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Abstract

Marginal effect estimates in genome-wide association studies (GWAS) are mixtures of
direct and indirect genetic effects. Existing methods to dissect these effects require
family-based, individual-level genetic and phenotypic data with large samples, which is
difficult to obtain in practice. Here, we propose a novel statistical framework to estimate
direct and indirect genetic effects using summary statistics from GWAS conducted on
own and offspring phenotypes. Applied to birth weight, our method showed nearly
identical results with those obtained using individual-level data. We also decomposed
direct and indirect genetic effects of educational attainment (EA), which showed distinct
patterns of genetic correlations with 45 complex traits. The known genetic correlations
between EA and higher height, lower BMI, less active smoking behavior, and better
health outcomes were mostly explained by the indirect genetic component of EA. In
contrast, the consistently identified genetic correlation of autism spectrum disorder (ASD)
with higher EA resides in the direct genetic component. Polygenic transmission
disequilibrium test showed a significant over-transmission of the direct component of
EA from healthy parents to ASD probands. Taken together, we demonstrate that
traditional GWAS approaches, in conjunction with offspring phenotypic data collection
in existing cohorts, could greatly benefit studies on genetic nurture and shed important
light on the interpretation of genetic associations for human complex traits.
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Introduction

Genome-wide association studies (GWAS) have been a great success in the past decade,
identifying tens of thousands of associations for numerous complex human traits'. The
standard GWAS approach estimates the marginal association between each single-
nucleotide polymorphism (SNP) and a phenotype while assuming that genetic and
environmental factors additively affect the phenotype. Despite the simplicity, such an
analytical strategy is computationally efficient and statistically robust. However,
interpretation of GWAS associations remains a challenge, in part because most identified
associations have weak effect sizes and are located in the non-coding regions of the
genome?®, Interpretation is especially challenging for behavioral traits since the role of
each variant or gene in complex human behavior is difficult to disentangle. Nevertheless,
biobank-scale GWAS of complex traits have produced polygenic scores (PGS) that
aggregate the effects of many SNPs in the genome to provide robust prediction of trait
values®. These scores are widely used in social genomics research, although our
understanding of the underlying mechanism is superficial and incomplete®.

Recent evidence from family-based studies suggested that a substantial fraction of
genetic associations may be mediated by the family environment®'. In particular,
parental genotypes could affect the family environment through the parents’ educational
attainment'’, personalities'®'?, behavior?®**, and socioeconomic status®, which could
subsequently affect the offspring’s phenotypes®. As a result, a person’s genotypes,
which also reside in his or her biological parents, could associate with the person’s
phenotype both directly (through biological processes) and indirectly (through parents
and the family environment they create). Due to the correlation between parental and
offspring genotypes, GWAS captures both the direct and indirect genetic effects in its
estimates, which further complicates the interpretation of GWAS results'™. If the genetic
nurture effect (i.e., parental genotypes affecting offspring phenotype) is present for a
given trait, downstream analyses based on GWAS associations could be biased and
misleading®®?’.

It is thus crucial to decompose the direct and indirect genetic effects and understand
how they jointly affect the phenotype. By leveraging large-scale trio cohorts and
regressing the offspring phenotype on two sets of PGS calculated using transmitted and
non-transmitted alleles in parents, Kong et al.® convincingly demonstrated the existence
of genetic nurture effects for multiple traits. In particular, PGS of non-transmitted alleles
in parents has an effect size that is about 30% of that by the standard PGS for
educational attainment (EA). Using PGS, several other studies’'? also identified indirect
genetic effects on various phenotypes. Existing methods to detect direct and indirect
genetic effects, however, have limitations. First, they require individual-level genotype
and phenotype data of a large number of parents-offspring trios, or in some cases, other
types of rare samples (e.g., adopted individuals'"'?). Although sample size in GWAS has
been steadily increasing, number of trio samples with accessible individual-level data
remains moderate even in large biobanks. Second, existing methods quantify genetic
nurture using PGS which relies on large GWAS conducted on samples independent from
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the study. Even when such a GWAS exists, it remains challenging to interrogate the
direct and indirect effects of each SNP using designs and data similar to the current
GWAS practice, which is critical for functional follow-ups and out-of-sample prediction.

Although a simple study design that regresses the phenotypes on both own and parental
genotypes should provide estimates for direct and indirect genetic effects of each SNP,
such a strategy is most likely underpowered given the limited sample size of trios in
existing cohorts. Several recent studies have attempted to solve this challenging
problem. Warrington et al.®® used a structural equation model (SEM) approach to
decompose direct genetic effects and indirect maternal effects on birth weight while
assuming paternal effects to be 0. This approach only requires summary statistics from
a standard GWAS on birth weight and a second GWAS based on maternal genotypes
and offspring phenotypes, thus effectively expanding the available sample size. However,
the SEM approach was too computationally demanding to be applied to the genome-
wide scale and a “weighted linear model” alternative could not account for sample
overlap if individual-level data are unavailable. Another recent approach''® expands
family genotype data by imputing the unobserved parental genotypes using data from
other family members. However, this approach still requires a large sample of sibling or
parent-offspring pairs. Further, when parental genotypes are imputed from sibling pairs,
it is challenging to distinguish paternal and maternal autosomal genotypes. Thus,
separate estimation of indirect maternal and paternal effects is unattainable.

