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Abstract 
 
Marginal effect estimates in genome-wide association studies (GWAS) are mixtures of 
direct and indirect genetic effects. Existing methods to dissect these effects require 
family-based, individual-level genetic and phenotypic data with large samples, which is 
difficult to obtain in practice. Here, we propose a novel statistical framework to estimate 
direct and indirect genetic effects using summary statistics from GWAS conducted on 
own and offspring phenotypes. Applied to birth weight, our method showed nearly 
identical results with those obtained using individual-level data. We also decomposed 
direct and indirect genetic effects of educational attainment (EA), which showed distinct 
patterns of genetic correlations with 45 complex traits. The known genetic correlations 
between EA and higher height, lower BMI, less active smoking behavior, and better 
health outcomes were mostly explained by the indirect genetic component of EA. In 
contrast, the consistently identified genetic correlation of autism spectrum disorder (ASD) 
with higher EA resides in the direct genetic component. Polygenic transmission 
disequilibrium test showed a significant over-transmission of the direct component of 
EA from healthy parents to ASD probands. Taken together, we demonstrate that 
traditional GWAS approaches, in conjunction with offspring phenotypic data collection 
in existing cohorts, could greatly benefit studies on genetic nurture and shed important 
light on the interpretation of genetic associations for human complex traits. 
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Introduction 
 
Genome-wide association studies (GWAS) have been a great success in the past decade, 
identifying tens of thousands of associations for numerous complex human traits1. The 
standard GWAS approach estimates the marginal association between each single-
nucleotide polymorphism (SNP) and a phenotype while assuming that genetic and 
environmental factors additively affect the phenotype. Despite the simplicity, such an 
analytical strategy is computationally efficient and statistically robust. However, 
interpretation of GWAS associations remains a challenge, in part because most identified 
associations have weak effect sizes and are located in the non-coding regions of the 
genome2,3. Interpretation is especially challenging for behavioral traits since the role of 
each variant or gene in complex human behavior is difficult to disentangle. Nevertheless, 
biobank-scale GWAS of complex traits have produced polygenic scores (PGS) that 
aggregate the effects of many SNPs in the genome to provide robust prediction of trait 
values4. These scores are widely used in social genomics research, although our 
understanding of the underlying mechanism is superficial and incomplete5. 
 
Recent evidence from family-based studies suggested that a substantial fraction of 
genetic associations may be mediated by the family environment6-16. In particular, 
parental genotypes could affect the family environment through the parents’ educational 
attainment17, personalities18,19, behavior20-24, and socioeconomic status25, which could 
subsequently affect the offspring’s phenotypes26. As a result, a person’s genotypes, 
which also reside in his or her biological parents, could associate with the person’s 
phenotype both directly (through biological processes) and indirectly (through parents 
and the family environment they create). Due to the correlation between parental and 
offspring genotypes, GWAS captures both the direct and indirect genetic effects in its 
estimates, which further complicates the interpretation of GWAS results13. If the genetic 
nurture effect (i.e., parental genotypes affecting offspring phenotype) is present for a 
given trait, downstream analyses based on GWAS associations could be biased and 
misleading6,8,27. 
 
It is thus crucial to decompose the direct and indirect genetic effects and understand 
how they jointly affect the phenotype. By leveraging large-scale trio cohorts and 
regressing the offspring phenotype on two sets of PGS calculated using transmitted and 
non-transmitted alleles in parents, Kong et al.6 convincingly demonstrated the existence 
of genetic nurture effects for multiple traits. In particular, PGS of non-transmitted alleles 
in parents has an effect size that is about 30% of that by the standard PGS for 
educational attainment (EA). Using PGS, several other studies7-12 also identified indirect 
genetic effects on various phenotypes. Existing methods to detect direct and indirect 
genetic effects, however, have limitations. First, they require individual-level genotype 
and phenotype data of a large number of parents-offspring trios, or in some cases, other 
types of rare samples (e.g., adopted individuals11,12). Although sample size in GWAS has 
been steadily increasing, number of trio samples with accessible individual-level data 
remains moderate even in large biobanks. Second, existing methods quantify genetic 
nurture using PGS which relies on large GWAS conducted on samples independent from 
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the study. Even when such a GWAS exists, it remains challenging to interrogate the 
direct and indirect effects of each SNP using designs and data similar to the current 
GWAS practice, which is critical for functional follow-ups and out-of-sample prediction13. 
 
Although a simple study design that regresses the phenotypes on both own and parental 
genotypes should provide estimates for direct and indirect genetic effects of each SNP, 
such a strategy is most likely underpowered given the limited sample size of trios in 
existing cohorts. Several recent studies have attempted to solve this challenging 
problem. Warrington et al.28 used a structural equation model (SEM) approach to 
decompose direct genetic effects and indirect maternal effects on birth weight while 
assuming paternal effects to be 0. This approach only requires summary statistics from 
a standard GWAS on birth weight and a second GWAS based on maternal genotypes 
and offspring phenotypes, thus effectively expanding the available sample size. However, 
the SEM approach was too computationally demanding to be applied to the genome-
wide scale and a “weighted linear model” alternative could not account for sample 
overlap if individual-level data are unavailable. Another recent approach14,15 expands 
family genotype data by imputing the unobserved parental genotypes using data from 
other family members. However, this approach still requires a large sample of sibling or 
parent-offspring pairs. Further, when parental genotypes are imputed from sibling pairs, 
it is challenging to distinguish paternal and maternal autosomal genotypes. Thus, 
separate estimation of indirect maternal and paternal effects is unattainable. 
 
