bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304584; this version posted September 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

On the Mathematics of RNA Velocity I: Theoretical
Analysis

Tiejun Li', Jifan Shi%, Yichong Wu!, and Peijie Zhou?

L MAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced
Study, The University of Tokyo, Tokyo 113-0033, Japan
3Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA

Abstract

The RNA velocity provides a new avenue to study the stemness and lineage of cells in
the development in scRNA-seq data analysis. Some promising extensions of it are proposed
and the community is experiencing a fast developing period. However, in this stage, it is of
prime importance to revisit the whole process of RNA velocity analysis from the mathemat-
ical point of view, which will help to understand the rationale and drawbacks of different
proposals. The current paper is devoted to this purpose. We present a thorough math-
ematical study on the RNA velocity model from dynamics to downstream data analysis.
We derived the analytical solution of the RNA velocity model from both deterministic and
stochastic point of view. We presented the parameter inference framework based on the
maximum likelihood estimate. We also derived the continuum limit of different downstream
analysis methods, which provides insights on the construction of transition probability ma-
trix, root and ending-cells identification, and the development routes finding. The overall
analysis aims at providing a mathematical basis for more advanced design and development
of RNA velocity type methods in the future.
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a rapid maturing technique, which makes the elab-
orate study of biological processes in the single cell resolution possible [48, 56]. The rich and
diverse scRNA-seq datasets are revealing to us the mysteries of stem cell differentiation [52],
heterogeneity in multicellular organisms [23], cancer cell dissection [7, 35, 62], drug discovery
[21, 57], etc. Every year, a swarm of analysis tools are produced by researchers all over the
world [40, 60]. Some popular choices include the clustering tools [6, 26], trajectory inference
tools [20, 38, 40, 45, 49, 51], and energy landscape tools [24, 42, 44, 61], etc.

The characterization of stemness and lineage of the cells is a fundamental question in devel-
opmental biology. Although some practical indices, such as the signalling entropy and Markov
chain entropy [45, 49], etc., are proposed to quantify the stemness of different cells in the scRNA-
seq data analysis, they are more or less heuristic in nature. Recently, another promising method,
the RNA velocity [27], was proposed to address this issue based upon the fact that the nascent
(unspliced) and mature (spliced) mRNA can be distinguished in common single-cell RNA-seq
protocols, such as SMART-seq2 [36], Drop-seq [30] and 10X genomics [64]. Thus, the relative
abundance of unspliced and spliced mRNA are utilized to infer a velocity of each cell in the
spliced mRNA abundance space, and predict the tendency of transition from one cell to another
according to the RNA velocity model [27]. Improved methods in kinetic modeling, parameter in-
ference and downstream analysis have been subsequently proposed [3, 39], showing the potential
of RNA velocity to quantify the stemness of cells in a rational way.

Despite the fruitful results and promising applications of RNA velocity, it is of prime im-
portance to understand the rationale underlying the algorithm design, as well as the subtle
differences between different proposals from the mathematical point of view. For instance, when
constructing the cell-cell stochastic transition probability matrix from RNA velocity, La Mano
et al. [27] and Qiu et al.[39] used the correlation scheme in the velocity kernel, while the cosine
scheme was proposed in [3]. In the recent version of dynamo package [37], a scheme with local
kernels [4] of diffusion was also utilized. In spite of their intuitive plausibility, the theoretical
implications of different kernels demands further investigation. In addition, a tracking strategy
of root and ending cells has been applied based on forward and backward diffusions [3, 27],
whose theoretical basis remains to be established. The resolve of these puzzles based on a formal
mathematical study will not only shed light on these theoretical problems, but also lead to a
deeper comprehension of the RNA velocity and inspire further rational design of more delicate
RNA velocity models. The current paper is devoted to this purpose.
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2 MODELS OF RNA VELOCITY 3

In this work, we will present a thorough mathematical study on the whole process of RNA
velocity model from kinetic model derivation, parameter inference algorithm to the downstream
dynamical analysis. Our analysis will contribute insights toward several fundamental questions
regarding RNA velocity and relevant downstream analysis, including;:

e How to derive the deterministic and stochastic kinetic models of RNA velocity, and find
analytical solutions?

e How to build the maximum likelihood estimator (MLE) of the parameters, built on the
exact solution of stochastic RNA velocity model?

