, 29(10):1612–1619.
- 208 Aly, M. and Turk-Browne, N. B. (2015). Attention stabilizes representations in the human
209 hippocampus. *Cerebral Cortex*, 26(2):783–796.
- 210 Arnold, S. E. and Trojanowski, J. Q. (1996). Human fetal hippocampal development: I. cytoar-
211 chitecture, myeloarchitecture, and neuronal morphologic features. *Journal of Comparative*
212 *Neurology*, 367(2):274–292.
- 213 Biagi, L., Crespi, S. A., Tosetti, M., and Morrone, M. C. (2015). BOLD response selective to
214 flow-motion in very young infants. *PLoS Biology*, 13(9):e1002260.
- 215 Corkin, S. (2013). *Permanent Present Tense: The Unforgettable Life of the Amnesic Patient*,
216 HM, Basic Books (AZ).
- 217 Covington, N. V., Brown-Schmidt, S., and Duff, M. C. (2018). The necessity of the hippocam-
218 pus for statistical learning. *Journal of Cognitive Neuroscience*, 30(5):680–697.
- 219 Deen, B., Richardson, H., Dilks, D. D., Takahashi, A., Keil, B., Wald, L. L., Kanwisher, N.,
220 and Saxe, R. (2017). Organization of high-level visual cortex in human infants. *Nature*
221 *Communications*, 8(13995).
- 222 Dehaene-Lambertz, G., Dehaene, S., and Hertz-Pannier, L. (2002). Functional neuroimaging
223 of speech perception in infants. *Science*, 298(5600):2013–2015.
- 224 Dice, L. R. (1945). Measures of the amount of ecologic association between species. *Ecology*,
225 26(3):297–302.

- 226 Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals,
227 and other measures of statistical accuracy. *Statistical Science*, pages 54–75.
- 228 Ellis, C. T., Skalaban, L. J., Yates, T. S., Bejjanki, V. R., Córdova, N. I., and Turk-Browne, N. B.
229 (2020). Re-imagining fMRI for awake behaving infants. *Nature Communications*, 11(4523).
- 230 Ellis, C. T. and Turk-Browne, N. B. (2018). Infant fMRI: A model system for cognitive neuro-
231 science. *Trends in Cognitive Sciences*, 22(5):375–387.
- 232 Farooq, U. and Dragoi, G. (2019). Emergence of preconfigured and plastic time-compressed
233 sequences in early postnatal development. *Science*, 363(6423):168–173.
- 234 Fiser, J. and Aslin, R. N. (2002). Statistical learning of new visual feature combinations by
235 infants. *Proceedings of the National Academy of Sciences*, 99(24):15822–15826.
- 236 Fonov, V., Evans, A. C., Botteron, K., Almlí, C. R., McKinstry, R. C., and Collins, D. L. (2011).
237 Unbiased average age-appropriate atlases for pediatric studies. *NeuroImage*, 54(1):313–327.
- 238 Gogtay, N., Nugent, T. F., Herman, D. H., Ordonez, A., Greenstein, D., Hayashi, K. M., Clasen,
239 L., Toga, A. W., Giedd, J. N., Rapoport, J. L., et al. (2006). Dynamic mapping of normal
240 human hippocampal development. *Hippocampus*, 16(8):664–672.
- 241 Gousias, I. S., Hammers, A., Counsell, S. J., Srinivasan, L., Rutherford, M. A., Heckemann,
242 R. A., Hajnal, J. V., Rueckert, D., and Edwards, A. D. (2013). Magnetic resonance imaging
243 of the newborn brain: automatic segmentation of brain images into 50 anatomical regions.
244 *PLoS One*, 8(4):e59990.
- 245 Guskjolen, A., Kenney, J. W., de la Parra, J., Yeung, B.-r. A., Josselyn, S. A., and Frankland,
246 P. W. (2018). Recovery of “lost” infant memories in mice. *Current Biology*, 28(14):2283–
247 2290.

- 248 Gómez, R. L. and Edgin, J. O. (2016). The extended trajectory of hippocampal development:
249 Implications for early memory development and disorder. *Developmental Cognitive Neuro-*
250 *science*, 18:57–69.
- 251 Hevner, R. F. and Kinney, H. C. (1996). Reciprocal entorhinal-hippocampal connections estab-
252 lished by human fetal midgestation. *Journal of Comparative Neurology*, 372(3):384–394.
- 253 Hindy, N. C., Ng, F. Y., and Turk-Browne, N. B. (2016). Linking pattern completion in the
254 hippocampus to predictive coding in visual cortex. *Nature Neuroscience*, 19(5):665–667.
- 255 Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M., and Newcombe, N. S. (2018).
256 Hippocampal maturation drives memory from generalization to specificity. *Trends in Cogni-*
257 *tive Sciences*, 22(8):676–686.
- 258 Kirkham, N. Z., Slemmer, J. A., and Johnson, S. P. (2002). Visual statistical learning in infancy:
259 Evidence for a domain general learning mechanism. *Cognition*, 83(2):835–842.
- 260 Lavenex, P. and Lavenex, P. B. (2013). Building hippocampal circuits to learn and remember:
261 insights into the development of human memory. *Behavioural Brain Research*, 254:8–21.
- 262 Malykhin, N., Lebel, R. M., Coupland, N., Wilman, A. H., and Carter, R. (2010). In vivo
263 quantification of hippocampal subfields using 4.7T fast spin echo imaging. *NeuroImage*,
264 49(2):1224–1230.
- 265 Matsuzawa, J., Matsui, M., Konishi, T., Noguchi, K., Gur, R. C., Bilker, W., and Miyawaki, T.
266 (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and
267 children. *Cerebral Cortex*, 11(4):335–342.
- 268 McClelland, J. L., McNaughton, B. L., and O'Reilly, R. C. (1995). Why there are complemen-
269 tary learning systems in the hippocampus and neocortex: insights from the successes and

