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Abstract 

DNA-methylation profiles have been used successfully to develop highly accurate biomarkers of 

age, epigenetic clocks, for many species. Using a custom methylation array, we generated DNA 
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methylation data from n=238 porcine tissues including blood, bladder, frontal cortex, kidney, liver 

and lung, from domestic pigs (Sus scrofa domesticus) and minipigs (Wisconsin Miniature 

Swine™). We present 4 epigenetic clocks for pigs that are distinguished by their compatibility 

with tissue type (pan-tissue and blood clock) and species (pig and human). Two dual-species 

human-pig pan-tissue clocks accurately measure chronological age and relative age, respectively. 

We also characterized CpGs that differ between minipigs and domestic pigs. Strikingly, several 

genes implicated by our epigenetic studies of minipig status overlap with genes (ADCY3, TFAP2B, 

SKOR1, and GPR61) implicated by genetic studies of body mass index in humans. In addition, 

CpGs with different levels of methylation between the two pig breeds were identified proximal to 

genes involved in blood LDL levels and cholesterol synthesis, of particular interest given the 

minipig’s increased susceptibility to cardiovascular disease compared to domestic pigs. Thus, 

inbred differences of domestic and minipigs may potentially help to identify biological 

mechanisms underlying weight gain and aging-associated diseases. Our porcine clocks are 

expected to be useful for elucidating the role of epigenetics in aging and obesity, and the testing 

of anti-aging interventions.  

 

Introduction 

Pigs (Sus scrofa) are omnivores that last shared a common ancestor with humans between 79 and 

97 million years ago 1,2. The domestication of pigs dates back to approximately 10,000 years, 

where they were bred with local wild boars across Eurasia 3,4. Since then, a wide variety of 

domestic and minipig breeds have been selectively bred for agricultural and biomedical purposes. 

While murine models have been traditionally used in biomedical research, there are added 

advantages to the use of porcine models in translational research. This include their comparable 

size, anatomy, physiology, immunology, metabolism, and genetics with humans 5-7. At the cellular 

levels, we have previously demonstrated similar genome-wide DNA methylation patterns between 

pigs and humans across a range of biomedically relevant tissues 8,9, further supporting the high 

relevance of pigs in modeling human disease and development. Indeed, these advantages have 

been recognized and porcine models are already being used in biomedical research 10-19. However, 

the large size and low propensity for atherosclerosis development in particular,20 limited the use 

domestic pigs as cardiovascular models. To overcome these issues, selectively bred and genetically 

modified minipigs have emerged over recent years as excellent models of hypercholesterolemia, 

atherosclerosis, metabolic syndrome, diabetes, and even cancer 13,21-27. Due to their smaller size, 

ease of handling, and genetic manipulability, minipigs are becoming increasingly important animal 

models for a wide range of human pathologies 12. 

 

The study of any disease would be incomplete without an understanding of how age contributes to 

the malfunctioning of cells, tissues and organs. Despite this acknowledgement, the contribution of 

age to pathology has been largely unaddressed, not for the lack of will, but means. In the absence 

of an accurate way to quantify biological age, time (chronological age) is adopted as a surrogate 

that is manifestly unsatisfactory, as it remains unresponsive to biological fitness or frailty. The 

need for a measure of age that is based on biology is clear, and hints that this may be possible 

emerged when DNA methylation level was observed to change with advancing age. DNA 

methylation is an epigenetic modification that controls gene expression. The significance of its 

age-associated change was a subject of speculation until recently, when an array-based technology 

was developed to accurately measure its level on specific cytosine-phosphate-guanines (CpGs) in 

the genome. DNA methylation levels allow one to build age estimators (pan tissue clocks) that 
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apply to most cells of the human body 28. The rate of epigenetic aging was observed to be 

associated with a wide range of human conditions including mortality risk, Down syndrome, HIV 

infection and obesity, 29-36 indicating that epigenetic age is a measure, at least to some degree, of 

biological age.  

 

It is evident that the extrapolation of this epigenetic clock to other species, especially those such 

as pigs that are employed as disease models in biomedical research, will greatly facilitate research 

into the influence of age on pathology. This would also permit the quantitative testing of 

interventions that could potentially mitigate age effects on pathology. Towards this end, we aimed 

to develop epigenetic clocks that apply to both humans and pigs at the same time. To overcome 

the species barrier, we used a DNA methylation array platform (HorvathMammalMethylChip40) 

that encompasses CpGs flanked by DNA sequences that are conserved across different species of 

the mammalian class.  