e How can the discrete cellular transition dynamics inferred from RNA velocity be rigorously
associated the continuous dynamical system model in cell-fate decision?

e What is the essential difference between the choice of correlation, cosine or inner-product
scheme in the velocity kernel for the cellular transition matrix?

e What is the implication to replace the Gaussian scheme with k-nearest neighbor (kNN)
scheme in the diffusion kernel?

e Why is the backward and forward diffusion strategy effective in detecting root and ending
cells of development?

e How to rationally construct developmental trajectories based on RNA velocity with mathe-
matical theory, beyond illustrating arrows and streamlines in the reduced dimension space?

We will focus on the formal mathematical analysis in the current paper and leave detailed
computational comparisons and improvements in the continued publication [28]. To the best
knowledge of the authors, this is the first attempt on studying the mathematics of RNA velocity
in a complete manner. We hope it will provide a mathematical basis for further development of
RNA velocity type methods in the future.

The rest of the paper is organized as follows. In Section 2, we show the mathematical
derivations of both deterministic and stochastic kinetic models of RNA velocity, and derive the
associated analytical solutions. In Section 3 we will revisit the existing algorithms to infer param-
eters in RNA velocity models, and present a novel maximum likelihood estimation of parameters
originated from the exact solution of stochastic models. In Section 4 we focus on the dynamical
system analysis based on RNA velocity, deriving the continuum limit of discrete transition prob-
abilities with various kernels, demonstrating the mathematical rationale for the existing strategy
of root/ending cells detection, and providing a new method to construct development trajec-
tories with RNA velocity through the well-established transition path theory. Finally we give
the conclusion and discussions in Section 5. Some analysis details, such as the almost sure type
convergence order of the kNN radius, are left in the Appendix.

2 Models of RNA Velocity

The key point of the RNA velocity model of single cells is that one can identify the abundance
of the precursor (unspliced) and mature (spliced) mRNA from the single-cell RNA-seq data,
which provides the information on the time-dependent evolution rate of the mRNA abundance
by incorporating appropriate dynamical models.

Denote by u and s the abundance of the unspliced and spliced mRNA, respectively. In
its simplest form, the transcriptional dynamics of the mRNA velocity can be described as the
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2 MODELS OF RNA VELOCITY 4

reaction pathways shown in Table 1 [27]. We assume the production of u is dictated by a
transcriptional induction or repression with parameter a®® or a°®, respectively. The unspliced
mRNA, u, is then transformed into the spliced form with rate 3, and the spliced mRNA is
eventually degradated with rate v. We remark that the above statement must be understood
for single gene, i.e. the parameters (aon/og, B,7) should be replaced by (agn/OH, Bg,7Vg) When we
consider the dynamics for a specific gene g. But we will omit the g-dependence of the parameters
for brevity if not necessary. In the current stage, we assume that there are no interactions among
different genes.

on/off
@ —*——— unspliced mRNA (u) —, spliced mRNA(s) ——— @
Transcription Splicing Degradation

Table 1: Schematics of the dynamics for the RNA velocity model.

The task in this section is to study the explicit solution and related analytical properties of the
forward mRNA velocity model in both deterministic and stochastic forms, given the dynamical
parameters (a°™/°T 3. ).

2.1 Deterministic Model

The deterministic model of the reaction dynamics shown in Table 1 has the form (2.1)-(2.2) by
the law of mass action:

du

5 = o) = Bult), (2.1)
< = Bu(t) —ys(t), (22)

where ¢ > 0, (u(t), s(t))|t=0 = (o, $0), and

a, t <t
at)={ o _y (31 (23

Here t, is the switch time of the transcriptional process.
The term defined through Eq. (2.2):

olt) = (0 = (G2) = Goua®) = 2y2(0), € R (2.4)

is the RNA velocity of each cell, where g = 1 : n, in Eq. (2.4) and n, is the number of considered
genes in the RNA-seq data. Note that the velocity v only depends on the state (u, s), but not the
absolute magnitude of ¢, given the rate parameters, since the considered system is autonomous.