- 270 failures of connectionist models of learning and memory. *Psychological Review*, 102(3):419–
271 457.
- 272 Nelson, C. A. (1995). The ontogeny of human memory: A cognitive neuroscience perspective.
273 *Developmental Psychology*, 31(5):723–738.
- 274 Richards, B. A., Xia, F., Santoro, A., Husse, J., Woodin, M. A., Josselyn, S. A., and Fran-
275 kland, P. W. (2014). Patterns across multiple memories are identified over time. *Nature
276 Neuroscience*, 17(7):981–986.
- 277 Richmond, J. and Nelson, C. A. (2009). Relational memory during infancy: evidence from eye
278 tracking. *Developmental Science*, 12(4):549–556.
- 279 Romberg, A. R. and Saffran, J. R. (2010). Statistical learning and language acquisition. *Wiley
280 Interdisciplinary Reviews: Cognitive Science*, 1(6):906–914.
- 281 Saffran, J. R., Aslin, R. N., and Newport, E. L. (1996). Statistical learning by 8-month-old
282 infants. *Science*, 274:1926–1928.
- 283 Schacter, D. L. and Moscovitch, M. (1984). Infants, amnesics, and dissociable memory systems.
284 In *Infant Memory*, pages 173–216. Springer.
- 285 Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., and Turk-Browne, N. B. (2014). The
286 necessity of the medial temporal lobe for statistical learning. *Journal of Cognitive Neuro-
287 science*, 26(8):1736–1747.
- 288 Schapiro, A. C., Kustner, L. V., and Turk-Browne, N. B. (2012). Shaping of object represen-
289 tations in the human medial temporal lobe based on temporal regularities. *Current Biology*,
290 22(17):1622–1627.

- 291 Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., and Norman, K. A. (2017). Com-
292 plementary learning systems within the hippocampus: a neural network modelling approach
293 to reconciling episodic memory with statistical learning. *Philosophical Transactions of the*
294 *Royal Society B*, 372(1711):20160049.
- 295 Schlichting, M. L., Guarino, K. F., Schapiro, A. C., Turk-Browne, N. B., and Preston, A. R.
296 (2017). Hippocampal structure predicts statistical learning and associative inference abilities
297 during development. *Journal of Cognitive Neuroscience*, 29(1):37–51.
- 298 Schlichting, M. L., Mumford, J. A., and Preston, A. R. (2015). Learning-related representa-
299 tional changes reveal dissociable integration and separation signatures in the hippocampus
300 and prefrontal cortex. *Nature Communications*, 6(1).
- 301 Siegel, J. S., Power, J. D., Dubis, J. W., Vogel, A. C., Church, J. A., Schlaggar, B. L., and Pe-
302 tersen, S. E. (2014). Statistical improvements in functional magnetic resonance imaging anal-
303 yses produced by censoring high-motion data points. *Human Brain Mapping*, 35(5):1981–
304 1996.
- 305 Smith, L. B., Jayaraman, S., Clerkin, E., and Yu, C. (2018). The developing infant creates a
306 curriculum for statistical learning. *Trends in Cognitive Sciences*, 22(4):325–336.
- 307 Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., Bito, H., and Mor-
308 ris, R. G. (2011). Schema-dependent gene activation and memory encoding in neocortex.
309 *Science*, 333(6044):891–895.
- 310 Turk-Browne, N. B., Scholl, B. J., Chun, M. M., and Johnson, M. K. (2009). Neural evidence
311 of statistical learning: Efficient detection of visual regularities without awareness. *Journal of*
312 *Cognitive Neuroscience*, 21(10):1934–1945.

- 313 Uematsu, A., Matsui, M., Tanaka, C., Takahashi, T., Noguchi, K., Suzuki, M., and Nishijo,
314 H. (2012). Developmental trajectories of amygdala and hippocampus from infancy to early
315 adulthood in healthy individuals. *PLoS One*, 7(10):e46970.
- 316 Werker, J. F., Yeung, H. H., and Yoshida, K. A. (2012). How do infants become experts at
317 native-speech perception? *Current Directions in Psychological Science*, 21(4):221–226.

