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s The hippocampus is essential for human memory. Thus, memory deficiencies in infants
s are often attributed to hippocampal immaturity. However, the functionality of the infant
10 hippocampus has never been tested directly. Here we report that the human hippocampus
11 is indeed active in infancy. We recorded hippocampal activity using fMRI while awake
12 infants aged 3-24 months viewed sequences of objects. Greater activity was observed when
13 the order of the sequence contained regularities that could be learned compared to when
12 the order was random. The involvement of the hippocampus in such statistical learning,
15 with additional recruitment of the medial prefrontal cortex, is consistent with findings
16 from adults. These results suggest that the hippocampus supports the important ability of

17 infants to extract the structure of their environment through experience.
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18 Memory is at the root of human identity, bridging the present into the past and future,
19 fundamental to personality, relationships, expertise, navigation, and imagination. This ability to
20 store and recall life events (episodic memory) requires a brain region known as the hippocampus
21 (Corkin, 2013). The fact that episodic memory is minimal in infants (Richmond and Nelson,
22 2009), only becoming detailed and stable later in childhood (Keresztes et al., 2018), and that
23 adults remember very little from infancy (infantile amnesia (Akhtar et al., 2018)), has raised the
24 possibility that the hippocampus may not be functional in human infants (Gémez and Edgin,
25 2016; Nelson, 1995; Schacter and Moscovitch, 1984). However, this has never been evaluated
26 directly. The hippocampus undergoes structural changes well into adolescence (Arnold and
27 Trojanowski, 1996; Gogtay et al., 2006; Schlichting et al., 2017; Uematsu et al., 2012), but

2s  what is its function in infancy?

29 We test the hypothesis that the human infant hippocampus supports the ability to extract
s regularities across experiences (Fiser and Aslin, 2002; Saffran et al., 1996). Such statistical
31 learning is critical to cognitive development, for acquiring language (Romberg and Saffran,
2 2010; Werker et al., 2012) and understanding objects (Smith et al., 2018). This hypothesis
33 1s based on evidence from human adults that the hippocampus supports statistical learning
s« 1n addition to episodic memory (Covington et al., 2018; Schapiro et al., 2014, 2012; Turk-
s Browne et al., 2009). These two functions are thought to rely on separate hippocampal path-
s ways (Schapiro et al., 2017): The trisynaptic or perforant pathway, represented more in the
37 posterior hippocampus, connects entorhinal cortex to dentate gyrus, CA3, and CA1 to enable
ss pattern separation and rapid episodic encoding. The monosynaptic or temporoammonic path-
39 way, represented more in the anterior hippocampus, connects the entorhinal cortex to CAl
20 directly and supports the integration of inputs to extract regularities. Anatomical connections in

41 the monosynaptic pathway develop earlier than in the trisynaptic pathway (Hevner and Kinney,
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22 1996; Lavenex and Lavenex, 2013), further supporting the hypothesis that the infant hippocam-

a3 pus is involved in statistical learning.

44 This hypothesis can only be tested in healthy human infants with functional magnetic
ss resonance imaging (fMRI), because of its unique ability to resolve deep-brain structures like
ss the hippocampus (Ellis and Turk-Browne, 2018). This is a challenging technique to use with
47 awake infants during cognitive tasks, including because of head and body motion, an inability
a8 to understand or follow task instructions, and general fussiness. This challenge is evident in
a0 the extremely small number of published studies of this type (Biagi et al., 2015; Deen et al.,
so  2017; Dehaene-Lambertz et al., 2002). Here we exploit recently developed methods for awake
s+ infant fMRI (Ellis et al., 2020) to provide the first evidence of hippocampal function in human
s2 infants. Namely, we show that the infant hippocampus is activated by a learning task that

s3 requires encoding and integrating visual experiences.

s« Role of infant hippocampus in statistical learning

55 We collected brain imaging data from 24 sessions with infants aged 3-24 months. We
ss defined anatomical regions of interest (ROIs) using a structural MRI obtained in each session
57 (Fig. 1A). We manually segmented the hippocampus bilaterally from the surrounding medial
ss temporal lobe (MTL) cortex. The volume of the hippocampal ROIs was strongly related to
so age (left b=68.0 mm?/month, r=0.88, p<.001; right b=68.5 mm?/month, r=0.84, p<.001), with
s the hippocampus approximately doubling in volume over this age range (Fig. 1B). Global
st brain volume increased dramatically with age too (r=0.90, p<.001), but the change in bilateral

s2 hippocampal volume persisted after controlling for this global growth (rpui=0.44, p=.005).


https://doi.org/10.1101/2020.10.07.329862
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329862; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A

Hippocampus

Example 5.2 month old

Medial
Temporal Lobe

L R
B .
® Left Hippocampus
3000 { ® Right Hippocampus L4
)
€ 2500 - °
‘E’ e o : 8 [ ]
£ 2000 | % %
[ ]
S ; ) [ )
35 ‘ [ ] ' (]
> 1500 1 pos °
oo ®
1000 + ‘ . ' '
5 10 15 20
Age (Months)

Fig. 1. Hippocampal regions of interest. (A) Anatomical segmentation of the infant hip-
pocampus and medial temporal lobe cortex in two representative participants, aged 5.2 months
old (top) and 14.5 months old (bottom). (B) Volume of the left and right hippocampus by par-
ticipant age in months. Each participant is represented by both a red and blue dot at the same
age coordinate.
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s This suggests that the hippocampus grows rapidly in size during infancy, at a rate that is faster

e« than average in the brain.

