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The hippocampus is essential for human memory. Thus, memory deficiencies in infants8

are often attributed to hippocampal immaturity. However, the functionality of the infant9

hippocampus has never been tested directly. Here we report that the human hippocampus10

is indeed active in infancy. We recorded hippocampal activity using fMRI while awake11

infants aged 3-24 months viewed sequences of objects. Greater activity was observed when12

the order of the sequence contained regularities that could be learned compared to when13

the order was random. The involvement of the hippocampus in such statistical learning,14

with additional recruitment of the medial prefrontal cortex, is consistent with findings15

from adults. These results suggest that the hippocampus supports the important ability of16

infants to extract the structure of their environment through experience.17
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Memory is at the root of human identity, bridging the present into the past and future,18

fundamental to personality, relationships, expertise, navigation, and imagination. This ability to19

store and recall life events (episodic memory) requires a brain region known as the hippocampus20

(Corkin, 2013). The fact that episodic memory is minimal in infants (Richmond and Nelson,21

2009), only becoming detailed and stable later in childhood (Keresztes et al., 2018), and that22

adults remember very little from infancy (infantile amnesia (Akhtar et al., 2018)), has raised the23

possibility that the hippocampus may not be functional in human infants (Gómez and Edgin,24

2016; Nelson, 1995; Schacter and Moscovitch, 1984). However, this has never been evaluated25

directly. The hippocampus undergoes structural changes well into adolescence (Arnold and26

Trojanowski, 1996; Gogtay et al., 2006; Schlichting et al., 2017; Uematsu et al., 2012), but27

what is its function in infancy?28

We test the hypothesis that the human infant hippocampus supports the ability to extract29

regularities across experiences (Fiser and Aslin, 2002; Saffran et al., 1996). Such statistical30

learning is critical to cognitive development, for acquiring language (Romberg and Saffran,31

2010; Werker et al., 2012) and understanding objects (Smith et al., 2018). This hypothesis32

is based on evidence from human adults that the hippocampus supports statistical learning33

in addition to episodic memory (Covington et al., 2018; Schapiro et al., 2014, 2012; Turk-34

Browne et al., 2009). These two functions are thought to rely on separate hippocampal path-35

ways (Schapiro et al., 2017): The trisynaptic or perforant pathway, represented more in the36

posterior hippocampus, connects entorhinal cortex to dentate gyrus, CA3, and CA1 to enable37

pattern separation and rapid episodic encoding. The monosynaptic or temporoammonic path-38

way, represented more in the anterior hippocampus, connects the entorhinal cortex to CA139

directly and supports the integration of inputs to extract regularities. Anatomical connections in40

the monosynaptic pathway develop earlier than in the trisynaptic pathway (Hevner and Kinney,41

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.07.329862doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329862
http://creativecommons.org/licenses/by-nc-nd/4.0/


1996; Lavenex and Lavenex, 2013), further supporting the hypothesis that the infant hippocam-42

pus is involved in statistical learning.43

This hypothesis can only be tested in healthy human infants with functional magnetic44

resonance imaging (fMRI), because of its unique ability to resolve deep-brain structures like45

the hippocampus (Ellis and Turk-Browne, 2018). This is a challenging technique to use with46

awake infants during cognitive tasks, including because of head and body motion, an inability47

to understand or follow task instructions, and general fussiness. This challenge is evident in48

the extremely small number of published studies of this type (Biagi et al., 2015; Deen et al.,49

2017; Dehaene-Lambertz et al., 2002). Here we exploit recently developed methods for awake50

infant fMRI (Ellis et al., 2020) to provide the first evidence of hippocampal function in human51

infants. Namely, we show that the infant hippocampus is activated by a learning task that52

requires encoding and integrating visual experiences.53

Role of infant hippocampus in statistical learning54

We collected brain imaging data from 24 sessions with infants aged 3–24 months. We55

defined anatomical regions of interest (ROIs) using a structural MRI obtained in each session56

(Fig. 1A). We manually segmented the hippocampus bilaterally from the surrounding medial57

temporal lobe (MTL) cortex. The volume of the hippocampal ROIs was strongly related to58

age (left b=68.0 mm3/month, r=0.88, p<.001; right b=68.5 mm3/month, r=0.84, p<.001), with59

the hippocampus approximately doubling in volume over this age range (Fig. 1B). Global60

brain volume increased dramatically with age too (r=0.90, p<.001), but the change in bilateral61

hippocampal volume persisted after controlling for this global growth (rpartial=0.44, p=.005).62
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Fig. 1. Hippocampal regions of interest. (A) Anatomical segmentation of the infant hip-

pocampus and medial temporal lobe cortex in two representative participants, aged 5.2 months

old (top) and 14.5 months old (bottom). (B) Volume of the left and right hippocampus by par-

ticipant age in months. Each participant is represented by both a red and blue dot at the same

age coordinate.
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This suggests that the hippocampus grows rapidly in size during infancy, at a rate that is faster63

than average in the brain.64

We used fMRI to measure activity in the hippocampus during a statistical learning ex-65

periment. Infants viewed continuous sequences of colorful, fractal-like images that appeared66

dynamically in a looming motion. The sequences were presented in blocks that alternated be-67

tween Structured and Random conditions (Kirkham et al., 2002). In Structured blocks (Fig.68

