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Abstract

Microbes tend to organize into communities consisting of hundreds of species involved in complex
interactions with each other. 16S ribosomal RNA (16S rRNA) amplicon profiling provides
snapshots that reveal the phylogenies and abundance profiles of these microbial communities.
These snapshots, when collected from multiple samples, have the potential to reveal which
microbes co-occur, providing a glimpse into the network of associations in these communities.
The inference of networks from 16S data is prone to statistical artifacts. There are many tools
for performing each step of the 16S analysis workflow, but the extent to which these steps affect
the final network is still unclear. In this study, we perform a meticulous analysis of each step
of a pipeline that can convert 16S sequencing data into a network of microbial associations.
Through this process, we map how different choices of algorithms and parameters affect the
co-occurrence network and estimate steps that contribute most significantly to the variance.
We further determine the tools and parameters that generate the most accurate and robust
co-occurrence networks based on comparison with mock and synthetic datasets. Ultimately,
we develop a standardized pipeline (available at https://github.com/segrelab/MiCoNE) that
follows these default tools and parameters, but that can also help explore the outcome of any
other combination of choices. We envisage that this pipeline could be used for integrating
multiple data-sets, and for generating comparative analyses and consensus networks that can
help understand and control microbial community assembly in different biomes.

Keywords— Microbiome, 16S rRNA, Pipeline, Interaction, Denoising, Taxonomy, Network
Inference, Correlations, Qiime, Co-occurrence, Networks

Importance

To understand and control the mechanisms that determine the structure and function of microbial
communities, it is important to map the interrelationships between its constituent microbial species.
The surge in the high-throughput sequencing of microbial communities has led to the creation of
thousands of datasets containing information about microbial abundances. These abundances can be
transformed into networks of co-occurrences across multiple samples, providing a glimpse into the
structure of microbiomes. However, processing these datasets to obtain co-occurrence information
relies on several complex steps, each of which involves multiple choices of tools and corresponding
parameters. These multiple options pose questions about the accuracy and uniqueness of the inferred
networks. In this study, we address this workflow and provide a systematic analysis of how these
choices of tools and parameters affect the final network, and on how to select those that are most
appropriate for a particular dataset.
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Introduction

Microbial communities are ubiquitous and play an important role in marine and terrestrial envi-
ronments, urban ecosystems, metabolic engineering, and human health [ 1}, 2]. These microbial
communities, or microbiomes, often comprise several hundreds of different microbial strains
interacting with each other and their environment, often through intricate metabolic and signaling
relationships. Understanding how these interconnections shape community structure and functional-
ities is a fundamental challenge in microbial ecology, with applications in the study of microbial
ecosystems across different biomes. With the advancement in DNA sequencing technologies [3]]
and data processing methods, more information can be extracted from these microbial commu-
nity samples than ever before. In particular, high-throughput sequencing, including community
metagenomic sequencing and sequencing of 16S rRNA gene amplicons, has the potential to help
detect, identify and quantify a large portion of the constitutive microorganisms of a microbiome
[4, 5]. These advances have led to large-scale data collection efforts involving environmental
(Earth Microbiome Project) [2], marine (Tara Oceans Project) [6] and human-associated microbiota
(Human Microbiome Project) [[7].

This wealth of information on the composition and functions of a community at different
times and under different environmental conditions has the potential to help us understand how
communities assemble and operate. A powerful tool for translating microbiome data into knowledge
is the construction of possible inter-dependence networks across species. The importance of these
networks of relationships is two fold: first, such networks can serve as maps that help identify hubs of
keystone species [8, 9], or basic microbiome changes that occur as a consequence of environmental
perturbations or underlying host conditions [[10]; second, networks of inter-dependencies can serve as

a key bridge towards building mechanistic models of microbial communities, greatly enhancing our
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capacity to understand and control them. For example, multiple studies have shown the importance
of specific microbial interactions in the healthy microbiome [5] and others have shown how changes
in these interactions can lead to dysbiosis [[11,|10,/12]. In the context of terrestrial bio-geochemistry,
co-occurrence networks have been proposed as a valuable approach towards reconstructing the
processes leading to microbiome assembly [[13]], and understanding the response of microbial
communities to environmental perturbations [14].

Direct high-throughput measurement of interactions, e.g. through co-culture micro-droplet
experiments [15,(16]], or spatial visualization of natural communities [[17]] is possible, but it requires
specific technological capabilities, and has yet to be extensively used. In parallel, sequencing data
across multiple samples can be used for estimating co-occurrence relationships between taxa. While
the the relationship between directly measured interactions and statistically inferred co-occurrence is
still poorly understood [18]], a significant amount of effort has gone into estimating correlations from
large microbiome sequence datasets. Co-occurrence networks have microbial taxa as nodes, and
edges that represent the frequent co-occurrence (or negative correlations) across different datasets.

One of the most frequently used avenues for inferring co-occurrence networks is the parsing and
analysis of 16S sequencing data [9, 19]. A large number of software tools and pipelines have been
developed to analyze 16S sequencing data, often focused on addressing the many known limitations
of this methodology, including resolution, sequencing depth, compositional nature, sequencing
errors and copy number variations [20, 21]]. Popular methods for different phases of the analysis of
16S data include tools for: (i) denoising and clustering sequencing reads [22, 23[]; (ii) assigning
taxonomy to the reads [24, [25]]; (iii) processing and transforming the taxonomy count matrices
[26]]; and (iv) inferring the co-occurrence network [27, 28]. Different specific algorithms are often
aggregated into popular platforms (like MG-RAST [29], Qiita [30]) and packages (such as QIIME