Here, we introduce DONUTS (decomposing nature and nurture using GWAS summary 
statistics), a novel statistical framework that can estimate direct and indirect genetic 
effects at the SNP level. It requires GWAS summary statistics as input, allows differential 
paternal and maternal effects, and accounts for GWAS sample overlap and assortative 
mating. DONUTS has low computational burden and can complete genome-wide 
analyses within seconds. Applied to birth weight, our method showed near-identical 
effect estimates compared to analyses28 that leveraged individual-level data and 
improved standard error and statistical power after accounting for sample overlap. We 
also applied our method to dissect the direct and indirect genetic effects of EA. Our 
results revealed distinct genetic correlations of the direct and indirect genetic 
components of EA with various traits and shed important light on the complex and 
heterogenous genetic architecture of EA. Followed up in three independent cohorts of 
ASD proband-parent trios, we identified significant over-transmission of the direct 
component of EA from healthy parents to ASD probands but not to the healthy siblings. 
 
 

Results 
 

Overview of the methods 

 
The key idea of our statistical framework is illustrated in Figure 1. Derivations and 
statistical details are shown in Methods and Supplementary Note. If genetic data are 
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available in a number of parents-offspring trios, by regressing the offspring phenotype 
values �! on the offspring, maternal, and paternal genotypes (i.e., �O, �M, and �P) for a 
given SNP, the coefficients in the joint regression represent the direct genetic effect �dir, 
indirect maternal effect �ind_mt, and paternal effect �ind_pt, respectively. We could write 

this model as  
�O = �dir�O + �ind_mt�M + �ind_pt�P + �,	

where �  is the environmental noise. The total contribution of parental genotypes on 

offspring phenotype, )�ind_mt�M + �ind_pt�P* , can be further partitioned into the 

contribution of transmitted alleles (�ind_mt�M + �ind_pt�P ) and non-transmitted alleles 

(�ind_mt��M + �ind_pt��P). In our framework, we define the indirect genetic effect �ind as 

the effect of a person’s genotype on the phenotype via the indirect pathway that goes 
through biological parents and the family environment. The component of parental 

indirect contribution that can be affected by �O is )�ind_mt�M + �ind_pt�P*. Regressing it on 

�O, we can obtain the indirect genetic effect �ind = )�ind_mt + �ind_pt* 2d . Unsurprisingly, 

the indirect effect size is the average of the indirect maternal and paternal effects since 
each parent contributes half of the offspring’s genotype. A key question we aim to 
investigate in this paper is whether it is possible to estimate the direct and indirect effect 
sizes (i.e., �dir,	�ind, �ind_mt, and �ind_pt) from marginal GWAS association statistics via 

proper study designs. 
 

 
Figure 1. Schematic diagram of direct and indirect genetic effects. �!,#,$ represents the maternal, 

paternal, and offspring genotypes, respectively. � = Corr(�! , �#)  is the correlation between spousal 
genotypes at a locus. Effect size 0.5 is due to the fact that half of the parent’s genome is randomly 

transmitted to the offspring �$. �$ is the offspring’s phenotype. � and �� represent transmitted and non-

transmitted alleles from a parent to the offspring. In general, both offspring and parental genotypes could 

affect the offspring’s phenotype with effect sizes of �dir, �ind_mt and �ind_pt, respectively. 

 
Instead of focusing on a joint regression based on trio data, we describe three separate 
GWAS. We refer to the marginal regressions of own phenotype (�O) on own genotypes 
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(�O) as GWAS-O. GWAS-M and GWAS-P denote the marginal analyses that regress 
offspring phenotype on maternal and paternal genotypes (i.e., �M and �P), respectively. 
�O, �M, and �P denote the expectation of marginal effect estimates obtained from these 
three analyses. It can be shown that �dir and �ind of a given SNP are linear combinations 
of �O, �M, and �P (Methods and Supplementary Note): 

�dir = (2 + �)�O 2 �M 2 �P (1) 

�ind =
2 + �
2 + 2� [�M + �P 2 (1 + �)�O] (2) 

where � = Corr(�-, �.)  is the correlation between spousal genotypes at the locus, 
which quantifies the degree of assortative mating. Plugging in the ordinary least squares 

estimates �9O, �9M, and �9P from the three marginal GWASs described above, we obtain 
the unbiased estimates for the direct and indirect effects of each SNP. Importantly, we 
do not require �O,	�M and �P to be obtained from actual trios. In fact, samples in the three 
GWAS could be independent or partially overlapped. From the equations above, we also 
found that 

�dir + :1 + �
2 + �;�ind = �O, (3) 

which clearly shows that the effect size from a typical GWAS is the combination of both 
direct and indirect effects and is also affected by assortative mating.13 

Table 1. Estimating direct and indirect genetic effects from multi-generational GWAS summary 

statistics. We illustrate the direct and indirect effect sizes under three different settings. (i) is the general 
case where GWAS-O, GWAS-M, and GWAS-P are used as input. In case (ii), GWAS-O and GWAS-MP are 

used. This is valid only when �ind_mt = �ind_pt  or �M = �P . If we only know �M = �P , we cannot obtain 

separate estimates for the indirect maternal and paternal effects. Case (iii) is when the indirect paternal 

effect size is 0. �O,	M,	P,	MP are the expected effect sizes in GWAS-O, GWAS-M, GWAS-P, and GWAS-MP, 

respectively. In all the cases, we always have �dir + [1 + � (2 + �)d ]�ind = �O and �ind = 5�ind_mt + �ind_pt6 2d . 

