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ABSTRACT

Introduction: DNA methylation data facilitate the development of accurate molecular estimators
of chronological age, or ‘epigenetic clocks.” We present a robust epigenetic clock for the beluga
whale, Delphinapterus leucas, developed for an endangered population in Cook Inlet, Alaska,
USA.

Methods and Results: We used a custom methylation array to measure methylation levels at 37,491

cytosine-guanine sites (CpGs) from skin samples of dead whales (n = 67) whose chronological
ages were estimated based on tooth growth layer groups. Using these calibration data, a penalized
regression model selected 23 CpGs, providing an R? = 0.92 for the training data; and an R?> = 0.74
and median absolute age error = 2.9 years for the leave one out cross-validation. We applied the
epigenetic clock to an independent data set of 38 skin samples collected with a biopsy dart from
living whales between 2016 and 2018. Age estimates ranged from 11 to 27 years. We also report
sex correlations in CpG data and describe an approach of identifying the sex of an animal using
DNA methylation.

Discussion: The epigenetic estimators of age and sex presented here have broad applications for

conservation and management of Cook Inlet beluga whales and potentially other cetaceans.

Key Words: DNA methylation, cetaceans, aging, endangered species, Cook Inlet, Alaska,

conservation
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INTRODUCTION

Age is a fundamental life-history parameter in organismal biology, population dynamics, and
ecology. The age of an animal is important for understanding characteristics such as age of
reproductive maturity, fecundity rates, and survival rates. These characteristics can vary between
healthy and compromised populations. Moreover, knowing the age of animals in a population
can improve the study of population dynamics. For example, age-specific estimates of fecundity
and survival can be used to predict population growth rate (Brault and Caswell, 1993), and the
age structure of a population can imply past trajectory of the population (Venuto et al., 2020).
Additionally, age can enhance the interpretation of genetic analyses in some cases (e.g., kinship
analysis). Therefore, the ability to determine the age of animals is an important tool in wildlife
studies. In cetaceans, age is critically important but often unknown due to the difficulty of
determining age in long-lived, mobile species.

The development of molecular aging biomarkers (MABs) for mammals in particular has been
of interest for decades (Jarman et al., 2015), with numerous lines of inquiry into the role of
molecular mechanisms in aging. Molecular aging studies in cetaceans initially focused on the
relationship between telomere length and age, but that line of inquiry proved unfruitful (Dunshea
et al., 2011; Jarman et al., 2015; Olsen et al., 2012). Attention has turned to other MABs such as
epigenetic markers, specifically DNA methylation, which have received considerable attention in
recent years (De Paoli-Iseppi et al., 2017; Horvath and Raj, 2018; Jarman et al., 2015; Jylhidva et
al., 2017). Epigenetics is broadly understood as the study of any gene-regulating activity that
does not involve changes to a DNA sequence and can be, but is not necessarily, heritable
(Pennisi, 2001). The term encompasses myriad molecular processes ranging from chromatin

state to direct chemical modification of DNA (e.g., methylation). At specific cytosine-guanine
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dinucleotides (CpGs), the cytosine nucleotide can be methylated to generate 5-methylcytosine, a
chemical modification that affects gene expression (Field et al., 2018; Razin and Cedar, 1991).
Methylation levels at some of these sites have been shown to correlate with age.

Numerous DNA methylation-based age predictors, often referred to as ‘epigenetic clocks,’
have been developed for humans (e.g., Bocklandt et al., 2011; Garagnani et al., 2012; Hannum et
al., 2013; Horvath, 2013; Levine et al., 2018; Lin et al., 2016; Lowe et al., 2018). Because
methylation patterns are known to be tissue-specific, some epigenetic clocks use a single tissue
such as blood (e.g., Hannum et al., 2013) while pan-tissue clocks appear to apply to all sources
of DNA except sperm (e.g., Horvath, 2013). In humans, clocks have been designed using varying
numbers of CpG sites, from one site (e.g., an age predictor based on a CpG in the ELOVL2 gene;
Garagnani et al., 2012) to several hundred sites (e.g., 353 sites; Horvath, 2013). Epigenetic
clocks have also been developed for other species including the mouse (Stubbs et al., 2017;
Petkovich et al., 2017; Thompson et al., 2018; Meer et al., 2018), chimpanzee (Ito et al., 2018),
bat (Wright et al., 2018), canid (Ito et al., 2017; Thompson et al., 2017), humpback whale
(Polanowski et al., 2014), minke whale (Tanabe et al., 2020), and bottlenose dolphin (Beal et al.,
2019). Accurate age estimates can be valuable for conservation efforts and species management.
For example, the use of age-structure data for harbor porpoise allowed for estimation of the
maximum rate of increase for the population, leading to the conclusion that bycatch mortality in
commercial fisheries had led to population decline (Moore and Read, 2008).