65 We used fMRI to measure activity in the hippocampus during a statistical learning ex-
e periment. Infants viewed continuous sequences of colorful, fractal-like images that appeared
e dynamically in a looming motion. The sequences were presented in blocks that alternated be-
es tween Structured and Random conditions (Kirkham et al., 2002). In Structured blocks (Fig.
ss 2A), temporal regularities were embedded in the sequence; fractals appeared in pairs, with the
70 first fractal always followed by the second. In Random blocks (Fig. 2B), there were no regular-
71 ities in the sequence; rather, all fractals were equally likely to follow each other. Different sets
72 of fractals were used for Structured and Random blocks (counterbalanced across participants),
73 but the fractal set for a given condition was held constant across blocks, as were the pairs gen-
7a erated from the Structured set. Other than the lack of regularities, the Random condition was
75 matched to the Structured condition, including in terms of the number of unique fractals and
76 their frequency across blocks. Any difference in brain activity between Structured and Random
77 blocks can thus be attributed to the presence of regularities in Structured blocks (Turk-Browne
7s et al., 2009). Importantly, representing these regularities required learning: it was necessary to
79 encode and integrate co-occurrences of fractals to extract the pairs from non-paired transitions
so in the sequence. In other words, because the pairings were arbitrary, at any isolated moment in
st a Structured block it was impossible to know which fractals were paired; the pairs only exist in
&2 the mind of the observer because of the history of how the fractals appeared together earlier in

s the block or in preceding blocks.

84 To capture this learning over time, we divided the blocks in each condition into the first

ss half of exposure (when we expected less evidence of learning) and the second half of exposure
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Fig. 2. Statistical learning task design. Participants viewed colorful fractals one at a time
in blocks. The blocks alternated between a Structured condition and a Random condition
within-participant. Different fractals were shown in each condition, but remained consistent
over blocks. (A) In Structured blocks, fractals were grouped into three pairs (AB, CD, EF),
with the first member of a pair (e.g., A) always followed by the second (e.g., B); this was fol-
lowed by the beginning of the next pair without interruption. As a result, the pairs could only be
learned based on the transition probabilities in the sequence (100% within pair, 33% between
pairs). (B) In Random blocks, fractals (G, H, 1, J, K, L) appeared in a random order with no
back-to-back repetitions. As a result, there was no structure in their transition probabilities
(uniform 20%). Because fractals were randomly assigned to the conditions, and individually
appeared an equal number of times within and across blocks (to equate familiarity), the condi-
tions differed only in the opportunity for statistical learning. Participants completed up to 12
blocks and usable blocks were split into the first and second half of exposure.
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ss (when we expected more robust learning effects). We then calculated the difference in blood-
&7 oxygenation level dependent (BOLD) response in the bilateral hippocampus between Structured
ss and Random blocks (Fig. 3A). In the first half, there was no difference in hippocampal activity
ss between Structured and Random blocks (M=0.14, CI=[-0.358, 0.656], p=.614). However, in
90 the second half, there was significantly greater hippocampal activity in Structured than Random
91 blocks (M=0.67, CI=[0.172, 1.176], p=.007). This difference in the second half was larger
92 than in the first half, as revealed by significant interaction between condition and half (M=0.50,
os  CI=[0.028, 0.966], p=.037). This learning-related interaction did not differ based on whether
s« infants encountered a Structured or Random block first (M=-0.51, CI=[-1.503, 0.454], p=.296),
o5 nor did it correlate with the age of the infants (Fig. 3B; r=-0.03, p=.893). The lack of an age
9 relationship did not reflect a general inability to resolve such relationships in our sample, as the
o7 volume of the hippocampus reliably increased over this interval (Fig. 1). These findings suggest
9s that from as young as three months old, the hippocampus is able to support statistical learning.
oo This represents the first evidence of task-related activity in the hippocampus of human infants

100 to our knowledge.

101 Functional divisions within the hippocampus

102 We hypothesized that the hippocampus is involved in infant statistical learning partly be-
103 cause of the early development of the monosynaptic pathway from entorhinal cortex to CAl
104 (Hevner and Kinney, 1996; Lavenex and Lavenex, 2013; Schapiro et al., 2017). There are no
105 established protocols for segmenting hippocampal subfields in infants that would allow us to
16 directly evaluate the role of CA1, and so instead we used the longitudinal axis of the hippocam-
107 pus as a proxy. Namely, the anterior hippocampus contains more of CAl than the posterior