318 **Acknowledgments**

319 We thank all of the families who participated; K. Armstrong, C. Greenberg, J. Bu, L. Rait, and
320 the entire Yale Baby School team for recruitment, scheduling, and administration; H. Faulkner,
321 Y. Braverman, J. Fel, and J. Wu for help with gaze coding; B. Sherman for advice on hippocam-
322 pal segmentation; and N. Wilson, R. Lee, L. Nystrom, N. DePinto, and R. Watts for technical
323 support. We are grateful for internal funding from the Department of Psychology and Princeton
324 Neuroscience Institute at Princeton University and from the Department of Psychology and Fac-
325 ulty of Arts and Sciences at Yale University. N.B.T-B. was further supported by the Canadian
326 Institute for Advanced Research.

327 **Author contributions**

328 C.T.E., N.I.C., V.R.B., & N.B.T-B. initially created the protocol. All authors collected the
329 data. C.T.E., L.J.S., T.S.Y., & N.B.T-B. developed the pipeline. C.T.E., L.J.S., & T.S.Y. per-
330 formed the analyses. C.T.E., & N.B.T-B. wrote the initial draft of the manuscript. All authors
331 contributed to the editing of the manuscript.

332 **Competing interests**

333 Authors declare no competing interests.

334 **Correspondence**

335 Please address correspondence and requests for materials to nicholas.turk-browne@yale.edu.

336 Methods

337 **Participants** Data from 24 sessions with infants aged 3.6 to 23.1 months ($M=11.6$, $SD=5.8$;
338 14 female) met our minimum criteria for inclusion of six usable task blocks with at least one pair
339 of Structured and Random blocks in each of the first and second halves of exposure ($M=11.8$
340 total blocks, $M=9.8$ usable blocks). This sample does not include data from 11 sessions with
341 enough blocks only prior to exclusions for head motion, eye gaze, and counterbalancing ($M=9.8$
342 total blocks, $M=3.5$ usable blocks), or from 44 sessions without enough blocks even prior to
343 exclusions ($M=3.6$ total blocks) where the infant instead participated in other experiments. In
344 the final sample, five infants provided two sessions of usable data and one infant provided three.
345 These sessions occurred at least one month apart (range=1.1–9.3) and so the data were treated
346 separately, similar to prior work (Deen et al., 2017). Of the 24 sessions, six were collected
347 at the Scully Center for the Neuroscience of Mind and Behavior at Princeton University, four
348 were collected at the Magnetic Resonance Research Center (MRRC) at Yale University, and
349 14 were collected at the Brain Imaging Center (BIC) at Yale University. Refer to Table S1 for
350 information on each participant. Parents provided informed consent on behalf of their child.
351 The study was approved by the Institutional Review Board at Princeton University and the
352 Human Investigation Committee at Yale University.

353 **Data acquisition** Data were acquired with a Siemens Skyra (3T) MRI at Princeton University
354 and a Siemens Prisma (3T) MRI at both sites at Yale University, in all cases with the 20-channel
355 Siemens head coil. Anatomical images were acquired with a T1-weighted PETRA sequence
356 ($TR_1=3.32\text{ms}$, $TR_2=2250\text{ms}$, $TE=0.07\text{ms}$, flip angle= 6° , matrix= 320×320 , slices= 320 , resolu-
357 tion= 0.94mm iso, radial slices= 30000). Functional images were acquired with a whole-brain
358 T2* gradient-echo EPI sequence (Princeton and Yale MRRC: $TR=2\text{s}$, $TE=28\text{ms}$, flip angle= 71° ,

359 matrix=64x64, slices=36, resolution=3mm iso, interleaved slice acquisition; Yale BIC: identical
360 except TE=30ms, slices=34).

361 **Procedure** Conducting fMRI research with awake infants presents many challenges. We have
362 described and validated our protocol in detail in a separate methods paper (Ellis et al., 2020).
363 In brief, families visited the lab prior to their first scanning session for an orientation session.
364 This served to acclimate the infant and parent to the scanning environment. Scanning sessions
365 were scheduled for a time when the parents felt the infant would be calm and happy. The infant
366 and parent were extensively screened for metal. Hearing protection was applied to the infant
367 in three layers: silicon inner ear putty, over-ear adhesive covers, and ear muffs. The infant was
368 placed on the scanner bed, on top of a vacuum pillow that comfortably reduced movement. The
369 top of the head coil was not used because the bottom elements provided sufficient coverage of
370 the smaller infant head. This created better visibility for monitoring infant comfort and allowed
371 us to project stimuli onto the ceiling of the bore directly above the infant's face using a custom
372 mirror system. A video camera (Princeton and Yale MRRC: MRC 12M-i camera; Yale BIC:
373 MRC high-resolution camera) recorded the infant's face during scanning for monitoring and
374 eye tracking.