Our focus here is the beluga whale, Delphinapterus leucas (Pallas, 1776). Beluga whales
inhabit the circumpolar north with southernmost populations occurring in the Saint Lawrence
Estuary in Eastern Canada, the Sea of Okhotsk in Eastern Russia, and Cook Inlet in Alaska,

USA. The Cook Inlet (CI) beluga whale population does not migrate, is geographically and
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genetically isolated (O’Corry-Crowe, et al., 1997), and is the focus of conservation and
management efforts (NOAA, 2016). Estimates of abundance for this population numbered over
1,000 whales in the late 1970s and early 1990s (Shelden et al., 2015). From 1994 to 1998,
abundance declined steeply from 653 to 347 whales, in part, due to unregulated hunting (Hobbs
et al., 2000; Mahoney and Shelden, 2000). In 2000, hunting regulations were implemented; the
CI beluga population was designated as a distinct population segment (DPS), recognizing that CI
beluga whales constitute a population that is ‘discrete from other populations and significant in
relation to the entire taxon’ (65 FR 38788 22 June 2000); and CI beluga whales were listed as
depleted under the U.S. Marine Mammal Protection Act (65 FR 34590, 21 May 2000). Eight
years later, the DPS was listed as endangered under the U.S. Endangered Species Act (ESA) (73
FR 62919, 22 October 2008). Today, there are an estimated 279 individuals in the population,
and the number is declining (Wade et al., 2019). The U.S. National Oceanic and Atmospheric
Administration (NOAA), released the Cook Inlet Beluga Whale Recovery Plan in 2016 (NMFS,
2016) pursuant to the requirements of the ESA. This plan highlights the importance of
determining the population age structure of CI beluga whales in order to understand growth,
reproduction, and survival rates.

Age determination of beluga whales to date has relied on data derived from tooth growth
layer groups (Lockyer et al., 2007; Waugh et al., 2018), a method that is also applicable to some
other toothed whale species (Hamilton and Evans, 2018; Perrin and Myrick, 1980). The tooth
samples required for aging studies are typically acquired from dead animals. Efforts to develop
methods that estimate the age of living animals have led to the development of length-age curves

for adult belugas (Vos et al., 2019) as well as fetuses and neonates (Robeck et al., 2015).
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Here, we present an epigenetic clock and a sex-predictive logistic model for beluga whales
based on DNA methylation data. This study leverages long-term sampling of the CI beluga
population, recent development of beluga genomic resources, advances in methylation array
technology, and machine learning to develop a novel method to age living beluga whales based
on DNA from skin samples. The epigenetic age estimator (epigenetic clock) presented here will
aid in the management and conservation of this endangered cetacean population, as demonstrated
by our application of the beluga epigenetic clock to estimate the age of living beluga whales

sampled with a biopsy dart.

Methods
Sample collection, chronological age estimation, and DNA extraction

Skin tissue samples were collected from carcasses of beluga whales that were beach-cast,
stranded dead, or taken during subsistence hunting between 1992 and 2015 in Cook Inlet,
Alaska, USA (NMFS Research Permit 932-1905-00/MA-009526 through the Marine
Mammal Health and Stranding Response Program). Skin samples were preserved in a salt and
dimethyl sulfoxide (DMSO) solution and archived at NOAA’s Southwest Fisheries Science
Center in La Jolla, California, USA. A total of 69 individuals were selected for the clock
calibration dataset (Table S1), and their chronological ages were estimated by counting tooth
growth layer groups (Vos et al., 2019). The final calibration dataset included 67 individuals due
to inconsistent molecular sex data (see below). Teeth were analyzed by at least two readers using
methods validated in Lockyer et al. (2007), and a consensus age provided by NOAA was used in

this study. When individuals were represented by multiple teeth in the dataset, the oldest age
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estimate was used to mitigate error from tooth wear (e.g., the count from the tooth with the
greatest number of growth layer groups; Vos et al., 2019).