Here, we present highly accurate epigenetic clocks that apply to both humans and different pig 

breeds: the regular sized domestic pigs, Wisconsin Miniature Swine™, and a cross between 

domestic and Minnesota minipigs. The human-pig clock provides increases the probability that 

findings in pigs will translate to humans, and vice versa. We also characterized 1) age-related 

changes in the porcine methylome and 2) cytosines that differ between minpigs and regular sized 

pigs. 

 

Results 

As detailed in the Methods, we used a custom methylation array (HorvathMammalMethylChip40) 

to generate DNA methylation data. In total, we analyzed 238 tissue samples mainly from blood 

(Table 1). Blood samples were obtained from three pig lines: a cross between the Large White and 

Landrace domestic pig breeds, the Wisconsin Miniature Swine minipig, and a cross between the 

Large White domestic breed (maternal line) and the Minnesota minipig (sire). From the latter pig 

line (i.e. the domestic minipig cross), methylation profiles were obtained from DNA isolated from 

bladder, brain (frontal cortex), kidney, liver, and lung tissue. Unsupervised hierarchical clustering 

revealed that the samples clustered by tissue type (Supplementary Figure 1). Random forest 

predictors were fitted to three different outcomes: 1) pig breed (Sus scrofa domesticus versus Sus 

scrofa minusculus), 2) tissue type, and 3) sex. The three classifiers exhibited perfect accuracy, with 

respective (out-of-bag) error rates of zero. 

 

Predictive Accuracy of the Epigenetic Clock 

To arrive at unbiased estimates of the epigenetic clocks, we applied cross-validation analysis with 

the training data. For the development of the basic pig clock, this consisted of pig blood, bladder, 

frontal cortex, kidney, liver, and lung DNA methylation profiles. For the generation of human-pig 

clocks however, the training data was constituted by human and pig DNA methylation profiles. 

Cross-validation analysis reports unbiased estimates of the age correlation R (defined as Pearson 

correlation between the age estimate (DNAm age) and chronological age) as well as the median 

absolute error. 

 

From these analyses, we developed three epigenetic clocks for pigs that vary with regards to two 

features: species and measure of age. The resulting two human-pig clocks mutually differ by way 

of age measurement. One estimates chronological ages of pigs and humans (in units of years) based 

on methylation profiles of 638 CpGs, while the other employs the methylation profiles of 542 
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CpGs to estimate relative age, which is the ratio of chronological age of an animal to the maximum 

lifespan of its species; with resulting values between 0 and 1. This relative age ratio is highly 

advantageous because it allows alignment and biologically meaningful comparison between 

species with very different lifespans such as pig and human, which cannot otherwise be afforded 

by direct comparison of their chronological ages. 

  

As indicated by its name, the pure pig clock, constituted by 120 CpGs, is highly accurate in age 

estimation in all porcine tissues (R=0.97 and median error 0.22 years, Figure 1A). The pan-tissue 

clocks exhibit high age correlations in individual porcine tissues (R>0.90, Supplementary Figure 

1). The human-pig clock for chronological age is highly accurate when DNA methylation profiles 

of both species are analyzed together (R=0.98, Figure 1B), and remains so when restricted to pig 

tissue samples (R=0.97, Figure 1C). Similarly, the human-pig clock for relative age exhibits high 

correlation regardless of whether the analysis is applied to samples from both species (R=0.98, 

Figure 1D) or only to pig samples (R=0.96, Figure 1E). The use of relative age circumvents the 

clustering of data points of pigs and humans to opposite parts of the curve, which is evident in 

Figure 1C. These highly accurate array of porcine clocks are readily useable with immediate effect 

in porcine models of diseases and conditions, and the human-pig clock of relative age is 

particularly exciting as it allows comparison between human and pigs based on their relative 

positions within the lifespans of both species.  

 

EWAS of chronological age 

Although several hundred CpGs were used to construct the epigenetic clocks described above, 

these were merely a subset of all CpGs, which changed with advancing age. There are many more 

age-associated CpGs that are not used for the purpose of estimating porcine age, but are 

nevertheless very important when we seek to identify CpGs with methylation levels that are 

associated with age through epigenome-wide association studies (EWAS). In total, 34,540 probes 

from the HorvathMammalMethylChip40 are aligned to loci that are proximal to 5,209 genes in the 

Sus_scrofa.Sscrofa11.1.100 genome assembly. Due to the high inter-species conservation of the 

probes on the array, findings from the pig methylation data can probably be extrapolated to humans 

and other mammalian species. EWAS of chronological age revealed clear tissue-specific DNAm 

change in pigs (Figure 2A). Age-associated CpGs in one tissue tend to be poorly conserved in 

another tissue (Supplementary Figure 3). However, the poor conservation and differences in p-

value ranges in our analyzed tissue types may reflect the limited sample size in non-blood tissues. 