375 When the infant was calm and focused, stimuli were shown in Matlab using Psychtoolbox
376 box (<http://psychtoolbox.org>). The stimuli were colorful, fractal-like images used
377 previously in studies of statistical learning in adults (Hindry et al., 2016; Schapiro et al., 2012).
378 Images appeared every 1s, looming in size from 2.4° at onset to 14.6° degrees at offset (Kirkham
379 et al., 2002). Each block contained 36 images presented sequentially one at a time in a unique
380 order, followed by 6s of rest with the screen blank.

381 Blocks alternated between Structured and Random conditions (Fig. 2). Which condi-
382 tion appeared first was assigned randomly. In the Structured condition, six fractals (A-F) were
383 organized into three pairs (AB, CD, EF). The sequence of each block was generated by ran-
384 domly inserting six repetitions of each pair. The first member of a pair (A, C, E) was always
385 followed by the second (B, D, F, respectively) resulting in a transition probability of 1.0. After
386 the second member of a pair, another pair appeared, resulting in a transition probability of 0.33
387 on average. In the Random condition, six different fractals (G-L) were presented individually.
388 The sequence of each block was generated by randomly inserting six repetitions of each fractal,
389 avoiding back-to-back repetitions of the same fractal. This resulted in a uniform transition prob-
390 ability of 0.20 on average. The six fractals in each condition were consistent across all blocks
391 of that condition. For participants who attempted the experiment in more than one session,
392 different stimuli were used across sessions.

393 **Gaze coding** Infant gaze was coded offline by two or more coders ($M=2.65$) blind to the block
394 condition. The coders determined whether the gaze was on-screen, off-screen (i.e., blinking or
395 looking away), or undetected (i.e., out of the camera's field of view or obscured by a hand
396 or other object). Across coders, every video frame was coded at least once. The frame rate
397 and resolution varied by camera and site, but the minimum rate was 16Hz and we always had
398 sufficient resolution to identify the eye. The coded category for each frame was determined as
399 the mode of a moving window of five frames centered on that frame across all coder reports.
400 In case of a tie, the modal response from the previous frame was used. The coders were highly
401 reliable: when coding the same frame, coders reported the same response on 93% ($SD=6\%$;
402 range across participants=73–99%) of frames. Infants included in the final sample looked at the
403 stimulus 89% of the time on average (range=80.3–97.3%). Blocks were excluded if the eyes

404 were off-screen for 50+% of the block. One participant did not have eye-tracking data due to a
405 technical problem but real-time monitoring confirmed that their eyes were open and attending
406 to the stimulus for at least 50% of each block.

407 **Preprocessing** Individual runs were preprocessed using FEAT in FSL (<https://fsl.fmrib.ox.ac.uk/fsl>), with modifications optimized for infant data. We discarded three
408 volumes from the beginning of each run, in addition to the volumes automatically discarded
409 by the EPI sequence. Blocks were stripped of any excess burn-in or burn-out volumes beyond
410 the 3 TRs (6s) of rest after each block. Pseudo-runs were generated if other experiments, not
411 discussed here, were initiated in a run with the data of interest (sessions with a pseudo-run,
412 N=12). Blocks were sometimes separated by long pauses (>30s) within a session because of
413 a break outside of the scanner, because an anatomical scan was collected, or because of in-
414 tervening experiments (N=7; M=636.7s break; range=115.4–1545.1s). The reference volume
415 for alignment and motion correction was chosen as the ‘centroid’ volume with the minimal
416 Euclidean distance from all other volumes. The slices in each volume were realigned with
417 slice-time correction. Time-points were excluded if there was greater than 3mm of movement
418 from the previous time-point (M=8.9%, range=0.0–21.3%). We interpolated rather than ex-
419 cised these time-points so that they did not bias the linear detrending (in later analyses these
420 time-points were excised). Blocks were excluded if 50+% of the time-points were excluded.
421 The mask of brain and non-brain voxels was created from the signal-to-fluctuating-noise ra-
422 tio (SFNR) for each voxel in the centroid volume. The data were spatially smoothed with a
423 Gaussian kernel (5mm FWHM) and linearly detrended in time. The despiking algorithm in
424 AFNI (<https://afni.nimh.nih.gov>) was used to attenuate aberrant time-points within

426 voxels. For further explanation and justification of this preprocessing procedure, refer to (Ellis
427 et al., 2020).

428 We registered each run's centroid volume to the infant's anatomical scan from the same
429 session. We used FLIRT with a normalized mutual information cost function for initial align-
430 ment. Supplemental manual registration was then performed using mrAlign from mrTools
431 (Gardner lab) to fix deficiencies of automatic registration. The preprocessed functional data
432 were aligned into anatomical space but kept in their original spatial resolution (3mm iso). Re-
433 gion of interest (ROI) analyses were performed within this native space of each participant.
434 Whole-brain voxelwise analyses required further alignment of functional data into a standard
435 space. The anatomical scan from each participant was automatically (FLIRT) and manually
436 (Freeview) aligned to an age-specific MNI infant template (Fonov et al., 2011). Combined with
437 alignment of these templates to the adult MNI template (MNI152), the functional data were
438 transformed into standard space. To determine which voxels to consider at the group level,
439 the intersection of brain voxels from all infant participants in standard space was used as a
440 whole-brain mask.