[22]) that provide pipelines for 16S data analysis. The different methods and tools developed to solve
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81  issues arising in 16S analysis can lead to vastly different inferences of community compositions and
82  co-occurrence networks [31, 32], making it difficult to reliably compare networks across different
83  publications and studies. This is partially due to the fact that existing platforms are typically focused
84  on Operational Taxanomic Unit (OTU) generation and not on the effects of upstream statistical
85 methods on the inferred co-occurrence networks. Furthermore, no organized framework currently
86  exist to systematically analyze and compare existing components of the data analysis from amplicons
87  to networks. More broadly, given the lack of comprehensive comparisons between directly observed
88  microbial interactions (e.g. from co-culture experiments) and co-occurrence networks, there is no
89  straightforward way to determine which set of tools or methods generate the most accurate networks.
90 In this study, we present a standardized 16S data analysis pipeline called Microbial Co-occurrence
91 Network Explorer (MiCoNE) that produces robust and reproducible co-occurrence networks from
92 community 16S sequence data, and allow users to interactively explore how the network would
93  change upon using different alternative tools and parameters at each step. Our pipeline is coupled to
94 an online integrative tool for the organization, visualization and analysis of inter-microbial networks.
95  In addition to making this tool freely available, we implemented a systematic comparative analysis
96  to determine which steps of the pipeline have the largest influence on the final network, and what
97  choice seems to provide best agreement with the tested mock and synthetic datasets. We believe
98 that these steps will ensure better reproducibility and easier comparison of co-occurrence networks
99 across datasets. We expect that our tool will also be useful for benchmarking future alternative
100 methods, and for ensuring a transparent evaluation of the possible biases introduced by the use of

101 specific tools.
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102 Results

103 Microbial Co-occurrence Network Explorer (MiCoNE)

104 We have developed MiCoNE, a flexible and modular pipeline for 16S amplicon sequencing rRNA
105  data (hereafter mentioned simply as 16S data) analysis, that allows us to infer microbial co-occurrence
106 networks. It incorporates various popular, publicly available tools as well as custom Python modules
107 and scripts to facilitate inference of co-occurrence networks from 16S data (see Methods). Using
108 MiCoNE one can obtain co-occurrence networks by applying to 16S data (or to already processed
109  taxonomic count matrices) any combination of the available tools. The effects of changing any of
110  the intermediate step can be monitored and evaluated in terms of its final network outcome, as well
111 as on any of the intermediate metrics and data outputs. The MiCoNE pipeline workflow is shown in
112 Figure[l] The different steps for going from 16S data to co-occurrence networks can be grouped
113 into four major modules; (i) the denoising and clustering (DC) step, which handles denoising of the
114 raw 16S sequencing data into representative sequences; (ii) the taxonomy assignment (TA) step
115 that assigns taxonomic labels to the representative sequences; (iii) the OTU processing (OP) step
116 that filters and transforms the taxonomy abundance table; and finally (iv) the network inferences
117 (NI) step which infers the microbial co-occurrence network. Each process in the pipeline supports
118 alternate tools for performing the same task (see Methods and Figure[I)). A centralized configuration
119 file contains all the specifications for what modules are used in the pipeline, and can be modified
120 by the user to choose the desired set of tools. In what follows, we perform a systematic analysis
121 of each step of the pipeline to estimate how much the final co-occurrence network depends on the
122 possible choices at each step. We also evaluate a large number of tool combinations to determine a

123 set of recommended default options for the pipeline and provide the users with a set of guidelines to
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124 facilitate tool selection as appropriate for their data.

125 Our analysis involves two types of data: The first type consists of sets of 16S sequencing data
126 from real communities sampled from human Stool and Oral microbiomes. The second are datasets
127 synthetically or artificially created for the specific goal of helping evaluate computational analysis
128  tools (see Methods). In particular, in order to objectively compare, to the extent possible, how well
129 each step in MiCoNE best captures the underlying data, we use both mock data (labelled mock4,
130 mockl2 and mock16) from mockrobiota [33]] as well as, synthetically generated reads from an
131 Illumina read simulator called ART [34]]. These mock datasets consist of fake sequencing reads
132 generated from reads obtained from synthetic microbial isolates mixed in know proportions. They
133 contain the expected compositions along with the reference sequences for the organisms in the
134 mock community. The synthetic reads were simulated using three different taxonomy distribution
135  profiles, namely soil and water microbiomes obtained Earth Microbiome Project (EMP) [2] and
136 Stool microbiome that is used in our real community analysis [35]]. Reference sequences were
137 generated using National Center for Biotechnology Information (NCBI) and the Decard package [31]]
138 for these taxonomy profiles. Detailed information on the mock communities and the settings used to

139 generate the synthetic data are provided in the Methods section.

140 The choice of reference database has the biggest impact on inferred networks

141 In order to analyze the effect of different statistical methods on the inferred co-occurrence networks,
142 we generated co-occurrence networks using all possible combinations of methods and estimated
143 the variability in the networks due to each choice (Figure [T). This analysis is performed while
144 keeping the network inference algorithm (NI step) the same throughout the analysis. The effects
145  of various steps on the final co-occurrence network is estimated by building a linear model of the

146 edges of the network as a function the various step in the analysis pipeline (see Methods). Figure
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147 [2B, shows the fraction of total variation among the co-occurrence networks due to the first three
148 steps of the pipeline. In other words, each point corresponds to a different combination of tools,
149 and captures how much the final network is affected by such choice. The 16S reference database
150  contributes the most (~ 25%) to variation in the networks. This is also reflected in the fact that
151 the networks can be clearly separated based on the database used (Figure 2B). This indicates that
152 the taxonomy assigned to the reference sequences drastically alters the co-occurrence network. In
153  fact the variability induced by taxonomy assignment is much more significant than that due to the
154 variability induced based on how the reference sequences themselves are identified (in the DC step).
155  The grouping of the networks by taxonomy assignment into clusters (Figure [2B) seems to derive
156 from the mislabelling of constitutive taxa that are present in high abundance in the community,
157 which drastically alter the nodes and hence the underlying network topology. The residual variation
158  (Figure[2JA) can be seen as an artifact that arises when multiple steps are changed at the same time.
159 Another interesting observation (elaborated in detail in the denoising and clustering section) is
160  that the dissimilarity between the networks decreases when the low abundance OTUs are removed
161 from the network. These results suggest that the most important criterion for accurate comparative

162 analyses of co-occurrence networks is the taxonomy reference database.