 A nominal p-value < 10-4 was set as the cut-off for significance. The top age-associated CpGs and 

their proximal genes for the individual tissues are as follows: bladder, ANO4 exon (z = 5.8); blood, 

EN1 promoter (z = 26); frontal cortex, FGF9 exon (z = 5.6); kidney, TNRC6A exon (z = -7.5); 

liver, NRSA1 exon (z = 8.6); and lung, UNC79 5`UTR (z = 8.1). Despite poor conservation across 

tissues, there are nevertheless age-related CpGs that are common to all tissues, and these were 

identified through meta-analysis of these six tissue samples to be hypermethylation in EN1 

promoter (z = 18), HCN1 exon (z = 17), UNC79 5`UTR (z = 17) , LHFPL4 exon (z = 17), and 

NR2F2 exon (z = 17). The upset plot analysis identified several CpGs with conserved DNAm 

aging in at least four pig tissues (Figure 2B). The most conserved DNAm aging pattern was 

hypermethylation of the SP8 promoter in all tissues, with the exception of the brain. Genes whose 

expression are regulated by SP family transcriptional factors are essential for proper limb 

development. Aging-associated CpGs in different tissues were distributed in genic and intergenic 

regions that are defined relative to transcriptional start sites (Figure 2C). There is little enrichment 
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of age-related CpGs in any genetic features across all tissues, with the exception of consistent 

hypermethylation in promoters and 5’UTRs. This result is consistent with a higher positive 

association of CpG island methylation with age than non-island CpGs in all tissues (Figure 2D). 

These features suggest that a substantial amount of age-associated CpGs are likely to impact gene 

expression. 

 

To specifically explore the potential impact of age-related porcine CpG methylation on gene 

expression, we analyzed putative transcription factors binding sites for such methylation. From 

these we identified 20 transcription factor binding motifs that exhibit age-related methylation 

changes (Figure 3A). The corresponding transcription factors control the expression of genes 

which are involved in many different cellular activities. For example, hypomethylation in the SP1 

motif in blood and cortex indicates greater access of the SP1 protein to some of its binding sites 

with increasing age. However, the outcome of this is difficult to predict as SP1 activates the 

transcription of many genes that are involved in diverse cellular processes ranging from cell 

growth, apoptosis, the immune response and chromatin remodeling. The challenge in predicting 

downstream events from single transcription motifs can be partly addressed by collective analysis 

of multiple transcription factor motifs. Such an analysis identified age-associated methylation 

changes for SMAD3, SP1, SP3, and E2F1 transcription factor binding motifs, which are implicated 

in telomerase regulation (p = 6E-7). We briefly mention that the effects of telomere length and 

telomerase activity in porcine tissues appears to be comparable with that of humans 37.  

 

While identification of genes proximal to age-associated CpGs, as performed above, are useful, 

the likelihood of their potential effects on cells is difficult to gauge. This can be partly addressed 

by carrying out analysis to identify enrichment of implicated genes in specific pathways, 

pathologies and biological processes (Figure 3). This analysis highlighted the following features 

impacted by age-related CpG methylation changes in porcine cells: organism development, the 

nervous system and metabolism; all of which have also been found to be implicated in epigenetic 

aging of humans and other species (Figure 3B). Furthermore, genes proximal to hypermethylated 

CpGs are associated with H3K27Me3 marks and are often polycomb protein EED targets in 

porcine tissues. EED is a member of the multimeric Polycomb family protein complex that 

maintains the transcriptional repressive states of genes. These proteins also regulate H3K27Me3 

marks, DNA damage, and senescence states of the cells during aging 38.  

 

Studying differences across pig lines 

With the DNA methylation data sets we have accrued from the different porcine breeds, we are in 

a position to identify CpGs that differ between domestic and minipig breeds. We compared DNA 

methylation profiles from blood of domestic pigs with those from Wisconsin Miniature Swine™.  

We found found the mean methylation across CpGs located in CpG islands is higher in minpigs 

than in the other two pig lines (Supplementary Figure 4). Similarly, the average rate of change 

in methylation across island CpGs is increased in minipigs (Supplementary Figure 4). 

 

We analyzed individual CpGs using two different multivariate models. In the first, the DNAm 

levels of a given CpG were regressed on age and breed (minipig versus reset) to identify CpGs 

that are associated with aging in both breeds (age main effect). This model was also used to identify 

CpGs with significantly different basal methylation levels between breeds (Minipig main effect). 