441 Because runs could contain different numbers of blocks from the Structured and Ran-
442 dom conditions, blocks were only retained if they could be paired with a block from the other
443 condition in the same run. This counterbalancing was enforced to ensure an equal amount of
444 data in each condition. The blocks were labeled by the count of how many blocks from that
445 condition had already been seen (henceforth, their 'seen-count'). For example, if an infant was
446 watching the screen but moving too much in their first Structured block, then remained still in
447 their second Structured block, the first usable block of that condition would be labeled with

448 a seen-count of 2. Blocks were chosen to be paired across conditions so as to minimize the
449 difference in seen-counts (i.e., to match the degree of exposure as best possible).

450 For an infant to be included, they needed to have at least three blocks from each condition,
451 with at least one block in each condition from blocks 1 to 3 (first half) and at least one block
452 in each condition from blocks 4 to 6 (second half). Using these criteria, the average number of
453 included blocks for the usable participants was 9.8 (SD=1.9, range=6–12), including 5.5 blocks
454 in the first half and 4.3 blocks in the second half on average. There was no correlation between
455 the number of included blocks and age ($r=-0.05$, $p=.788$). The block order was determined
456 randomly, with 15 participants seeing a Structured block first and 9 participants seeing a Ran-
457 dom block first (as reported in the main text, there were no reliable order effects on the neural
458 results).

459 To account for differences across runs in intensity and variance, the blocks that sur-
460 vived exclusions and balancing across conditions were normalized over time within run using
461 z -scoring, prior to the runs being concatenated for further analyses.

462 **Regions of interest** The main analyses involved manually tracing ROIs in the medial temporal
463 lobe (MTL) based on anatomical landmarks and then assessing evoked BOLD responses across
464 voxels in these anatomical ROIs. To trace the ROIs, we extended a published protocol for MTL
465 segmentation in adults (Aly and Turk-Browne, 2015) with help from protocols for hippocampal
466 segmentation in infants (Gousias et al., 2013). The segmentation demarcated ROIs for the left
467 and right hippocampus, each of which encompassed the subiculum, CA1, CA2/3, and dentate
468 gyrus subfields. We did not individually segment these subfields because of the lack of validated
469 anatomical guidelines for subfield boundaries in infants. For completeness, we also defined

470 ROIs for the left and right MTL cortex, each of which contained the entorhinal, perirhinal,
471 and parahippocampal cortices (again not segmented individually). To examine the reliability
472 of the coder performing the infant segmentations, an expert adult coder segmented two infant
473 participants. Using Dice similarity (Dice, 1945), the consistency of labelling was 0.524 and
474 0.651 for the two participants across coders, indicating moderate reliability. Fig. 1 shows
475 example ROIs for two infants and the volume of each ROI across participants as a function
476 of age. The anterior hippocampus (volume: $M=1973.1 \text{ mm}^3$, $SD=537.5$) was defined as the
477 head of the hippocampus, as manually traced (Aly and Turk-Browne, 2015), and the posterior
478 hippocampus (volume: $M=1796.4 \text{ mm}^3$, $SD=433.7$) was the remainder, including the body and
479 tail. For one participant (4.0 month old), the anatomical scan collected in the same session as
480 the functional data was of insufficient quality for segmentation; we instead used the anatomical
481 scan collected in their next session (at 6.0 months) and aligned the resulting segmentation to
482 their functional data.

483 **Analysis** For each infant, the volume of left and right hippocampus and MTL cortex ROIs was
484 estimated by counting the number of voxels traced and multiplying by the volume of each voxel
485 (0.82 mm^3). Whole-brain volume was calculated based on the number of voxels in the brain
486 mask generated by applying Freesurfer (<https://surfer.nmr.mgh.harvard.edu>) to
487 their anatomical scan (Schlichting et al., 2017).

488 For the main analysis, a general linear model (GLM) was fit to the BOLD activity in each
489 voxel using FEAT in FSL. The GLM contained four regressors: Structured and Random con-
490 ditions in the first and second half of exposure. Each regressor modeled corresponding task
491 blocks with a boxcar lasting the duration of stimulation convolved with a double-gamma hemo-
492 dynamic response function. The assignment of blocks to halves was based on the seen-count:

493 blocks with seen-count 1–3 were assigned to the first half and blocks with seen-count 4–6 were
494 assigned to the second half. The six translation and rotation parameters from motion correction
495 were included in the GLM as regressors of no interest. Excluded TRs were scrubbed by includ-
496 ing an additional regressor for each to-be-excluded time-point (Siegel et al., 2014). Contrasts
497 of the resulting parameter estimates compared Structured greater than Random conditions sep-
498 arately for the first and second half; an interaction contrast compared the condition differences
499 in the second versus first half. The voxelwise z -statistic volumes for these contrasts were ex-
500 tracted for each participant. ROI analyses averaged the z -statistics of all included voxels and
501 examined the reliability of these averages at the group level. Whole-brain analyses examined
502 the reliability of the z -statistics for each voxel across participants.