Explicit solution We will study the results for the cases § # v and 8 = =, respectively.
Case 1: B # v. The analytical solution to (2.1)-(2.2) in the on stage with rate a®® = « is

u(t) = uge Pt + %(1 —e Y, (2.5)

s(t) = spe” "t + %(1 —e ")+ 7a’y—_ﬁ;0 (e77t — =P (2.6)
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2 MODELS OF RNA VELOCITY 5)

for t < ts. Usually, we suppose (ug, s9) = (0,0), then we have

u(t) = %(1 — e, (2.7)
s(t) = 21— e ) 4 (ot _ Bt .
(=0 )+ 5 ) (2.8)

for t < t,. Define the switch state by

(us, 85) = (ul(ts), s(ts))-

Then in the off stage, we have the solution

u(t) = uge Pl=ta), (2.9)

(=t _ BUs e —Be-t)
s(t) = sge W) — ——(e7 VT —¢ <)) (2.10)
Y-8

for t > t,. It is straightforward that u(t), s(t) > 0 for any finite ¢ > 0.
Case 2: B =~. The analytical solution to (2.1)-(2.2) in the on stage is

u(t) = upe Pt + %(1 —e P, (2.11)
50 = 50" + (1~ ) — (o — Bt 212)

for t < ts. When (ug, so) = (0,0), we have

ult) = %(1 —emhh), (2.13)
s(t) = %(1 —e Pt — ate P (2.14)
for t < ts. And in the off stage
u(t) = uge Pt (2.15)
s(t) = see PUt) 4oy Bre Pt (2.16)

for t > ts. It is straightforward to note that the solution (2.11)-(2.12) is indeed the limit of the
solution (2.5)-(2.6) as v — 3.

Steady State The steady state in the on stage is (u*, s*) = a/(8,7), and the steady state in
the off stage is simply (u., s«) = (0,0).

Scale Invariance It is important to note that the system (2.1)-(2.2) has the following scale
invariance property, i.e. if we define the parameter § = (0,,ts), where the rates 6, = (a, 8,7),
then the solution satisfies

(w(t; 0y, ts), s(t; 0, ts)) = (u(kt; 0, /K, Kts), s(kt; 0, /K, Kts)) (2.17)

for any scaling parameter x > 0. This scale invariance indicates the degeneracy of the inference
problem. That is, to ensure the well-posedness of the inference on parameter 6, we should fix
the time scale of the system. For example, one can consider the dynamics (2.1)-(2.2) within a
fixed period [0, 7], where . = T. We remark that the choice of the degree of freedom does
affect the magnitude of RNA velocity (2.4) up to a multiplicative constant.
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2 MODELS OF RNA VELOCITY 6

2.2 Stochastic Model

In the stochastic model, the system state (u(t),s(t)) € N? is a stochastic process and we are
interested in the evolution of its probability mass function denoted by

Py (t) := Prob {(u(t), s(t)) = (m,n) € N*}. (2.18)

The stochastic model of the reaction dynamics shown in Table 1 is given by the following chemical
master equation (CME) [18]

Ot P = aon/off(Pm,l,n — Pon) + Bl(m + 1)Pm+1’n,1 — mPpy]
+ '7[(77’ + ]-)Pm,nJrl - ann} (219)
with initial condition P, (0) = p% . In the on or off stage, the production rate of u, aen/off,

will be set as a®® = a or a°f = 0, respectively. We will study the analytical solution of (2.19)
in different cases.

Scale Invariance Similar to the deterministic case, the solution Py, (t) has the scale invariance

property
Prn(t;05,ts) = P (Kt; 0, /K, Kts) (2.20)

for any scaling parameter x > 0.

2.2.1 On Stage with Zero Initial Value
In the on stage, i.e. t < t,, we have the CME
atP)mn == a(Pm—l,n - Pmn) + B[(m + l)Pm+1,n—1 - umn]

We will first study the case (u(0), s(0)) = (0,0), i.e. with initial distribution P,,,(0) = 0,,00n0,

where
s 1 ifi=]
771 0 otherwise

is the Kronecker’s delta-function. The general cases are left in Section 2.2.3. Since the rate
functions are all linear in m and n, we will employ the idea of moment generating function to
solve (2.21) [43].