The second model identified age-related CpGs with different rates of methylation changes between 
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these two pig breeds independent of the direction of change. At a genome-wide significance set at 

p < 1e-8; 10,167 age-associated CpGs were shared between both pig breeds, while 825 CpGs had 

different baseline methylation levels, and the rate of methylation change of 32 age-associated 

CpGs were significantly different between the two (Figure 4A). Thus, while age has the largest 

impact on methylation of these CpGs, there is an inherent species-specific difference in basal 

methylation levels of a substantial number of CpGs, which is expected given the overt differences 

between the breeds. The top CpGs with divergent rate of methylation change between the breeds 

are proximal to the MGST1 exon, SON 3’UTR, and TFAP2B exon (Figure 4A-C). CpGs with 

different basal methylation levels between the two breeds were located within the OSBP exon, 

ENC1 intron, and CTNNBL1 upstream regions (Figure 4A). In total, eight categories of CpGs can 

be defined based on the direction of their methylation change with age in the two pig breeds. While 

methylation of most age-associated CpGs was altered in similar directions in both breeds (hypo or 

hyper in both axes), some were clearly in opposite directions (hyper in one axis and hypo in the 

other). The LMNA intron is an example region that displayed extreme divergence. While its intron 

was hypomethylated with age in the domestic pig, it was hypermethylated in minipigs (Figure 

4C). An enrichment analysis of age-related CpGs that are exclusive to either breed implicated 

pathways involved in development, survival, cancer, and growth (Figure 4D).  

Our analysis of differentially methylated CpGs between domestic and minipigs implicated genes 

that regulate weight. This particularly interesting finding prompted us to query whether any of 

these identified genes are associated with weight differences in humans. To this end, we 

overlapped the EWAS genes with a large GWAS meta-analysis of body-mass index (BMI) in 

humans, which included 681,275 participants in UK Biobank and GIANTBMI consortium 39. 

Strikingly, several of the EWAS-identified genes had genetic variants that are associated with 

increased BMI in humans (Figure 5). The top genes include ADCY3, TFAP2B, SKOR1, and 

GPR61, which had numerous SNPs in different gene regions associated with human BMI. Thus, 

our EWAS analysis of pig breeds of overtly different sizes implicates genes that were implicated 

by a published GWAS of human BMI.  

 

Discussion 

We have previously developed several human epigenetic clocks from DNA methylation profiles 

that were derived from various versions of human Illumina DNA methylation arrays. As these 

arrays are specific to the human genome, a critical step toward crossing the species barrier was the 

development and use of a mammalian DNA methylation array that profiles 36 thousand CpGs with 

flanking DNA sequence that are highly conserved across numerous mammalian species. The 

employment of this array to profile 238 porcine tissues from 3 pig lines, represents the most 

comprehensive epigenetic dataset of domestic pigs thus far. These data allowed us to construct 

four highly accurate DNA methylation-based age estimators for three pig lines. Two of these 

clocks apply only to pigs: the pan-tissue clock which was trained on methylation profiles of six 

tissues, is expected to apply to most pig tissues. The blood clock on the other hand, was trained 

using only blood DNA methylation data. These two highly-accurate porcine clocks are readily and 

easily included in porcine-based models of diseases and health conditions. This will encourage 

investigations into the relationship between age and diseases, and also uncover the effects of 

environment, living condition, food, medicine and treatment on the rate of porcine epigenetic 

aging. While toxicity, mutagenicity and carcinogenicity are considered health-impacting effects 

that draw the attention of health experts, age-accelerants have yet to be appreciated as being 

potentially as important, or perhaps even more so, as age is the biggest risk factor for almost all 
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diseases, and accelerated epigenetic aging is associated with a whole host of pathologies and health 

conditions. While mice can be used to detect potential age-accelerating agents, this route is 

evidently limited due to the inherent differences between humans and mice, such as food, sleep-

wake cycle, metabolism, physiology, endocrinology, and disease susceptibility. The better 

compatibility between pigs and humans are elaborated above, and the availability of these porcine 

epigenetic clocks further consolidates the greater relevance of employing porcine models for 

human health conditions. This advantage is compounded by the successful generation of human-

pig clocks that apply to both species. It is essential to appreciate the profound significance of these 

dual species clocks. With a single mathematical formula, the age of humans and pigs can be 

estimated based solely on methylation levels of a few hundred cytosines. At the most fundamental 

level, this demonstrates that the mechanisms and processes that underpin aging in these two 

mammalian species that diverged millions of years ago are essential for life. Species diversification 