503 Statistical analysis was performed on the ROI data using a non-parametric bootstrap re-
504 sampling approach (Efron and Tibshirani, 1986). Namely, for each test we sampled 24 partici-
505 pants with replacement 10,000 times, averaging across participants on each iteration to generate
506 a sampling distribution. For null hypothesis testing, we calculated the p -value as the proportion
507 of samples whose mean was in the opposite direction from the true effect, doubled to make the
508 test two-tailed. To correct for multiple comparisons in whole-brain analyses, we used threshold
509 free cluster enhancement through the randomise function in FSL, resulting in voxel clusters
510 $p < .05$ corrected. A similar bootstrap resampling procedure was used to statistically evaluate
511 correlations, sampling bivariate data from 24 participants with replacement 10,000 times, and
512 calculating the Pearson correlation (or partial correlation) on each iteration. We calculated the
513 p -value as the proportion of samples resulting in a correlation with the opposite sign from the
514 true correlation, doubled to make the test two-tailed.

515 To perform the timecourse analysis (Fig. S1), we restricted analysis to pairs of Structured
516 and Random blocks with identical seen-counts (as opposed to finding the closest match in the
517 main analysis). This allowed us to separately examine the difference between Structured and
518 Random at each of the 6 ordinal positions. This reduced the number of participants with a suf-
519 ficient number of usable blocks to 22, and the average number of usable blocks per retained
520 participant to 9.6 (SD=1.9; range=6–12). A GLM was fit to these data with a separate regres-
521 sor for each block. The parameter estimates were labeled based on each block's seen-count
522 and contrasted across conditions within the same seen-count. The resulting *z*-statistics were
523 averaged across voxels within each ROI. The same bootstrap resampling approach with 1,000
524 iterations was used to assess statistical reliability and calculate *p*-values for each ordinal posi-
525 tion. An important feature of this approach is that we were able to estimate the timecourse even
526 if individual subjects were missing one or more of the positions. This also takes into account the
527 smaller sample size of participants with later ordinal positions, because the obtained sampling
528 distribution is more variable.

529 **Data availability** The data, including anonymized anatomical images, manually segmented
530 regions, and both raw and preprocessed functional images will be released on Dryad upon
531 publication.

532 **Code availability** The code for running the statistical learning task can be found here: https://github.com/ntblab/experiment_menu. The code for the general analysis pipeline
533 can be found here: https://github.com/ntblab/infant_neuropipe. The code
534 for performing the specific analyses reported in this paper can be found here: https://github.com/ntblab/infant_neuropipe/tree/StatLearning.