Theorem 2.1 (Analytical Distribution in the On Stage). With initial distribution Pp,,(0) =
Omo0no, the solution of Eq. (2.21) is

mnjoo(t) = %6*““)7””), (m,n) € N2, (2.22)
where
alt) = %(1 — B, (2.23)
b(t) = %(1 A L (2.24)
={ .
B(l —e ) —ate™™, B=,

and the notation P°" (t) stands for the transition probability from state (0,0) to (m,n).

mn|00
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2 MODELS OF RNA VELOCITY 7

Proof. Consider the moment generating function F(y,z,t) =3, y™2" Py »(t). Then we have
O F = a(yF — F) + B(20,F — yO, F) + v(0,F — 20, F) (2.25)

with initial condition Fy(y,2) = 3_,, ,, ¥™2"Ppn(0). Under the zero initial value condition on
(u(t), s(t)), we have Fy = 1.
Introduce the change of variable
u=y—1, v=2-1, F(u,v,t) = Flu+ 1,0+ 1,t) = F(y, z,t).
Then from (2.25) we get
S -
(9 _ 1) O F + —0F =P, (2.26)
v o o

By the method of characteristics, we introduce the auxiliary variable r:

B

o, F + &
5

dv dt 1 du B ru dF  au
! G-V &% (227

dr ~ 0 dr oyl dr ~
with initial condition (u,v,t,l*:‘)|7«:0 = (uo, vo, 0, }7_'0)7 where Fy = Fo(ug + 1,v9 + 1).
Case 1: B # 7. Solving (2.27), we get v = 7 +vg, dv =dr, t =y~ ! Inv/vg, and correspondingly
v =vge". (2.28)
For u, we obtain

B
du  Bu B L ( 5%)(0)7 B
— ="~ — 2, which induces u = {1y — — | + v. 2.29
dv v v 0 B— Vo B— ( )

Define ag := ug — (8 — ) "' Bvo, we get

dF  ou - « -2 54 B ~
_— = 7F: —_— v v e — F
dv g (aovo vt —7) ’
thus ;
F  « v\ af «@
In—=—=—a9 | — + ——— (v —vg) — —=aop. 2.30
F, B 0 <U0> W(ﬁ—”Y)( 0) g (2:30)

With initial distribution P, ,,(0) = 6m00n0, we have Fy = 1. Combining Egs. (2.28), (2.29),
(2.30) and the definition of ag, we get

~ « afv |1 1
F(u,v,t :exp{l—e_ﬂtu—l—{l—e“’t —1—6_5t:|}. 2.31
(u,v,1) B( ) 6—77( ) M ) (2.31)
After suitable manipulation, we obtain
F(y, z,t) = ev@®) . g2b() . o=a()=b(t) (2.32)

where a(t) and b(t) are defined in (2.23) and (2.24) when 8 # ~, respectively.
Case 2: B =~. We can show that (2.29) will be replaced by

du _u
dv v

—1, thusu=w (uo —1In v) . (2.33)
Vo Vo


https://doi.org/10.1101/2020.09.19.304584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304584; this version posted September 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

2 MODELS OF RNA VELOCITY 8

After suitable derivations, we get
F(u,v,t) = exp {g(l —e Y (u+v) - atve‘Bt} , (2.34)
and finally we have the same formula (2.32), while a(¢) and b(t) are defined in (2.23) and (2.24)
when 8 = =, respectively.
Therefore,

1 8m+n

Lo _ A" (O"() o)
mln! Qy™moz" '

(1.2)=000  mlnl

Pm,n(t) =

In summary, u(t) and s(t) are independently Poisson distributed with mean a(t) and b(t), re-
spectively. O

Remark 2.1. [t is not surprising to observe that the mean a(t),b(t) are exactly the abundance of
u and s in Egs. (2.7)-(2.8) or (2.13)-(2.14) in the deterministic model, which is well-known due
to the linearity of the rates. However, Theorem 2.1 further states that u and s are independently
Poisson distributed, which is not a straightforward result.

Invariant distribution It is obvious that the invariant distribution of (u,s) in this case is
independent Poisson with parameters (u*, s*).