2A), temporal regularities were embedded in the sequence; fractals appeared in pairs, with the69

first fractal always followed by the second. In Random blocks (Fig. 2B), there were no regular-70

ities in the sequence; rather, all fractals were equally likely to follow each other. Different sets71

of fractals were used for Structured and Random blocks (counterbalanced across participants),72

but the fractal set for a given condition was held constant across blocks, as were the pairs gen-73

erated from the Structured set. Other than the lack of regularities, the Random condition was74

matched to the Structured condition, including in terms of the number of unique fractals and75

their frequency across blocks. Any difference in brain activity between Structured and Random76

blocks can thus be attributed to the presence of regularities in Structured blocks (Turk-Browne77

et al., 2009). Importantly, representing these regularities required learning: it was necessary to78

encode and integrate co-occurrences of fractals to extract the pairs from non-paired transitions79

in the sequence. In other words, because the pairings were arbitrary, at any isolated moment in80

a Structured block it was impossible to know which fractals were paired; the pairs only exist in81

the mind of the observer because of the history of how the fractals appeared together earlier in82

the block or in preceding blocks.83

To capture this learning over time, we divided the blocks in each condition into the first84

half of exposure (when we expected less evidence of learning) and the second half of exposure85
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Fig. 2. Statistical learning task design. Participants viewed colorful fractals one at a time

in blocks. The blocks alternated between a Structured condition and a Random condition

within-participant. Different fractals were shown in each condition, but remained consistent

over blocks. (A) In Structured blocks, fractals were grouped into three pairs (AB, CD, EF),

with the first member of a pair (e.g., A) always followed by the second (e.g., B); this was fol-

lowed by the beginning of the next pair without interruption. As a result, the pairs could only be

learned based on the transition probabilities in the sequence (100% within pair, 33% between

pairs). (B) In Random blocks, fractals (G, H, I, J, K, L) appeared in a random order with no

back-to-back repetitions. As a result, there was no structure in their transition probabilities

(uniform 20%). Because fractals were randomly assigned to the conditions, and individually

appeared an equal number of times within and across blocks (to equate familiarity), the condi-

tions differed only in the opportunity for statistical learning. Participants completed up to 12

blocks and usable blocks were split into the first and second half of exposure.
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(when we expected more robust learning effects). We then calculated the difference in blood-86

oxygenation level dependent (BOLD) response in the bilateral hippocampus between Structured87

and Random blocks (Fig. 3A). In the first half, there was no difference in hippocampal activity88

between Structured and Random blocks (M=0.14, CI=[-0.358, 0.656], p=.614). However, in89

the second half, there was significantly greater hippocampal activity in Structured than Random90

blocks (M=0.67, CI=[0.172, 1.176], p=.007). This difference in the second half was larger91

than in the first half, as revealed by significant interaction between condition and half (M=0.50,92

CI=[0.028, 0.966], p=.037). This learning-related interaction did not differ based on whether93

infants encountered a Structured or Random block first (M=-0.51, CI=[-1.503, 0.454], p=.296),94

nor did it correlate with the age of the infants (Fig. 3B; r=-0.03, p=.893). The lack of an age95

relationship did not reflect a general inability to resolve such relationships in our sample, as the96

volume of the hippocampus reliably increased over this interval (Fig. 1). These findings suggest97

that from as young as three months old, the hippocampus is able to support statistical learning.98

This represents the first evidence of task-related activity in the hippocampus of human infants99

to our knowledge.100

Functional divisions within the hippocampus101

We hypothesized that the hippocampus is involved in infant statistical learning partly be-102

cause of the early development of the monosynaptic pathway from entorhinal cortex to CA1103

(Hevner and Kinney, 1996; Lavenex and Lavenex, 2013; Schapiro et al., 2017). There are no104

established protocols for segmenting hippocampal subfields in infants that would allow us to105

directly evaluate the role of CA1, and so instead we used the longitudinal axis of the hippocam-106

pus as a proxy. Namely, the anterior hippocampus contains more of CA1 than the posterior107

hippocampus (Malykhin et al., 2010), and so we predicted clearer evidence of statistical learn-108
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Fig. 3. Neural evidence of statistical learning in the infant hippocampus. (A) Mean dif-

ference in normalized parameter estimates of BOLD activity between Structured and Random

blocks in bilateral hippocampus. A reliable difference emerged by the second half, which was

significantly greater than in the first half. Each gray dot is one participant. (B) Using the in-

teraction between condition and half as a metric of hippocampal statistical learning, there was

no relationship with participant age in months. (C) Three-dimensional rendering of an exam-

ple hippocampal segmentation (14.1 month old). Mean difference in BOLD activity between