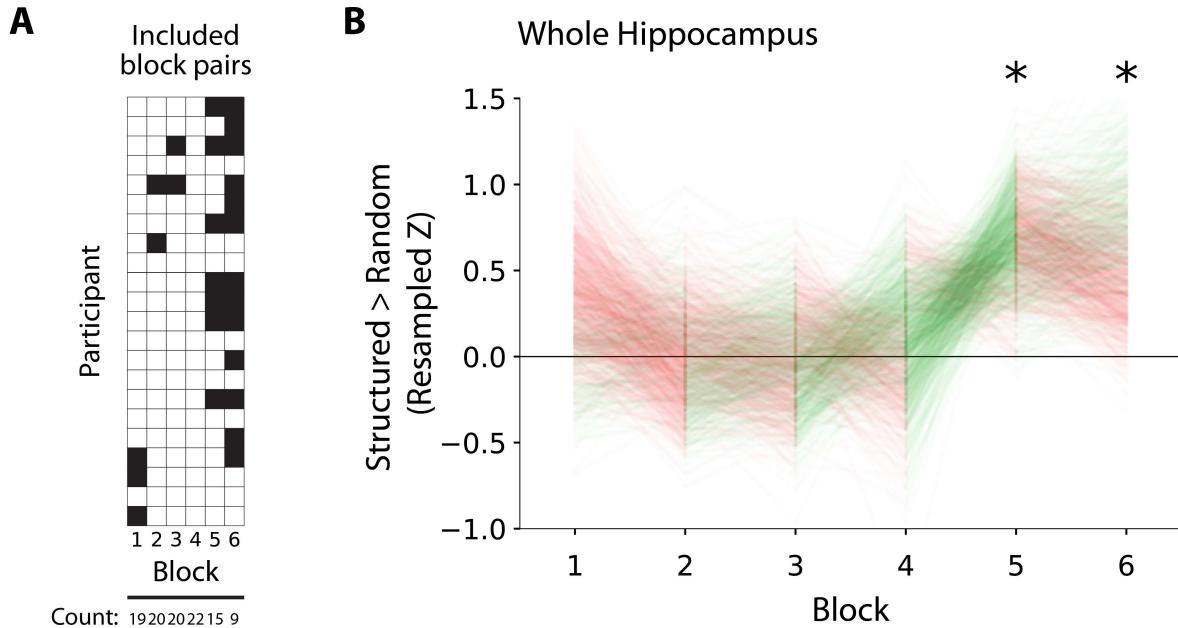


Fig. S1. Timecourse of hippocampal statistical learning in infants. (A) To examine learning more continuously, we pooled blocks across participants (rows) based on their ordinal position during exposure (columns). White cells indicate that both the Structured and Random blocks from that ordinal position were usable and included in the timecourse analysis; black cells indicate that the block from one or both conditions are not usable, and therefore neither was included. (B) Difference in BOLD activity between Structured and Random blocks in bilateral hippocampus as a function of ordinal position: block 1, bootstrapped $p=.362$; block 2, $p=.989$; block 3, $p=.939$; block 4, $p=.661$; block 5, $p=.010$; block 6, $p=.042$. Individual lines correspond to bootstrapping iterations and thus convey the sampling distribution. Line color indicates whether the bootstrapped mean increases (green) or decreases (red) from one block to the next on a given iteration. * indicates that the 95% confidence interval does not contain zero.

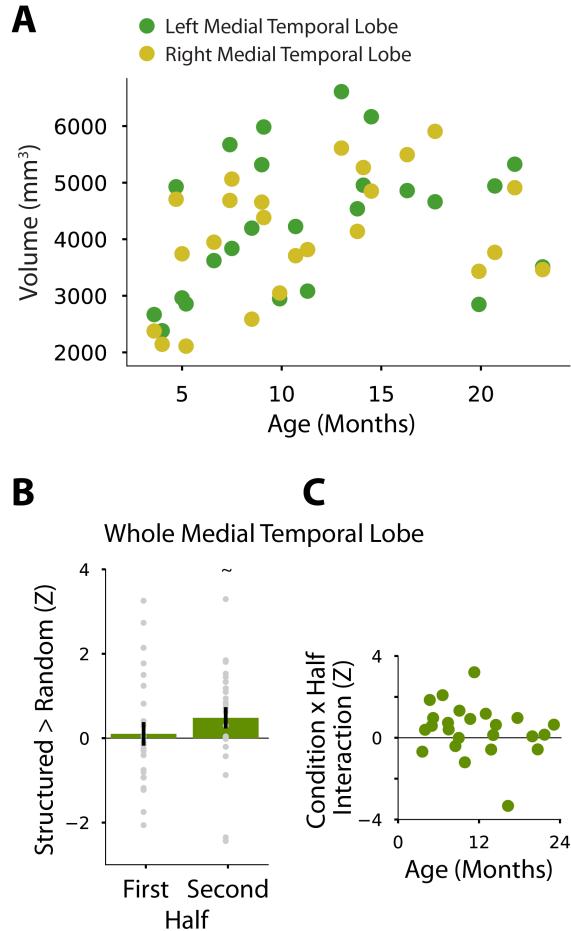


Fig. S2. Medial temporal lobe (MTL) cortex. (A) Volume of anatomically segmented left and right MTL cortex by participant age. Unlike the hippocampus (Fig. 1A), there was no reliable relationship between age and volume (left $b=59.3 \text{ mm}^3/\text{month}$, $r=0.29$, $p=.142$; right $b=69.2 \text{ mm}^3/\text{month}$, $r=0.37$, $p=.062$). Although the slope values are similar to the hippocampus, the larger size of MTL cortex ($M=8371.8 \text{ mm}^3$, $SD=2119.2$) compared to the hippocampus ($M=3769.4 \text{ mm}^3$, $SD=898.2$), means that the proportional growth is much lower. (B) Mean difference in BOLD activity between Structured and Random blocks in bilateral MTL cortex by exposure half. The first half ($M=0.10$, $CI=[-0.423, 0.682]$, $p=.726$), second half ($M=0.48$, $CI=[-0.023, 0.959]$, $p=.059$), and interaction between condition and half ($M=0.40$, $CI=[-0.111, 0.875]$, $p=.121$) did not reach significance. (C) There was no reliable relationship between this interaction and age ($r=-0.23$, $p=.273$). Error bars depict standard error of the mean across participants within half. \sim indicates $p<.10$.