2.2.2 Off Stage with General Initial Data
We will study the off stage case in this section. Now we have o°ff = 0 and the CME is
OtPrn = B(m + 1)Pryin—1 — MPpy] +7[(n+ 1) Py nt1 — nPn] - (2.35)
We first consider the case with initial value (u(0), s(0)) = (M, N).
Theorem 2.2 (Analytical Distribution in the Off Stage). Define

pi(t) =e 7", (2.36)
ﬁ e—'yt _ e—Bt
I B i B#7,
pa(t) = o (2.37)
Btm’ B=",
p3(t) =e 7, (2.38)

and ¢;(t) = 1 — p;(t) correspondingly. We have p;(t),q;(t) € [0,1] for i = 1,2,3. Then, with
initial distribution P, (0) = dmardnn, the solution of Eq. (2.35) has the form

ﬁszﬂMN(t) = POTM(t) ) PsﬁnN(t) = Bn(M,p1) - Co(M —m, p2, N,p3), (2.39)

m

where m < M,n < N+ M —m,
M m M—m
Bu(M,p1) = )P (0)(1 = pa(?)) (2.40)

is the probability of the binomial distribution B(M,p1(t)), and

n
On(M — m, p2, Na p3) = Z Bk(M - m7p2)Bn—k(Na p3) (241)
k=0
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2 MODELS OF RNA VELOCITY 9

is the probability of the sum of two independent binomials B(M —m, p2(t)) and B(N, ps(t)). We
take the convention that Bp(M —m,ps) =0 if k > M —m.

Proof. First let us show that p2(t) € [0,1]. When 8 # ~y, we have

f((B=7)1) e’ -1
pa(t) = N where f(z) = prat
We have f/(z) = (e*(x — 1) +1)/2% > 0 since g(0) = 0, and ¢'(z) > 0 for z > 0 and ¢'(x) < 0
for x < 0, where g(z) := e”(z — 1) + 1. The case 5 = v is trivial by observing that the function
x/(e* —1) €]0,1] for x > 0.
Next we derive the distribution P,,,. Similar to the proof of Theorem 2.1, for moment
generating function F(y,z,t) =3 y™2" Py n(t), we have

O F = B(20,F — yo, F) + v(0,F — 20, F).
Similarly define
u=y—1, v=2-1, Fu,u,t) = Flu+ 1,0+ 1,t) = F(y, z,1),

we obtain

B
Y
Introduce the parameter r, we get by the method of characteristics

Oy F + (% - 1) O F + %ati —0.

dv 1 dt 1 du B(u 1) dF—O. (2.42)

a:’@_'yv’g_y v Tdr

Case 1:  # 7. Similar derivation shows

vo=¢e v, ug=e " (u — B v) + p e .

We obtain

F(u,v,t) = Fy = (uo + 1) (vo + )

M
= [e‘ﬁt (u— 6€7v> +5€76_7tv+1} [e‘vtv—l—l]N.

After suitable manipulations, we get

P20 = (mOy+ a0 07+ w0) (ps(0)z +a5(0)) (2.43)

M
- (Azf)p’ﬂwykq%’“(t) H(p2(8)2 + @)Y F(ps(0)2 + as(8)",
k=0

which exactly has the probabilistic interpretation as shown in Egs. (2.40)-(2.41).
Case 2:  =~. We can show that
v = e M, uy = e Ptu+ pte Pl

in this case. Substitute into F' = (ug + 1) (vg + 1)V, we get the same equation (2.43) but with
the p;(t) in the 8 = v case. O
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Remark 2.2. In the off stage, the unspliced mRNA u obeys the binomial distribution. Given
u(t) = m, the conditional distribution of the spliced mRNA s is characterized by the sum of two
independent binomial random variables. Intuitively, s is comprised of two parts: the new spliced
mRNA counts generated from u and the non-degradated spliced mRNA counts from the initial
state. It is also natural to observe that the mean of (u(t), s(t)) is (Mp1(t), Mg (£)p2(t) + Nps(t)),
which is essentially (2.9)-(2.10).

Corollary 2.1. When the initial distribution P, (0) = p%,. , the solution of Eq. (2.35) is

POH Z 7nn|kl pkl' (244)

k>m,l>n

for (m,n) € N2,

Invariant distribution It is straightforward that the the invariant distribution in the off stage
is simply Py, (00) = d,m00n0 as t — 0.

2.2.3 On Stage with General Initial Data
Corollary 2.2. When the initial distribution P, (0) = OmmgOnng, the solution of Eq. (2.21) is

m n
TEI)II;'L‘WLUHU Z Pkl\OO m— k n—Il|lmono (t)’ (245)
k=0 1=0
which is the convolution of the distributions Pﬁﬁqoo( ) and Pmn|m0n0 (t). We adopt the convention
that P;ffl‘mono( ) =0 if m >mg orn > ng.