 

Input GWAS �dir �ind = 5�ind_mt + �ind_pt6 2d  �ind_mt and �ind_pt 

(i) GWAS-O, GWAS-

M, and GWAS-P 

(2 + �)�O 2 �M 2 �P 2 + �
2 + 2� [�M + �P 2 (1 + �)�O] �ind_mt = 3 2 �*

2(1 2 �*)�M + 1 2 2� 2 �*

2(1 2 �*) �P 2 2 + �
2 �O	

�ind_pt = 3 2 �*

2(1 2 �*) �P +
1 2 2� 2 �*

2(1 2 �*) �M 2 2 + �
2 �O 

(ii) GWAS-O and 

GWAS-MP (when 

parents contribute 

equally �ind_mt = �ind_pt 
or have equal sample 

size �M = �P in 

GWAS-MP) 

(2 + �)�O 2 2�MP 2 + �
2 + 2� [2�MP 2 (1 + �)�O] �ind_mt = �ind_pt = �ind (when �ind_mt = �ind_pt) 

(iii) GWAS-O and 

GWAS-M (when only 

the maternal effect 

contributes, i.e., 

�ind_pt = 0) 

2
3 2 �*

[(2 + �)�O 2 (1 + �)�M] 2 + �
3 2 �*

.�M 2 1 + �
2 �O/ �ind_mt = 2 + �

3 2 �*
[2�M 2 (1 + �)�O] 
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Besides direct and indirect effects (i.e., �dir  and �ind ), we could also derive the 
expressions for indirect maternal and paternal effects (i.e., �ind_mt  and �ind_pt ), which 

makes it possible to infer the parent-of-origin of genetic nurture. The results are 
summarized in Table 1. Case (i) is the most general scenario, where we use summary 
statistics from GWAS-O, GWAS-M, and GWAS-P to estimate �dir, �ind, �ind_mt, and �ind_pt. 
Case (ii) illustrates that it is not always necessary to have separate paternal and maternal 
GWASs. If paternal and maternal effects are identical (�ind_mt = �int_pt) or if there are equal 

numbers of mothers and fathers (�M = �P) in a parental GWAS (referred to as GWAS-MP 
where fathers and mothers from different families are pooled together in the GWAS), the 
corresponding effect size �MP = (�M�M + �P�P) (�M + �P)d  can be used to estimate �dir 
and �ind. Case (iii) illustrates a special case where only maternal genotype has an indirect 
effect while the paternal effect is zero (Supplementary Figure 1A). If we further assume 
random mating (� = 0), then our model gives identical estimates for direct effect �dir and 
maternal effect �ind_mt compared to previous work on birth weight28. The results for the 

case with only indirect paternal effects are similar. 
 
Calculations of the variances of estimated direct and indirect effects are straightforward 
when the input GWASs are independent. However, it is possible for a subset of 
individuals to be involved in both the GWAS of their own phenotype and the GWAS of 
their children’s phenotype (Supplementary Figure 1B), which causes technical 

correlations among �9O, �9M, and �9P. We show that the correlations can be estimated using 
the intercept term from linkage disequilibrium score (LDSC) regression29 
(Supplementary Note), thereby correcting the sample overlap bias in standard error 
estimates. 
 
 
Simulation results 

 
We performed extensive simulations to demonstrate that our method provides unbiased 
estimates for direct and indirect effects, shows well-controlled type-I error, and properly 
accounts for sample overlap (Methods and Supplementary Figure 2). The results are 
summarized in Figure 2 and Supplementary Figures 3-5. Figures 2A and 2C describe 
results for case (i) in Table 1 where three sets of GWAS summary statistics are used. 
The estimates for direct, indirect, indirect maternal, and indirect paternal effect sizes 
were all unbiased. When only GWAS-O and GWAS-MP are available (case ii in Table 1), 
we could not distinguish indirect maternal and paternal effects but could still estimate 
the indirect genetic effect (Figure 2B). Here, despite the difference between indirect 
maternal and paternal effect sizes, estimation of the indirect genetic effects remained 
unbiased when equal number of fathers and mothers were used in GWAS-MP. 
 
Sample overlap in input GWASs will not affect effect size estimation. However, it will 

affect their standard errors due to the introduced correlations among �9O, �9M, and �9P. In 
Figures 2C and 2F, there were overlapping samples between GWAS-O and parental 
GWAS. Since the phenotypic correlation among the overlapping samples (i.e., 
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correlation between parental and offspring phenotypes) would most likely be positive, 
the covariance between effect size estimates is positive. As a result, correcting for 
sample overlap reduces standard error and increases power. Simulations under diverse 
settings all showed consistent results (Supplementary Figures 3-5). 
 

 
Figure 2. Simulation results. Box plots of direct and indirect effect size estimates (A-C) and the 

proportion (numbers shown at the top of each bar) of p values smaller than 0.05 (D-F). Each column shows 
results for the same simulation setting. Red and blue dashed lines indicate true values of direct and indirect 

genetic effects and grey dashed lines are the true indirect maternal and indirect paternal effect sizes. The 

direct, indirect maternal, and indirect paternal effect sizes are (0, 0, 0), (0.02, -0.02, -0.01), and (0.02, 0.02, 

0.01) for panels A-C, respectively. Panels A and C describe results for case (i) in Table 1 where three input 

GWAS are used. Panel B describes case (ii) where GWAS-O and GWAS-MP are used as input. There are 

no sample overlaps in A and B and a complete overlap in C, i.e., all samples in GWAS-M and GWAS-P 

are also in GWAS-O. In F, blue and red bars show the statistical power with and without sample overlap 

correction, respectively. �O = �M = �P = 30K in A and B. �O = �M + �P = 60K, �M = �P = 30K in C. 

 

 

Direct and maternal effects on birth weight 

 
To assess the performance of our framework, we applied DONUTS to dissect the direct 
genetic effect and maternal genetic effect on birth weight. Following a previous study28, 
we assumed random mating and absent paternal effect on offspring birth weight, which 
reduces the problem to a special case in our framework (case iii in Table 1; 
Supplementary Figure 1). Using summary statistics from GWAS-O and GWAS-M (N = 
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298,142 and 210,267, respectively; Methods), we estimated the direct and maternal 
effects of each SNP. Both estimates were highly concordant with the previous reports 
(Pearson correlations = 0.976 and 0.982, respectively; Supplementary Figure 6). The 
genetic correlations among these effects were very close to those reported in previous 
work (Supplementary Tables 1 and 2). 
 