Structured and Random blocks in (D) left (red) and right (blue) hippocampus, and in (E) an-

terior (dark) and posterior (light) hippocampus. Error bars reflect standard error of the mean

across participants within half. * indicates p<.05, ** indicates p<.01.
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ing in the anterior hippocampus (Fig. 3C). Indeed, whereas the anterior hippocampus showed109

no difference between Structured and Random blocks in the first half (M=0.07, CI=[-0.489,110

0.648], p=.846), there was a robust difference in the second half (M=0.73, CI=[0.202, 1.257],111

p=.006) and a significant interaction between condition and half (M=0.58, CI=[0.091, 1.063],112

p=.018). The posterior hippocampus again showed no difference in the first half (M=0.23,113

CI=[-0.216, 0.727], p=.328), but the difference in the second half was numerically weaker than114

in the anterior hippocampus (M=0.60, CI=[0.062, 1.112], p=.028) and the interaction did not115

reach significance (M=0.39, CI=[-0.106, 0.879], p=.119); the interaction in posterior was not116

significantly weaker than in anterior (M=0.19, CI=[-0.086, 0.477], p=.174).117

In addition to subdividing the longitudinal axis of the hippocampus, we also separated118

the hippocampus into left and right hemispheres. Adult fMRI studies have reported statistical119

learning effects more consistently in the right hippocampus (Schapiro et al., 2012; Turk-Browne120

et al., 2009). This same pattern was found in infants, with numerically stronger evidence of sta-121

tistical learning in the right hippocampus (first half: M=0.09, CI=[-0.428, 0.635], p=.759; sec-122

ond half: M=0.75, CI=[0.243, 1.243], p=.003; interaction: M=0.60, CI=[0.116, 1.090], p=.013)123

than in the left hippocampus (first half: M=0.20, CI=[-0.345, 0.754], p=.500; second half:124

M=0.59, CI=[0.021, 1.132], p=.043; interaction: M=0.38, CI=[-0.135, 0.890], p=.155); the in-125

teraction in left was not significantly weaker than in right (M=0.22, CI=[-0.106, 0.574], p=.207).126

Thus, the overall pattern of learning-related signals across longitudinal and hemispheric axes of127

the infant hippocampus is consistent with primate anatomy (Hevner and Kinney, 1996; Lavenex128

and Lavenex, 2013), computational models (Schapiro et al., 2017), and adult function (Schapiro129

et al., 2012; Turk-Browne et al., 2009).130
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Timecourse of hippocampal involvement131

Splitting the fMRI data into the first and second half of exposure was an attempt to capture132

learning over time while retaining enough blocks per time bin to estimate stable effects. We133

also examined learning over time more continuously at the block level (Fig. S1). Adopting134

a supersubject approach, we pooled usable blocks across participants and assessed statistical135

significance with bootstrap resampling. The difference between Structured and Random blocks136

was largest and only statistically significant in the fifth and sixth blocks (of six). In other137

words, evidence of statistical learning emerged after approximately two minutes of exposure to138

Structured blocks (four blocks of 36 s).139

The amount of exposure needed to obtain neural evidence of statistical learning is consis-140

tent with the duration of classic behavioral studies of infant statistical learning (Kirkham et al.,141

2002; Saffran et al., 1996). This suggests that fMRI can serve as a sensitive, converging measure142

of infant cognition, even for relatively short task designs. An important limitation of the current143

study is that we did not obtain a behavioral measure of statistical learning that could be directly144

related to the fMRI findings. Nevertheless, the design of our study, in which Random blocks145

carefully controlled for all aspects of Structured blocks other than the presence of regularities146

to be learned, allows us to attribute the observed neural differences to statistical learning.147

Engagement of neocortical systems148

The focus of this study was on examining the function of the infant hippocampus, with the149

hypothesis that it supports statistical learning. However, we also compared Structured and Ran-150

dom blocks in the surrounding MTL cortex and found weak evidence of statistical learning (Fig.151

S2). Given that MTL cortex is anatomically adjacent and a larger ROI, this highlights the speci-152
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ficity of our findings in the hippocampus. We additionally performed exploratory voxelwise153

analyses across the whole brain with data aligned to standard space across participants (Fig.154