Proof. To check the result, we only need to note that Fy in (2.30) will be replaced by (ug +
1)™o(vg + 1)™. Thus we have

F(y, z,t) = F(y, z,t) F*T (y, 2, t),

where F°"(y, z,t) and F°f(y, 2, t) are defined as in (2.32) and (2.43), respectively. This naturally
yields to the transition probability (2.45). O

Remark 2.3. The above result leads to a recipe to directly generate samples from Pr?ﬁllmono (t):
(u(t),v(t)) = (X1, Y1) + (X2, Y2 + V3),

where X1,Y7, Xo, Y3 are independent random wvariables with X1 ~ P(a(t)), Y1 ~ P(b(t)), Xo ~
B(mo,pi1(t)), Y3 ~ B(no,ps(t)), and Ya| Xz ~ B(mo — X2, p2(t)).

Corollary 2.3. When the initial distribution Py, (0) = p2,,., the solution of Eq. (2.21) is

Pt Z mn|kl pkl' (2.46)
k,leN

for (m,n) € N2.

3 Inference of RNA velocity

In this section, we will study the inverse problem: the inference of the parameters in the RNA
velocity model from the data. We will mainly revisit the proposals pursued in [3, 27] and briefly
mention our new approach [58], which utilizes the full stochastic model to do the inference.
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3 INFERENCE OF RNA VELOCITY 11

3.1 Steady State Model

The steady state model was first considered in [27]. In this model, one assumes that the on stage
lasts sufficiently long so the state of the system is close to the steady state of the dynamical system
(2.1)-(2.2). Therefore, the upper-right corner points in the (u, s)-plot can be approximated as
steady states. In steady states, we have

ds
< = Bult) — s(1) =0,

which means that the mRNA synthesis and degradation are in balance. This balance condition
in the steady state can be utilized to approximate the ratio of degradation and splicing rates via
least squares fitting as

’U,TS
29

vt = (g) = argmin 32||u — vs||? = (3.1)

sl
where u, s are vectors with components corresponding to the cells in the upper-right corner
points in the (u, s)-plot for each gene. If further assuming that 3 = 1 across all genes in [27] via
scale invariance argument, the RNA velocity is then estimated as

v=(vg)g, Ug=1Ug—V,

gSg.

Though original, simple and successful, the above steady state model and the treatment with
B =1 for all genes are not good enough assumptions in many cases. In fact, setting the splicing
rates 8§ = 1 for all genes is actually wrong according to the scale invariance property of the
system, which only permits one degree of freedom to be adjusted. These drawbacks call for more
robust and accurate estimation methods for the RNA velocity.

3.2 EM Algorithm for the Transient Models

In this subsection, we will revisit and study the parameter inference using EM algorithm for tran-
sient models. The most related references on this aspect are [3, 58]. To ensure the computational
feasibility, we also employ suitable approximations, which will be stated in the corresponding
places below.

3.2.1 Basic Framework of EM

Given the observed data X = (Tcg)e=1:n,;9=1:n,, Where Tcy = (Ucg, Scg) for cell ¢ and gene g, we
want to maximize the log-likelihood

L(0;X) =l P(X|0) = In [ ] [ P(wecgl6y) (3.2)
c=1g=1
=D W P(aeglly) = Y 1By cq).-
c=1g=1 c=1g=1

Note that the abundance x4, depends on time t.4 and the switch state s oy = (Us,cq, Ss,cq), Which
are not observables, we indeed encounter a hidden variable problem. It is natural to utilize the
EM algorithm to do the inference.
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Let us introduce the latent variable h., = (tcg7 Zseq) for c=1:n., g=1:n,, wheretis the
latent time and x4 is the latent switch state. Then the log-likelihood function can be written as
U(0g;2cg) = In P(2cg|0g) = In P(cg, heglfg) —In P(hegleq; 04) (3.3)

= lo(0g; Teg, heg) + 11(Bg3 heg|Teg)-

Similarly denote the sum of lo(8,; Tcg, heg) and 11 (0y; heglzeg) with respect to ¢, g as Lo(0; X, h)
and Lj(0; h|X), respectively. Then

L(6; X) = Lo(0; X, h) + L1(0; h| X).