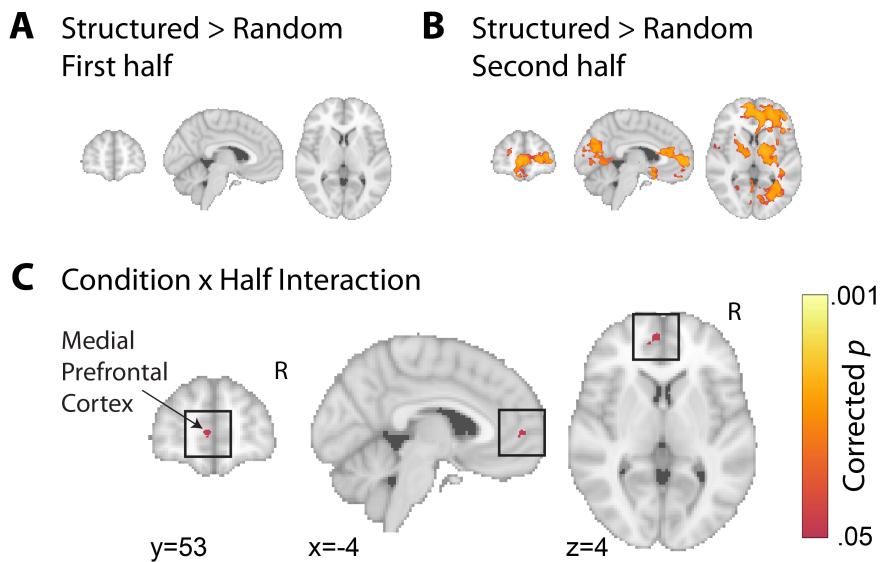


Fig. S3. Exploratory whole-brain analysis. Voxelwise contrast of BOLD activity between Structured and Random blocks in (A) the first half and (B) the second half. (C) The medial prefrontal cortex (mPFC) showed an interaction between condition and half, with a greater difference between Structured and Random in the second vs. first half. Voxels in color were significant after correction for multiple comparisons (threshold-free cluster enhancement, one-tailed corrected $p < .05$). Coordinates are in MNI space.

Table S1. Demographic information. ‘ID’ is a unique infant identifier (i.e., sXXXX_Y_Z), with the first four digits (XXXX) indicating the family, the fifth digit (Y) the child number within family, and the sixth digit (Z) the session number with that child. ‘Age’ is recorded in months. ‘Sex’ is female or male. ‘Site’ is Scully Center for the Neuroscience of Mind and Behavior at Princeton University (P.ton), Magnetic Resonance Research Center at Yale University (MRRC), or Brain Imaging Center at Yale University (BIC). ‘1st half’ is the number of usable blocks from the first half of exposure (max 6). ‘2nd half’ is the number of usable blocks from the second half of exposure (max 6). ‘Start cond.’ is the randomly selected condition of the first block (alternating thereafter). ‘TR prop’ is the proportion of TRs included from usable blocks. ‘Eye prop’ is the proportion of eye tracking data included from usable blocks. ‘Eye IRR’ is the proportion of frames coded the same way across gaze coders; one participant without eye-tracking data has “nan”.

ID	Age	Sex	Site	1st half	2nd half	Start cond.	TR prop	Eye prop	Eye IRR
s2307_1_1	19.9	M	P.ton	4	4	Random	0.97	0.90	0.86
s0307_1_2	9.1	M	P.ton	6	2	Structured	0.91	0.94	0.92
s8187_1_8	23.1	F	P.ton	6	2	Random	0.92	0.83	0.95
s2307_1_2	21.7	M	P.ton	6	4	Random	1.00	0.90	0.94
s8187_1_4	13.8	F	P.ton	4	2	Structured	0.86	0.83	0.73
s1187_1_1	20.7	F	P.ton	6	6	Structured	0.95	0.88	0.97
s2687_1_1	4.0	M	MRRC	3	5	Random	0.82	0.86	0.83
s6687_1_1	5.0	F	MRRC	6	4	Structured	0.79	0.86	0.90
s8607_1_1	8.5	F	MRRC	6	2	Structured	0.96	0.93	0.93
s3607_1_1	7.5	F	MRRC	5	7	Random	0.88	0.91	0.96
s8687_1_4	14.5	F	BIC	6	6	Structured	1.00	0.86	0.98
s2687_1_3	9.9	M	BIC	6	2	Structured	0.88	0.84	0.96
s2687_1_4	16.3	M	BIC	6	2	Structured	0.86	0.89	0.90
s6687_1_3	11.3	F	BIC	6	2	Random	0.99	0.94	0.94
s4607_1_4	13.0	F	BIC	6	6	Structured	0.95	0.88	0.93
s4607_1_5	14.1	F	BIC	6	4	Structured	0.99	0.80	0.90
s6607_1_2	7.4	M	BIC	6	6	Random	0.97	nan	nan
s0607_1_5	17.7	M	BIC	6	6	Structured	0.91	0.90	0.97
s1607_1_2	10.7	M	BIC	6	6	Structured	0.82	0.84	0.95
s6057_1_1	3.6	M	BIC	6	4	Random	0.80	0.97	0.99
s0057_1_3	9.0	F	BIC	5	3	Structured	0.83	0.86	0.89
s7017_1_1	5.2	F	BIC	4	6	Random	0.87	0.95	0.98
s7017_1_2	6.6	F	BIC	6	6	Structured	0.97	0.95	0.99
s7067_1_1	4.7	F	BIC	4	6	Structured	0.96	0.95	0.95
Av.	11.55	.	.	5.46	4.29	.	0.91	0.89	0.93