163 Denoising and clustering methods differ in their identification of less common
164 reference sequences

165  Denoising and clustering are commonly carried out to generate representative sequences from the
166 raw 16S sequencing data and to obtain the OTU/Exact Sequence Variant (ESV) tables (counts of
167  these representative sequences for each sample). In order to compare the OTU tables generated
168 by different tools we processed the same 16S sequencing reads (healthy samples from a fecal

169  microbiome transplant study [35]]) using 5 different methods: open-reference clustering, closed-
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170 reference clustering, denovo clustering, Divisive Amplicon Denoising Algorithm 2 (DADA?2) [23]]
171 and Deblur [36]. The first three methods are from the Quantitative Insights Into Microbial Ecology
172 1 (QIIME1) [22] package. We find that there is good agreement in the OTU/ESV tables when
173 different combinations of methods are used to generate them (Supplementary Figure [ST).

174 To compare the representative sequences generated by these methods we employ both the
175 weighted [37] (Figure [3]A) and unweighted UniFrac method [38]] (Figure 3B). The weighted UniFrac
176 distance metric takes into account the counts of the representative sequences, whereas the unweighted
177 UniFrac distance metric does not and hence gives equal weights to each sequence. From Figure [3]A
178  one can see that the representative sequences generated by the different methods are similar to
179 each other when weighted by their abundance. Figure[3B on the other hand shows an increase in
180  dissimilarity between each pair of methods suggesting that the methods might differ in the treatment
181 of sequences of low abundance. In order to verify this claim, for each of these methods we use the
182 Greengenes (GG) taxonomy database to assign taxonomies to the representative sequences. We then
183 correlate the abundances of matching taxonomies between a pair of DC methods (Figure[STIA and B).
184  The ESV tables generated by methods that perform denoising are very similar to each other (~ 0.91)
185 and the OTU tables generated by the clustering methods are very similar to each other (~ 0.9), but
186 results of denoising and clustering are highly uncorrelated with each other (~ 0.4) (Figure[STC).
187 These comparisons only elucidate the pairwise similarity or dissimilarity of a pair of methods.
188 In order to determine the tool that most accurately recapitulates the reference sequences in the
189 samples, we used the 16S sequences from the mock datasets. In particular, we used the pipeline
190  to process mock community datasets using each of the possible methods included for this step.
191 We next compared predicted representative sequences with expected representative sequences and
192 their distribution. The results (Figure 3|C and D) show that, for the mock datasets, the different

193 methods perform similar to each other, exactly as observed in the case of the real dataset. However,
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194  the mock predicted sequence distributions are substantially different from the expected sequence
195  distribution. This result is more exaggerated in the case of the unweighted UniFrac metric, where
196 some of the datasets show a very high deviation from the expected sequences. These high deviations
197 are primarily in two of the three datasets that were analyzed and show that the datasets themselves
198 play a big role in the performance of these methods. This can be clearly seen in the performance
199 (weighted UniFrac distance) of DADA2 and Deblur on mock12 and mock16 datasets, where, Deblur
200  outperforms DADA2 on mock12 but the under-performs on mock16.

201 There is no method that clearly outperforms the rest in all datasets. Based on their slightly
202 better performance on the mock datasets, their de novo error correcting nature and other previous
203 studies [39]], DADA2 and Deblur seem to be in general the most reliable. Given the unexpected
204 poor performance of Deblur on the synthetic data, the default algorithm in the pipeline was chosen

205  to be DADA2 (Supplementary Figure [S3).

206 Taxonomy databases vary widely in taxonomy hierarchy and update frequency

207  Taxonomy databases are used to assign taxonomic identities to the representative sequences obtained
208  after the DC step. In order to compare the assigned taxonomies from different databases, we use
209  the same reference sequences and assign taxonomies to them using different taxonomy reference
210  databases. The three 16S taxonomic reference databases used in this study are SILVA [25]],
211 GG [24] and NCBI RefSeq [40]. SILVA and GG are two popular 16S databases used for taxonomy
212 identification. The NCBI RefSeq nucleotide database contains 16S rRNA sequences as a part of two
213 BioProjects - 33175 and 33317. The three databases vastly differ in terms of their last update status -
214 GG was last updated on May 2013, SILVA was last updated on December 2017 at the time of writing
215 and NCBI is updated as new sequences are curated. Since updates to taxonomic classifications

216  are frequent, these databases vary significantly in terms of taxonomy hierarchies including species
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217 names and phylogenetic relationships [41]].

218 The representative sequences obtained from the DADA2 method in DC step were used for
219 taxonomic assignment using the three reference databases. Figure BJA depicts a flow diagram
220  that shows how the top 50 representative sequences (sorted by abundance) are assigned a Genus
221 according to the three different databases. We observe that not only does the assigned Genus
222 composition vary significantly, but the percentage of unassigned representative sequences (gray)
223 also differ. Even the most abundant representative sequence is assigned to an "unknown" Genus
224 in two of the three databases. A representative sequence might be assigned an "unknown" Genus
225  for one of two reasons: the first is if the taxonomy identifier associated with the sequence in the
226 database did not contain a Genus; the second (more likely) reason is that the database contains
227 multiple sequences that are very similar to the query (representative) sequence and the consensus
228 algorithm (from Quantitative Insights Into Microbial Ecology 2 (QIIMEZ2)) is unable to assign one
229  particular Genus at the required confidence. After assigning all the representative sequences to
230  taxonomies we perform a pairwise comparison of the similarity between assignments from different
231 databases at every taxonomic level (Figure @B). The assignments beyond Family level (Family,
232 Genus and Species) are very dissimilar with < 70% similarity between any pair of databases. There
233 are no two reference databases that are more similar than the other pairs, with GG and SILVA
234  producing only marginally similar assignments compared to NCBI. This implies that the taxonomy
235 assignments from each reference database are fairly unique and are largely responsible for the
236  differences observed in the co-occurrence networks generated from different taxonomy databases.