and adaptation through selection would gain specialized and advantageous features and lose others, 

but features essential for life will be retained. As such, the mechanisms that underlie aging must 

be essential for life as well. This is consistent with the fact that some of the loci that harbor age-

associated CpGs in pigs and humans (as well as other mammalian species), are bivalent chromatin 

domains and targets of the polycomb repressive complex (PRC). This is of significance because 

these regions are primarily located upstream of Hox genes which specify development of various 

parts of the body of organisms ranging from worms, flies, mice and humans. In other words, these 

are some of the oldest genetic elements of life. In this study the highest scoring porcine blood CpG 

is one that resides in the promoter if the engrailed gene (EN1), which is a member of the Hox gene 

family. EN1 also scored the highest in meta-analyses of all the tissues. It is as yet unclear how 

methylation of these loci are involved with aging, but their increased methylation with age hints 

at the possible role of cellular identity and differentiation. This is no doubt an exciting avenue of 

exploration in which these epigenetic clocks will be essential.  

 

The considerable similarities between humans and pigs allows for the testing of age-mitigation 

interventions as well as factors that impact longevity in pigs, which have a shorter lifespan and are 

much more amenable subjects for controlled trials. To accurately translate age-related findings 

from pigs to humans however requires a correct and accurate measure of age-equivalence. We 

fulfilled this need through a two-step process. The first, which we described above is the generation 

of dual-species clocks (human-pig), one of which is as accurate in estimating pig age as it is for 

human age; in chronological units of years. The second is the expression of pig and human ages 

in respect to the maximum recorded ages of their respective species (species lifespan), i.e. 23 years 

for pigs and 122 years for humans. The mathematical operation of generating a ratio eliminates 

chronological units of time and produces a value that indicates the age of the organism in respect 

to the maximum age of its own species. This allows a meaningful and realistic cross-species 

comparison of biological age. For example, the biological fitness of a 20 year-old pig, which is 

very old, is not equivalent to that of a 20 year-old human, who is young. However, a pig with a 

relative epigenetic age of 0.5 is more comparable to a human of similar relative epigenetic age. 

Collectively, the ability to use a single mathematical formula to measure epigenetic age of different 

species and the replacement of chronological units of time with proportion of lifespan, are two 

significant innovations that will propel cross-species research as well as cross-species benefits.  

 

In addition to age-related epigenetic changes, we also compared DNA methylation profiles 

between domestic and minipigs. CpGs with substantially different basal methylation levels 
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between the two breeds were identified proximal to the OSBP gene. This is of great significance, 

as OSBP is a transport protein that translocates sterols from lysosomes into the nucleus where the 

sterol represses the expression of the LDL receptor gene, HMG-CoA reductase gene and HMG 

synthase gene. The reduction of LDL receptor increases the risk of atherosclerosis and 

cardiovascular disease. Indeed, mice with ablated LDL receptor genes develop plaques in their 

aortas, while wildtype mice are free of such plaques. Compounding the effects on LDL receptor 

levels is the effect on expression of HMG-CoA and HMG synthase, which are members of the 

intracellular pathway that synthesize cholesterol. These features are of particular interest given the 

fact that while domestic pigs are refractive to atherosclerotic plaque development, minipigs are 

susceptible and hence used as models for cardiovascular disease. Another feature of interest is the 

identification of differentially methylated CpGs associated with genes involved in the development 

of obesity. The matching of EWAS targets with a large GWAS meta-analysis of body-mass index 

(BMI) in humans led to the identification of overlapping genes included TFAP2B, which 

influences the effect of dietary fat on weight 40, GPR61, which is involved in the regulation of food 

intake and body weight 41,42, and ADCY3 and SKOR1, both of which are associated with obesity 

and BMI 43-46. Collectively, these associations points to the contribution of epigenetic control and 

influence on weight gain and obesity, in addition to highlighting the translational relevance of 

porcine models for cardiovascular disease and obesity-related research. It is interesting to note that 

the Dnmt3a locus is also differentially methylated between these two breeds. It is tempting to 

speculate that this may be an upstream event that impacts on the downstream methylation 

differences described above.   

 

Our study is limited in that all animals were younger than 6.3 years old while the maximum 

observed lifespan of domestic pigs (Sus scrofa domesticus) appears to be 23. In our own data base, 

we assigned the Wisconsin Miniature Swine™ the Latin name "Sus scrofa minusculus" with an 

estimated maximum lifespan of 23 years.  

 

As porcine biomedical models for a wide range of age-related disorders are currently in use or 

being developed, including Alzheimer’s disease 47, cardiovascular disease 48, diabetes 22, and 

cancer models 21,23,24, the availability of these epigenetic clocks will extend the use of porcine 

models for aging, and possibly obesity studies.  