S3). The key learning interaction observed in the hippocampus between condition (Structured155

vs. Random) and half (second vs. first) was found only in medial prefrontal cortex (mPFC;156

corrected p=.048, 116 voxels, MNI: -5, 53, 3).157

This involvement of mPFC in infants is striking given the dramatic changes in frontal158

lobe anatomy over development (Matsuzawa et al., 2001). In adults, mPFC strongly interacts159

with the hippocampus during memory formation, facilitating encoding based on related past160

experiences (i.e., schemas) to promote memory integration (Schlichting et al., 2015) and con-161

solidation (Tse et al., 2011). Indeed, mPFC has been linked to gradual statistical learning over162

days and weeks in rodents (Richards et al., 2014). It remains to be seen whether this mechanism163

contributes to rapid statistical learning over minutes in human infants, as tested here. An im-164

portant limitation of the current study is the inability of fMRI to distinguish whether evidence165

of statistical learning in the hippocampus originates in the hippocampus or is a reflection of166

processing in the mPFC, given their connectivity.167

Open questions and theoretical implications168

The key finding of this study is that activity in the hippocampus of human infants increases169

through exposure to regularities. This activity may correspond to different stages of statistical170

learning. It could reflect the process of extracting regularities during learning, with differences171

emerging in the second half because a certain amount of exposure was needed to compute the172

transition probabilities between fractals and represent the pairs. Alternatively, the hippocam-173

pal activity could reflect the impact of known regularities on other processes after learning is174
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complete, including on perception of the fractals, segmentation of the sequence, recognition of175

the pairs, and/or prediction based on transition probabilities. In addition to clarifying at which176

of these stages the hippocampus participates in infant statistical learning, future research will177

be needed to determine whether this role is necessary for behavioral expression of statistical178

learning. This will be difficult to test in infants, but studies in adult patients with hippocampal179

damage suggest that the hippocampus may in fact be necessary for normal statistical learning180

behavior (Covington et al., 2018; Schapiro et al., 2014).181

The involvement of the infant hippocampus in statistical learning has implications for182

theories of memory. For example, according to complementary learning systems (McClelland183

et al., 1995), episodic memory is a precursor to statistical learning. The hippocampus rapidly184

encodes individual experiences and then, through a process of consolidation, the neocortex185

gradually generalizes across these episodic memories to extract regularities. Infants present186

a conundrum for this framework: they show robust statistical learning (Kirkham et al., 2002;187

Saffran et al., 1996) despite impoverished episodic memory (Akhtar et al., 2018; Keresztes188

et al., 2018; Richmond and Nelson, 2009). A recent update to complementary learning systems189

(Schapiro et al., 2017) provides a potential resolution, at least for the rapid form of statistical190

learning in our study. Neural network simulations showed that such statistical learning can occur191

within the hippocampus itself in a way that bypasses the circuitry for episodic memory. Thus,192

the hippocampus may support statistical learning in infants, as reported in this study, before it193

can support episodic memory. It also remains possible that episodic memory is more developed194

in infants than currently thought—consistent with recent rodent work (Farooq and Dragoi, 2019;195

Guskjolen et al., 2018)—such that the hippocampal statistical learning we report may in fact be196

dependent upon episodic memory. Future research could address these possibilities by using197
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fMRI with awake infants to capture sensitive neural measures of episodic memory functions in198

the hippocampus, including pattern separation, relational binding, and pattern completion.199

To conclude, we present the first evidence that the hippocampus is recruited for learning in200

human infants. This demonstrates that brain systems used for learning throughout the lifespan201

can be available from some of the earliest stages of life. In turn, this provides a starting point202

for understanding how the human brain supports the prodigious amount of learning that occurs203

during infancy, establishing building blocks critical for subsequent growth and education.204
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Methods336

Participants Data from 24 sessions with infants aged 3.6 to 23.1 months (M=11.6, SD=5.8;337

14 female) met our minimum criteria for inclusion of six usable task blocks with at least one pair338

of Structured and Random blocks in each of the first and second halves of exposure (M=11.8339

total blocks, M=9.8 usable blocks). This sample does not include data from 11 sessions with340

enough blocks only prior to exclusions for head motion, eye gaze, and counterbalancing (M=9.8341

total blocks, M=3.5 usable blocks), or from 44 sessions without enough blocks even prior to342

exclusions (M=3.6 total blocks) where the infant instead participated in other experiments. In343

the final sample, five infants provided two sessions of usable data and one infant provided three.344

These sessions occurred at least one month apart (range=1.1–9.3) and so the data were treated345

separately, similar to prior work (Deen et al., 2017). Of the 24 sessions, six were collected346

at the Scully Center for the Neuroscience of Mind and Behavior at Princeton University, four347

were collected at the Magnetic Resonance Research Center (MRRC) at Yale University, and348

14 were collected at the Brain Imaging Center (BIC) at Yale University. Refer to Table S1 for349

information on each participant. Parents provided informed consent on behalf of their child.350

The study was approved by the Institutional Review Board at Princeton University and the351

Human Investigation Committee at Yale University.352

Data acquisition Data were acquired with a Siemens Skyra (3T) MRI at Princeton University353

and a Siemens Prisma (3T) MRI at both sites at Yale University, in all cases with the 20-channel354

Siemens head coil. Anatomical images were acquired with a T1-weighted PETRA sequence355

(TR1=3.32ms, TR2=2250ms, TE=0.07ms, flip angle=6o, matrix=320x320, slices=320, resolu-356

tion=0.94mm iso, radial slices=30000). Functional images were acquired with a whole-brain357

