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Time-lapse imaging of bacteria growing in micro-channels in a controlled environment has been instrumental
in studying the single cell dynamics of bacterial growth. This kind of a microfluidic setup with growth chambers
is popularly known as mother machine [1]. In a typical experiment with such a set-up, bacterial growth can be
studied for numerous generations with high resolution and temporal precision using image processing. However,
as in any other experiment involving imaging, the image data from a typical mother machine experiment has
considerable intensity fluctuations, cell intrusion, cell overlapping, filamentation etc. The large amount of data
produced in such experiments makes it hard for manual analysis and correction of such unwanted aberrations.
We have developed a modular code for segmentation and analysis of mother machine data (SAM) for rod shaped
bacteria where we can detect such aberrations and correctly treat them without manual supervision. We track
cumulative cell size and use an adaptive segmentation method to avoid faulty detection of cell division. SAM
is currently written and compiled using MATLAB. 1t is fast (~ 15min/GB of image) and can be efficiently
coupled with shell scripting to process large amount of data with systematic creation of output file structures
and graphical results. It has been tested for many different experimental data and is publicly available in Github.

I. INTRODUCTION

An integral and almost inseparable part of modern image
analysis is segmentation of an image into meaningful objects
or regions of interest. Though image segmentation has been
studied for long it still presents with new challenges in analy-
sis and often times a predetermined set of operations produces
a poor quality of segmentation due to the noise and variabil-
ity in biological images. Many studies have developed image
analysis methods for bacterial growth analysis from mother
machine data [2-11] using conventional and machine learn-
ing methods. Here we present a set of modular programs
which can take a stack of images of rod shaped bacteria from
a mother machine experiment and segment them to produce
an easy to read data structure with the information of cell di-
visions. This data structure can be used to track all cells of
four consecutive generations and hundreds of divisions of the
mother cell (the cell at the end of the channel).

We first introduce the main working principle of SAM and
give a brief overview of how it can be used to analyze and
extract cellular information from mother machine image data.
We present some sample results of cell division statistics using
the cell data obtained from SAM. The code is publicly avail-
able in Github with sufficient documentation. We also provide
additional methods developed to easily handle the structured
cell data extracted by SAM. The main routines being writ-
ten in a higher level language, are easy to follow and can be
modified to suit the specific need of a study. We hope our sim-
ple image segmentation workflow can be understood and used
by anyone with entry level knowledge of MATLAB. We have
provided a separate, simpler and more documented Github
training repository for beginners.
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II. AIM OF THE IMAGE ANALYSIS

We have developed the image processing workflow to de-
tect cell divisions and track the cell lineages from fluorescence
images obtained from a mother machine experiment (Fig. 1a).
The channels we analyze are open at one end only (Fig. 1b)
and the cells exit the channel from the open end as they di-
vide and fill the channel. The cell at the closed end, referred
as old-pole mother cell keeps dividing and can be tracked for
many divisions. The other cells grow and divide as well but
eventually exit the channel after few rounds of division of the
old-pole cell. The major difficulties in the analysis of such
data come from experimental aberrations such as large fluctu-
ations in intensity, cell intrusion in the channel, cell overlap-
ping and sticky cells at the channel end. We have tried to elim-
inate such aberrations without manual input in our workflow.
We have employed tracking of various individual and collec-
tive features of the cells inside the channel to correctly capture
cell division events and to avoid erratic detection of cell divi-
sion due to intensity fluctuations and overlapping (which may
lead to “rejoining” of newly divided cells if not corrected for)
in newborn cells. In the cell data structure each cell of a chan-
nel has an unique identity number and we keep track of the
parent cells which enables us to track cell divisions of all the
cells up to four successive generations (where the total pop-
ulation consist of 8 cells and that almost fills the channel so
further tracking of all 8 divisions becomes impossible due to
extrusion of cells).