Of note, the UK Biobank (UKB)30 was a main cohort used in both GWAS-O and GWAS-
M of birth weight, which caused a substantial sample overlap between two analyses. 
Warrington et al.28 addressed this problem by creating two linearly-transformed, 
orthogonal phenotypes for each individual who reported both her own birth weight and 
her first child’s birth weight. GWAS were then performed on the two new phenotypes. 
This approach requires individual-level genotype and phenotype data and thus is not 
easily applicable to other studies where only summary statistics are available. In fact, 
due to limited access to non-UKB samples, a small proportion of overlapping samples 
in the input GWAS were not accounted for in their study. Therefore, compared with our 
results, the standard errors given by the paper showed a mild inflation (Supplementary 

Figure 6).  
 

 
Figure 3. Comparison of DONUTS and analyses based on individual-level data. We estimated direct 
and indirect maternal genetic effects on birth weight using independent female samples of European 

ancestry in the UKB who reported both their own birth weight and their first child’s birth weight (N = 75,711). 

The x-axis of each panel shows results based on DONUTS and the y-axis shows results based on the 
phenotype transformation approach. Each data point represents a SNP. The 1st row is for the direct genetic 

effect and the 2nd row is for the indirect maternal effect. Two methods gave almost identical estimates for 
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effect sizes (1st column) and standard errors (2nd column). The standard errors (SE) showed inflation if 
sample overlap was not accounted for (3rd column). The diagonal line is highlighted in each panel. 

 
To further demonstrate that our method could effectively account for sample overlap, 
we conducted GWAS-O and GWAS-M using 75,711 independent female samples of 
European ancestry in the UKB who reported birth weight of themselves and of their 
oldest child (Methods). Using these two sets of summary statistics with a complete 
sample overlap, we estimated the direct and indirect maternal effects of each SNP. For 
comparison (Figure 3), we followed Warrington et al.28 to run two separate GWAS on the 
orthogonal phenotypes representing the direct and maternal components of birth weight 
constructed using individual-level data. Results from these two approaches were nearly 
identical (Pearson correlation = 1.00 for both the direct and indirect effect estimates). 
Not properly accounting for sample overlap did not affect the effect size estimates but 
substantially inflated standard errors which led to reduced statistical power (Figure 3). 
 
 
Partitioning direct and indirect genetic effects on educational attainment 

 
Next, we conducted a GWAS on offspring EA using a total of 15,277 individuals from the 
UKB, Wisconsin Longitudinal Study (WLS), and Health and Retirement Study (HRS) while 
adjusting for year of birth, sex, genetic principal components (PCs), and cohort specific 
covariates (Methods). Due to the limited sample size, balanced sex ratio, and previous 
reports on comparable maternal and paternal effects on EA6, we pooled fathers and 
mothers together to perform a parental GWAS (i.e., GWAS-MP). Combining results in 
GWAS-MP with a meta analyzed GWAS-O that does not contain full sibling pairs in the 
UKB (N = 680,881), we estimated the direct and indirect effects on EA. Further, we 
applied SNIPar15 to impute the parental genotypes of full sibling pairs in the UKB and 
estimated direct and indirect effects with linear mixed models (Methods). We meta-
analyzed two sets of analyses to obtain the final partitioned direct and indirect genetic 
effects on EA (effective N = 24,434 and 37,081 for direct and indirect effects, 
respectively). The flowchart of the analysis is illustrated in Supplementary Figure 7. No 
loci reached genome-wide significance at the current sample size (Supplementary 

Figure 8). We assumed random mating in the main analysis, but the results were highly 
robust to assortative mating (Supplementary Note; Supplementary Figure 9). 
 
We estimated genetic correlations of the direct and indirect EA effects with 45 other 
complex traits using LDSC29 (Figure 4 and Supplementary Tables 3-6). As a 
comparison, an alternative approach (i.e., GNOVA31) also showed consistent results 
(Supplementary Figure 10 and Supplementary Table 7). At a false discovery rate (FDR) 
cutoff of 0.05, we identified 18 significant genetic correlations, 4 of which were with the 
direct effect and 14 were with the indirect effect, which highlighted the substantial 
contribution of genetic nurture on the etiologic sharing among complex traits. We also 
estimated genetic correlations based on a standard EA GWAS (i.e., GWAS-O; 
Supplementary Figure 11).  
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Three traits, i.e., cognitive performance (� = 1.53 × 10/0 and 2.51 × 10/1), age at first 
birth (� = 1.02 × 10/2  and 3.64 × 10/2 ), and smoking cessation (� = 3.97 × 10/3  and 
3.05 × 10/3), were significantly correlated with both direct and indirect components of 
EA. Across four traits for smoking behavior, we observed a consistent pattern that higher 
EA, especially its indirect component, was correlated with reduced smoking activity. 
Among neurological traits, attention-deficit/hyperactivity disorder (ADHD; � = 1.77 ×
10/3 ), major depressive disorder (MDD; � = 2.27 × 10/3 ), and neuroticism ( � =
3.87 × 10/3) showed significant negative correlations with the indirect EA effect while 
autism spectrum disorder (ASD; � = 3.91 × 10/3 ) was positively correlated with the 
direct effect. Notably, several diseases and anthropometric traits known to genetically 
correlate with EA, e.g., rheumatoid arthritis (� = 2.23 × 10/3), height (� = 2.77 × 10/4), 
and body-mass index (BMI; � = 1.85 × 10/2 ), were only correlated with the indirect 
component of EA in our analysis. Such a pattern was also observed for type-2 diabetes 
(T2D), coronary artery disease (CAD), and various lipid traits despite not reaching 
statistical significance. 
 