Samples of skin tissue from living CI beluga whales were collected with a biopsy dart in
2016, 2017, and 2018 (NMFS ESA/MMPA Permit #20465; McGuire et al., 2017a). Biopsy
samples were frozen in the field in liquid nitrogen and later subsampled at the NOAA Alaska
Fisheries Science Center in Seattle, Washington, USA. Genomic DNA was extracted from tissue
samples using a standard phenol-chloroform protocol modified for small skin samples by Baker
et al. (1994). Extracted DNA was treated with RNAse A (1 uL of 1 mg/mL added to samples of
100 uL for 30 minutes at room temperature) and then purified and concentrated using a DNA
Clean and Concentrator-5 Kit (Zymo Research Corp., USA). The concentration of genomic

DNA was measured on a QUBIT 4 fluorometer (ThermoFisher Scientific, USA).

Molecular sex identification

A multiplexed polymerase chain reaction (PCR) was used to sex individual whales in both
the calibration and biopsy datasets. The PCR primers and reaction protocol followed those in
Olavarria et al. (2007), which is based on Gilson et al. (1998). This assay amplifies fragments of
the male-specific SRY gene and the ZFY/ZFX genes of males and females as a control band.
Sex-specific bands were visualized by agarose gel electrophoresis. In three cases, molecular sex
identified tissue samples that did not correlate with sex metadata in the original records (z35345,
2143907, z144309). These cases have been noted and amended in the records presented here
(Table S1). Two of these individuals were removed from the dataset because the molecular sex
could not be reconciled with information from necropsies. One was retained because it did not

conflict with known information. Therefore, the final calibration dataset included 67 individuals.
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DNA methylation measurements

Genomic DNA aliquots were sent to the UCLA Neurosciences Genomics Core facility where
they were quantified and bisulfite converted using the Zymo EZ-96 DNA Methylation-Gold Kit
(Zymo, Inc., USA; Cat# D5007). When possible, a total of 250 ng of genomic DNA was used for
each individual (in a few cases, lower quantities were used when DNA concentration was too
low to achieve 250 ng with a maximum volume loadable of 20 pL). A custom mammalian
methylation array (HorvathMammalMethylChip40) assembled with 37,491 oligonucleotide
probes, each 50 nucleotides long terminating in a C-G dinucleotide, was used to determine
methylation state of CpGs (Arneson, Ernst, Horvath, in prep). Each probe was designed to cover
a certain subset of species. The particular subset of species for each probe is provided in the chip
manifest file can be found at Gene Expression Omnibus (GEO) at NCBI as platform GPL28271.
The clock training/calibration dataset (historic samples) was evaluated in one round of array
assays (one sample per array, 24 arrays per chip) and the biopsy dataset (recent skin tissue
samples) was evaluated in another. Fluorescence at the terminal nucleotide of each probe was
read by an Illumina iScan machine and raw data were provided in iDAT files. Raw data were
normalized using the SeSAMe pipeline (Zhou et al., 2018) resulting in a methylation estimate
(beta value) corresponding to each array probe for every individual in the dataset and a detection
p-value corresponding to the confidence in the normalized beta value. Beta values are derived
from the ratio of the fluorescence intensity of a methylated probe for a specific CpG to the total
overall probe intensity (the sum of signal from both the methylated and unmethylated probes
plus a constant) (Du et al., 2010). Beta values range from zero to one with a value of zero

indicating that no copies of the gene were methylated.
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To identify technical outliers after SeSAMe normalization, we used unsupervised
hierarchical clustering analysis based on the interarray correlation. As a consequence, data for
one sample was removed from the dataset and replaced with data generated for another DNA
extraction of the same tissue sample that did not exhibit anomalous clustering. Data were filtered
by detection p-value as calculated in SeSAMe (Zhou et al., 2018). To test the effect of p-value
filtering on downstream analyses, we evaluated analyses on data with different thresholds for the
number of individuals with a passable detection p-value (e.g., a detection p-value of < 0.05 in
more than one individual, in over 10 individuals, in over 20, etc.). Ultimately, CpG sites that had
a detection p-value < 0.05 for 10 or more individuals were considered in further clock-building

analyses, resulting in the use of data from 28,875 CpG probes from the array (Table S2).