Here, we introduce DONUTS (decomposing nature and nurture using GWAS summary
statistics), a novel statistical framework that can estimate direct and indirect genetic
effects at the SNP level. It requires GWAS summary statistics as input, allows differential
paternal and maternal effects, and accounts for GWAS sample overlap and assortative
mating. DONUTS has low computational burden and can complete genome-wide
analyses within seconds. Applied to birth weight, our method showed near-identical
effect estimates compared to analyses® that leveraged individual-level data and
improved standard error and statistical power after accounting for sample overlap. We
also applied our method to dissect the direct and indirect genetic effects of EA. Our
results revealed distinct genetic correlations of the direct and indirect genetic
components of EA with various traits and shed important light on the complex and
heterogenous genetic architecture of EA. Followed up in three independent cohorts of
ASD proband-parent trios, we identified significant over-transmission of the direct
component of EA from healthy parents to ASD probands but not to the healthy siblings.

Results

Overview of the methods

The key idea of our statistical framework is illustrated in Figure 1. Derivations and
statistical details are shown in Methods and Supplementary Note. If genetic data are
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available in a number of parents-offspring trios, by regressing the offspring phenotype
values Y, on the offspring, maternal, and paternal genotypes (i.e., G, Gy, and Gp) for a
given SNP, the coefficients in the joint regression represent the direct genetic effect By;,,
indirect maternal effect f;,q ¢, and paternal effect g;,4 ., respectively. We could write
this model as
YO = ﬁdirGO + ﬁind_thM + ﬁind_ptGP + €,

where € is the environmental noise. The total contribution of parental genotypes on
offspring phenotype, (,Bind_thM + ﬁind_ptGP) , can be further partitioned into the
contribution of transmitted alleles (Bing mcTm + Bind pcIp) @nd non-transmitted alleles
(Bind mtNTy + Bing peNTp). In our framework, we define the indirect genetic effect ;4 as
the effect of a person’s genotype on the phenotype via the indirect pathway that goes
through biological parents and the family environment. The component of parental
indirect contribution that can be affected by G is (ﬁind_mtTM + ﬁind_ptTP). Regressing it on
Gy, We can obtain the indirect genetic effect f;,q = (ﬁind_mt + ﬁmd_pt)/z. Unsurprisingly,
the indirect effect size is the average of the indirect maternal and paternal effects since
each parent contributes half of the offspring’s genotype. A key question we aim to
investigate in this paper is whether it is possible to estimate the direct and indirect effect
sizes (i.e., Bdirs Pind» Bind.mt» aNd Bing pr) from marginal GWAS association statistics via
proper study designs.

G G
NTyy ‘_1‘_’1____61_ _____ Pl Nt
TM TP
05 Go 0.5
Tm
Tp
ﬁind_mt Bind pt

Figure 1. Schematic diagram of direct and indirect genetic effects. G, , , represents the maternal,
paternal, and offspring genotypes, respectively. a = Corr(G,, Gp) is the correlation between spousal
genotypes at a locus. Effect size 0.5 is due to the fact that half of the parent’s genome is randomly
transmitted to the offspring G,. Y, is the offspring’s phenotype. T and NT represent transmitted and non-
transmitted alleles from a parent to the offspring. In general, both offspring and parental genotypes could
affect the offspring’s phenotype with effect sizes of By, Bindg me @Nd Bina_pt> respectively.

Instead of focusing on a joint regression based on trio data, we describe three separate
GWAS. We refer to the marginal regressions of own phenotype (Y;) on own genotypes
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(Go) as GWAS-0O. GWAS-M and GWAS-P denote the marginal analyses that regress
offspring phenotype on maternal and paternal genotypes (i.e., Gy and Gp), respectively.
Bo, Bu, and Bp denote the expectation of marginal effect estimates obtained from these
three analyses. It can be shown that g4, and B;,q of a given SNP are linear combinations
of Bo, Bu, and Bp (Methods and Supplementary Note):

ﬁdir2:+(2 +a)Bo — Pu — Pp (1)
a
Pina = ¥ o [Bm + Bp — (1 + a)Bo] 2)

where a = Corr(Gy, Gp) is the correlation between spousal genotypes at the locus,
which quantifies the degree of assortative mating. Plugging in the ordinary least squares
estimates 3, fu, and fp from the three marginal GWASs described above, we obtain
the unbiased estimates for the direct and indirect effects of each SNP. Importantly, we
do not require G, Gy and Gp to be obtained from actual trios. In fact, samples in the three
GWAS could be independent or partially overlapped. From the equations above, we also
found that

o
Bae + (1 +575—) Bna = Bo, )
which clearly shows that the effect size from a typical GWAS is the combination of both
direct and indirect effects and is also affected by assortative mating.™

InpUt GWAS ﬁdir ﬁind = (ﬁindfmt + ﬁindfpt)/2 ﬁind,mt and .Bindfpt
(i) GWAS-0O, GWAS- 2+ a)Bo — By — Pr 2+a _ _ 3-a* 1-2a—a? 2+a
M, and GWAS-P 2t 2q Pt B A @bol - fgm =57 =y Put 5 gy B =5 Fo
_ 3-a? 1-2a—a? 24+ a
ﬁind,pt - 2(1 _ az) BP + 2(1 _ az) M 2 ﬁO
g)v\?p\\gélap()(\zﬂ:n (2 + a)ﬁo 2ﬁMP o Zaa [ZEMP _ (1 + a)ﬁo] ﬁmdfmt ﬁmd,pt ,Bmd (When ﬁmd,mt ﬁmd,pt)

parents contribute
equa"y ﬁindfmt = ﬁindfpt
or have equal sample
size ny =np in

GWAS-MP)

(iii) GWAS-O and
GWAS-M (when only

2 1 2
ta ( M~ * aﬁo) Bind.mt = ira (26w — (1 + a)Bo]

2
3" a2 [(2+a)Bo— (1 +a)fu] 342

the maternal effect
contributes, i.e.,

ﬁind,pt = 0)