 
Figure 4. Genetic correlations of EA (direct and indirect effects) with 45 complex traits. Dots and 

intervals indicate the point estimates and standard error of genetic correlations, respectively. Significant 
correlations at an FDR cutoff of 0.05 are highlighted with white circles. ADHD: attention 

deficit/hyperactivity disorder; MDD: major depressive disorder; ASD: autism spectrum disorder; AD: 

Alzheimer’s diseases; ALS: amyotrophic lateral sclerosis; IBD: inflammatory bowel disease; T2D: type-2 
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diabetes; CAD: coronary artery disease; LDL and HDL: low and high-density lipoprotein; BMI: body-mass 
index; HV: hippocampal volume; ICV: intracranial volume. 

 
Next, we assessed the predictive performance of PGS of direct and indirect effects on 
EA. We generated bioinformatically fine-tuned PGS32 for direct and indirect components 
of EA using UKB participants (Methods; Supplementary Table 8). Overlapping UKB 
samples were removed from the input GWAS when necessary (Methods). 
Supplementary Figure 12 shows the predictive performance on 15,580 full sibling pairs 
and 370,308 independent UKB samples. Both direct and indirect PGS were significantly 
associated with EA in independent samples (� = 4.63 × 10/5  and 1.46 × 10/6 ) with 
similar effect sizes (regression coefficient = 8.7 × 10/3 and 9.6 × 10/3). Direct effect PGS 
was positively associated with the EA in full sibling pairs with an effect size comparable 
to that in the population (regression coefficient = 0.013). The indirect PGS was negatively 
correlated with EA in full siblings. However, due to a limited sample size, neither direct 
nor indirect PGS reached statistical significance in sibling pairs (p = 0.16 and 0.52). The 
effect sizes of these PGS were also substantially weaker compared to the standard EA 
PGS based on population GWAS17. 
 

 
Figure 5. pTDT results for direct and indirect EA PGS in 7,804 ASD probands and 3,242 healthy 

siblings. Dots are the mean difference between child PGS and mid-parent PGS and intervals indicate the 
standard error.  
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We found that the somewhat surprising yet consistently replicated genetic correlation 
between ASD and higher EA33,34 is mainly driven by the direct genetic component of EA 
(Figure 4). We followed up this finding in 7,804 ASD proband-parent trios from three 
cohorts (Methods), including the Autism Genome Project (AGP), Simons Simplex 
Collection (SSC), and Simons Foundation Powering Autism Research for Knowledge 
(SPARK). We performed polygenic transmission disequilibrium test35 (pTDT) to quantify 
the deviation of ASD probands’ EA PGS from the parents’ PGS (Methods). We identified 
a significant (� = 1.25 × 10/3) over-transmission of the direct effect EA PGS from healthy 
parents to ASD probands (Figure 5 and Supplementary Table 9). We did not identify a 
significant over-transmission of the indirect EA PGS (� = 0.61). Neither PGS showed any 
significant deviation from transmission equilibrium in healthy sibling controls. 
 
 

Discussion 
 
GWAS has identified more than 60,000 genetic associations for thousands of human 
diseases and traits, yet our understanding towards their etiology remains incomplete36. 
Recent advances in family-based studies6-9,14,15,28,37 have convincingly demonstrated 
genetic nurture effects on a variety of behavioral traits as well as health-related outcomes. 
These results also shed important light on the limitations of current GWAS approaches. 
Accurate dissection of direct and indirect genetic effects is critical for advancing the 
interpretation of genetic associations and may fundamentally change the current 
practice of genetic prediction and its clinical applications. 
 
In this paper, we introduced a novel statistical framework that uses summary statistics 
from multi-generational GWAS to decompose the direct and indirect genetic effects for 
a given trait. Compared to existing methods, our approach does not require access to 
individual-level data, has minimal computational burden, and accounts for GWAS 
sample overlap and assortative mating. In addition, when results from GWAS-M and 
GWAS-P are available, our method can partition the contribution of maternal and 
paternal genetic effects, thereby inferring the parent-of-origin of genetic nurture. Even 
when only a combined parental GWAS (i.e., GWAS-MP) is available, statistical inference 
of direct and indirect effects remain valid under weak assumptions. Importantly, due to 
these methodological advances, our approach does not require drastic changes to the 
current GWAS practice. All it needs is collecting offspring phenotype data (but not 
genotypes) in GWAS cohorts, which is substantially more economical and practical 
compared to collecting both genotypes and phenotypes from a large number of families. 
We note that even when individual-level data are available, our method will not have 
substantially lower power, especially for traits with higher heritability. We compared the 
effective sample sizes between our study design and a trio-based design 
(Supplementary Note) and found that the effective sample size of two approaches 
converge (Supplementary Figure 13). 
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EA is an important and highly complex trait that correlate with many health and social 
outcomes17. Kong et al.6 quantitatively demonstrated the existence of indirect genetic 
effects on EA. It is thus of great interest to understand the etiologic relevance of its direct 
and indirect components and how they affect other genetically correlated phenotypes. 
Using a PGS approach, Willoughby et al.9 found that the indirect effect of EA may work 
through the family socioeconomic status. The genetic relationships of the direct and 
indirect effect of EA with other traits, however, are still unknown. We dissected the 
genetic effects of EA at the SNP level using our approach. The direct and indirect 
components of EA showed distinct genetic correlations with other complex traits. The 
known genetic correlations between EA and higher height, lower BMI, less active 
smoking behavior, and better health outcomes were mostly explained by the indirect 
genetic component of EA, suggesting that parents with these traits may show stronger 
nurture effects on their children’s EA. One exception that stood out in our analysis was 
ASD, a clinically heterogenous neurodevelopmental disorder that has been consistently 
identified to genetically correlate with higher cognitive ability33,34. We found that the 
positive ASD-EA genetic correlation mostly resides in the direct component of EA. 
Followed up in three independent cohorts of ASD proband-parent trios, we identified 
significant over-transmission of the direct component of EA from healthy parents to ASD 
probands but not to the healthy siblings. These results added value to the recent 
advances in understanding common genetic variations’ roles in ASD etiology33,35,38,39 and 
provided critical new insights into the shared genetic basis of ASD and cognitive ability. 
These results also call for extreme caution in human genome editing and embryo 
screening40. Beyond the ethical issues, elevating the PGS of EA may have limited direct 
protective effects on health outcomes and could lead to deleterious consequences such 
as increased ASD risk.  
 