T2* gradient-echo EPI sequence (Princeton and Yale MRRC: TR=2s, TE=28ms, flip angle=71o,358
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matrix=64x64, slices=36, resolution=3mm iso, interleaved slice acquisition; Yale BIC: identical359

except TE=30ms, slices=34).360

Procedure Conducting fMRI research with awake infants presents many challenges. We have361

described and validated our protocol in detail in a separate methods paper (Ellis et al., 2020).362

In brief, families visited the lab prior to their first scanning session for an orientation session.363

This served to acclimate the infant and parent to the scanning environment. Scanning sessions364

were scheduled for a time when the parents felt the infant would be calm and happy. The infant365

and parent were extensively screened for metal. Hearing protection was applied to the infant366

in three layers: silicon inner ear putty, over-ear adhesive covers, and ear muffs. The infant was367

placed on the scanner bed, on top of a vacuum pillow that comfortably reduced movement. The368

top of the head coil was not used because the bottom elements provided sufficient coverage of369

the smaller infant head. This created better visibility for monitoring infant comfort and allowed370

us to project stimuli onto the ceiling of the bore directly above the infant’s face using a custom371

mirror system. A video camera (Princeton and Yale MRRC: MRC 12M-i camera; Yale BIC:372

MRC high-resolution camera) recorded the infant’s face during scanning for monitoring and373

eye tracking.374

When the infant was calm and focused, stimuli were shown in Matlab using Psychtool-375

box (http://psychtoolbox.org). The stimuli were colorful, fractal-like images used376

previously in studies of statistical learning in adults (Hindy et al., 2016; Schapiro et al., 2012).377

Images appeared every 1s, looming in size from 2.4o at onset to 14.6o degrees at offset (Kirkham378

et al., 2002). Each block contained 36 images presented sequentially one at a time in a unique379

order, followed by 6s of rest with the screen blank.380
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Blocks alternated between Structured and Random conditions (Fig. 2). Which condi-381

tion appeared first was assigned randomly. In the Structured condition, six fractals (A-F) were382

organized into three pairs (AB, CD, EF). The sequence of each block was generated by ran-383

domly inserting six repetitions of each pair. The first member of a pair (A, C, E) was always384

followed by the second (B, D, F, respectively) resulting in a transition probability of 1.0. After385

the second member of a pair, another pair appeared, resulting in a transition probability of 0.33386

on average. In the Random condition, six different fractals (G-L) were presented individually.387

The sequence of each block was generated by randomly inserting six repetitions of each fractal,388

avoiding back-to-back repetitions of the same fractal. This resulted in a uniform transition prob-389

ability of 0.20 on average. The six fractals in each condition were consistent across all blocks390

of that condition. For participants who attempted the experiment in more than one session,391

different stimuli were used across sessions.392

Gaze coding Infant gaze was coded offline by two or more coders (M=2.65) blind to the block393

condition. The coders determined whether the gaze was on-screen, off-screen (i.e., blinking or394

looking away), or undetected (i.e., out of the camera’s field of view or obscured by a hand395

or other object). Across coders, every video frame was coded at least once. The frame rate396

and resolution varied by camera and site, but the minimum rate was 16Hz and we always had397

sufficient resolution to identify the eye. The coded category for each frame was determined as398

the mode of a moving window of five frames centered on that frame across all coder reports.399

In case of a tie, the modal response from the previous frame was used. The coders were highly400

reliable: when coding the same frame, coders reported the same response on 93% (SD=6%;401

range across participants=73–99%) of frames. Infants included in the final sample looked at the402

stimulus 89% of the time on average (range=80.3–97.3%). Blocks were excluded if the eyes403
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were off-screen for 50+% of the block. One participant did not have eye-tracking data due to a404

technical problem but real-time monitoring confirmed that their eyes were open and attending405

to the stimulus for at least 50% of each block.406

Preprocessing Individual runs were preprocessed using FEAT in FSL (https://fsl.407

fmrib.ox.ac.uk/fsl), with modifications optimized for infant data. We discarded three408

volumes from the beginning of each run, in addition to the volumes automatically discarded409

by the EPI sequence. Blocks were stripped of any excess burn-in or burn-out volumes beyond410

the 3 TRs (6s) of rest after each block. Pseudo-runs were generated if other experiments, not411

discussed here, were initiated in a run with the data of interest (sessions with a pseudo-run,412

N=12). Blocks were sometimes separated by long pauses (>30s) within a session because of413

a break outside of the scanner, because an anatomical scan was collected, or because of in-414

tervening experiments (N=7; M=636.7s break; range=115.4–1545.1s). The reference volume415

for alignment and motion correction was chosen as the ‘centroid’ volume with the minimal416

Euclidean distance from all other volumes. The slices in each volume were realigned with417

slice-time correction. Time-points were excluded if there was greater than 3mm of movement418

from the previous time-point (M=8.9%, range=0.0–21.3%). We interpolated rather than ex-419

cised these time-points so that they did not bias the linear detrending (in later analyses these420

time-points were excised). Blocks were excluded if 50+% of the time-points were excluded.421