Sex-correlated CpGs and methylation-based sex prediction

The correlation between CpG methylation levels and whale sex was evaluated using
Pearson’s correlation using NymPy in a Python environment. The genomic location of sex-
correlated CpGs in humans was recorded to ascertain how many of these sites are on the X and Y
chromosomes, and how many represent sexual dimorphism in autosomal methylation levels. A
logistic model for sex prediction was built using LASSO regression in cv.glmnet() (alpha = 1)

for binomial parameters (numerical coding was 1 = female; 0 = male).

Age correlation of CpG sites and epigenetic clock development through elastic net regularization
Pearson’s correlations between beta values for individual CpGs and chronological age were
calculated using NumPy (Oliphant, 2006) and Pandas (McKinney, 2010). The absolute values of

individual CpG correlations were ranked using a custom Python script.
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The glmnet package (Friedman et al., 2010) was implemented in R (R core Team, 2013) to fit
penalized regression models. The two main parameters used in this machine learning
regularization method are lambda, which is known as the regularization parameter that sets the
stringency of the penalty during regularization (high lambdas lead to stronger penalization); and
alpha, which is the elastic net mixing parameter that is used to determine the blend between a
ridge regression (alpha = 0) and a least absolute shrinkage and selection (LASSO) regression
(alpha = 1). For all runs, the lambda used was the lambda.min parameter calculated by cv.glmnet
using a 10-fold cross validation. In elastic net regularization, the alpha parameter will determine
the number of sites used in the clock: ridge regression will retain all the sites and LASSO
regression will retain fewer sites.

Alpha values of 0.1 through 0.9 with a 0.1 interval were evaluated through multiple runs of
cv.glmnet() (note that an alpha value of 0.0 would have yielded a model using all 28,875 CpGs).
The resulting models were then used to calculate the age of each individual in the calibration
dataset. The relationship between model ages and chronological ages based on tooth growth
layer groups was evaluated using linear regression in NymPy and Pandas within a Python
environment. Age error was calculated for each individual, which was defined as the difference
between the estimated chronological age from tooth growth layer groups and the age prediction
resulting from the multivariate linear regression model. Regression coefficients, mean absolute
age error, and median absolute age error were calculated for the dataset as a whole and for each
sex independently.

To evaluate the likely accuracy of each model for estimating the age of future experimental
samples, leave one out cross-validation (LOOCV) was run by executing the cv.glmnet() program

on n-1 samples, looping through each of the 67 samples. The predicted age of the omitted sample

10
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was calculated with a model developed with the remaining 66 samples. For each LOOCV
iteration, a different model was generated, but the same alpha value was used in each iteration of
cv.glmnet() (only the samples used changed). LOOCYV elastic net models were run with a lambda
value of lambda.min calculated within cv.glmnet() program by running a 10-fold internal cross-
validation. LOOCV were executed at numerous alpha values to better understand the effect of
alpha on model performance. LOOCV models were assessed in the same manner as the full
elastic net regression models, using linear regression as well as age error calculations for the full

data set and for each sex independently.

Genomic location and identity of clock CpGs

The location of each clock CpG probe in the human or mouse genomes was known from
methylation array design. The genomic locations of each clock CpG and flanking sequences (200
bp in both directions) were extracted from the human or mouse genomes through the NCBI
genome data viewer, leveraging the RefSeq database (O’Leary et al., 2016). The extracted mouse
or human sequence was then located in the beluga genome (GenBank genome scaffold accession
number: ASM228892v3) with NCBI BLAST (Johnson et al., 2008; Altschul, 1990). Annotations
at each CpG site, or for the closest gene, were recorded. The relative locations of each CpG in
the final epigenetic clock were assessed to identify any potentially linked sites. The same
methods were also used to determine the annotation of the single CpG used in the sex-prediction

model.

Age determination of living whales using skin biopsy samples

11
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We applied the beluga epigenetic clock model to the dataset of living beluga whales sampled
by biopsy dart. Beta values generated by the custom mammalian methylation array for each of
the clock CpG sites were used in the beluga epigenetic clock to calculate the epigenetic ages of
sampled whales. The absolute median age error from LOOCYV of the calibration dataset was used
as a course approximation for the potential range of the epigenetic age estimation generated by
the epigenetic clock. When appropriate and possible, age estimates generated with the beluga
epigenetic clock were compared to photographs of each individual and compared to subjective
color-classes used to assess age in the field (McGuire et al., 2017b; McGuire et al., 2018;

unpublished data, P. Wade; Figure S1).