Our framework has several limitations. First, accurate estimation of direct and indirect 
effects requires all input GWAS to be sufficiently large with comparable sample sizes. 
Otherwise, the estimation performance will be limited by the least-powered GWAS. The 
current sample size in our EA analyses was not sufficient for significant association 
mapping or calculating well-powered PGS of direct and indirect EA effects. Second, we 
did not account for potential indirect sibling effects in our model. Although evidence has 
suggested that the indirect effects from siblings are negligible compared to direct effects 
and parental effects15,16, it may be important to account for sibling effects in certain 
applications41. Finally, our method provides unbiased estimates but will introduce a 
negative technical correlation between the direct and indirect effect estimates 
(Supplementary Note). This is not a unique issue in our approach and was also 
observed in analyses based on individual-level data15,28. Still, when sample size is limited, 
such technical correlations will shade the true genetic effects and hinder the 
interpretation of associations.  
 
Taken together, our method has made important technical advancements in partitioning 
complex traits’ direct and indirect genetic effects. It provides statistically rigorous and 
computationally efficient estimates based on summary statistics from multi-generational 
GWAS, which provides a clear guidance on future study designs. If large genetic cohorts 
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with multi-generational phenotypic information becomes the convention in the field, our 
method will have broad applications and can facilitate our understanding of the genetic 
basis of numerous human traits.  
 
 

Methods 
 

Method details 

 
If genetic data are available in a number of parents-offspring trios, by regressing the 
offspring phenotype values �! on the offspring, maternal, and paternal genotypes (�!,-,. 

respectively), the coefficients in joint regression estimate the direct genetic effect �dir, 
indirect maternal effect �ind_mt, and indirect paternal effect �ind_pt, respectively. 

�O = �dir�O + )�ind_mt�M + �ind_pt�P* + �	
= �dir�O + )�ind_mt�M + �ind_pt�P* + )�ind_mt��M + �ind_pt��P* + �	
= �dir�O + �ind�O + )�ind_mt��M + �ind_pt��P* + �2 

We define indirect genetic effect as the effect of a person’s genotype on his or her 
phenotype via the indirect pathway that goes through biological parents and the family 
environment. This effect is �ind_mt�M + �ind_pt�P in the equation above. Thus, the indirect 

effect size is obtained by regressing �ind_mt�M + �ind_pt�P on �O(= �M + �P), which gives 

�ind = )�ind_mt + �ind_pt* 2d  

The estimated effect sizes from the marginal regression of �!  on �!  (which is the 

standard GWAS) is given by �9O = )�OT�O*
/9�OT�! = )�OT�O*

/9�OT)�dir�O + �ind_mt�M +
�ind_pt�P + �*. It is easy to find Cov)�O, �M,P* = �(1 2 �)(1 + �), where � is the minor 

allele frequency (MAF) and � = Corr(�-, �.) is the correlation between spouses for the 
SNP. Then, we can express �O in terms of the direct and indirect effect sizes. Similar 
expressions can also be derived for �M and �P. Then using three equations, we can solve 
for the direct and indirect genetic effects analytically: 

�dir = (2 + �)�O 2 �M 2 �P	
�ind_mt =

3 2 �:

2(1 2 �:) �M + 1 2 2� 2 �:

2(1 2 �:) �P 2 :1 + �
2;�O	

�ind_pt =
3 2 �:

2(1 2 �:) �P +
1 2 2� 2 �:

2(1 2 �:) �M 2 :1 + �
2;�O	

�ind =
�;nd_mt + �ind_pt

2 = 2 + �
2 + 2� [�M + �P 2 (1 + ³)�O] 

Our framework could also be naturally extended to the PGS level (Supplementary Note). 
 
One technical note is we can see from the equation above that the covariance between 

�9dir  and �9ind  are always negative. This negative covariance should be reduced in 
magnitude as we increase the sample size since the variances of the input GWAS effect 
size estimates are reduced. Their correlation, however, will not reduce as we increase 
the sample size (Supplementary Note). This is because both the covariance and 
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variance will decrease at a same rate as sample size increases. As a result, the 
correlation will remain at a fixed number if we keep the same ratios of the sample sizes.  
 
 

Simulation 

 
We randomly selected 1,000 independent SNPs in the UKB data as causal variants and 
sampled their true effect sizes from a normal distribution with mean 0 and variance of 
0.01:. We first simulated 3 sets of trios (sets 1-3). Each set consisted of 30,000 trios. In 
each trio, parental genotypes were independently simulated under binomial distributions 
using each SNP’s MAF. The offspring genotypes were generated from parental data 
following Mendelian inheritance. The offspring phenotype was computed as a weighted 
sum of these 1,000 SNPs plus a normal error term �O = 3 �O,;�dir + �M,;�ind_mt +9<<<

;=9

�P,;�ind_pt + � . We used these 3 sets to run GWAS-O, GWAS-M, and GWAS-P, 

respectively. To simulate overlapping samples, we generated two additional sets (sets 4 
and 5) of multi-generational families. In each family, we simulated data for 3 generations: 
2 grandparents, 2 parents, and 1 child. Thus, these parents can be used as overlapping 
samples since we can compute both their own and their children’s phenotypes 
(Supplementary Figures 1B and 2).	���(�) was set to be 0.04 so that it accounted for 
~30% of the phenotypic variance. 
 