 

 

Materials and Methods 

 

Porcine samples 

All animal procedures were approved by the University of Illinois and University of Wisconsin 

Institutional Animal Care and Use Committee, and all animals received humane care according to 

the criteria outlined in the Guide for the Care and Use of Laboratory Animals. Porcine whole blood 

samples (n=146) were collected from female Large White X Landrace crossbred domestic pigs 

(n=84, age range 11 – 2,285 days) and Wisconsin Miniature Swine™ (n=60, age range 8 – 1,880 

days) at the University of Wisconsin-Madison. Whole blood (n=16) and tissue samples (bladder, 

frontal cortex, kidney, liver, lung; n=16/tissue type) were collected from 16 Large White X 

Minnesota minipig crossbred pigs (n=9 female, n=8 male, age range 29 – 1,447 days) at the 

University of Illinois at Urbana-Champaign. All blood samples were collected in EDTA tubes, 

aliquoted, and flash frozen in liquid nitrogen within 10 minutes of collection. Tissue samples were 
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collected and flash frozen within 10 minutes of euthanasia. All samples were stored at -80 until 

processing. Samples were shipped to the University of California, Los Angeles Technology Center 

for Genomics & Bioinformatics for DNA extraction and generation of DNA methylation data. 

 

Human tissue samples 

To build the human-pig clock, we analyzed previously generated methylation data from n=850 

human tissue samples (adipose, blood, bone marrow, dermis, epidermis, heart, keratinocytes, 

fibroblasts, kidney, liver, lung, lymph node, muscle, pituitary, skin, spleen) from individuals 

whose ages ranged from 0 to 93. The tissue samples came from three sources. Tissue and organ 

samples from the National NeuroAIDS Tissue Consortium 49. Blood samples from the Cape Town 

Adolescent Antiretroviral Cohort study 50. Skin and other primary cells provided by Kenneth Raj 
51. Ethics approval (IRB#15-001454, IRB#16-000471, IRB#18-000315, IRB#16-002028). 

 

 

DNA methylation data 

We generated DNA methylation data using the custom Illumina chip 

"HorvathMammalMethylChip40". The mammalian methylation array provides high sequencing 

depth (over thousand X) of highly conserved CpGs in mammals, but focuses only on 36k CpGs 

that are highly conserved across mammals. Out of 38,000 probes on the array, 2,000 were selected 

based on their utility for human biomarker studies: these CpGs, which were previously 

implemented in human Illumina Infinium arrays (EPIC, 450K) were selected due to their relevance 

for estimating age, blood cell counts, or the proportion of neurons in brain tissue. The remaining 

35,988 probes were chosen to assess cytosine DNA methylation levels in mammalian species 

(Arneson, Ernst, Horvath, in preparation). The particular subset of species for each probe is 

provided in the chip manifest file at the NCBI Gene Expression Omnibus (GEO) platform 

(GPL28271). The SeSaMe normalization method was used to define beta values for each probe 52. 

 

 

Relative age estimation 

To introduce biological meaning into age estimates of pigs and humans that have very different 

lifespan; as well as to overcome the inevitable skewing due to unequal distribution of data points 

from pigs and humans across age range, relative age estimation was made using the formula: 

Relative age= Age/maxLifespan where the maximum lifespan for the two species was chosen from 

an updated version of the anAge data base 53. 

 

Clocks and penalized regression 

Details on the clocks (CpGs, genome coordinates) and R software code are provided in the 

Supplement. Penalized regression models were created with glmnet 54. We investigated models 

produced by elastic net= regression (alpha=0.5 in glmnet R function). The optimal penalty 

parameters in all cases were determined automatically by using a 10 fold internal cross-validation 

(cv.glmnet) on the training set. By definition, the alpha value for the elastic net regression was set 

to 0.5 (midpoint between Ridge and Lasso type regression) and was not optimized for model 

performance. We performed a cross-validation scheme for arriving at unbiased (or at least less 

biased) estimates of the accuracy of the different DNAm based age estimators. One type consisted 

of leaving out a single sample (LOOCV) from the regression, predicting an age for that sample, 

and iterating over all samples. We subset the set of CpG probes to those that uniquely mapped to 
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a CpG site in the swine genome. While no transformation was used for the blood clock for pigs, 

we did use a log linear transformation for the dual species clock of chronological age 

(Supplement). The accuracy of the resulting clocks was assessed via cross validation estimates of 

1) the correlation R between the predicted epigenetic age and the actual (chronological) age of the 

animal, 2) the median absolute difference between DNAm age and chronological age (mae). 