e hippocampus (Malykhin et al., 2010), and so we predicted clearer evidence of statistical learn-
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Fig. 3. Neural evidence of statistical learning in the infant hippocampus. (A) Mean dif-
ference in normalized parameter estimates of BOLD activity between Structured and Random
blocks in bilateral hippocampus. A reliable difference emerged by the second half, which was
significantly greater than in the first half. Each gray dot is one participant. (B) Using the in-
teraction between condition and half as a metric of hippocampal statistical learning, there was
no relationship with participant age in months. (C) Three-dimensional rendering of an exam-
ple hippocampal segmentation (14.1 month old). Mean difference in BOLD activity between
Structured and Random blocks in (D) left (red) and right (blue) hippocampus, and in (E) an-
terior (dark) and posterior (light) hippocampus. Error bars reflect standard error of the mean
across participants within half. * indicates p<.05, ** indicates p<.01.
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109 1ng in the anterior hippocampus (Fig. 3C). Indeed, whereas the anterior hippocampus showed
110 no difference between Structured and Random blocks in the first half (M=0.07, CI=[-0.489,
111 0.648], p=.846), there was a robust difference in the second half (M=0.73, CI=[0.202, 1.257],
112 p=.006) and a significant interaction between condition and half (M=0.58, CI=[0.091, 1.063],
13 p=.018). The posterior hippocampus again showed no difference in the first half (M=0.23,
s CI=[-0.216, 0.727], p=.328), but the difference in the second half was numerically weaker than
15 1n the anterior hippocampus (M=0.60, CI=[0.062, 1.112], p=.028) and the interaction did not
11 reach significance (M=0.39, CI=[-0.106, 0.879], p=.119); the interaction in posterior was not

117 significantly weaker than in anterior (M=0.19, CI=[-0.086, 0.477], p=.174).

118 In addition to subdividing the longitudinal axis of the hippocampus, we also separated
119 the hippocampus into left and right hemispheres. Adult fMRI studies have reported statistical
120 learning effects more consistently in the right hippocampus (Schapiro et al., 2012; Turk-Browne
121 etal., 2009). This same pattern was found in infants, with numerically stronger evidence of sta-
122 tistical learning in the right hippocampus (first half: M=0.09, CI=[-0.428, 0.635], p=.759; sec-
123 ond half: M=0.75, CI=[0.243, 1.243], p=.003; interaction: M=0.60, CI=[0.116, 1.090], p=.013)
124 than in the left hippocampus (first half: M=0.20, CI=[-0.345, 0.754], p=.500; second half:
125 M=0.59, CI=[0.021, 1.132], p=.043; interaction: M=0.38, CI=[-0.135, 0.890], p=.155); the in-
126 teraction in left was not significantly weaker than in right (M=0.22, CI=[-0.106, 0.574], p=.207).
127 Thus, the overall pattern of learning-related signals across longitudinal and hemispheric axes of
128 the infant hippocampus is consistent with primate anatomy (Hevner and Kinney, 1996; Lavenex
120 and Lavenex, 2013), computational models (Schapiro et al., 2017), and adult function (Schapiro

130 et al., 2012; Turk-Browne et al., 2009).
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131 Timecourse of hippocampal involvement

132 Splitting the fMRI data into the first and second half of exposure was an attempt to capture
133 learning over time while retaining enough blocks per time bin to estimate stable effects. We
134 also examined learning over time more continuously at the block level (Fig. S1). Adopting
135 a supersubject approach, we pooled usable blocks across participants and assessed statistical
136 significance with bootstrap resampling. The difference between Structured and Random blocks
137 was largest and only statistically significant in the fifth and sixth blocks (of six). In other
138 words, evidence of statistical learning emerged after approximately two minutes of exposure to

139 Structured blocks (four blocks of 36 s).

140 The amount of exposure needed to obtain neural evidence of statistical learning is consis-
141 tent with the duration of classic behavioral studies of infant statistical learning (Kirkham et al.,
122 2002; Saffran et al., 1996). This suggests that fMRI can serve as a sensitive, converging measure
13 of infant cognition, even for relatively short task designs. An important limitation of the current
124 study is that we did not obtain a behavioral measure of statistical learning that could be directly
145 related to the fMRI findings. Nevertheless, the design of our study, in which Random blocks
16 carefully controlled for all aspects of Structured blocks other than the presence of regularities

147 to be learned, allows us to attribute the observed neural differences to statistical learning.

118 Engagement of neocortical systems

149 The focus of this study was on examining the function of the infant hippocampus, with the
150 hypothesis that it supports statistical learning. However, we also compared Structured and Ran-
151 dom blocks in the surrounding MTL cortex and found weak evidence of statistical learning (Fig.

152 S2). Given that MTL cortex is anatomically adjacent and a larger ROI, this highlights the speci-

10
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153 ficity of our findings in the hippocampus. We additionally performed exploratory voxelwise
154 analyses across the whole brain with data aligned to standard space across participants (Fig.
155 S3). The key learning interaction observed in the hippocampus between condition (Structured
156 vS. Random) and half (second vs. first) was found only in medial prefrontal cortex (mPFC;

157 corrected p=.048, 116 voxels, MNI: -5, 53, 3).