237 Supplementary Figure [S4] shows that the top 20 most abundant genera in the three resulting
238  taxonomy composition tables are different. For example, the most abundant genus in the GG
239  taxonomy table was Escherichia whereas in the SILVA taxonomy table it was Escherichia-Shigella.

240  Although these are minor differences, when comparing a large number of taxonomy composition

10
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241  tables these problems are hard to diagnose.

242 As in the previous section, these comparisons only indicate similarity or dissimilarity between
243 methods. In order to obtain an absolute measure of accuracy of the taxonomic assignments we use
244 the expected reference sequences from the mock datasets as the query sequences for the databases
245  and the expected taxonomic composition as the standard to compare against (Figure C). Again, we
246 observe that none of the databases perform better than the others in absolute terms.

247 Given that no database performs better than others against mock datasets, and that databases are
248 almost equally distant from each other in terms of final output, the choice of which database to use
249  should be driven by other reason. One user-specific way to choose, would be based on the known
250  representation of taxa for the microbiome of interest (see also Discussion). Another reason could be
251  the frequency of updates and the potential for future growth, which prompted us to set NCBI as the
252 MiCoNE standard for taxonomy assignment. In addition to being regularly maintained and updated
253  the NCBI database already has the advantage that its accuracy of assignments is still comparable to

254 the SILVA and GG reference databases that are routinely used as reference databases.

255 Networks generated using different network inference methods show notable

256 difference in edge-density and connectivity

257 The six different network inference methods used in this study are Microbial Association
258  Graphical Model Analysis (MAGMA) [27], metagenomic Lognormal-Dirichlet-Multinomial
259 (mLDM) [42], Sparse InversE Covariance estimation for Ecological Association and Statisti-
260  cal Inference (SpiecEasi) [28]], Sparse Correlations for Compositional data (SparCC) [|19]], Spearman
261  and Pearson. These network inference methods fall into two groups, the first set of methods (Pear-
262 son, Spearman, SparCC) infer pairwise correlations while the second set infer direct associations

263  (SpiecEasi, mLDM, MAGMA). Pairwise correlation methods involve calculating the correlation

11
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264  coeflicient between every pair of OTU/ESVs leading to the detection of spurious indirect connections.
265  On the other hand, direct association methods use conditional independence to avoid the detection
266  of correlated but indirectly connected OTUs [28], 8]].

267 For the analysis presented in this section, we used the taxonomy composition table obtained
268  using the NCBI reference database as the input for algorithms that infer co-occurrence associations
269  between the microbes. Figure [S]A shows the networks inferred from this dataset using the different
270  inference algorithms. The different networks differ vastly in their edge-density and connectivity;
271 even some of the edges in common to these networks have their signs inverted. Note, however,
272 that some of these comparisons depend on the threshold that has to be applied to the pairwise
273 correlations methods (currently 0.3, based on [19]). To get a more quantitative picture of the
274 differences between the inferred networks, we checked the distribution of common nodes and edges
275  (Figure [5B) using UpSet plots [43]] (only MAGMA, mLDM, SpiecEasi, SparCC are used in the
276 comparison since Pearson and Spearman add a large number of spurious edges since they are not
277 intended for compositional datasets). The results for the node intersections show that the networks
278 have a large number of nodes in common (63 out of 67 nodes in the smallest network - MAGMA)
279 and no network possesses any unique node. The edge intersections in contrast show that only
280 19 edges (out of 98 edges in the smallest network - MAGMA) are in common between all the
281 methods and each network has a large number of unique edges. These results indicate that there is a
282  substantial rewiring of connections in the inferred networks.

283 Unlike the previous steps of the pipeline, where were we evaluated the performance of methods on
284 mock datasets, there is no equivalent dataset that contain a set of known interactions for the evaluation
285  of the network inference algorithms. Therefore, we propose the construction of a consensus network
286  (Figure[5C) involving MAGMA, mLDM, SpiecEasi and SparCC. This consensus network is built

287 by merging the p-values generated from bootstraps of the original taxonomy composition table

12
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288  using the Browns p-value combining method [44] (see Methods section). Based on this approach,
289  MiCoNE reports as default output the consensus network, annotated with weights (correlations for

290 SparCC and direct associations for the other methods) for all four methods.

291 The default pipeline

292 The systematic analyses performed in the previous sections clearly show that the choice of tools and
293  parameters can have a big impact on the final co-occurrence network. For some of these choices (e.g.
294  DADAZ2 vs. deblur) there is no clear metric to establish a best protocol. For other choices, the mock
295 communities provide an opportunity to select combination of parameters that yield more accurate
296  and robust results. Despite this partial degree of assessment, we wish to suggest a combination
297  of tools and parameters that produce networks that are derived from the combination of tools
298  which performed best on the mock communities, and displayed highest robustness to switching to
299  alternative methods. These tools and parameters are chosen as the defaults for the pipeline and are
300  given in Table[I]

301 The recommended tool for the Denoising and Clustering (DC) step (DADA?2 or Deblur) were
302 chosen based on their accuracy in recapitulating the reference sequences in mock communities and
303  synthetic data. The choice of the taxonomy reference database in the Taxonomy Assignment (TA)
304  step is dictated largely by the species expected to be present in the sample as well the database used
305 in similar studies if comparison is a goal. Nevertheless, we suggest NCBI RefSeq along with blast+
306  as the query tool since the database is updated regularly and has a broad collection of taxonomies.
307  The abundance threshold at the OTU Processing (OP) step is determined automatically based on the
308  number of samples and the required statistical power. Finally, we use the Browns p-value combining
309  method on the networks generated using MAGMA, mLDM, SpiecEasi and SparCC to obtain a final