Results
Chronological ages and molecular sex of clock calibration samples

The estimates of chronological ages derived from tooth growth layer groups for the 67 clock
calibration samples ranged from -1 (fetus) to 49 years with a median age of 21 years (Fig 1).
Previous records of sex were confirmed by PCR amplification of sex-specific primers. After
correction, the ratio of males to females in our calibration dataset was 36 to 31. The median age
of males in the dataset was 20 while that of females was 22. However, the three oldest samples in

the dataset are males based on molecular sex data (Fig 1).

12
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Figure 1: The distribution of chronological age by sex estimated from tooth growth layer groups for the
calibration dataset (n=67). Note that each bin represents one year and negative ages are fetal samples.

Sex-correlated CpG sites and methylation-based sex prediction model

In addition to correlations between methylation and age, the relationship between
methylation and sex was also investigated. Methylation levels at 165 CpG sites had Pearson’s
correlation values of 0.9 or greater with sex (Table S3). Of these 165 sites, 160 were located on
the X chromosome in humans (Table S3), one was located on the Y chromosome in humans, two
were located on autosomal chromosomes in humans, and two did not have known coordinates in
the human genome. The two autosomal sites included probe cg26452915 (Chr20:58911021,
annotated as GNAS) and cg25449272 (Chr15:56654033, annotated as ZNF280D). A logistic
model (Pfemate = 1/14¢ 06717~ LI579%B-value)y generated using a LASSO logistic regression machine
learning method implemented in cv.glmnet() selected a single CpG: probe cg15451847, with a

Pearson’s correlation of r = -0.999. The model predicted sex in the calibration samples (after
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thresholding the predicted probability > 0.5 indicating a female and outputs < 0.5 indicating a
male). Probe cg15451847 corresponds to a site on the Y chromosome in humans
(ChrY:19715996, annotated as KDMS5D), indicating that its utility in predicting sex does not
come from sexually dimorphic methylation patterns, but rather from the detection of a Y

chromosome.

Age-correlated CpG sites and the beluga epigenetic clock

The majority of CpG sites showed correlations with age of r < 0.5 (n = 28,232), and only
1.9% of CpG sites had a correlation of r > 0.5 (n = 551) (Table 1). No single site had a
correlation coefficient larger than 0.9 but 21 sites exhibited correlations of between 0.8 and 0.9.
The majority of CpGs assayed on the methylation array have negative correlations with age, and
nearly 100% of the strongest correlations (> 0.7) were negative (Table 1).

Table 1. The frequency of absolute values of Pearson’s correlation coefficients (r) for the relationship
between methylation (beta values) at 28,875 CpG sites and chronological age based on teeth growth
layers of the 67 calibration samples, with age in 0.1 bins (each range is inclusive of the lower bound and
exclusive of the upper bound). The right column shows the percent of the CpGs in each bin that have a
negative correlation.

Absolute value Pearson’s r | Number of CpG sites | % with negative correlation
0.0-0.1 14,133 56.5%
0.1-0.2 8,663 59.9%
0.2-0.3 3,887 58.1%
03-04 1,200 67.1%
0.4-0.5 427 78.9%
0.5-0.6 253 87.7%
0.6-0.7 173 96.0%
0.7-0.8 115 99.1%
0.8-0.9 24 100%
0.9-1.0 0 NA
Total 28,875 59.2%

Using elastic net regularization with values of alpha between 0.1 and 1 at 0.1 intervals,

cv.glmnet() yielded models of varying sizes using between 20 and 134 CpGs with R? values

14
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ranging from 0.923 to 0.942 (Table S4). The final model selected as the beluga epigenetic clock
(alpha = 0.9) uses 23 CpG sites to generate age predictions, meaning the clock model has 24
terms, including the y-intercept (Table 2). The information in Table 2 comprises the multiple
linear regression model and is all the information needed to calculate age for new samples using
data from the custom methylation array. We selected this specific model to optimize for median
age error, R2, and the y-intercept to reduce the tendency to overestimate the age of young whales.
A linear regression of ages calculated with this model versus the tooth ages for each calibration
sample resulted in a training set estimate of R* = 0.92 (Figure 2A; other stats in Table 3).
However, this training set estimate of the predictive accuracy is biased. To arrive at an estimate
of the accuracy that is less biased by the nature of the training data, we employed leave one out
cross-validation (LOOCV). The LOOCYV run for an alpha of 0.9, which is intended to
approximate the model’s performance on unknown data, had an R? value of 0.74, a mean
absolute age error of 3.65 years, and a median age error of 2.87 years (Fig 2B). The absolute age
error for each sample in the LOOCYV (the difference between the LOOCYV predicted age and the
estimated chronological age) showed a trend of underestimating the age of old whales while
overestimating the age of young whales (regression slope = 0.65; regression y-intercept = 7.22).
The R? values for regressions between model predicted age and chronological age were
consistently, but only slightly, higher for females than males in both the full clock model and

LOOCV. None of the CpGs used in the final clock showed a sex correlation of 0.5 or greater.