The mask of brain and non-brain voxels was created from the signal-to-fluctuating-noise ra-422

tio (SFNR) for each voxel in the centroid volume. The data were spatially smoothed with a423

Gaussian kernel (5mm FWHM) and linearly detrended in time. The despiking algorithm in424

AFNI (https://afni.nimh.nih.gov) was used to attenuate aberrant time-points within425
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voxels. For further explanation and justification of this preprocessing procedure, refer to (Ellis426

et al., 2020).427

We registered each run’s centroid volume to the infant’s anatomical scan from the same428

session. We used FLIRT with a normalized mutual information cost function for initial align-429

ment. Supplemental manual registration was then performed using mrAlign from mrTools430

(Gardner lab) to fix deficiencies of automatic registration. The preprocessed functional data431

were aligned into anatomical space but kept in their original spatial resolution (3mm iso). Re-432

gion of interest (ROI) analyses were performed within this native space of each participant.433

Whole-brain voxelwise analyses required further alignment of functional data into a standard434

space. The anatomical scan from each participant was automatically (FLIRT) and manually435

(Freeview) aligned to an age-specific MNI infant template (Fonov et al., 2011). Combined with436

alignment of these templates to the adult MNI template (MNI152), the functional data were437

transformed into standard space. To determine which voxels to consider at the group level,438

the intersection of brain voxels from all infant participants in standard space was used as a439

whole-brain mask.440

Because runs could contain different numbers of blocks from the Structured and Ran-441

dom conditions, blocks were only retained if they could be paired with a block from the other442

condition in the same run. This counterbalancing was enforced to ensure an equal amount of443

data in each condition. The blocks were labeled by the count of how many blocks from that444

condition had already been seen (henceforth, their ‘seen-count’). For example, if an infant was445

watching the screen but moving too much in their first Structured block, then remained still in446

their second Structured block, the first usable block of that condition would be labeled with447
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a seen-count of 2. Blocks were chosen to be paired across conditions so as to minimize the448

difference in seen-counts (i.e., to match the degree of exposure as best possible).449

For an infant to be included, they needed to have at least three blocks from each condition,450

with at least one block in each condition from blocks 1 to 3 (first half) and at least one block451

in each condition from blocks 4 to 6 (second half). Using these criteria, the average number of452

included blocks for the usable participants was 9.8 (SD=1.9, range=6–12), including 5.5 blocks453

in the first half and 4.3 blocks in the second half on average. There was no correlation between454

the number of included blocks and age (r=-0.05, p=.788). The block order was determined455

randomly, with 15 participants seeing a Structured block first and 9 participants seeing a Ran-456

dom block first (as reported in the main text, there were no reliable order effects on the neural457

results).458

To account for differences across runs in intensity and variance, the blocks that sur-459

vived exclusions and balancing across conditions were normalized over time within run using460

z-scoring, prior to the runs being concatenated for further analyses.461

Regions of interest The main analyses involved manually tracing ROIs in the medial temporal462

lobe (MTL) based on anatomical landmarks and then assessing evoked BOLD responses across463

voxels in these anatomical ROIs. To trace the ROIs, we extended a published protocol for MTL464

segmentation in adults (Aly and Turk-Browne, 2015) with help from protocols for hippocampal465

segmentation in infants (Gousias et al., 2013). The segmentation demarcated ROIs for the left466

and right hippocampus, each of which encompassed the subiculum, CA1, CA2/3, and dentate467

gyrus subfields. We did not individually segment these subfields because of the lack of validated468

anatomical guidelines for subfield boundaries in infants. For completeness, we also defined469
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ROIs for the left and right MTL cortex, each of which contained the entorhinal, perirhinal,470

and parahippocampal cortices (again not segmented individually). To examine the reliability471

of the coder performing the infant segmentations, an expert adult coder segmented two infant472

participants. Using Dice similarity (Dice, 1945), the consistency of labelling was 0.524 and473

0.651 for the two participants across coders, indicating moderate reliability. Fig. 1 shows474

example ROIs for two infants and the volume of each ROI across participants as a function475

of age. The anterior hippocampus (volume: M=1973.1 mm3, SD=537.5) was defined as the476

head of the hippocampus, as manually traced (Aly and Turk-Browne, 2015), and the posterior477

hippocampus (volume: M=1796.4 mm3, SD=433.7) was the remainder, including the body and478

tail. For one participant (4.0 month old), the anatomical scan collected in the same session as479

the functional data was of insufficient quality for segmentation; we instead used the anatomical480

scan collected in their next session (at 6.0 months) and aligned the resulting segmentation to481

their functional data.482

Analysis For each infant, the volume of left and right hippocampus and MTL cortex ROIs was483

estimated by counting the number of voxels traced and multiplying by the volume of each voxel484