310  consensus network in the Network Inference (NI) step.
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311 Figure [0A shows the default network compared against networks generated by altering one of the
312 steps of the pipeline from the default. These results indicate that the biggest differences in networks
313 occur when the reference database or the network inference algorithm are changed. Furthermore, the
314 LI distance of networks generated by altering one of the steps of the pipeline from the default against
315  the default network (Figure [6B) shows that the biggest deviations from the default network occur
316 when the TA and NI steps are changed, reinforcing the same results observed in Figure [2] Figure[7|
317 shows the co-occurrence networks inferred for the hard palate for healthy subjects in a periodontal
318 disease study [45]] and the healthy stool microbiome in fecal microbial transplant study [35]]. These

319 consensus networks were generated using the default tools and parameters from Table[I]

320 Discussion

321 Co-occurrence associations in microbial communities help identify important interactions that drive
322 microbial community structure and organization. Our analysis shows that networks generated using
323  different combinations of tools and approaches can look significantly different from each other,
324 highlighting the importance of a clear assessment of the source of variability and of tools that provide
325  the most robust and accurate results. Our newly developed integrated software for the inference
326 of co-occurrence networks from 16S rRNA data, MiCoNE, constitutes a freely customizable and
327  user friendly pipeline that allows users to easily test combinations of tools and to compare networks
328 generated by multiple possible choices (see Methods). Importantly, in addition to revisiting the test
329  cases presented in this work, users will be able to explore the effect of various tool combinations on
330  their own datasets of interest. The MiCoNE pipeline is built in a modular fashion. Its plug-and-play
331 architecture will make it possible for users to add new tools and steps, either from existing packages,

332 or from packages that were not examined in the present work, as well as future ones.
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333 The main outcome of this work is thus two-fold: on one hand we transparently reveal the
334 dependence of co-occurrence networks on tool and parameter choices, making it possible to more
335 rigorously assess and compare existing networks. On the other hand, we take advantage of our
336  spectrum of computational options and the availability of mock and synthetic datasets, to suggest a
337  default standard setting, and a consensus approach, likely to yield networks that are robust across
338 multiple tool/parameter choices.

339 An important caveat related to this last point is the fact that our conclusions are based on the
340  specific datasets used in our analysis. While our datasets cover a relatively broad spectrum of
341 biomes and sequencing pipelines, datasets that have drastically different distributions may require a
342 re-assessment of the best settings through our pipeline.

343 It is worth pointing out some additional more specific conclusions stemming from the individual
344 steps of our analysis.

345 The different denoising/clustering methods differ mostly in their identification of sequences that
346 are in low abundances. Hence, they do not have much of an impact on the inferred co-occurrence
347 networks when the sequences of low abundance are removed. However, comparison of inferred and
348 expected reference sequences and their abundances in mock community datasets has allowed us to
349  identify DADA?2 as the method which best recapitulates the expected sequence composition. For
350 the current work we have decided to focus on the tools most widely used at the time of the analysis.
351 Some tools that we recently published (e.g. dbOTU3 [46]]) as well as older popular methods like
352 mothur [47] have not been included in the study, but could be added into the pipelines in future
353  updated analyses.

354 The choice of taxonomy database was found to be the most important factor in the inference of a
355 microbial co-occurrence network, contributing ~ 20% of the total variance. The frequent changes

356 in the taxonomy nomenclature coupled with the frequency of updates to the various 16S reference
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357  databases create inherent differences [41] in taxonomy hierarchies in these databases. Our analysis
358  revealed that no particular reference database performs better than the others across all scenarios.
359  We suggest that that choice of the database should be made based on possible reported or inferred
360 biases in the representation of given biomes in a specific databases [41]]. The default reference
361 database in the pipeline is the NCBI 16S RefSeq database as it is more frequently updated and is
362 most compatible with the blast+ query tool. We also enable users to use custom databases [48] with
363  the blast+ and naive bayes classifiers that are incorporated into the pipeline (from QIIME?2).

364 Filtering out taxa that are present in low abundances in all samples did not increase (in most
365 datasets tested) the proportion of taxa in common between taxonomy tables generated using different
366 reference databases. However, we do observe that the reduction in the number of taxa leads to better
367 agreement in the networks inferred through different methods. Moreover, filtering is necessary in
368  order to increase the power in tests of significance when the number of taxa is much greater than the
369 number of samples.

370 The networks generated by different network inference methods show considerable differences in
371 edge-density and connectivity. One reason for this is the underlying assumptions regarding sparsity,
372 distribution and compositionality that the algorithms make. The consensus network created by
373 merging the networks inferred using the different network inference methods enables the creation of
374  anetwork whose links have evidence based on multiple inference algorithms.

375 Exploring the effects of these combinations of methods on the resultant networks is difficult and
376  inconvenient since different tools differ in their input and output formats and require inter-converting
377  between the various formats. The pipeline facilitates this comparative exploration by providing a
378  variety of modules for inter-conversion between various formats, and by allowing easy incorporation
379  of new tools as modules.