Table 2: The CpG sites selected for the beluga epigenetic clock with associated model coefficients (to be
multiplied by the CpG beta value), including the y-intercept. The CpG sites are referenced to the array
probe names (Table S5). The Pearson’s correlation coefficient (r) for the methylation ratio with the tooth
growth layer count is shown for each individual CpG site.

Probe ID Model Coefficient CpG Correlation
(Intercept) 77.9708623 NA
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cg00952468
cg02534193
cg02714609
cg07279255
cg07493173
cg09622321
cg12584622
cg14043264
cgl4671961
cg15809488
cg15992086
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cg17856858
cg18629679
cg21419180
cg21420547
€g22069272
cg22416332
€g25579908
cg26286303
cg26313355
cg26899365
cg27600712

-4.525104457
-9.85801758

-14.10074358
14.33543764

-0.175897809
-8.372865623
-6.025047791
-5.78974944

-5.341584389
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-2.632026911
-1.525713524
-2.129559849
30.73879442
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-0.357946396
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-0.44830474
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-0.7578
-0.6457
-0.8206
0.6956

-0.7854
-0.8686
-0.8685
-0.7817
-0.6566
-0.7487
-0.6122
-0.7887
-0.8161
-0.8387
0.4590

0.5444

-0.8290
-0.7402
-0.7404
-0.7184
-0.7743
-0.7246
-0.8134
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Table 3. Statistics for the beluga epigenetic clock model and leave one out cross-validation for alpha =
0.9: mean age error (mae), median age error (medae), r-squared for the regression, p-value for the
regression, regression slope, and y-intercept for the regression.

sex | mae medae R? p-value regression slope | y-intercept
Beluga epigenetic clock
all 2.34 1.97 0.92 3.50E-38 0.76 5.17
m 2.64 1.96 0.92 4.31E-20 0.73 5.89
f 1.99 2.06 0.94 6.33E-19 0.79 4.25
Leave one out cross-validation
all 545 2.87 0.74 1.14E20 | 0.65 7.22
m 4.16 2.98 0.70 2.35E-10 0.63 8.01
f 3.06 2.56 0.81 7.58E-12 0.68 6.27
(A) Beluga Epigenetic Clock (B) LOOCV
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Figure 2. (A) Epigenetic ages calculated using the beluga epigenetic clock regressed against estimated
chronological ages (based on GLG) for the calibration dataset. Data for males are represented by orange
triangles and those for females are represented by grey-blue circles. Sex-specific regression lines as well
as the overall regression line are shown (orange dashed line for males, grey/blue dashed line for females,
black dashed line for overall regression). The training data showed an overall R> = 0.92 (p = 3.50e™*). See
Table 3 for all other statistics and sex-specific values. (B) Leave one out cross-validation (LOOCYV) of the
cv.glmnet() model parameters (alpha =0.7, lambada.min) with the same color scheme for males and
females as panel A. Overall LOOCV R?=0.74 (p = 1.14e’?"). See Table 3 for all other statistics and sex-

specific values.
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Genomic location and identity of clock CpG sites

The locations of all 23 CpG sites in the beluga genome were identified using BLAST and the
NCBI genome viewer (Table S5). Annotations and gene ontology information for each CpG site
revealed a wide range of gene identities and putative functions (Table S5). Of interest because of
the role of epigenetics in gene regulation, four of the CpG sites fall in genes that have GO terms
related to nuclear chromatin (cg00952468, cg15809488, cg21419180), promoter-specific
chromatin binding (cg21419180), and chromatin remodeling (cg26899365). Fifteen of the 23
CpG sites were located within known genes that are annotated in the beluga genome; 18 of the
sites are annotated within a gene in the human genome. Each annotation is unique, indicating

that the CpGs are not linked within the same gene.