Table 1. Estimating direct and indirect genetic effects from multi-generational GWAS summary
statistics. We illustrate the direct and indirect effect sizes under three different settings. (i) is the general
case where GWAS-0O, GWAS-M, and GWAS-P are used as input. In case (i), GWAS-O and GWAS-MP are
used. This is valid only when B4 mt = Bina_pt OF iy = np. If we only know ny =np, we cannot obtain
separate estimates for the indirect maternal and paternal effects. Case (iii) is when the indirect paternal
effect size is 0. o, u p, mp are the expected effect sizes in GWAS-O, GWAS-M, GWAS-P, and GWAS-MP,

respectively. In all the cases, we always have By + [1 + @/(2 + @)]Bina = Bo and Bing = (Bina.me + ﬁindfpt) /2.
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Besides direct and indirect effects (i.e., B4 and Bi,q), we could also derive the
expressions for indirect maternal and paternal effects (i.e., Bing mt @Nd Bing pt); Which
makes it possible to infer the parent-of-origin of genetic nurture. The results are
summarized in Table 1. Case (i) is the most general scenario, where we use summary
statistics from GWAS-O, GWAS-M, and GWAS-P to estimate Bgir, Binds Bind me» N Bing pt-
Case (ii) illustrates that it is not always necessary to have separate paternal and maternal
GWASs. If paternal and maternal effects are identical (Bing me = Binc pt) OF if there are equal
numbers of mothers and fathers (ny, = np) in a parental GWAS (referred to as GWAS-MP
where fathers and mothers from different families are pooled together in the GWAS), the
corresponding effect size Byp = (nuPu + npPp)/(ny + np) can be used to estimate By,
and Bi.q- Case (iii) illustrates a special case where only maternal genotype has an indirect
effect while the paternal effect is zero (Supplementary Figure 1A). If we further assume
random mating (a = 0), then our model gives identical estimates for direct effect S,;. and
maternal effect Si,q m: cOMpared to previous work on birth weight®. The results for the
case with only indirect paternal effects are similar.

Calculations of the variances of estimated direct and indirect effects are straightforward
when the input GWASs are independent. However, it is possible for a subset of
individuals to be involved in both the GWAS of their own phenotype and the GWAS of
their children’s phenotype (Supplementary Figure 1B), which causes technical
correlations among B,, Bu, and Bp. We show that the correlations can be estimated using
the intercept term from linkage disequilibrium score (LDSC) regression®
(Supplementary Note), thereby correcting the sample overlap bias in standard error
estimates.

Simulation results

We performed extensive simulations to demonstrate that our method provides unbiased
estimates for direct and indirect effects, shows well-controlled type-I error, and properly
accounts for sample overlap (Methods and Supplementary Figure 2). The results are
summarized in Figure 2 and Supplementary Figures 3-5. Figures 2A and 2C describe
results for case (i) in Table 1 where three sets of GWAS summary statistics are used.
The estimates for direct, indirect, indirect maternal, and indirect paternal effect sizes
were all unbiased. When only GWAS-0O and GWAS-MP are available (case ii in Table 1),
we could not distinguish indirect maternal and paternal effects but could still estimate
the indirect genetic effect (Figure 2B). Here, despite the difference between indirect
maternal and paternal effect sizes, estimation of the indirect genetic effects remained
unbiased when equal number of fathers and mothers were used in GWAS-MP.

Sample overlap in input GWASs will not affect effect size estimation. However, it will
affect their standard errors due to the introduced correlations among By, A, and Bp. In
Figures 2C and 2F, there were overlapping samples between GWAS-O and parental
GWAS. Since the phenotypic correlation among the overlapping samples (i.e.,
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correlation between parental and offspring phenotypes) would most likely be positive,
the covariance between effect size estimates is positive. As a result, correcting for
sample overlap reduces standard error and increases power. Simulations under diverse
settings all showed consistent results (Supplementary Figures 3-5).
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Figure 2. Simulation results. Box plots of direct and indirect effect size estimates (A-C) and the
proportion (humbers shown at the top of each bar) of p values smaller than 0.05 (D-F). Each column shows
results for the same simulation setting. Red and blue dashed lines indicate true values of direct and indirect
genetic effects and grey dashed lines are the true indirect maternal and indirect paternal effect sizes. The
direct, indirect maternal, and indirect paternal effect sizes are (0, 0, 0), (0.02, -0.02, -0.01), and (0.02, 0.02,
0.01) for panels A-C, respectively. Panels A and C describe results for case (i) in Table 1 where three input
GWAS are used. Panel B describes case (i) where GWAS-O and GWAS-MP are used as input. There are
no sample overlaps in A and B and a complete overlap in C, i.e., all samples in GWAS-M and GWAS-P
are also in GWAS-O. In F, blue and red bars show the statistical power with and without sample overlap
correction, respectively. ny = ny = np = 30K in A and B. ny = ny + np = 60K, ny = np, = 30K in C.

Direct and maternal effects on birth weight

To assess the performance of our framework, we applied DONUTS to dissect the direct
genetic effect and maternal genetic effect on birth weight. Following a previous study?®
we assumed random mating and absent paternal effect on offspring birth weight, which
reduces the problem to a special case in our framework (case iii in Table 1;
Supplementary Figure 1). Using summary statistics from GWAS-O and GWAS-M (N =
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298,142 and 210,267, respectively; Methods), we estimated the direct and maternal
effects of each SNP. Both estimates were highly concordant with the previous reports
(Pearson correlations = 0.976 and 0.982, respectively; Supplementary Figure 6). The
genetic correlations among these effects were very close to those reported in previous
work (Supplementary Tables 1 and 2).