380 We envision that MiCoNE, and the underlying tools and databases that help process amplicon
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381  sequencing data into co-occurrence networks, will be increasingly useful towards building large
382 comparative analyses across studies. By having a unified transparent tool to compute networks, it
383  will be possible to reprocess available 16S datasets to obtain networks that are directly comparable
384  to each other. Furthermore, even in the analysis of published networks across studies and processing
385  methods, MiCoNE could help understand underlying biases of each network, which could in turn be

386  taken into account upon making cross-study comparisons.

ss7  Materials and Methods

sss  Datasets
389  The study uses three kinds of 16S rRNA sequencing datasets: real datasets, mock datasets and

390 synthetic datasets. Real datasets are collections of sequencing reads obtained from naturally
391 occurring microbial community samples. The current study used healthy stool samples from a fecal
392 microbiome transplant study [35]] and healthy saliva samples from a periodontal disease study [45]]
393  as real datasets for analysis. The mock community 16S datasets are real sequencing data obtained
394 for artificially assembled collections of species in known proportions. The mock datasets used
395  for this study, obtained from mockrobiota [33]], are labelled mock4, mock12 and mock16. The
396  mock4 community is composed of 21 bacterial strains. Two replicate samples from mock4 contain
397  all species in equal abundances, and two additional replicate samples contain the same species in
398 unequal abundances. The mock12 community is composed of 27 bacterial strains that include
399 closely related taxa with some pairs having only one to two nucleotide difference from another. The
400 mockl6 community is composed of 49 bacteria and 10 archea, all represented in equal amount.
401 The synthetic datasets were generated using an artificial read simulator called ART [34]. Three

402 different microbial composition profiles were used as input; reads were generated using a soil and
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403 water microbiome composition profiles from the EMP [2] and healthy gut microbiome project
404 from the fecal microbiome transplant study [35]]. The reads are simulated using the NCBI RefSeq
405  database as the reference sequence pool and the "art_illumina" sequence profile with a mutation
406 rate of 2%. The scripts used to generate the synthetic data are in the scripts folder of the repository

407 (https://github.com/segrelab/MiCoNE-pipeline-paper).

408 MiCoNE

409  The flowchart describing the workflow of MiCoNE (Microbial Co-occurrence Network Explorer),
410 our complete 16S data-analysis pipeline, is shown in Figure [I] The pipeline integrates many
411 publicly available tools as well as custom R or Python modules and scripts to extract co-occurrence
412 associations from 16S sequence data. Each of these tools corresponds to a distinct R or python
413 module that recapitulates the relevant analyses. All such individual modules are available as part
414 of the MiCoNE package. The inputs to the pipeline by default are the raw community 16S rRNA
415 sequence reads, but the software can be alternatively configured to use trimmed sequences, OTU
416  tables and other types of intermediate data. The final output of the pipeline is the inferred network
417 of co-occurrence relationships among the microbes present in the samples.

418 The MiCoNE pipeline provides both a Python API as well as a command-line interface and
419 only requires a single configuration file. The configuration file lists the inputs, output and the steps
420  to be performed during runtime, along with the parameters to be used (if different from defaults)
421 for the various steps. Since the entire pipeline run-through is stored in the form of a text file (the
422 configuration file), subsequent runs are highly reproducible and changes can be easily tracked using
423  version control. It uses the nextflow workflow manager [49] under the hood, making it readily usable
424 on local machines, cluster or cloud with minimal configuration change. It also allows for automatic

425  parallelization of all possible processes, both within and across samples. The pipeline is designed to
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426 be modular: each tool or method is organized into modules which can be easily modified or replaced.
427 This modular architecture simplifies the process of adding new tools (refer to modules section in
428  the MiCoNE documentation). The main components of the pipeline are detailed in the subsequent

429  sections.

430 Denoising and Clustering (DC)
431 This module deals with processing the raw 16S sequence data into OTU or ESV count tables. It

432 consists of the following processes: quality control, denoising (or clustering) and chimera checking.
433 The quality control process handles the demultiplexing and quality control steps such as trimming
434 adapters and trimming low-quality nucleotide stretches from the sequences. The denoise/cluster
435  process handles the conversion of the demultiplexed, trimmed sequences into OTU or ESV count
436  tables (some methods, like closed reference and open reference clustering, perform clustering and
437 taxonomy assignment in the same step). The chimera checking process handles the removal of
438  chimeric sequences created during the Polymerase Chain Reaction (PCR) step. The output of this
439 module is a matrix of counts, that describes the number of reads of a particular OTU or ESV (rows
440  of the matrix) present in each sample (columns of the matrix). The options currently available in
441 the pipeline for denoising and clustering are: open reference clustering, closed reference clustering
442 and de novo clustering methods from QIIMEI v1.9.1 [22] and denoising methods from DADA2
443 v1.14 [23] and Deblur v1.1.0 [36]]. The quality filtering and chimera checking tools are derived
444 from those used in QIIME2 v2019.10.0 and DADAZ2.

445 Taxonomy Assignment (TA)

446 This module deals with assigning taxonomies to either the representative sequences of the OTUs or
447  directly to the ESVs. In order to assign taxonomies to a particular sequence we need a taxonomy

448  database and a query tool. The taxonomy database contains the collection of 16S sequences of

19


https://doi.org/10.1101/2020.09.23.309781
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.23.309781; this version posted October 22, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

449 micro-organisms of interest and the query tool allows one to compare a sequence of interest to all
450  the sequences in the database to identify the best matches. Finally, a consensus method is used
451 to identify the most probable match from the list of best matches. The pipeline incorporates GG
452 13_8 [24], SILVA 132 [25] and the NCBI (16S RefSeq as of Oct 2019) [40] databases for taxonomy
453 assignment and the Naive Bayes classifier from QIIME2 and NCBI blast as the query tools (from

454 QIIME2). The consensus algorithm used is the default method used by the classifiers in QIIMEZ2.

455 OTU and ESV Processing (OP)

456 This module deals with normalization, filtering and applying transformations to the OTU or ESV
457 counts matrix. Rarefaction is a normalization technique used to overcome the bias that might arise
458  due to variable sampling depth in different samples. This is performed either by sub-sampling or
459 by normalization of the matrix to the lowest sampling depth [26]. Rarefaction is usually followed
460 by filtering, which is performed to remove samples or features (OTUs or ESVs) from the count
461  matrix that are sparse. In order to determine the filtering threshold we fix the number of samples
462 and correlation detection power needed and determine the number of features to be used. Finally,
463  transformations are performed in order to correct for and overcome the compositional bias that is

464  inherent in a counts matrix (in most cases this is handled by the network inference algorithm).