Application of the beluga epigenetic clock to living beluga whales in the Cook Inlet

The methylation states of all 37,491 array CpGs were measured for genomic DNA from 38
skin tissue samples taken from living beluga whales. Data for the 23 clock CpG sites were used
as input into the clock model yielding ages from approximately 11 to 27 years old, with potential
range of +/- 2.9 years, using the LOOCV median age error of the calibration dataset (Fig 3;
Table S6). The lower end of the estimated age distribution is consistent with the field practice of
only sampling whales that are large juveniles or older. Additionally, epigenetic ages are in
agreement with broad color categories that can be used to determine age classes of younger

whales before they are entirely white (Wade, unpublished data; Figure S1).
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Figure 3. The estimated epigenetic ages for biopsy samples collected from living beluga whales between
2016 and 2018. Ages ranged from approximately 11 to 27. Note, this is not a representative age
distribution of the populations due to bias in individuals biopsied during field seasons (e.g., younger
whales not sampled with biopsy dart).
Discussion

This study reports a robust epigenetic clock for beluga whales, enabling age estimation of
living whales with just a small piece of skin tissue. The beluga epigenetic clock is based on 23
CpG sites that were selected from 37,491 CpG probes on a custom mammalian methylation
array. Age estimation based on the multivariate age estimation model greatly outperforms age
estimation based on a single CpG, which is consistent with what has been observed in other
mammalian species including humans (Bocklandt, 2011; Hannum, 2013; Horvath, 2013;
Thompson et al., 2018). The leave one out cross-validation (LOOCV) analysis suggests that this
beluga epigenetic clock estimates age with a median absolute error of 2.9 years for samples of

unknown age. Future independent test data are needed to fully validate the applicability of the

clock to new datasets. Beluga whale longevity has been estimated to be 60 or 70 years (Suydam,
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2009; Burns and Seaman, 1986), which would mean the clock approximates age within +/- 5%
of the beluga lifespan.

The LOOCYV showed a pattern of age underestimation for older whales and overestimation of
younger whales, a pattern that is present but less pronounced in the training dataset. This pattern
could partially be driven by data scarcity of older and younger whales in our calibration dataset,
but it is also observed in other epigenetic clocks (e.g., Beal et al., 2019; Polanowski et al., 2014).
Future research is needed to clarify the clock’s accuracy at the two ends of the age distribution.
The young samples in our calibration dataset — one fetus and three calves — may have unique
epigenetic changes occurring due to developmental processes or stress. Special considerations
may be needed for fetuses and neonates from stranded mothers or still births.

It can be advantageous to carry out a non-linear transformation of age (e.g. a log
transformation) to account for faster epigenetic changes occurring during development (Horvath,
2013; Hannum, 2013). Here, we did not carry out a non-linear age transformation because we
found no evidence that it would improve the model fit in our data. This approach is consistent
with other studies that directly regressed age on the CpGs (Polanowski et al., 2014; Thompson et
al., 2018, 2017; Wright et al., 2018).

Future work that combines epigenetic methods presented here with research describing the
relationship between morphometric features of beluga whale calves and age could offer a line of
research that would improve clock performance for very young whales and fetuses (Robeck et
al., 2015; Shelden et al., 2019). The development of alternative clock models could better
describe variation in the rate of aging with life phase.

We found it important to prefilter the normalized CpG data based on detection p-value.

Without any detection p-value filtering, we developed a clock with 59 CpGs (alpha = 0.5). While
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this clock led to an excellent predictive accuracy for chronological age as measured by R? values
(Table S2), we found that several of the underlying probes did not align to a CpG in the beluga
genome. To alleviate concerns about overfitting, we built the final beluga clock (based on 23
CpGs) using only CpGs in a filtered dataset that required a significant detection p-value in at
least 10 individuals.

Methylation data was also used to impute the sex of beluga whales. Many sex-associated
sites are located on the X-chromosome in humans, but those that were not could be the focus of
future study on sexual dimorphism in methylation patterns. Sex-based correlation analyses
allowed us to assess the possibility that some CpGs were included in the clock due to sex-based
patterns instead of age alone. This was not the case: none of the 23 CpGs in the clock had a
Pearson’s correlation of more than 0.5 with sex. Furthermore, because there was no substantial
sex-based difference in clock performance, our results support the use of this epigenetic clock for
both sexes. While sexual dimorphism in morphology and behavior can be observed in beluga
whales (Hauser et al., 2017), we found no indication that sex-specific clocks are required for
estimation of chronological age. Furthermore, using one set of CpGs for both sexes will enable
the development of an accessible age and sex assay in the lab by sequencing just 24 genomic
regions (the 23 clock CpGs and the one sex-predictor CpG).