The main feature that helps in detecting cell division is the
increasing intensity dip at the middle of a large cell. This dip
signifies an approaching cell division (Fig. 1c-d). We define a
threshold prominence (a relative strength) for the minimum to
declare that a cell has divided. Cell to cell variability in inten-
sity values makes it difficult to define global threshold values
(Fig. 1e). A naive threshold based segmentation fails to detect
cell divisions correctly because of this intensity variation.
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FIG. 1. Features of mother machine data: (a) Typical mother machine image data shows florescently tagged E. Coli cells growing in parallel
chambers/channels. We separate single channels (e.g., shown in yellow box) and save them as image stacks (.tif files) to be analyzed by SAM.
(b) A phase contrast snapshot of the mother machine growth chambers (left) show bacteria cells inside the channels. A schematic diagram
(right) shows the channels have the bottom end open for nutrient inflow. Bacteria cells keep growing and dividing inside the channel and as
their numbers increase the cells in the bottom of the channel move out and get removed (cell extrusion) by the media flow in the device. (c-e)
The midline (in blue) projection of intensity shows the large intensity dips in between two cells. Small intensity minima start developing when
cells start to divide (marked in red). The main objective of image segemntation here is to correctly capture and categorize the new emerging
minima to detect cell division events.

III. WORKING PRINCIPLE a set of codes to enable easy analysis of the structured
cell data and visualization of the cell division statistics.
Here we discuss the main algorithm and the major steps in- The second step (this is basically the step done by SAM)

volved in the workflow employed in SAM. The entire process consists of many different operations on the image stack end-
of data analysis starting from the raw unprocessed image data  ing with producing a detailed data structure for cell division

from mother machine to statistics of cell division can be de- events for each channel. A short breakdown of the major op-
scribed in three major steps: erations performed in SAM (Fig. 2a) is given below:

1. Pre-processing the whole image of the microfluidic de- o All the channels (image stack) saved as .tif files in a
vice: We break down the image into small image stacks particular directory (named “im” here) are read one by
each containing a single channel. This step is manually one in a data loop as image stack data. This image stack
done in the current version of the workflow. We hope to data will be used in the analysis of each frame.
include an automatic breakdown of the image in a later

e The frames saved in the 3D image stack data (named
“Finallmage”) are called in the time loop. Each frame

2. Segmentation and analysis of channel data set: We use was processed and enhanced. Then a mid-line (long

SAM for detection of individual cells and tracking of axis of the channel, see Fig. 1c) intepsity projection was
cell divisions from the whole set of channels. Dur- calculated by averaging over the width of the channel.

ing tracking all common experimental noise and aberra- The intensity minima were then detected from this one
tions are automatically removed or corrected for with- dimensional data.

version.

out any manual intel"Vel‘ltiOIl. All Cell diVlSiOn and eXx- Y The ﬁrst Segmentation was perforrned (Fig. 2b) after
trusion events are recorded in a lineage tractable data this.
structure.

e The segmentation was done in two steps- a binary im-
3. Further analysis and visualization: We have developed age of the frame with only the cells (pixel inside cell:
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FIG. 2. Segmentation and cell detection: (a) A reduced flowchart of the main working principle of SAM. We employ repeated segmentation
based on a trial and error evaluation of segmentation quality. (b) The four frames show the images at the four star marked points within the
flowchart. This particular frame being devoid of aberrations the two segmentations are very similar. (c) A sample SAM output figure shows
segmentation of a frame where the raw image (left) was segmented and binarized (middle) to detect the individual cells and an ellipse was
fitted to each cell (right). The black dot marks the centroid of the cell.
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High, pixel outside cell: Low) was created then this
binary image was cut into separate connected objects
(high value pixels that are adjacent) using the minima
positions such that each connected objects correspond
to one cell. These connected objects were saved in a
structured array (named “CC”) for further analysis.

e This first segmentation is used in various consistency
cross-checks to validate the segmentation. When aber-
rations or inconsistencies were detected different spe-
cialized correction or adaptive detection operations
were run in a bid to get rid of the aberrations or incon-
sistencies.

e A final segmentation was performed after all correc-
tions and the cells were saved in a structured array
(named “CC2”) for further analysis.

e A measure of cell size was estimated from the major
axis length of a fitted ellipse on each cell (Fig. 2c¢).

e In the case of a cell division and/or cell extrusion event
the cell data (named “cell_id”’) was updated accordingly.

e These operations were repeated on each frame for each
channel to extract cell division data from each channel.