We simulated 3 different scenarios: (1) GWAS-O, GWAS-M, and GWAS-P as inputs 
where all the samples in these 3 GWASs were independent; (2) GWAS-O and GWAS-
MP as inputs where these 2 GWASs also used independent samples; (3) GWAS-O, 
GWAS-M, and GWAS-P as inputs, where GWAS-M and GWAS-P used independent 
samples, however all samples in GWAS-M and GWAS-P were also present in GWAS-O 
(Supplementary Figure 2). That is, for scenario (3), we used the parents in sets 4 and 5 
to conduct GWAS-O, GWAS-M, and GWAS-P.  
 
Among the 1,000 causal SNPs, we focused on one SNP with a MAF of 0.23. We used 

different settings for its true effect sizes: )�dir, �ind_mt, �ind_pt* = (0, 0, 0), (0, 0.02, 0.01), 

(0.02, 0, 0.01), (0.02, 0.02, 0), (0.02, 0.01, -0.01), (0.02, 0.01, 0.01), (0.02, 0.02, 0.01), and 
(0.02, -0.02, -0.01) to cover the null, positive direct and positive indirect, and positive 
direct and negative indirect effects combinations. For each setting, we repeated the 
simulation 1,000 times. For each repeat, we applied our method to estimate the direct 
and indirect effects. We also tested two other SNPs with MAF = 0.01 and 0.48 and the 
results looked similar. 
 
 
UK Biobank data processing 

 
We used UKB data to conduct GWASs on birth weight and EA and perform PGS 
regression analyses. We excluded the participants that are recommended by UKB to be 
excluded from analysis (data field 22010 in the UKB), those with conflicting genetically 
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inferred (data field 22001) and self-reported sex (data field 31), and those who withdrew 
from the study. UKB samples with European ancestry were identified from principal 
component analysis (data field 22006). PCs were computed using flashPCA242. We used 
KING43 to infer the pairwise family kinship. We identified 154 pairs of monozygotic twins, 
242 pairs of fraternal twins, 19,136 full sibling pairs, and 5,336 parent offspring pairs 
among 408,921 individuals with European ancestry in the UKB. 
 
 
Birth weight GWAS analysis 

 
The own (N = 298,142) and maternal (N = 210,267) GWAS summary statistics reported 
in Warrington et al.28 were downloaded from the Early Growth Genetics Consortium 
website. We removed duplicated SNPs in each file, took SNP intersections between 
these two sets of summary statistics, and flipped the sign of effect size estimates when 
necessary such that the effective alleles were matched between the two input GWASs. 
We also downloaded the summary statistics for the inferred direct and indirect maternal 
genetic effects to compare with our results (Supplementary Figure 6). To have a fair 
comparison, we used the SNPs whose sample sizes and effective allele frequencies 
reported in the paper’s direct and indirect maternal effect summary statistics are 
consistent with those reported in their GWAS-O and GWAS-M summary statistics and 
heterogeneity p-value > 0.05. More than 8 million SNPs were used in the comparative 
analysis. 
 
The UKB collected participants birth weight (data field 20022). Women who had at least 
one child were also asked for the birth weight of their first child (data field 2744). We also 
constructed two orthogonal phenotypes representing the direct and indirect 
components of birth weight following Warrington et al.28 The two new phenotypes were 

defined as: 2 )2��>?@ 2 ��>AABCD@E* 3d  and 2 )2��>AAFBCD@E 2 ��>?@* 3d , where ��>?@ is 

own birth weight and ��>AAFBCD@E is the offspring’s birth weight. 

 
We conducted GWASs for these four phenotypes (i.e., own and offspring birth weights 
and the two orthogonal phenotypes) on 75,711 independent individuals of European 
ancestry who had both own and first child’s birth weights available. To compare, this 
number was 101,541 in Warrington et al.28 which included both Europeans and non- 
European samples. Birth weight was constructed following Warrington et al.28 Year of 
birth, genotype array, assessment center, and top 20 PCs were used as covariates. The 
results on own and first child’s birth weight were used as input in our framework to 
estimate the direct and maternal effects while the GWASs on orthogonal phenotypes 
were used as comparison. 
 
 
GWAS on offspring EA 
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We identified 5,336 parent-offspring pairs among the UKB EUR samples. Following Lee 
et al.17, we used the “qualification” (data field 6138) to compute the years of schooling 
as the EA phenotype. Year of birth, sex, genotype array, and top 20 PCs were used as 
covariates. We used parents from independent parent-offspring pairs with offspring EA 
phenotype and covariates information as GWAS samples. If both parents’ genotype data 
were available, we only included one of them in the analysis. The GWAS sample size N 
= 4,181 (2,619 females and 1,562 males). 
 
In the HRS cohort, the respondent’s oldest child’s EA phenotype was constructed 
following Okbay et al.44 We kept only the independent (inferred by KING43) European 
parents (self-identified as “white/caucasian”) in our analyses. Year of birth, sex, and top 
10 PCs were used as covariates. GWAS sample size N = 6,324 (3,780 females and 2,544 
males). 
 
In the WLS cohort, the oldest child’s education information was given by variables 
“z_rd01001”, “z_gd01001”, and “z_gd21001” corresponding to different rounds of 
collection. We used the maximum value whenever there was any inconsistency among 
different rounds. The EA phenotype was constructed following Lee et al.17 We required 
the GWAS samples to be of European ancestry (variable “z_ie008re”), independent 
(inferred by KING43), the oldest child was a biological offspring (“z_rd00401” and 
“z_gd00401”), the offspring’s EA was measured when the child was at least 30 years old 
and parent was at least 15 years older than the child. Year of birth, sex, and top 10 PCs 
were used as covariates. GWAS sample size N = 4,772 (2,513 females and 2,259 males). 
 