Of note, the UK Biobank (UKB)* was a main cohort used in both GWAS-O and GWAS-
M of birth weight, which caused a substantial sample overlap between two analyses.
Warrington et al.®® addressed this problem by creating two linearly-transformed,
orthogonal phenotypes for each individual who reported both her own birth weight and
her first child’s birth weight. GWAS were then performed on the two new phenotypes.
This approach requires individual-level genotype and phenotype data and thus is not
easily applicable to other studies where only summary statistics are available. In fact,
due to limited access to non-UKB samples, a small proportion of overlapping samples
in the input GWAS were not accounted for in their study. Therefore, compared with our
results, the standard errors given by the paper showed a mild inflation (Supplementary
Figure 6).
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Figure 3. Comparison of DONUTS and analyses based on individual-level data. We estimated direct
and indirect maternal genetic effects on birth weight using independent female samples of European
ancestry in the UKB who reported both their own birth weight and their first child’s birth weight (N = 75,711).
The x-axis of each panel shows results based on DONUTS and the y-axis shows results based on the
phenotype transformation approach. Each data point represents a SNP. The 1% row is for the direct genetic
effect and the 2™ row is for the indirect maternal effect. Two methods gave almost identical estimates for
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effect sizes (1% column) and standard errors (2" column). The standard errors (SE) showed inflation if
sample overlap was not accounted for (3 column). The diagonal line is highlighted in each panel.

To further demonstrate that our method could effectively account for sample overlap,
we conducted GWAS-O and GWAS-M using 75,711 independent female samples of
European ancestry in the UKB who reported birth weight of themselves and of their
oldest child (Methods). Using these two sets of summary statistics with a complete
sample overlap, we estimated the direct and indirect maternal effects of each SNP. For
comparison (Figure 3), we followed Warrington et al.?® to run two separate GWAS on the
orthogonal phenotypes representing the direct and maternal components of birth weight
constructed using individual-level data. Results from these two approaches were nearly
identical (Pearson correlation = 1.00 for both the direct and indirect effect estimates).
Not properly accounting for sample overlap did not affect the effect size estimates but
substantially inflated standard errors which led to reduced statistical power (Figure 3).

Partitioning direct and indirect genetic effects on educational attainment

Next, we conducted a GWAS on offspring EA using a total of 15,277 individuals from the
UKB, Wisconsin Longitudinal Study (WLS), and Health and Retirement Study (HRS) while
adjusting for year of birth, sex, genetic principal components (PCs), and cohort specific
covariates (Methods). Due to the limited sample size, balanced sex ratio, and previous
reports on comparable maternal and paternal effects on EA®, we pooled fathers and
mothers together to perform a parental GWAS (i.e., GWAS-MP). Combining results in
GWAS-MP with a meta analyzed GWAS-O that does not contain full sibling pairs in the
UKB (N = 680,881), we estimated the direct and indirect effects on EA. Further, we
applied SNIPar™ to impute the parental genotypes of full sibling pairs in the UKB and
estimated direct and indirect effects with linear mixed models (Methods). We meta-
analyzed two sets of analyses to obtain the final partitioned direct and indirect genetic
effects on EA (effective N = 24,434 and 37,081 for direct and indirect effects,
respectively). The flowchart of the analysis is illustrated in Supplementary Figure 7. No
loci reached genome-wide significance at the current sample size (Supplementary
Figure 8). We assumed random mating in the main analysis, but the results were highly
robust to assortative mating (Supplementary Note; Supplementary Figure 9).

We estimated genetic correlations of the direct and indirect EA effects with 45 other
complex traits using LDSC?® (Figure4 and Supplementary Tables 3-6). As a
comparison, an alternative approach (i.e., GNOVA®") also showed consistent results
(Supplementary Figure 10 and Supplementary Table 7). At a false discovery rate (FDR)
cutoff of 0.05, we identified 18 significant genetic correlations, 4 of which were with the
direct effect and 14 were with the indirect effect, which highlighted the substantial
contribution of genetic nurture on the etiologic sharing among complex traits. We also
estimated genetic correlations based on a standard EA GWAS (i.e., GWAS-O;
Supplementary Figure 11).

10
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Three traits, i.e., cognitive performance (p = 1.53 x 107 and 2.51 x 107°), age at first
birth (p = 1.02 x 107° and 3.64 x 107°), and smoking cessation (p = 3.97 x 1072 and
3.05 x 1073), were significantly correlated with both direct and indirect components of
EA. Across four traits for smoking behavior, we observed a consistent pattern that higher
EA, especially its indirect component, was correlated with reduced smoking activity.
Among neurological traits, attention-deficit/hyperactivity disorder (ADHD; p = 1.77 X
1073 ), major depressive disorder (MDD; p = 2.27 x 1073 ), and neuroticism (p =
3.87 x 1073) showed significant negative correlations with the indirect EA effect while
autism spectrum disorder (ASD; p = 3.91 x 10~3) was positively correlated with the
direct effect. Notably, several diseases and anthropometric traits known to genetically
correlate with EA, e.g., rheumatoid arthritis (p = 2.23 x 1073), height (p = 2.77 x 107%),
and body-mass index (BMI; p = 1.85 x 107°), were only correlated with the indirect
component of EA in our analysis. Such a pattern was also observed for type-2 diabetes
(T2D), coronary artery disease (CAD), and various lipid traits despite not reaching
statistical significance.