158 This involvement of mPFC in infants is striking given the dramatic changes in frontal
159 lobe anatomy over development (Matsuzawa et al., 2001). In adults, mPFC strongly interacts
1e0  with the hippocampus during memory formation, facilitating encoding based on related past
161 experiences (i.e., schemas) to promote memory integration (Schlichting et al., 2015) and con-
12 solidation (Tse et al., 2011). Indeed, mPFC has been linked to gradual statistical learning over
1ea  days and weeks in rodents (Richards et al., 2014). It remains to be seen whether this mechanism
164 contributes to rapid statistical learning over minutes in human infants, as tested here. An im-
15 portant limitation of the current study is the inability of fMRI to distinguish whether evidence
1e6  Of statistical learning in the hippocampus originates in the hippocampus or is a reflection of

167 processing in the mPFC, given their connectivity.

1es  Open questions and theoretical implications

169 The key finding of this study is that activity in the hippocampus of human infants increases
170 through exposure to regularities. This activity may correspond to different stages of statistical
171 learning. It could reflect the process of extracting regularities during learning, with differences
172 emerging in the second half because a certain amount of exposure was needed to compute the
173 transition probabilities between fractals and represent the pairs. Alternatively, the hippocam-

172 pal activity could reflect the impact of known regularities on other processes after learning is

11
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175 complete, including on perception of the fractals, segmentation of the sequence, recognition of
176 the pairs, and/or prediction based on transition probabilities. In addition to clarifying at which
177 of these stages the hippocampus participates in infant statistical learning, future research will
178 be needed to determine whether this role is necessary for behavioral expression of statistical
179 learning. This will be difficult to test in infants, but studies in adult patients with hippocampal
1.0 damage suggest that the hippocampus may in fact be necessary for normal statistical learning

181 behavior (Covington et al., 2018; Schapiro et al., 2014).

182 The involvement of the infant hippocampus in statistical learning has implications for
183 theories of memory. For example, according to complementary learning systems (McClelland
18« et al., 1995), episodic memory is a precursor to statistical learning. The hippocampus rapidly
185 encodes individual experiences and then, through a process of consolidation, the neocortex
186 gradually generalizes across these episodic memories to extract regularities. Infants present
157 a conundrum for this framework: they show robust statistical learning (Kirkham et al., 2002;
18s  Saffran et al., 1996) despite impoverished episodic memory (Akhtar et al., 2018; Keresztes
18o et al., 2018; Richmond and Nelson, 2009). A recent update to complementary learning systems
190 (Schapiro et al., 2017) provides a potential resolution, at least for the rapid form of statistical
191 learning in our study. Neural network simulations showed that such statistical learning can occur
192 within the hippocampus itself in a way that bypasses the circuitry for episodic memory. Thus,
193 the hippocampus may support statistical learning in infants, as reported in this study, before it
194 can support episodic memory. It also remains possible that episodic memory is more developed
195 in infants than currently thought—consistent with recent rodent work (Farooq and Dragoi, 2019;
196 Guskjolen et al., 2018)—such that the hippocampal statistical learning we report may in fact be

197 dependent upon episodic memory. Future research could address these possibilities by using

12
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19 TMRI with awake infants to capture sensitive neural measures of episodic memory functions in

190 the hippocampus, including pattern separation, relational binding, and pattern completion.

200 To conclude, we present the first evidence that the hippocampus is recruited for learning in
200 human infants. This demonstrates that brain systems used for learning throughout the lifespan
202 can be available from some of the earliest stages of life. In turn, this provides a starting point
203 for understanding how the human brain supports the prodigious amount of learning that occurs

204« during infancy, establishing building blocks critical for subsequent growth and education.

13
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s Methods

s7  Participants Data from 24 sessions with infants aged 3.6 to 23.1 months (M=11.6, SD=5.8;
a8 14 female) met our minimum criteria for inclusion of six usable task blocks with at least one pair
a9 of Structured and Random blocks in each of the first and second halves of exposure (M=11.8
a0 total blocks, M=9.8 usable blocks). This sample does not include data from 11 sessions with
a1 enough blocks only prior to exclusions for head motion, eye gaze, and counterbalancing (M=9.8
a2 total blocks, M=3.5 usable blocks), or from 44 sessions without enough blocks even prior to
s exclusions (M=3.6 total blocks) where the infant instead participated in other experiments. In
a4 the final sample, five infants provided two sessions of usable data and one infant provided three.
a5 These sessions occurred at least one month apart (range=1.1-9.3) and so the data were treated
as separately, similar to prior work (Deen et al., 2017). Of the 24 sessions, six were collected
a7 at the Scully Center for the Neuroscience of Mind and Behavior at Princeton University, four
as  were collected at the Magnetic Resonance Research Center (MRRC) at Yale University, and
as 14 were collected at the Brain Imaging Center (BIC) at Yale University. Refer to Table S1 for
ss0 information on each participant. Parents provided informed consent on behalf of their child.
st The study was approved by the Institutional Review Board at Princeton University and the