The segmentation needs some user defined input parame-
ters. All such parameters are to be defined in the main code
“SAM.m”. The major quantities that have to be judiciously
chosen are: (i) A global threshold (named “thr”) to create bi-
nary images. As a simple approximation an average back-
ground intensity can be set as this threshold. (ii) A rough
estimate of typical cell size in pixels at birth and at division.
Few parameters (such as minimum possible cell size, mini-
mum distance between intensity minima etc) has to be deter-
mined from this estimate. These two quantities may depend
on cell type, growth condition and microscopy settings.

IV. DATA STRUCTURE AND CELL DIVISION
STATISTICS

Here we discuss the output data structure and sample cell
division statistics obtained using SAM. In all the presented
analysis here we used SAM to analyze the publicly avail-
able time lapse image data for E. coli cells from the study
of Tanouchi et al [12, 13].

The output of SAM, a cell data created to record cell di-
vision events records six essential information for each cell.
These six information are time of birth (Tbir), time of divi-
sion (Tdiv), length at birth (Lbir), length at division (Ldiv),
cell id of the parent (PId) and cell centroid position at the time
of division (Pdiv) and each cell (of one channel) has an unique
cell id given by the row number in the cell data (Tab. I). The
cells in the first frame of each channel is given id according to
their position relative to the closed end of the channel where
we refer the cell at the closed end as old-pole cell. Cells cre-
ated from the division of these initial cells are given cell id
according to their birth, a cell born earlier shall have a smaller
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cell id than a cell born later on. The first and seventh columns
record the current index (Cind ~ relative position of the cell in
channel at current frame) and the index at the time of division
(Idiv) respectively (Tab. I). These two quantities are dynamic
and keep changing as the analysis progresses and these values
were used in various tasks during segmentation. The current
index become zero when a cell divides or exits the channel.
All the lengths recorded are in the units of pixels here. The
values can be decimal because the quantities are calculated
from the major axis length and centroid position of the fit-
ted ellipse. This however does not necessarily mean we can
achieve sub-pixel accuracy.

TABLE 1. Cell division data structure
Cind Tbir Tdiv Lbir Ldiv PId Idiv Pdiv

0.00 0.00 11.00  0.00  27.428474 0.00 1.00 31.048128
0.00 0.00 30.00 0.00 26.446321 0.00 3.00 71.430233
0.00 0.00 36.00 0.00 30.262136 0.00 5.00 106.938776
0.00 0.00 6.00 0.00  25.324549 0.00 4.00 81.472603
0.00 0.00 8.00 0.00  28.690051 0.00 6.00 112.565934
0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00
0.00 6.00 0.00 11.395244  0.00  4.00 0.00 0.00
0.00 6.00 0.00 13.143442  0.00  4.00 0.00 0.00
0.00 8.00 0.00 13.518004  0.00  5.00 0.00 0.00
0.00 8.00 0.00 14.304699  0.00  5.00 0.00 0.00
0.00 11.00 44.00 13.168872 28.551908 1.00 1.00 32.764706
0.00 11.00 44.00 14.444769 29.267566 1.00 2.00 59.554404

For the sake of more clarity here we elaborate a small seg-
ment of the cell data (Tab. I) with corresponding segmented
images (Fig. 3). If we notice the time of birth column we see
three divisions (at 6, 8 and 11 min) within first 15 frames (15
mins). In the first cell division the cell with cell id= 4 di-
vides to produce two daughter cells with cell id= 8 and cell
id= 9 (notice the PId for 8th and 9th row). Similarly cells
with cell id= 5 and cell id= 1 divides at time ¢ = 8 min and
t = 11 min to give rise to cells with ids 10, 11, 12, 13 re-
spectively (Fig. 3). It is important to notice that in this small
segment only the cell with cell id= 13 has both non-zero birth
time and division time from which a cell cycle duration can
be calculated. The cells with cell id 8 to 11 exit the channels
after birth (at time ¢ > 15 min) before they could divide to
complete one cell cycle. As the analysis progresses we gather
more cells with complete cell cycle information.