@ Direct Effect Indirect Effect

ADHD - —g— = —— r Insomnia
MDD 1 = 5 - r Chronotype
Neuroticism —o— & o~ - Sleep duration
Anxiety disorder A —G %
Anorexia - g g = rLoneliness
Epilepsy 1 —-o— g e F Suicide
. AS,D- LT 8 || —— - Cannabis dependence
SERZapHreTias % - S r Number of sexual partners
Bipolar disorder - - = Ie P
AD - : S g r Alcoholism
ALS 3 o —— - Subjective well-being
r Risky behavior
Smoking cessation - == » =~ L y.t. rf
Smoking initiation 1 - 3 B il
Cigarettes per day - o = - LBMI
Smoking initiation age == % < L Height
Rheumatoid arthritis - %= = §_ o= rBaldness
Asthma - - 2| | > d - Birth weight
& e
IBD & 3 £ — - Brain HV
T2DA - o o— rBrain ICV
. 2
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HDL - e g & <=~ FAge at first birth
10 05 00 05 10 05 00 05

Genetic correlation

Figure 4. Genetic correlations of EA (direct and indirect effects) with 45 complex traits. Dots and
intervals indicate the point estimates and standard error of genetic correlations, respectively. Significant
correlations at an FDR cutoff of 0.05 are highlighted with white circles. ADHD: attention
deficit/hyperactivity disorder; MDD: major depressive disorder; ASD: autism spectrum disorder; AD:
Alzheimer’s diseases; ALS: amyotrophic lateral sclerosis; IBD: inflammatory bowel disease; T2D: type-2
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diabetes; CAD: coronary artery disease; LDL and HDL.: low and high-density lipoprotein; BMI: body-mass
index; HV: hippocampal volume; ICV: intracranial volume.

Next, we assessed the predictive performance of PGS of direct and indirect effects on
EA. We generated bioinformatically fine-tuned PGS* for direct and indirect components
of EA using UKB participants (Methods; Supplementary Table 8). Overlapping UKB
samples were removed from the input GWAS when necessary (Methods).
Supplementary Figure 12 shows the predictive performance on 15,580 full sibling pairs
and 370,308 independent UKB samples. Both direct and indirect PGS were significantly
associated with EA in independent samples (p = 4.63 x 1078 and 1.46 x 107%) with
similar effect sizes (regression coefficient = 8.7 x 1073 and 9.6 x 1073). Direct effect PGS
was positively associated with the EA in full sibling pairs with an effect size comparable
to that in the population (regression coefficient = 0.013). The indirect PGS was negatively
correlated with EA in full siblings. However, due to a limited sample size, neither direct
nor indirect PGS reached statistical significance in sibling pairs (p = 0.16 and 0.52). The
effect sizes of these PGS were also substantially weaker compared to the standard EA
PGS based on population GWAS"’.
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Figure 5. pTDT results for direct and indirect EA PGS in 7,804 ASD probands and 3,242 healthy
siblings. Dots are the mean difference between child PGS and mid-parent PGS and intervals indicate the
standard error.
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We found that the somewhat surprising yet consistently replicated genetic correlation
between ASD and higher EA%*?* is mainly driven by the direct genetic component of EA
(Figure 4). We followed up this finding in 7,804 ASD proband-parent trios from three
cohorts (Methods), including the Autism Genome Project (AGP), Simons Simplex
Collection (SSC), and Simons Foundation Powering Autism Research for Knowledge
(SPARK). We performed polygenic transmission disequilibrium test* (pTDT) to quantify
the deviation of ASD probands’ EA PGS from the parents’ PGS (Methods). We identified
a significant (p = 1.25 x 1073) over-transmission of the direct effect EA PGS from healthy
parents to ASD probands (Figure 5 and Supplementary Table 9). We did not identify a
significant over-transmission of the indirect EA PGS (p = 0.61). Neither PGS showed any
significant deviation from transmission equilibrium in healthy sibling controls.

Discussion

GWAS has identified more than 60,000 genetic associations for thousands of human
diseases and traits, yet our understanding towards their etiology remains incomplete®.
Recent advances in family-based studies®®'*'*?%3" have convincingly demonstrated
genetic nurture effects on a variety of behavioral traits as well as health-related outcomes.
These results also shed important light on the limitations of current GWAS approaches.
Accurate dissection of direct and indirect genetic effects is critical for advancing the
interpretation of genetic associations and may fundamentally change the current
practice of genetic prediction and its clinical applications.

In this paper, we introduced a novel statistical framework that uses summary statistics
from multi-generational GWAS to decompose the direct and indirect genetic effects for
a given trait. Compared to existing methods, our approach does not require access to
individual-level data, has minimal computational burden, and accounts for GWAS
sample overlap and assortative mating. In addition, when results from GWAS-M and
GWAS-P are available, our method can partition the contribution of maternal and
paternal genetic effects, thereby inferring the parent-of-origin of genetic nurture. Even
when only a combined parental GWAS (i.e., GWAS-MP) is available, statistical inference
of direct and indirect effects remain valid under weak assumptions. Importantly, due to
these methodological advances, our approach does not require drastic changes to the
current GWAS practice. All it needs is collecting offspring phenotype data (but not
genotypes) in GWAS cohorts, which is substantially more economical and practical
compared to collecting both genotypes and phenotypes from a large number of families.
We note that even when individual-level data are available, our method will not have
substantially lower power, especially for traits with higher heritability. We compared the
effective sample sizes between our study design and a trio-based design
(Supplementary Note) and found that the effective sample size of two approaches
converge (Supplementary Figure 13).
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EA is an important and highly complex trait that correlate with many health and social
outcomes'’. Kong et al.® quantitatively demonstrated the existence of indirect genetic
effects on EA. It is thus of great interest to understand the etiologic relevance of its direct
and indirect components and how they affect other genetically correlated phenotypes.
Using a PGS approach, Willoughby et al.? found that the indirect effect of EA may work
through the family socioeconomic status. The genetic relationships of the direct and
indirect effect of EA with other traits, however, are still unknown. We dissected the
genetic effects of EA at the SNP level using our approach. The direct and indirect
components of EA showed distinct genetic correlations with other complex traits. The
known genetic correlations between EA and higher height, lower BMI, less active
smoking behavior, and better health outcomes were mostly explained by the indirect
genetic component of EA, suggesting that parents with these traits may show stronger
nurture effects on their children’s EA. One exception that stood out in our analysis was
ASD, a clinically heterogenous neurodevelopmental disorder that has been consistently
identified to genetically correlate with higher cognitive ability®**. We found that the
positive ASD-EA genetic correlation mostly resides in the direct component of EA.
Followed up in three independent cohorts of ASD proband-parent trios, we identified
significant over-transmission of the direct component of EA from healthy parents to ASD
probands but not to the healthy siblings. These results added value to the recent
advances in understanding common genetic variations’ roles in ASD etiology®**>%% and
provided critical new insights into the shared genetic basis of ASD and cognitive ability.
These results also call for extreme caution in human genome editing and embryo
screening®. Beyond the ethical issues, elevating the PGS of EA may have limited direct
protective effects on health outcomes and could lead to deleterious consequences such
as increased ASD risk.