32 Human Investigation Committee at Yale University.

sss Data acquisition Data were acquired with a Siemens Skyra (3T) MRI at Princeton University
s« and a Siemens Prisma (3T) MRI at both sites at Yale University, in all cases with the 20-channel
355 Siemens head coil. Anatomical images were acquired with a T1-weighted PETRA sequence
a6 (TR1=3.32ms, TR,=2250ms, TE=0.07ms, flip angle=6°, matrix=320x320, slices=320, resolu-
357 tion=0.94mm iso, radial slices=30000). Functional images were acquired with a whole-brain

s 12* gradient-echo EPI sequence (Princeton and Yale MRRC: TR=2s, TE=28ms, flip angle=71°,
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359 matrix=64x64, slices=36, resolution=3mm iso, interleaved slice acquisition; Yale BIC: identical

a0 except TE=30ms, slices=34).

st Procedure Conducting fMRI research with awake infants presents many challenges. We have
se2 described and validated our protocol in detail in a separate methods paper (Ellis et al., 2020).
ses In brief, families visited the lab prior to their first scanning session for an orientation session.
s« This served to acclimate the infant and parent to the scanning environment. Scanning sessions
ss were scheduled for a time when the parents felt the infant would be calm and happy. The infant
sss and parent were extensively screened for metal. Hearing protection was applied to the infant
37 1n three layers: silicon inner ear putty, over-ear adhesive covers, and ear muffs. The infant was
ses placed on the scanner bed, on top of a vacuum pillow that comfortably reduced movement. The
sse top of the head coil was not used because the bottom elements provided sufficient coverage of
a0 the smaller infant head. This created better visibility for monitoring infant comfort and allowed
a7t us to project stimuli onto the ceiling of the bore directly above the infant’s face using a custom
a2 mirror system. A video camera (Princeton and Yale MRRC: MRC 12M-i camera; Yale BIC:
sz MRC high-resolution camera) recorded the infant’s face during scanning for monitoring and

a74  eye tracking.

375 When the infant was calm and focused, stimuli were shown in Matlab using Psychtool-
aze box (http://psychtoolbox.org). The stimuli were colorful, fractal-like images used
a7 previously in studies of statistical learning in adults (Hindy et al., 2016; Schapiro et al., 2012).
azs  Images appeared every 1s, looming in size from 2.4° at onset to 14.6° degrees at offset (Kirkham
are et al., 2002). Each block contained 36 images presented sequentially one at a time in a unique

a0 order, followed by 6s of rest with the screen blank.
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381 Blocks alternated between Structured and Random conditions (Fig. 2). Which condi-
a2 tion appeared first was assigned randomly. In the Structured condition, six fractals (A-F) were
ss3 organized into three pairs (AB, CD, EF). The sequence of each block was generated by ran-
s« domly inserting six repetitions of each pair. The first member of a pair (A, C, E) was always
sss followed by the second (B, D, F, respectively) resulting in a transition probability of 1.0. After
sss  the second member of a pair, another pair appeared, resulting in a transition probability of 0.33
a7 on average. In the Random condition, six different fractals (G-L) were presented individually.
ss The sequence of each block was generated by randomly inserting six repetitions of each fractal,
a0 avoiding back-to-back repetitions of the same fractal. This resulted in a uniform transition prob-
a0 ability of 0.20 on average. The six fractals in each condition were consistent across all blocks
st of that condition. For participants who attempted the experiment in more than one session,

s02 different stimuli were used across sessions.

ss Gaze coding Infant gaze was coded offline by two or more coders (M=2.65) blind to the block
a4 condition. The coders determined whether the gaze was on-screen, off-screen (i.e., blinking or
ses looking away), or undetected (i.e., out of the camera’s field of view or obscured by a hand
s or other object). Across coders, every video frame was coded at least once. The frame rate
se7 and resolution varied by camera and site, but the minimum rate was 16Hz and we always had
ses  sufficient resolution to identify the eye. The coded category for each frame was determined as
a9 the mode of a moving window of five frames centered on that frame across all coder reports.
a0 In case of a tie, the modal response from the previous frame was used. The coders were highly
a1 reliable: when coding the same frame, coders reported the same response on 93% (SD=6%;
a2 range across participants=73-99%) of frames. Infants included in the final sample looked at the

a3 stimulus 89% of the time on average (range=80.3-97.3%). Blocks were excluded if the eyes
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a4 were off-screen for 50+% of the block. One participant did not have eye-tracking data due to a
a5 technical problem but real-time monitoring confirmed that their eyes were open and attending

406 to the stimulus for at least 50% of each block.

a7 Preprocessing Individual runs were preprocessed using FEAT in FSL (https://fsl.
a8 fmrib.ox.ac.uk/fsl), with modifications optimized for infant data. We discarded three
a9 volumes from the beginning of each run, in addition to the volumes automatically discarded
a0 by the EPI sequence. Blocks were stripped of any excess burn-in or burn-out volumes beyond
s11 the 3 TRs (6s) of rest after each block. Pseudo-runs were generated if other experiments, not
a2 discussed here, were initiated in a run with the data of interest (sessions with a pseudo-run,
s13 N=12). Blocks were sometimes separated by long pauses (>30s) within a session because of
414 a break outside of the scanner, because an anatomical scan was collected, or because of in-
415 tervening experiments (N=7; M=636.7s break; range=115.4—1545.1s). The reference volume
se  for alignment and motion correction was chosen as the ‘centroid’ volume with the minimal
417 Euclidean distance from all other volumes. The slices in each volume were realigned with
s slice-time correction. Time-points were excluded if there was greater than 3mm of movement
s19 from the previous time-point (M=8.9%, range=0.0-21.3%). We interpolated rather than ex-
a0 cised these time-points so that they did not bias the linear detrending (in later analyses these
21 time-points were excised). Blocks were excluded if 50+% of the time-points were excluded.
42 The mask of brain and non-brain voxels was created from the signal-to-fluctuating-noise ra-
223 tio (SFNR) for each voxel in the centroid volume. The data were spatially smoothed with a
s24 Gaussian kernel (Smm FWHM) and linearly detrended in time. The despiking algorithm in