 

 

EWAS and Functional Enrichment 

EWAS was performed in each tissue separately (bladder, blood, cerebral cortex, kidney, liver, 

lung) using the R function "standardScreeningNumericTrait" from the "WGCNA" R package55. 

Next the results were combined across tissues using Stouffer's meta-analysis method. The 

functional enrichment analysis was done using the genomic region of enrichment annotation tool 
56. CpGs implicated by our EWAS were filtered for CpG position information, lifted over to the 

human genome using UCSC’s Liftover tool and fed into the online functional analysis tool 

GREAT using the default mode, to obtain a list of significantly enriched functions for both positive 

and negative EWAS hits in the different tissues.  

 

Transcription factor enrichment and chromatin states 

The FIMO (Find Individual Motif Occurrences) program scans a set of sequences for matches of 

known motifs, treating each motif independently 57. We ran TF motif (FIMO) scans of all probes 

on the HorvathMammalMethyl40 chip using motif models from TRANSFAC, UniPROBE, 

Taipale, Taipaledimer and JASPAR databases. A FIMO scan p-value of 1E-4 was chosen as the 

cutoff (lower FIMO p-values reflect a higher probability for the local DNA sequence matching a 

given TF motif model). This cutoff implies that we would find almost all TF motif matches that 

could possibly be associated with each site, resulting in an abundance of TF motif matches. We 

caution the reader that our hypergeometric test enrichment analysis did not adjust for CG content. 
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Figure 1. Cross-validation study of epigenetic clocks for pigs. We developed 4 epigenetic 

clocks for pigs: A) pan-tissue clock, B) blood clock, and human-pig clock for chronological age 

applied to C) both species and D) pigs only. Human-pig clock for relative age applied to E) both 

species and F) pigs only. Leave-one-sample-out (LOO) estimate (y-axis, in units of years) versus 

chronological age or relative age (x-axis). Relative age is defined as chronological age divided 

by the maximum age of the respective species. The linear regression of epigenetic age is 

indicated by a solid line while the diagonal line (y=x) is depicted by a dashed line.  
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Figure 2. Epigenome-wide association (EWAS) of chronological age in porcine tissues. 

EWAS of age in bladder, blood, frontal cortex, kidney, liver, lung, and tissue meta-analysis of pigs 

(Sus scrofa). A) Manhattan plots of the EWAS of chronological age. The coordinates are estimated 

based on the alignment of the Mammalian array probes to the Sscrofa11.1.100 genome assembly. 

The direction of associations with p < 10-4 (red dotted line) is highlighted by red 

(hypermethylated) and blue (hypomethylated) colors. The top 30 CpGs were labeled by their 

neighboring genes. B) Upset plot representing the overlap of aging-associated CpGs based on 

meta-analysis or individual tissues. Neighboring genes of the overlapping CpGs are labeled in the 

figure. C) Location of top CpGs in each tissue relative to the closest transcriptional start site. Top 

CpGs were selected at p < 10-4 and further filtering based on z score of association with 

chronological age for up to 500 in a positive or negative direction. The number of selected CpGs: 

bladder, 73; blood, 1,000; frontal cortex, 123; kidney, 574; liver, 1,000; lung, 528; and tissue meta-

analysis, 1,000. The grey color in the last panel represents the location of the 34,540 mammalian 

BeadChip array probes mapped to Sscrofa11.1.100 genome. D) Boxplot of DNAm aging for CpGs 

located within or outside CpG islands in porcine tissues. Labels indicate neighboring genes of the 

top 10 CpGs in each analysis. 
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Figure 3. Enrichment analysis of the top DNAm aging marks in porcine tissues. A) 

Transcriptional motif enrichment for the top CpGs in the promoter (and 5 prime UTR) of the 

neighboring genes. The motifs were scanned using the FIMO for all the probes, and the 

enrichment was tested using a hypergeometric test. B) Gene set enrichment analysis of proximate 

genes with DNAm aging in porcine tissues. The analysis was done using the genomic region of 

enrichment annotation tool 56. The gene level enrichment was done using GREAT analysis 56 

with the human Hg19 background. The background probes were limited to 23,087 probes that 

were mapped to the same gene in the pig genome. The top three enriched datasets from each 

category (Canonical pathways, diseases, gene ontology, human and mouse phenotypes, and 

upstream regulators) were selected and further filtered for significance at p < 10-8. 
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Figure 4. EWAS of multivariate regression models for pig species and age. Aging differences 

between domestic and minipig breeds. The figure visualizes the results of 2 different linear 

regression models which used individual CpGs as dependent variable. The 2 linear models differ 
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in terms of the underlying covariates: two covariates (age and pig breed) or three covariates (age, 

pig breed, and interaction effect). 