Our framework has several limitations. First, accurate estimation of direct and indirect
effects requires all input GWAS to be sufficiently large with comparable sample sizes.
Otherwise, the estimation performance will be limited by the least-powered GWAS. The
current sample size in our EA analyses was not sufficient for significant association
mapping or calculating well-powered PGS of direct and indirect EA effects. Second, we
did not account for potential indirect sibling effects in our model. Although evidence has
suggested that the indirect effects from siblings are negligible compared to direct effects
and parental effects’'®, it may be important to account for sibling effects in certain
applications*'. Finally, our method provides unbiased estimates but will introduce a
negative technical correlation between the direct and indirect effect estimates
(Supplementary Note). This is not a unique issue in our approach and was also
observed in analyses based on individual-level data'®?®. Still, when sample size is limited,
such technical correlations will shade the true genetic effects and hinder the
interpretation of associations.

Taken together, our method has made important technical advancements in partitioning
complex traits’ direct and indirect genetic effects. It provides statistically rigorous and
computationally efficient estimates based on summary statistics from multi-generational
GWAS, which provides a clear guidance on future study designs. If large genetic cohorts
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with multi-generational phenotypic information becomes the convention in the field, our
method will have broad applications and can facilitate our understanding of the genetic
basis of numerous human traits.

Methods

Method details

If genetic data are available in a number of parents-offspring trios, by regressing the
offspring phenotype values Y, on the offspring, maternal, and paternal genotypes (Go m p
respectively), the coefficients in joint regression estimate the direct genetic effect Sy,
indirect maternal effect B4 mt, @and indirect paternal effect f;,q ,, respectively.
YO = ﬁdirGO + (ﬁind_thM + Bind_ptGP) +€
= ﬁdirGO + (ﬁind_mtTM + ﬁind_ptTP) + (ﬁind_thTM + ﬁind_ptNTP) +€
= ﬁdirGO + ﬁindGO + (ﬁind_thTM + ﬁind_ptNTP) + E’
We define indirect genetic effect as the effect of a person’s genotype on his or her
phenotype via the indirect pathway that goes through biological parents and the family
environment. This effect is Bing mcTm + Bina ptTp iN the equation above. Thus, the indirect
effect size is obtained by regressing Sind mtTm + Bind ptTp ON Go(= Ty + Tp), which gives
IBind = (ﬁind_mt + ﬁind_pt)/z
The estimated effect sizes from the marginal regression of Y, on Gy (which is the
standard GWAS) is given by fo = (G1Go)  GIYo = (GXGo) ™ G (BairGo + Bnd meGu +
Bind ptGp + €). It is easy to find Cov(Gy, Gyp) = p(1 —p)(1 + a), where p is the minor
allele frequency (MAF) and a = Corr(Gy;, Gp) is the correlation between spouses for the
SNP. Then, we can express f, in terms of the direct and indirect effect sizes. Similar
expressions can also be derived for Sy and Sp. Then using three equations, we can solve
for the direct and indirect genetic effects analytically:
Bair = 2+ a)Bo — Bu — Br
3 —a? 1-2a—a? a
Bind_mt = mﬁw{ + Z(Taz)ﬁp - (1 + E) Bo
3—a? 1-2a—a?

B a
Bind_pt = 20 —a?) Br + Z(Taz)’gM - (1 + E) Bo

in mt+ ind_pt 2
Bind :'B - > i :2_:_;0{ [Bm + Be — (1 + ) fo]

Our framework could also be naturally extended to the PGS level (Supplementary Note).

One technical note is we can see from the equation above that the covariance between
B4 and B4 are always negative. This negative covariance should be reduced in
magnitude as we increase the sample size since the variances of the input GWAS effect
size estimates are reduced. Their correlation, however, will not reduce as we increase
the sample size (Supplementary Note). This is because both the covariance and
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variance will decrease at a same rate as sample size increases. As a result, the
correlation will remain at a fixed number if we keep the same ratios of the sample sizes.

Simulation

We randomly selected 1,000 independent SNPs in the UKB data as causal variants and
sampled their true effect sizes from a normal distribution with mean 0 and variance of
0.012. We first simulated 3 sets of trios (sets 1-3). Each set consisted of 30,000 trios. In
each trio, parental genotypes were independently simulated under binomial distributions
using each SNP’s MAF. The offspring genotypes were generated from parental data
following Mendelian inheritance. The offspring phenotype was computed as a weighted
sum of these 1,000 SNPs plus a normal error term yo = %729° Go i Bair + GumiBind mt +
GpiBinapt +&. We used these 3 sets to run GWAS-O, GWAS-M, and GWAS-P,
respectively. To simulate overlapping samples, we generated two additional sets (sets 4
and 5) of multi-generational families. In each family, we simulated data for 3 generations:
2 grandparents, 2 parents, and 1 child. Thus, these parents can be used as overlapping
samples since we can compute both their own and their children’s phenotypes
(Supplementary Figures 1B and 2). Var(¢) was set to be 0.04 so that it accounted for
~30% of the phenotypic variance.