a5 AFNI (https://afni.nimh.nih.gov) was used to attenuate aberrant time-points within
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a6 voxels. For further explanation and justification of this preprocessing procedure, refer to (Ellis

427 etal., 2020).

428 We registered each run’s centroid volume to the infant’s anatomical scan from the same
229 session. We used FLIRT with a normalized mutual information cost function for initial align-
a0 ment. Supplemental manual registration was then performed using mrAlign from mrTools
a3t (Gardner lab) to fix deficiencies of automatic registration. The preprocessed functional data
a2 were aligned into anatomical space but kept in their original spatial resolution (3mm iso). Re-
s33 gion of interest (ROI) analyses were performed within this native space of each participant.
a3« Whole-brain voxelwise analyses required further alignment of functional data into a standard
a3 space. The anatomical scan from each participant was automatically (FLIRT) and manually
a6 (Freeview) aligned to an age-specific MNI infant template (Fonov et al., 2011). Combined with
s7  alignment of these templates to the adult MNI template (MNI152), the functional data were
s3s  transformed into standard space. To determine which voxels to consider at the group level,
a9 the intersection of brain voxels from all infant participants in standard space was used as a

40  whole-brain mask.

441 Because runs could contain different numbers of blocks from the Structured and Ran-
a2 dom conditions, blocks were only retained if they could be paired with a block from the other
43 condition in the same run. This counterbalancing was enforced to ensure an equal amount of
a4 data in each condition. The blocks were labeled by the count of how many blocks from that
a5 condition had already been seen (henceforth, their ‘seen-count’). For example, if an infant was
s watching the screen but moving too much in their first Structured block, then remained still in

47 their second Structured block, the first usable block of that condition would be labeled with
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as  a seen-count of 2. Blocks were chosen to be paired across conditions so as to minimize the

a9 difference in seen-counts (i.e., to match the degree of exposure as best possible).

450 For an infant to be included, they needed to have at least three blocks from each condition,
451 with at least one block in each condition from blocks 1 to 3 (first half) and at least one block
452 1n each condition from blocks 4 to 6 (second half). Using these criteria, the average number of
ss3  1ncluded blocks for the usable participants was 9.8 (SD=1.9, range=6-12), including 5.5 blocks
ss¢ 1n the first half and 4.3 blocks in the second half on average. There was no correlation between
455 the number of included blocks and age (r=-0.05, p=.788). The block order was determined
w6 randomly, with 15 participants seeing a Structured block first and 9 participants seeing a Ran-
ss7 dom block first (as reported in the main text, there were no reliable order effects on the neural

48 results).

459 To account for differences across runs in intensity and variance, the blocks that sur-
a0 vived exclusions and balancing across conditions were normalized over time within run using

a6t z-scoring, prior to the runs being concatenated for further analyses.

w2 Regions of interest The main analyses involved manually tracing ROIs in the medial temporal
a3 lobe (MTL) based on anatomical landmarks and then assessing evoked BOLD responses across
se4 voxels in these anatomical ROIs. To trace the ROIs, we extended a published protocol for MTL
a5 segmentation in adults (Aly and Turk-Browne, 2015) with help from protocols for hippocampal
w6 segmentation in infants (Gousias et al., 2013). The segmentation demarcated ROIs for the left
s67 and right hippocampus, each of which encompassed the subiculum, CA1, CA2/3, and dentate
a8 gyrus subfields. We did not individually segment these subfields because of the lack of validated

a0 anatomical guidelines for subfield boundaries in infants. For completeness, we also defined

26


https://doi.org/10.1101/2020.10.07.329862
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329862; this version posted October 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a0 ROIs for the left and right MTL cortex, each of which contained the entorhinal, perirhinal,
a7 and parahippocampal cortices (again not segmented individually). To examine the reliability
a2 of the coder performing the infant segmentations, an expert adult coder segmented two infant
a3 participants. Using Dice similarity (Dice, 1945), the consistency of labelling was 0.524 and
a7 0.651 for the two participants across coders, indicating moderate reliability. Fig. 1 shows
a5 example ROIs for two infants and the volume of each ROI across participants as a function
a6 of age. The anterior hippocampus (volume: M=1973.1 mm?, SD=537.5) was defined as the
a7 head of the hippocampus, as manually traced (Aly and Turk-Browne, 2015), and the posterior
w8 hippocampus (volume: M=1796.4 mm?, SD=433.7) was the remainder, including the body and
479 tail. For one participant (4.0 month old), the anatomical scan collected in the same session as
a0 the functional data was of insufficient quality for segmentation; we instead used the anatomical
a8t scan collected in their next session (at 6.0 months) and aligned the resulting segmentation to

42 their functional data.

a3 Amnalysis For each infant, the volume of left and right hippocampus and MTL cortex ROIs was
s8¢ estimated by counting the number of voxels traced and multiplying by the volume of each voxel
s (0.82mm?). Whole-brain volume was calculated based on the number of voxels in the brain
sss mask generated by applying Freesurfer (https://surfer.nmr.mgh.harvard.edu) to

se7 their anatomical scan (Schlichting et al., 2017).