PLINK45 version 1.9 was used to perform all GWASs. Finally, we meta-analyzed these 
three offspring EA GWASs using the inverse variance based approach in METAL46 to 
obtain the GWAS-MP as the input for our framework.  
 
We also compared results given by our framework and SNIPar15 with a same set of data 
in UKB. Using the full siblings (N = 35,243 samples from 17,136 families) of European 
ancestries in UKB identified by KING43 (here, we only used the full siblings whose parents 
are not in the UKB), SNIPar imputed their expected average parental genotype. With the 
sum of imputed parental genotype and the observed offspring’s genotype jointly in the 
model, SNIPar computed the direct and indirect effects on EA with a linear mixed model 
(N = 34,956 samples from 17,135 unique families with non-missing EA phenotype). Using 
the same full sibling data, we performed GWAS-O using the observed siblings (N = 
17,135 independent samples with phenotype and covariates available). Using the 
imputed sum of parental genotype, we ran GWAS-MP. Then our framework could also 
compute the direct and indirect effects using the two summary statistics and the 
comparison results are shown in Supplementary Figure 14. Year of birth, sex, 
genotyping array, and top 20 PCs were used as covariates in GWAS-O. In GWAS-MP, 
the offspring’s year of birth, genotyping array, and top 20 PCs were used as covariates 
where the PCs were computed using the imputed parental genotype by flashPCA242.  
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GWAS on own EA in UKB 

 
We conducted GWAS-O (N = 356,719) using independent European samples in the UKB, 
excluding the full sibling samples (N = 35,243) that were used by SNIPar. The EA 
phenotypes were constructed following Lee et al17. Year of birth, sex, genotyping array, 
and top 20 PCs were used as covariates. We then meta-analyzed with EA3 summary 
statistics that excluded UKB samples. The reason for excluding the full siblings was 
because later we would do meta-analysis with SNIPar results which used the full sibling 
data. 
 
 
Genetic correlation analysis 

 
We used both LDSC29 and GNOVA31 to compute genetic covariances and genetic 
correlations for any given pair of traits using their GWAS summary statistics. The results 
based on two approaches were comparable. The genetic correlation results shown in 
the main text were from LDSC. Details of the 45 traits used in the analysis and LDSC 
and GNOVA results are shown in Supplementary Tables 5-7. 
 
 
Polygenic score calculation and regression analysis 

 
We performed PGS analysis on two sets of UKB samples with European ancestry: the 
first set was 16,580 pairs of full siblings and the second was 370,308 independent 
individuals. For each sample, two EA PGSs based on direct and indirect effect estimates 
were computed. To maximize the power and avoid overfitting, we used different input 
summary statistics to compute the direct and indirect effects. For the full sibling pairs, 
we first excluded full sibling pairs from the UKB samples, then used KING43 to identify a 
subset of independent individuals (N = 356,719) and ran an EA GWAS following Lee et 
al.17 We used METAL46 to meta-analyze it with EA3 GWAS that excluded 23andMe and 
UKB samples (N = 324,162). Together with the offspring EA GWAS as inputs, we 
computed the direct and indirect effect summary statistics which were used to compute 
the PGSs for the full sibling pairs in UKB. For the second set, we used the EA3 GWAS 
that excluded 23andMe and UKB samples and the offspring EA GWAS as input to 
estimate the direct and indirect effects. 
 
To compute PGS, we first clumped the summary statistics in PLINK45 version 1.9 using 
the CEU samples in 1000 Genome Project Phase III cohort47 as the LD reference panel. 
We applied an LD window size of 1Mb and a pairwise r2 threshold of 0.1. Then, we 
computed PGS using PRSice-248 with a fine-tuned p-value cutoff given by PUMAS32. 
PUMAS uses GWAS summary statistics as input and output an optimal p-value cutoff 
that gives the highest �: for the PGS regression analysis. Since the PGS will use only 
the SNPs that are present in the target samples, we used only the SNPs that are present 
in the summary statistics, LD reference panel, and the target samples when running 
PUMAS.  
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We used software R49 version 3.5.1 to run linear regression of EA on PGSs. Both the EA 
phenotype and PGS were standardized. For full sibling pairs, we regressed EA difference 
between siblings on PGS differences. For independent samples, we used year of birth, 
sex, genotype array, assessment center, and top 10 PCs as covariates. �:  was 
computed as the ratio of sum squares by PGS to the total sum of squares. 
 
 
pTDT analysis 

 
Three ASD cohorts were used in the pTDT analysis: AGP (N = 2,188 trios), SSC (1,794 
proband trios and 1,430 sibling trios), and SPARK (3,822 proband trios and 1,812 sibling 
trios). Details of data processing in these cohorts have been described previously38. To 
compute PGS, we first used PLINK45 version 1.9 to clump the direct and indirect effect 
summary statistics using the CEU samples in 1000 Genome Project Phase III cohort47 as 
the LD reference panel. We applied an LD window size of 1Mb and a pairwise r2 
threshold of 0.1. PGSs were computed using PRSice-248 with optimal p-value cutoffs 
estimated by PUMAS32. We performed pTDT35 to measure the transmission 
disequilibrium in EA polygenic risks for ASD probands and siblings. 
 
 
URL 

 
AGP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000267.v5.p2); 
SSC (https://www.sfari.org/resource/simons-simplex-collection/); 
SPARK (https://www.sfari.org/resource/spark/); 
Early Growth Genetics Consortium (https://egg-consortium.org/birth-weight-
2019.html); 
SNIPar (https://github.com/AlexTISYoung/SNIPar) 
 
 
Data and code availability 

 
The DONUTS package is available at https://github.com/qlu-lab/DONUTS 
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