465  Network Inference (NI)
466 This module deals with the inference of co-occurrence associations from the OTU or ESV counts

467  matrix. These associations can be represented as a network, with nodes representing taxonomies of
468  the micro-organisms and edges representing the association between them. A null model is created
469 by re-sampling and bootstrapping the correlation/interaction matrix and is used to calculate the
470  significance of the inferred associations by calculating the p-values against this null model [50]. The

471 pipeline includes Pearson, Spearman and FastSpar v0.0.10 (a faster implementation of SparCC) [50]
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472 as the pairwise correlation metrics, and SpiecEasi v1.0.7 [28], mLDM v1.1 [42] and MAGMA [27]
473  as the direct association metrics. The empirical Browns method [44] is used for combining p-values
474 from the various methods to obtain a consensus p-value, which is used to create the consensus

475  network.

476 Network Variability

477 In order to compare across different networks, and analyze the degree of variability induced by
478  the choice of different modules and parameters, we organized multiple networks into a single
479 mathematical structure that we could use for linear regression. In particular, we transformed the
480  adjacency matrix of each co-occurrence network into a vector. We then merged the networks
481  generated from all possible combinations of tools into a table (N, see below) in which each column

482 represents one network.

edgey11 edgex1 --- edgeni
edge1n edgess --- edge,o
N =
edgey, edgez, --- edge,,
483 In other words, N is the merged table, each column N; is the vector representation of one of the

484 networks, and each row L; represents the one particular edge in all networks (assigned O if the edge
485  does not exist in the network).
486 We use linear regression to express each link L; as a linear function of categorical variables that

487  describe the possible options in each of the first three steps of the pipeline.
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In particular, we infer parameters «; such that:

5 3 2
L = Z (alpcw_(;lpcm) + (aiTA(J)_(S[TA(/)) + (Q?Pmﬁ?m)) +6
j=1 j=1 j=1
488 where, a; are the coeflicients of the regression, ¢; are the residuals and §; are the indicator

489  variables that correspond to the processes utilized in the pipeline used to create the network N;;

l.DC(D = 1 if the DC(1) process was used in the generation of the network »; . Here,

490  for example, 0
491 (i) DC(1) = "closed reference", DC(2) = "open reference", DC(3) = "de novo", DC(4) = "dada2",
492 DC(5) = "deblur"; (ii) TA(1) = "GreenGenes", TA(2) = "SILVA", TA(3) = "NCBI"; (iii) OP(1) =
493 "no filtering", OP(2) = "filtering".

494 The variance contributed by each step of the pipeline is calculated for every connection in the
495  merged table through ANOVA using the Python statsmodels package and is shown in Figure 2B.

496  The total variance for the network is calculated by adding the variances for each connection. The

497 PCA analysis is also performed on the merged table to generate Figure 2IC.

498 Code and Data Availability

499  Pipeline: https://github.com/segrelab/MiCoNE

500  Data and scripts: https://github.com/segrelab/MiCoNE-pipeline-paper
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714 Tables and Figures

Process Tool Parameters
Denoising and Clustering Dada2/Deblur default
Taxonomy Assignment NCBI with Blast RefSeq database
OTU Processing Based on statistical power | Dynamic cutoff
Network Inference Consensus method -