The sequencing of the beluga whale genome (Jones et al., 2017) increased the capacity for
molecular research on this non-model species, enabling us to identify and map the 23 CpG sites
in the beluga epigenetic clock. The 23 sites in the beluga epigenetic clock are found in genes
related to critical biological activity like transcription, metabolism, cell membranes, etc. The
function and mechanistic relationship of these genes with age is an open question. Clock

development using an array, instead of targeted candidate genes, allows for comparison of
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important clock sites across mammal species without predisposing researchers to use just a
handful of genes that have shown some relationship in the past.

The beluga epigenetic clock was successfully applied to skin tissue samples collected with a
biopsy dart from living whales in Cook Inlet, Alaska. We present data from 38 skin tissue
samples, but photo ID evaluation after the field season has indicated that three of these samples
may be from the same individual (MML_RA180909_B01, MML_RA180910_B04, and
MML_RA180912_B02). The estimated epigenetic ages for those three potential repeat samples
are 26, 28, and 26; and the samples are all male, so the results perhaps support the photo
identification results that this may be a recaptured whale. Genotyping is the best method to
ultimately confirm. Age from biopsy samples will be useful in contributing to many different
studies related to the conservation and management of beluga whales. With further development,
it may be possible to partition CpG sites that correlate with chronological age from those that
reflect biological age. Whereas ‘chronological age’ is important for demographics parameters,
‘biological age’ could be used to investigate the numerous physiological changes associated with
aging (De Paoli-Iseppi et al., 2017; Horvath and Raj, 2018). In some populations or individuals,
this biological aging is accelerated due to stress and exposure to environmental contaminants (a
concept known as accelerated epigenetic aging). Future studies should explore whether
epigenetic age acceleration can be observed in different whale populations, potentially reflecting
genetic differences or various stress factors.

Research that compares epigenetic aging of Cook Inlet beluga whales with other populations
will inform the applicability of this epigenetic clock to circumpolar populations of beluga
whales. Data from other populations of beluga whales could also improve the accuracy of the

beluga epigenetic clock by increasing sample size (the most accurate human clocks were trained
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on thousands of samples, e.g. Horvath, 2013), and help to mitigate error from chronological age
estimates based on tooth growth layer groups. Tooth aging is subject to unknown error: beluga
teeth wear with age at a rate that has not been quantified and is possibly individual-specific (Vos
et al., 2019). Our analysis critically relies on the assumption that GLG patterns are well
calibrated when it comes to estimating the chronological age of beluga whales. Beyond other
beluga populations, this research also facilitates phylogenic comparisons of epigenetic clock
CpGs with other cetacean species. Using a methylation array and machine learning to develop
clocks will enable interspecific comparisons of age-relevant methylation patterns, potentially

improving our understanding of the evolutionary function of age-correlated methylation.
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Supplemental Information

Table S1: This file contains detailed individual information for samples included in the clock
calibration dataset: Southwest Fisheries Science Center (SWFSC) ID, Sample ID (includes
extraction number when relevant), Sex, Age, Tooth Cap (presence of neonatal tooth cap),
Length, Sample Location, and Sample Date.

Table S2. This file contains SeSAMe normalization detection p-values, the number of probes
retained, and information on clock composition under various filtering scenarios. Data were
generated for all alpha values, but for comparison to our published clock, here we share the clock
data for alpha = 0.5 (default) and alpha = 0.9 (the final clock alpha).

Table S3. This file contains a list of the probe IDs with high correlations with sex, the Pearson’s
correlation value (r), and the location of the probe in the human genome (sex-linked or not). All
CpGs with a correlation > 0.5 are included in the sheet but annotations are only provided for sites
with a correlation > 0.9.

Table S4. This file contains elastic net regularization clock data and performance statistics for all
alpha values tested from 0.1 to 1 for the final calibration dataset clock models and LOOCYV, with
p-value filtering.

Table SS. This file contains the genome coordinates, gene annotations, and GO terms for the 23
clock CpGs.

Table S6. This file contains the ages of whales biopsied in 2016, 2017, and 2018 included in this
study. Field ID information corresponds to the NOAA ID for each whale sampled.

Figure S1. This file contains field photographs of the youngest and oldest biopsied whales based

on the epigenetic age estimation.
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