488 For the main analysis, a general linear model (GLM) was fit to the BOLD activity in each
ss9  voxel using FEAT in FSL. The GLM contained four regressors: Structured and Random con-
s90 ditions in the first and second half of exposure. Each regressor modeled corresponding task
s01  blocks with a boxcar lasting the duration of stimulation convolved with a double-gamma hemo-

a2 dynamic response function. The assignment of blocks to halves was based on the seen-count:
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03 blocks with seen-count 1-3 were assigned to the first half and blocks with seen-count 4-6 were
94 assigned to the second half. The six translation and rotation parameters from motion correction
a9s  were included in the GLM as regressors of no interest. Excluded TRs were scrubbed by includ-
s96 1ng an additional regressor for each to-be-excluded time-point (Siegel et al., 2014). Contrasts
97 of the resulting parameter estimates compared Structured greater than Random conditions sep-
a8 arately for the first and second half; an interaction contrast compared the condition differences
s99 1n the second versus first half. The voxelwise z-statistic volumes for these contrasts were ex-
soo tracted for each participant. ROI analyses averaged the z-statistics of all included voxels and
sor examined the reliability of these averages at the group level. Whole-brain analyses examined

so2 the reliability of the z-statistics for each voxel across participants.

503 Statistical analysis was performed on the ROI data using a non-parametric bootstrap re-
so¢ sampling approach (Efron and Tibshirani, 1986). Namely, for each test we sampled 24 partici-
sos pants with replacement 10,000 times, averaging across participants on each iteration to generate
sos @ sampling distribution. For null hypothesis testing, we calculated the p-value as the proportion
so7  of samples whose mean was in the opposite direction from the true effect, doubled to make the
sos  test two-tailed. To correct for multiple comparisons in whole-brain analyses, we used threshold
so9 free cluster enhancement through the randomise function in FSL, resulting in voxel clusters
sio p<.05 corrected. A similar bootstrap resampling procedure was used to statistically evaluate
st1 - correlations, sampling bivariate data from 24 participants with replacement 10,000 times, and
stz calculating the Pearson correlation (or partial correlation) on each iteration. We calculated the
si3 p-value as the proportion of samples resulting in a correlation with the opposite sign from the

514 true correlation, doubled to make the test two-tailed.
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515 To perform the timecourse analysis (Fig. S1), we restricted analysis to pairs of Structured
sts  and Random blocks with identical seen-counts (as opposed to finding the closest match in the
si7 main analysis). This allowed us to separately examine the difference between Structured and
sts Random at each of the 6 ordinal positions. This reduced the number of participants with a suf-
si9 ficient number of usable blocks to 22, and the average number of usable blocks per retained
s20 participant to 9.6 (SD=1.9; range=6-12). A GLM was fit to these data with a separate regres-
s21 - sor for each block. The parameter estimates were labeled based on each block’s seen-count
s22 and contrasted across conditions within the same seen-count. The resulting z-statistics were
s23 averaged across voxels within each ROI. The same bootstrap resampling approach with 1,000
se4 iterations was used to assess statistical reliability and calculate p-values for each ordinal posi-
s25 tion. An important feature of this approach is that we were able to estimate the timecourse even
s26 1f individual subjects were missing one or more of the positions. This also takes into account the
s27  smaller sample size of participants with later ordinal positions, because the obtained sampling

s2s  distribution is more variable.

s29  Data availability The data, including anonymized anatomical images, manually segmented
ss0 regions, and both raw and preprocessed functional images will be released on Dryad upon

ss1 publication.

si2 Code availability The code for running the statistical learning task can be found here: https:
ss //github.com/ntblab/experiment_menu. The code for the general analysis pipeline
ss¢ can be found here: https://github.com/ntblab/infant_neuropipe. The code
sss for performing the specific analyses reported in this paper can be found here: https://