The cell data recorded can be used to evaluate various cell
division statistics. Here we present some examples of the
things that can be calculated dividing them in three categories:

e The phenomenology of cell division can be probed by
checking the three major classes of cell division rule,
namely the adder, sizer and timer. We plot added length
(AL), length at division (L) and cell cycle duration (1)
with the length at birth (L;). The plots indicate a strong
adder nature of cell division as observed in E. coli [14].
See Fig. 4 for details.

e The features of cell division in subsequent generations
can be probed from our data. Here we show the Pear-
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FIG. 3. Cell division and extrusion: Example of an workflow output of 11 consecutive frames (from some time ¢ = 5 min to ¢ = 15 min).
Cell division events (blue fork) were detected in 2nd, 4th and 7th frames and cell extrusion events (green arrow) were detected in 2nd and 10th

frame.
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FIG. 4. Cell division statistics: (a) We plot added length (Ar), (b) length at division (Lg4) and (c) cell cycle duration (7) with the length at
birth (L) and find the cell division strongly support a adder like mechanism of growth where cells add a constant volume (length, assuming
with remains same) between birth and division in each cell cycle. (d) The division time distribution for all the cell divisions recorded. (inset)
Birth length at each division shows the variation in the quantity. N denote the number of cell divisions detected.

son’s correlation of birth length in the first and second
generation (mother and daughter divisions) and in the
first and third generation (mother and granddaughter
divisions). The plots show a decrease in birth length
correlation with progressing generation which indicates
that stochasticity (of various origin) in cell growth and
division destroys correlation over the generations. See
Fig. 5a-c for details.

e Variation in cell division quantities with the position of
division. We probe the added length and cell cycle du-
ration for divisions at different position and do not find
any significant variation in this particular experimental
data. But the old-pole cell division features may devi-
ate from the population average [15] as it does not exit
the channel and hence contains the old pole (the pole
closer to the channel closed end). Correlating cell divi-
sion features with pole age can be useful to determine
such effects if there exist any [1]. See Fig. 5d-e for de-
tails.

V. EXPERIMENTAL METHODS

For the data presented in Fig. 1 experiments were per-
formed on the E. coli strain MG1655 constitutively express-
ing green fluorescent protein [16] . Cells were grown in Luria
Bertani medium (LB) at 37° Celsius for 3 hours before cen-
trifugation. The pellet was resuspended in 200 p L of LB
which was injected into the microfluidic device, and the cells
were allowed to diffuse into the growth channels. The “mother
machine” was fabricated as described by Wang et al [1]. The
device was placed in a stage-top incubator (Okolab) placed
on a microscope (Olympus IX81) with a continuous supply of
LB (700 u L/hour), both kept at 37° Celsius. Fluorescence
images (ex: 490 nm) were taken every 2 min by an EMCCD
camera (Photometrics Prime).

VI. DISCUSSION

In this document we have presented an image segmentation
workflow which can be used in analysis of image data ob-
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FIG. 5. Correlations over subsequent generations and pole age: (a-c) Pearson’s correlation constant (PC'C) of birth length in the first and
second generation (mother and daughter divisions) and in the first and third generation (mother and granddaughter divisions) shows a decay
in correlation with progressing generation. The confidence interval (ci) was calculated for a 50% window. (d-e) Cell division features were
calculated with respect to the position of division (i.e., position of centroid of the dividing cell). This analysis can be useful in testing if the old
cell in the end of the channel divides differently (or “ages”) than the other newly born cells. We find no significant change in division quality

over the observed time window.

tained from a microfluidic mother machine experiment with
minimal manual supervision. Our workflow uses various local
and global quantities to implement a slew of adaptive routines
to minimize errors due to experimental aberrations such as cell
intrusion, sticky cells at channel exit, intermittent high inten-
sity cell clusters in flow channels etc. We have successfully
analyzed data from different experiments and with different
media conditions (not presented here) with very small mar-
gins of error (< 1% of the cell divisions captured are found
to be erroneous). We hope our method will be useful to the
community as an analysis tool. For more detailed documen-
tation and current versions of the workflow please refer to the
Github repository for SAM . Currently our code does not im-
plement any machine learning methods but we shall include
such methods in future versions of the workflow to lessen
manual inputs in the process.

VII. CODE AVAILABILITY

The main routines with full data analysis modules (paired
with shell scripting) and test image files are available as the
Github repository of SAM. A MATLAB console only version
is also available which can easily be used in many platforms
(checked for Mac, Windows and Linux). For beginners we
have made a trainer with an aim to illustrate how SAM pa-
rameters change in two very different experiments. We sug-
gest users to start with this version when they tune SAM for
their data.
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