(0.82mm3). Whole-brain volume was calculated based on the number of voxels in the brain485

mask generated by applying Freesurfer (https://surfer.nmr.mgh.harvard.edu) to486

their anatomical scan (Schlichting et al., 2017).487

For the main analysis, a general linear model (GLM) was fit to the BOLD activity in each488

voxel using FEAT in FSL. The GLM contained four regressors: Structured and Random con-489

ditions in the first and second half of exposure. Each regressor modeled corresponding task490

blocks with a boxcar lasting the duration of stimulation convolved with a double-gamma hemo-491

dynamic response function. The assignment of blocks to halves was based on the seen-count:492
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blocks with seen-count 1–3 were assigned to the first half and blocks with seen-count 4–6 were493

assigned to the second half. The six translation and rotation parameters from motion correction494

were included in the GLM as regressors of no interest. Excluded TRs were scrubbed by includ-495

ing an additional regressor for each to-be-excluded time-point (Siegel et al., 2014). Contrasts496

of the resulting parameter estimates compared Structured greater than Random conditions sep-497

arately for the first and second half; an interaction contrast compared the condition differences498

in the second versus first half. The voxelwise z-statistic volumes for these contrasts were ex-499

tracted for each participant. ROI analyses averaged the z-statistics of all included voxels and500

examined the reliability of these averages at the group level. Whole-brain analyses examined501

the reliability of the z-statistics for each voxel across participants.502

Statistical analysis was performed on the ROI data using a non-parametric bootstrap re-503

sampling approach (Efron and Tibshirani, 1986). Namely, for each test we sampled 24 partici-504

pants with replacement 10,000 times, averaging across participants on each iteration to generate505

a sampling distribution. For null hypothesis testing, we calculated the p-value as the proportion506

of samples whose mean was in the opposite direction from the true effect, doubled to make the507

test two-tailed. To correct for multiple comparisons in whole-brain analyses, we used threshold508

free cluster enhancement through the randomise function in FSL, resulting in voxel clusters509

p<.05 corrected. A similar bootstrap resampling procedure was used to statistically evaluate510

correlations, sampling bivariate data from 24 participants with replacement 10,000 times, and511

calculating the Pearson correlation (or partial correlation) on each iteration. We calculated the512

p-value as the proportion of samples resulting in a correlation with the opposite sign from the513

true correlation, doubled to make the test two-tailed.514

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.07.329862doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.329862
http://creativecommons.org/licenses/by-nc-nd/4.0/


To perform the timecourse analysis (Fig. S1), we restricted analysis to pairs of Structured515

and Random blocks with identical seen-counts (as opposed to finding the closest match in the516

main analysis). This allowed us to separately examine the difference between Structured and517

Random at each of the 6 ordinal positions. This reduced the number of participants with a suf-518

ficient number of usable blocks to 22, and the average number of usable blocks per retained519

participant to 9.6 (SD=1.9; range=6–12). A GLM was fit to these data with a separate regres-520

sor for each block. The parameter estimates were labeled based on each block’s seen-count521

and contrasted across conditions within the same seen-count. The resulting z-statistics were522

averaged across voxels within each ROI. The same bootstrap resampling approach with 1,000523

iterations was used to assess statistical reliability and calculate p-values for each ordinal posi-524

tion. An important feature of this approach is that we were able to estimate the timecourse even525

if individual subjects were missing one or more of the positions. This also takes into account the526

smaller sample size of participants with later ordinal positions, because the obtained sampling527

distribution is more variable.528

Data availability The data, including anonymized anatomical images, manually segmented529

regions, and both raw and preprocessed functional images will be released on Dryad upon530

publication.531

Code availability The code for running the statistical learning task can be found here: https:532

//github.com/ntblab/experiment_menu. The code for the general analysis pipeline533

can be found here: https://github.com/ntblab/infant_neuropipe. The code534

for performing the specific analyses reported in this paper can be found here: https://535

github.com/ntblab/infant_neuropipe/tree/StatLearning.536
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Fig. S1. Timecourse of hippocampal statistical learning in infants. (A) To examine learning

more continuously, we pooled blocks across participants (rows) based on their ordinal posi-

tion during exposure (columns). White cells indicate that both the Structured and Random

blocks from that ordinal position were usable and included in the timecourse analysis; black

cells indicate that the block from one or both conditions are not usable, and therefore neither

was included. (B) Difference in BOLD activity between Structured and Random blocks in bi-

lateral hippocampus as a function of ordinal position: block 1, bootstrapped p=.362; block 2,

p=.989; block 3, p=.939; block 4, p=.661; block 5, p=.010; block 6, p=.042. Individual lines

correspond to bootstrapping iterations and thus convey the sampling distribution. Line color

indicates whether the bootstrapped mean increases (green) or decreases (red) from one block to

the next on a given iteration. * indicates that the 95% confidence interval does not contain zero.
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Fig. S2. Medial temporal lobe (MTL) cortex. (A) Volume of anatomically segmented left

and right MTL cortex by participant age. Unlike the hippocampus (Fig. 1A), there was no

reliable relationship between age and volume (left b=59.3 mm3/month, r=0.29, p=.142; right

b=69.2 mm3/month, r=0.37, p=.062). Although the slope values are similar to the hippocampus,

the larger size of MTL cortex (M=8371.8 mm3, SD=2119.2) compared to the hippocampus