We simulated 3 different scenarios: (1) GWAS-O, GWAS-M, and GWAS-P as inputs
where all the samples in these 3 GWASs were independent; (2) GWAS-O and GWAS-
MP as inputs where these 2 GWASs also used independent samples; (3) GWAS-O,
GWAS-M, and GWAS-P as inputs, where GWAS-M and GWAS-P used independent
samples, however all samples in GWAS-M and GWAS-P were also present in GWAS-O
(Supplementary Figure 2). That is, for scenario (3), we used the parents in sets 4 and 5
to conduct GWAS-0O, GWAS-M, and GWAS-P.

Among the 1,000 causal SNPs, we focused on one SNP with a MAF of 0.23. We used
different settings for its true effect sizes: (B4ir, Bind me Bind pe) = (0, 0, 0), (0, 0.02, 0.01),
(0.02, 0, 0.01), (0.02, 0.02, 0), (0.02, 0.01, -0.01), (0.02, 0.01, 0.01), (0.02, 0.02, 0.01), and
(0.02, -0.02, -0.01) to cover the null, positive direct and positive indirect, and positive
direct and negative indirect effects combinations. For each setting, we repeated the
simulation 1,000 times. For each repeat, we applied our method to estimate the direct
and indirect effects. We also tested two other SNPs with MAF = 0.01 and 0.48 and the
results looked similar.

UK Biobank data processing
We used UKB data to conduct GWASs on birth weight and EA and perform PGS

regression analyses. We excluded the participants that are recommended by UKB to be
excluded from analysis (data field 22010 in the UKB), those with conflicting genetically
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inferred (data field 22001) and self-reported sex (data field 31), and those who withdrew
from the study. UKB samples with European ancestry were identified from principal
component analysis (data field 22006). PCs were computed using flashPCA2*?. We used
KING* to infer the pairwise family kinship. We identified 154 pairs of monozygotic twins,
242 pairs of fraternal twins, 19,136 full sibling pairs, and 5,336 parent offspring pairs
among 408,921 individuals with European ancestry in the UKB.

Birth weight GWAS analysis

The own (N = 298,142) and maternal (N = 210,267) GWAS summary statistics reported
in Warrington et al.®® were downloaded from the Early Growth Genetics Consortium
website. We removed duplicated SNPs in each file, took SNP intersections between
these two sets of summary statistics, and flipped the sign of effect size estimates when
necessary such that the effective alleles were matched between the two input GWASSs.
We also downloaded the summary statistics for the inferred direct and indirect maternal
genetic effects to compare with our results (Supplementary Figure 6). To have a fair
comparison, we used the SNPs whose sample sizes and effective allele frequencies
reported in the paper’s direct and indirect maternal effect summary statistics are
consistent with those reported in their GWAS-O and GWAS-M summary statistics and
heterogeneity p-value > 0.05. More than 8 million SNPs were used in the comparative
analysis.

The UKB collected participants birth weight (data field 20022). Women who had at least
one child were also asked for the birth weight of their first child (data field 2744). We also
constructed two orthogonal phenotypes representing the direct and indirect
components of birth weight following Warrington et al.?® The two new phenotypes were
defined as: 2 (2BW,wn — BWotpring)/3 and 2 (2BWogtspring — BWown)/3, Where BW,, is
own birth weight and BWjspring is the offspring’s birth weight.

We conducted GWASSs for these four phenotypes (i.e., own and offspring birth weights
and the two orthogonal phenotypes) on 75,711 independent individuals of European
ancestry who had both own and first child’s birth weights available. To compare, this
number was 101,541 in Warrington et al.?® which included both Europeans and non-
European samples. Birth weight was constructed following Warrington et al.?® Year of
birth, genotype array, assessment center, and top 20 PCs were used as covariates. The
results on own and first child’s birth weight were used as input in our framework to
estimate the direct and maternal effects while the GWASs on orthogonal phenotypes
were used as comparison.

GWAS on offspring EA
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We identified 5,336 parent-offspring pairs among the UKB EUR samples. Following Lee
et al."”’, we used the “qualification” (data field 6138) to compute the years of schooling
as the EA phenotype. Year of birth, sex, genotype array, and top 20 PCs were used as
covariates. We used parents from independent parent-offspring pairs with offspring EA
phenotype and covariates information as GWAS samples. If both parents’ genotype data
were available, we only included one of them in the analysis. The GWAS sample size N
=4,181 (2,619 females and 1,562 males).

In the HRS cohort, the respondent’s oldest child’s EA phenotype was constructed
following Okbay et al.** We kept only the independent (inferred by KING*®) European
parents (self-identified as “white/caucasian”) in our analyses. Year of birth, sex, and top
10 PCs were used as covariates. GWAS sample size N = 6,324 (3,780 females and 2,544
males).

In the WLS cohort, the oldest child’s education information was given by variables
“z_rd01001”, “z_gd01001”, and “z_gd21001” corresponding to different rounds of
collection. We used the maximum value whenever there was any inconsistency among
different rounds. The EA phenotype was constructed following Lee et al.”” We required
the GWAS samples to be of European ancestry (variable “z_ie008re”), independent
(inferred by KING*®), the oldest child was a biological offspring (“z_rd00401” and
“z_gd00401”), the offspring’s EA was measured when the child was at least 30 years old
and parent was at least 15 years older than the child. Year of birth, sex, and top 10 PCs
were used as covariates. GWAS sample size N = 4,772 (2,513 females and 2,259 males).