533 github.com/ntblab/infant_neuropipe/tree/StatLearning.
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Fig. S1. Timecourse of hippocampal statistical learning in infants. (A) To examine learning
more continuously, we pooled blocks across participants (rows) based on their ordinal posi-
tion during exposure (columns). White cells indicate that both the Structured and Random
blocks from that ordinal position were usable and included in the timecourse analysis; black
cells indicate that the block from one or both conditions are not usable, and therefore neither
was included. (B) Difference in BOLD activity between Structured and Random blocks in bi-
lateral hippocampus as a function of ordinal position: block 1, bootstrapped p=.362; block 2,
p=.989; block 3, p=.939; block 4, p=.661; block 5, p=.010; block 6, p=.042. Individual lines
correspond to bootstrapping iterations and thus convey the sampling distribution. Line color
indicates whether the bootstrapped mean increases (green) or decreases (red) from one block to
the next on a given iteration. * indicates that the 95% confidence interval does not contain zero.
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Fig. S2. Medial temporal lobe (MTL) cortex. (A) Volume of anatomically segmented left
and right MTL cortex by participant age. Unlike the hippocampus (Fig. 1A), there was no
reliable relationship between age and volume (left »=59.3 mm?/month, r=0.29, p=.142; right
b=69.2 mm3/month, r=0.37, p=.062). Although the slope values are similar to the hippocampus,
the larger size of MTL cortex (M=8371.8 mm?, SD=2119.2) compared to the hippocampus
(M=3769.4 mm?, SD=898.2), means that the proportional growth is much lower. (B) Mean
difference in BOLD activity between Structured and Random blocks in bilateral MTL cortex
by exposure half. The first half (M=0.10, CI=[-0.423, 0.682], p=.726), second half (M=0.48,
CI=[-0.023, 0.959], p=.059), and interaction between condition and half (M=0.40, CI=[-0.111,
0.875], p=.121) did not reach significance. (C) There was no reliable relationship between
this interaction and age (r=-0.23, p=.273). Error bars depict standard error of the mean across
participants within half. ~ indicates p<.10.
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Fig. S3. Exploratory whole-brain analysis. Voxelwise contrast of BOLD activity between
Structured and Random blocks in (A) the first half and (B) the second half. (C) The medial
prefrontal cortex (mPFC) showed an interaction between condition and half, with a greater
difference between Structured and Random in the second vs. first half. Voxels in color were
significant after correction for multiple comparisons (threshold-free cluster enhancement, one-
tailed corrected p<.05). Coordinates are in MNI space.
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Table S1. Demographic information. ‘ID’ is a unique infant identifier (i.e., sXXXX_Y _Z7),
with the first four digits (XXXX) indicating the family, the fifth digit (Y) the child number
within family, and the sixth digit (Z) the session number with that child. ‘Age’ is recorded
in months. ‘Sex’ is female or male. ‘Site’ is Scully Center for the Neuroscience of Mind
and Behavior at Princeton University (P.ton), Magnetic Resonance Research Center at Yale
University (MRRC), or Brain Imaging Center at Yale University (BIC). ‘Ist half’ is the number
of usable blocks from the first half of exposure (max 6). ‘2nd half’ is the number of usable
blocks from the second half of exposure (max 6). ‘Start cond.” is the randomly selected
condition of the first block (alternating thereafter). “TR prop’ is the proportion of TRs included
from usable blocks. ‘Eye prop’ is the proportion of eye tracking data included from usable
blocks. ‘Eye IRR’ is the proportion of frames coded the same way across gaze coders; one
participant without eye-tracking data has “nan”.

ID Age Sex  Site Isthalf 2ndhalf Startcond. TR prop Eyeprop EyeIRR
s2307.1.1 199 M  Pton 4 4 Random 0.97 0.90 0.86
s0307.1.2 9.1 M  Pton 6 2 Structured 0.91 0.94 0.92
s8187.1.8 231 F P.ton 6 2 Random 0.92 0.83 0.95
s2307.12 21.7 M  Pton 6 4 Random 1.00 0.90 0.94
s8187.14 138 F P.ton 4 2 Structured 0.86 0.83 0.73
s1187.1.1 207 F P.ton 6 6 Structured 0.95 0.88 0.97
s2687.1.1 40 M MRRC 3 5 Random 0.82 0.86 0.83
s6687_1.1 5.0 F MRRC 6 4 Structured 0.79 0.86 0.90
s8607_1.1 8.5 F MRRC 6 2 Structured 0.96 0.93 0.93
s3607_1.1 7.5 F MRRC 5 7 Random 0.88 0.91 0.96
s8687_.14 145 F BIC 6 6 Structured 1.00 0.86 0.98
$2687.1.3 99 M BIC 6 2 Structured 0.88 0.84 0.96
s2687_14 163 M BIC 6 2 Structured 0.86 0.89 0.90
s6687_.13 113 F BIC 6 2 Random 0.99 0.94 0.94
s4607_.14 130 F BIC 6 6 Structured 0.95 0.88 0.93
s4607_1.5 14.1 F BIC 6 4 Structured 0.99 0.80 0.90
s6607_12 74 M BIC 6 6 Random 0.97 nan nan
s0607.1.5 177 M BIC 6 6 Structured 0.91 0.90 0.97
s1607.12 107 M BIC 6 6 Structured 0.82 0.84 0.95
s6057_1.1 3.6 M BIC 6 4 Random 0.80 0.97 0.99
s0057-13 9.0 F BIC 5 3 Structured 0.83 0.86 0.89
s7017_.1.1 5.2 F BIC 4 6 Random 0.87 0.95 0.98
s7017.1.2 6.6 F BIC 6 6 Structured 0.97 0.95 0.99
s7067_1.1 4.7 F BIC 4 6 Structured 0.96 0.95 0.95

Av. 11.55 5.46 4.29 . 0.91 0.89 0.93
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