(M=3769.4 mm3, SD=898.2), means that the proportional growth is much lower. (B) Mean

difference in BOLD activity between Structured and Random blocks in bilateral MTL cortex

by exposure half. The first half (M=0.10, CI=[-0.423, 0.682], p=.726), second half (M=0.48,

CI=[-0.023, 0.959], p=.059), and interaction between condition and half (M=0.40, CI=[-0.111,

0.875], p=.121) did not reach significance. (C) There was no reliable relationship between

this interaction and age (r=-0.23, p=.273). Error bars depict standard error of the mean across

participants within half. ∼ indicates p<.10.
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Fig. S3. Exploratory whole-brain analysis. Voxelwise contrast of BOLD activity between

Structured and Random blocks in (A) the first half and (B) the second half. (C) The medial

prefrontal cortex (mPFC) showed an interaction between condition and half, with a greater

difference between Structured and Random in the second vs. first half. Voxels in color were

significant after correction for multiple comparisons (threshold-free cluster enhancement, one-

tailed corrected p<.05). Coordinates are in MNI space.
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Table S1. Demographic information. ‘ID’ is a unique infant identifier (i.e., sXXXX Y Z),

with the first four digits (XXXX) indicating the family, the fifth digit (Y) the child number

within family, and the sixth digit (Z) the session number with that child. ‘Age’ is recorded

in months. ‘Sex’ is female or male. ‘Site’ is Scully Center for the Neuroscience of Mind

and Behavior at Princeton University (P.ton), Magnetic Resonance Research Center at Yale

University (MRRC), or Brain Imaging Center at Yale University (BIC). ‘1st half’ is the number

of usable blocks from the first half of exposure (max 6). ‘2nd half’ is the number of usable

blocks from the second half of exposure (max 6). ‘Start cond.’ is the randomly selected

condition of the first block (alternating thereafter). ‘TR prop’ is the proportion of TRs included

from usable blocks. ‘Eye prop’ is the proportion of eye tracking data included from usable

blocks. ‘Eye IRR’ is the proportion of frames coded the same way across gaze coders; one

participant without eye-tracking data has “nan”.

ID Age Sex Site 1st half 2nd half Start cond. TR prop Eye prop Eye IRR

s2307 1 1 19.9 M P.ton 4 4 Random 0.97 0.90 0.86

s0307 1 2 9.1 M P.ton 6 2 Structured 0.91 0.94 0.92

s8187 1 8 23.1 F P.ton 6 2 Random 0.92 0.83 0.95

s2307 1 2 21.7 M P.ton 6 4 Random 1.00 0.90 0.94

s8187 1 4 13.8 F P.ton 4 2 Structured 0.86 0.83 0.73

s1187 1 1 20.7 F P.ton 6 6 Structured 0.95 0.88 0.97

s2687 1 1 4.0 M MRRC 3 5 Random 0.82 0.86 0.83

s6687 1 1 5.0 F MRRC 6 4 Structured 0.79 0.86 0.90

s8607 1 1 8.5 F MRRC 6 2 Structured 0.96 0.93 0.93

s3607 1 1 7.5 F MRRC 5 7 Random 0.88 0.91 0.96

s8687 1 4 14.5 F BIC 6 6 Structured 1.00 0.86 0.98

s2687 1 3 9.9 M BIC 6 2 Structured 0.88 0.84 0.96

s2687 1 4 16.3 M BIC 6 2 Structured 0.86 0.89 0.90

s6687 1 3 11.3 F BIC 6 2 Random 0.99 0.94 0.94

s4607 1 4 13.0 F BIC 6 6 Structured 0.95 0.88 0.93

s4607 1 5 14.1 F BIC 6 4 Structured 0.99 0.80 0.90

s6607 1 2 7.4 M BIC 6 6 Random 0.97 nan nan

s0607 1 5 17.7 M BIC 6 6 Structured 0.91 0.90 0.97

s1607 1 2 10.7 M BIC 6 6 Structured 0.82 0.84 0.95

s6057 1 1 3.6 M BIC 6 4 Random 0.80 0.97 0.99

s0057 1 3 9.0 F BIC 5 3 Structured 0.83 0.86 0.89

s7017 1 1 5.2 F BIC 4 6 Random 0.87 0.95 0.98

s7017 1 2 6.6 F BIC 6 6 Structured 0.97 0.95 0.99

s7067 1 1 4.7 F BIC 4 6 Structured 0.96 0.95 0.95

Av. 11.55 . . 5.46 4.29 . 0.91 0.89 0.93
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