A) Manhattan plots of DNAm aging loci that are shared between minipigs and domestic pigs 

(Aging main effect), basal breed differences in DNAm levels (minipig main effect), and the 

interaction of breed and aging, which represent the loci with a divergent DNAm aging pattern 

between minipigs and domestic pigs. The analysis is done by multivariate regression models with 

or without (to estimate the main effect) interaction term for age and breeds. For breeds, the 

domestic pig is the reference variable to estimate the direction of change. Sample sizes: domestic 

pigs, 98; minipigs, 60. The red line in the Manhattan plot indicates p <1E-35. B) Scatter plots of 

DNAm aging between minipigs and domestic pigs. The highlighted CpGs are the loci with 

significant DNAm aging interaction between breeds at a 5% FDR rate. In total, eight categories of 

interaction were defined based on the aging Z-statistic of each breed. C) Age versus methylation 

levels for select CpGs with significant interaction terms between breed and age. D) Enrichment 

analysis of the genes proximate to CpGs related to age (shared between breeds), minipig, and 

age:minipig interaction. The gene-level enrichment was done using GREAT analysis 56 and human 

Hg19 background. The background probes were limited to 23,087 probes that were mapped to the 

same gene in the pig genome. The top CpGs were selected at a p<1E-5 and based on Beta values 

of association for up to 500 in a positive or negative sign. 

 

 
Figure 5. Overlapping EWAS results in pigs with GWAS results in humans. EWAS of 

aging, minipig, and aging:pig breed interaction identifies genes with genetic variants associated 

with human body mass index. The GWAS is based on summary statistics of BMI meta-analysis 

of 681,275 participants in the UK Biobank and GIANTBMI consortium 39. The coloring is based 

on the genes identified by one or multiple EWAS of age, minipig, and age:minipig interaction 

(inter). The labels indicate the top SNP from each of the top 30 gene regions.  
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Miniature Swine, blue= Domestic/Minnesota Mini Cross. The last color encodes sex 

(pink=female).  
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Supplementary Figure 2. Pan tissue clock for pigs applied to individual tissues. A) All 

porcine tissues combined. B) Bladder, C) Blood, D) Frontal cortex (brain), E) Kidney, F) Liver, 

G) Lung. Each panel reports the leave-one-out estimate of age (y-axis) versus chronological age 

(in years). Each title reports the sample size, Pearson correlation coefficient, and median absolute 

error.  

 

 

 

 

 

 
 

Supplementary Figure 3. Epigenome wide association study of correlation in different tissues. 

Each dot corresponds to a CpG. Z statistics for a correlation test of age in the respective tissues. 
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Supplementary Figure 4. Mean Methylation and Average Rate of Change of Methylation 
A, B, C, D) Mean methylation of all CpG sites that (A, C) map to the Sus scrofa genome on a 

custom mammalian methylation array and (B, D) occur only within CpG islands. Figures (A) and 

(B) contain samples between the ages of 1 and 5.15 years old and are grouped by breed. Figures 

(C) and (D) group samples into two age ranges: between 1 and 5.15 years old, and less than 1.5 

years old. Blood samples were taken from three breeds: <Domestic= pigs, a cross between 
<Domestic= and <Minnesota Mini= pigs, and <Wisconsin Minipigs=. Each point represents the 
mean methylation of all selected CpG sites in a single sample. The standard error was calculated 

using the standard deviation of the average methylation across the individual samples. 

E,F) Average rate of change of methylation (AROCM) of all CpG sites that (E) map to the Sus 

scrofa genome on a custom mammalian methylation array and (F) occur only within CpG 

islands. Figures (E) and (F) contain samples between the ages of 1 and 5.15 years old and are 

grouped by breedBlood samples were taken from three breeds: <Domestic= pigs, a cross between 
<Domestic= and <Minnesota Mini= pigs, and <Wisconsin Minipigs=. AROCM is defined for each 
breed as the average of the rates of change at the selected CpG sites. The rate of change at each 

CpG is the slope coefficient of a simple linear regression where the beta values of a single CpG 

are regressed on the ages of the samples. The standard error was calculated using the standard 

deviation of the rate of change of methylation across the selected CpG sites. 

To ensure a balanced statistical design, we restricted the analysis to pigs aged between 1 and 5.2. 

The title of each figure reports a non-parametric group comparison test (Kruskal Wallis tests).  
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