Table 1: Default tools and parameters for the pipeline
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Figure 1: The workflow of the microbial co-occurrence analysis pipeline. The steps can be
grouped into four major groups: (DC) Denoising and Clustering, (TA) Taxonomy Assignment, (OP)
OTU or ESV Processing, and (NI) Network Inference. Each step incorporates several processes,
each of which in turn have several alternate algorithms for the same task (indicated by the text to the
right of the blue boxes). The text along the arrows describes the data that is being passed from one
step to another. For details on each process and data types, see Methods.
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Figure 2: The choice of database contributes to the most variance in the networks. (A) The
total relative variance in the networks contributed by the DC, TA and OP steps of the pipeline (right)
and the linear model used to calculate the relative variance (left), see the Methods section for details.
(B) All combinations of inferred networks are shown as points on a PCA plot. The color of the
points corresponds to the taxonomy database, the shape corresponds to the denoising/clustering
method and the size corresponds to whether low abundance OTUs were removed or not. (B inset)
The network generated using DC=dada2, TA=GG, OP=no and NI=SPARCC and represents the
particular point shown (big red square). The plot clearly shows that the points can be separated
based on the TA step and that the differences due to the DC and OP steps are not as significant.
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Figure 3: The representative sequences generated by the different denoising/clustering meth-
ods are very similar but differ in the sequences that are in low abundance. (A) The average
weighted UniFrac distance between the representative sequences shows that the representative
sequences and their compositions are fairly identical between the methods, (B) The relatively
larger average unweighted UniFrac distance indicates that methods differ in their identification of
sequences of low abundance, (C, D) The distributions of the average weighted UniFrac distance
between the expected sequence profile and the calculated sequence profile in mock datasets. (D)
The distributions of the average unweighted UniFrac distance show that dada2 and Deblur were the
best performing methods in most of the datasets.
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Figure 4: Taxonomic reference databases vary widely in terms of their taxonomy assignments.
(A) The assignment of the top 50 representative sequences to their respective taxonomies using
the three different reference databases shows how the same sequences are assigned to different
Genus. (B) The percentage of OTUs assigned to the same taxonomic label when using different
reference databases. The percentage of mismatches decrease at higher taxonomic levels but even at
the Phylum level there exists around 10% of mismatches. (C) The Bray-Curtis dissimilarity between
the expected taxonomy profile and calculated taxonomy profile in the mock datasets shows that there
is no singular best choice of database for every dataset.
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Figure 5: Networks generated using different network inference methods show notable differ-
ences both in terms of edge-density and connectivity. (A) The six different networks generated by
the different network inference methods are very dissimilar. The green links are positive associations
and the orange links are negative associations. A threshold of 0.3 was set for the methods that infer
pairwise correlations (SparCC, Spearman, Pearson) and no threshold was set for the other methods.
(B) The node overlap Upset plot [43] indicates that all the networks have a large number of common
nodes involved in connections. Whereas, (C) The edge overlap Upset plot shows that a very small
fraction of these connections are actually shared.
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Figure 6: Network inference and taxonomic assignment have the highest influence on the
inferred network structures. (A) The network constructed using the default pipeline parameters
(DC=DADA2, TA=NCBI, OP=on, NI=SparCC) is compared with networks generated when one of
the steps use a different tool. The common connections (common with the default network) are in
black, connections unique to the network are colored purple and connections in the default network
but not present in the current network are gray. (B) The L1 distance between the networks generated
by changing one step of the default pipeline and the network generated using the default parameters.
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Figure 7: The consensus networks generated using the default pipeline settings. (A) Co-occurrence
network of the Hard Palate microbiome generated from samples of healthy subjects in a periodontal
diseases study. (B) Co-occurrence network of the Stool microbiome generated from samples of
healthy subjects in a fecal microbiome transplant study.
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Step Task Tool Parameter Value
. min_overlap 6
join_reads perc_max_diff 8
. . . rev_comp_barcodes False
demultiplex_illumina )
rev_comp_mapping_barcodes False
Sequence Processing demultiplex_454 - -
seq_sample_size 10,000
trim_filter_fixed nepus !
trunc_q 2
max_ee 2
uchime - -
Chimera Checking ) ncpus 1
remove_bimera .
chimera_method consensus
enable_rev_strand_match True
de_novo suppress_de_novo_chimera_detection True
Denosing and Clustering ncpus 1
enable_rev_strand_match True
closed reference suppress_de_novo_chimera_detection True
- ncpus 1
reference_sequences 97_otus.fasta
enable_rev_strand_match True
Denoise Cluster suppress_de_novo_chimera_detection True
open_reference ncpus 1
reference_sequences 97_otus.fasta
picking_method uclust
ncpus 1
dada2 big_data FALSE
ncpus 1
deblur mind_reads 2
min_size 2
confidence 0.7
naive_bayes mem_per_core 8G
ncpus 1
Taxonomy Assignment  Assign max_accepts 10
perc_identity 0.8
blast evalue 0.001
min_consensus 0.51
count_thres 500
abundance prevalence_thres 0.05
Filter abundance_thres 0.01
["Phylum’, *Class’, ’Order’,
group tax_levels ’Family’, ’Genus’, *Species’]
. partition - -
OTU/ESV Processing count_thres 500
axis sample
Transform normalize prevalence_thres 0.05
abundace_thres 0.01
rm_sparse_obs True
rm_sparse_samples True
Export biom2tsv - -
bootstraps 1000
resample ncpus 1
Bootstrap b ﬁltir_ﬂag True
pvalue ncpus 1
iterations 50
sparcc
ncpus 1
pearson - -
spearman - -
Network Inference method mb
Correlation . . nopus !
spieceasi nreps 50
nlambda 20
42 lambda_min_ratio le-2
mldm Z_mean 1
max_iteration 1500
magma - -
Network make_network - -

Table S1: The default parameters used in the various tools of the pipeline
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Figure S1: Comparison of various denoising and clustering algorithms used in the pipeline.
(A, B) Correlation of the abundances of the taxa that are in common between the count matrices
created by two different methods. (A) The worst correlation (least similar methods) is between
open-reference and dada2. (B) The best correlation (most similar methods) is between open-reference
and denovo. (C) A heatmap showing the R? of 'c}% pairwise comparisons of the methods.
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Figure S2: Heatmaps showing the weighted and unweighted unifrac distances for the hard
palate dataset analysis. (A) weighted unifrac distances and (B) unweighted unifrac distances
between the representative sequences generated by different denoising and clustering algorithms.
These results are in agreement with the stool microbiome dataset.

A weighted unifrac B unweighted unifrac
1.001 1.001
0.751 0.751
) o ° ¢ . . .
Q Q
5 -
14 ° ° 14 ’ M e o ® o®
S 0.50 ] o ® oo S 0.50 dataset
L]
g ., . °° ‘g o emp_soil
E E e emp_water
0.251 . 0.251 e stool
0.001 0.001
° N e < a2 e N ° o 2
< o < o & o o o O &
N ‘e\e\e o ° . ‘e\e\e [\2 N @@6 o ° . ‘e@e [\2 &
0\0‘56 e er e 0\066 e er e
denoising/clustering method denoising/clustering method

Figure S3: The distributions of the average weighted UniFrac distance between the expected
sequence profile and the calculated sequence profile in the synthetic datasets. We observe no
significant difference between the various methods on the synthetic datasets used for this study.
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Figure S4: (A) Taxonomy composition of the 20 most abundant genera predicted for the stool
microbiome dataset generated using different taxonomy references databases: Greengenes, SILVA
and NCBI. The legend shows the common and the unique genera among the taxonomy assignments.
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Figure S5: The bray-curtis dissmilarity between the expected taxonomic composition and generated
taxonomic composiion for the synthetic datasets.
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Figure S6: The similarity between the networks generated using the different network inference
algorithms for stool dataset (A) and the hard palate dataset (B). The similarity between the various
methods was found to vary with the dataset used.
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Figure S7: A network showing union (A) and intersection (B) of networks generated using different
denoising and clustering tools on the Stool dataset.
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