PLINK*® version 1.9 was used to perform all GWASSs. Finally, we meta-analyzed these
three offspring EA GWASs using the inverse variance based approach in METAL* to
obtain the GWAS-MP as the input for our framework.

We also compared results given by our framework and SNIPar'® with a same set of data
in UKB. Using the full siblings (N = 35,243 samples from 17,136 families) of European
ancestries in UKB identified by KING*® (here, we only used the full siblings whose parents
are not in the UKB), SNIPar imputed their expected average parental genotype. With the
sum of imputed parental genotype and the observed offspring’s genotype jointly in the
model, SNIPar computed the direct and indirect effects on EA with a linear mixed model
(N = 34,956 samples from 17,135 unique families with non-missing EA phenotype). Using
the same full sibling data, we performed GWAS-O using the observed siblings (N =
17,135 independent samples with phenotype and covariates available). Using the
imputed sum of parental genotype, we ran GWAS-MP. Then our framework could also
compute the direct and indirect effects using the two summary statistics and the
comparison results are shown in Supplementary Figure 14. Year of birth, sex,
genotyping array, and top 20 PCs were used as covariates in GWAS-0. In GWAS-MP,
the offspring’s year of birth, genotyping array, and top 20 PCs were used as covariates
where the PCs were computed using the imputed parental genotype by flashPCA2*.
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GWAS on own EA in UKB

We conducted GWAS-O (N = 356,719) using independent European samples in the UKB,
excluding the full sibling samples (N = 35,243) that were used by SNIPar. The EA
phenotypes were constructed following Lee et al'’. Year of birth, sex, genotyping array,
and top 20 PCs were used as covariates. We then meta-analyzed with EA3 summary
statistics that excluded UKB samples. The reason for excluding the full siblings was
because later we would do meta-analysis with SNIPar results which used the full sibling
data.

Genetic correlation analysis

We used both LDSC?* and GNOVA?®' to compute genetic covariances and genetic
correlations for any given pair of traits using their GWAS summary statistics. The results
based on two approaches were comparable. The genetic correlation results shown in
the main text were from LDSC. Details of the 45 traits used in the analysis and LDSC
and GNOVA results are shown in Supplementary Tables 5-7.

Polygenic score calculation and regression analysis

We performed PGS analysis on two sets of UKB samples with European ancestry: the
first set was 16,580 pairs of full siblings and the second was 370,308 independent
individuals. For each sample, two EA PGSs based on direct and indirect effect estimates
were computed. To maximize the power and avoid overfitting, we used different input
summary statistics to compute the direct and indirect effects. For the full sibling pairs,
we first excluded full sibling pairs from the UKB samples, then used KING*® to identify a
subset of independent individuals (N = 356,719) and ran an EA GWAS following Lee et
al."”” We used METAL" to meta-analyze it with EA3 GWAS that excluded 23andMe and
UKB samples (N = 324,162). Together with the offspring EA GWAS as inputs, we
computed the direct and indirect effect summary statistics which were used to compute
the PGSs for the full sibling pairs in UKB. For the second set, we used the EA3 GWAS
that excluded 23andMe and UKB samples and the offspring EA GWAS as input to
estimate the direct and indirect effects.

To compute PGS, we first clumped the summary statistics in PLINK* version 1.9 using
the CEU samples in 1000 Genome Project Phase Il cohort*” as the LD reference panel.
We applied an LD window size of 1Mb and a pairwise r2 threshold of 0.1. Then, we
computed PGS using PRSice-2*® with a fine-tuned p-value cutoff given by PUMAS®,
PUMAS uses GWAS summary statistics as input and output an optimal p-value cutoff
that gives the highest R? for the PGS regression analysis. Since the PGS will use only
the SNPs that are present in the target samples, we used only the SNPs that are present
in the summary statistics, LD reference panel, and the target samples when running
PUMAS.
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We used software R* version 3.5.1 to run linear regression of EA on PGSs. Both the EA
phenotype and PGS were standardized. For full sibling pairs, we regressed EA difference
between siblings on PGS differences. For independent samples, we used year of birth,
sex, genotype array, assessment center, and top 10 PCs as covariates. R? was
computed as the ratio of sum squares by PGS to the total sum of squares.

pTDT analysis

Three ASD cohorts were used in the pTDT analysis: AGP (N = 2,188 trios), SSC (1,794
proband trios and 1,430 sibling trios), and SPARK (3,822 proband trios and 1,812 sibling
trios). Details of data processing in these cohorts have been described previously®. To
compute PGS, we first used PLINK* version 1.9 to clump the direct and indirect effect
summary statistics using the CEU samples in 1000 Genome Project Phase lll cohort*” as
the LD reference panel. We applied an LD window size of 1Mb and a pairwise r2
threshold of 0.1. PGSs were computed using PRSice-2*® with optimal p-value cutoffs
estimated by PUMAS®. We performed pTDT*® to measure the transmission
disequilibrium in EA polygenic risks for ASD probands and siblings.

URL

AGP (https://www.ncbi.nlm.nih.gov/projects/gap/cqi-

bin/study.cqgi?study _id=phs000267.v5.p2);

SSC (https://www.sfari.org/resource/simons-simplex-collection/);

SPARK (https://www.sfari.org/resource/spark/);

Early Growth Genetics Consortium (https://egg-consortium.org/birth-weight-
2019.html);

SNIPar (https://github.com/AlexTISYoung/SNIPar)

Data and code availability

The DONUTS package is available at https://github.com/qglu-lab/DONUTS
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