Taking conditional expectation with respect to the distribution of h|X given parameter 6, we
get
L(0; X) = Ep x 0/ [Lo(0; X, h)] + Epx o [L1(0; 2| X)] == Q(016") + R(0]6),

where

R(0)0') = —/P(h|X;9’)1nP(h|X;9)dh.

The above formulation is the basis of the well-known EM algorithm [10], which can be stated as
below.

Algorithm 1 EM Algorithm for the RNA Velocity Model.

1. Start with an initial guess for parameter 6(°). Set j = 0.
2. Expectation Step: at the (j + 1)th step, compute
Q010Y)) = Epx.00) (Lo(6; X, 1))
as a function of 6.

3. Mazimization Step: determine the new estimate #U+1) as the maximizer of Q(0]0")) over

6.

4. Tterate Steps 2 and 3 until convergence.

It is a classical result that the EM iterations never decreases the log-likelihood L(6; X). In
fact, if # maximizes Q(0|0'), we have

L(0; X) — L(0'; X) = (Q(06") — Q(6"|6")) + (R(6]6") — R(6[6")) > 0
since R(0|6') — R(0'|0") = Dkr(P(h|X;0")||P(h|X;6)) > 0 by the non-negativity of Kullback-

Leibler divergence [9]. This feature guarantees the local convergence of EM iterations.

3.2.2 EM for the Deterministic Model

For the deterministic RNA velocity model, the latent variable h can be reduced to t since the
switch state x5 = x(ts;6) is uniquely determined. So we will replace h with ¢ in (3.3) in the
deterministic setup. If we assume the observation noise is Gaussian with mean 0 and variance
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3 INFERENCE OF RNA VELOCITY 13

o? for all cells and genes, and the sampling time tcg is uniformly distributed in a fixed period

[0,T7], we have
P(xcg,teglly) = P(xcglteg; Og) - PlteglOy) (3.4)
_ 1 |Tcg — x(théeg)P 1
T 27102 exp ( 202 T’

where x(t4;64) is the solution of (2.1)-(2.2) at time ¢., with parameter 6,. Then
2
lo(0g; Teg, teg) = I P (g, tegllg) o< — |Teg — @(tegs )],

and

. _ P(mcg’tCQ‘eg) ‘xcy - x(tcg599)|2
P(tcg|xcg7 99) = P(Tgwg) xXexp | — 20_2 . (35)

So we obtain
Lo(0; X, 1) o< = || X — X (£;0)]%,

_ . 2
P(t|X;6) o exp (—”X Qth’g)” >
g

where X (t,0) := (2(tcg; 0g))e=1:n0:9=1:n,-
According to EM Algorithm, we have

T
U+l _ argmax/ Lo(0; X, t) - P(t|X,09))dt (3.6)
0 0
T .
X — X (¢:0U))]2
:argmin/ 1X — X (£;0)]2 exp (_” (09 )dt_
0 0 20

In the small noise limit regime, i.e. o — 0, by Laplace asymptotics [2], we get

OUTY = argmin | X — X (t9;0)]?, (3.7)
4

while _ )
@) :argminHX—X(t;H(J))HQ. (3-8)
t

It forms an iteration between the parameter € and the latent time ¢t. Below we discuss more
detailed procedure in (3.7)-(3.8).

Update of ¢ Two different models can be utilized in the update step (3.8), which we term
the independent-t model and uniform-t model below. The two different choices lead to different
computational complexity. We further assume that the switch time t5 = (ts,g) g=1in, 1S only gene
dependent throughout the transient model estimations.

Independent-t model. In this model, we permit the time t.4 for different g to be different, i.e. for
a specific cell c, (tcg)g:hng are independent. So we can estimate t., for each c and g separately.

The fact, that the estimation of (f¢g)e=1:n, for different g can be separated, tells that we
only need to consider a fixed g. Given 6, and (zcg)1:n,, to estimate the optimal (tcg)1.n,, We
classify the state of cell ¢ into the on state if t.,; < t5 4 or off state otherwise. Define the objective
function

d(tcg; Legs 99) = |=Tcg - J:(tcg; 09)|27 (3.9)
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3 INFERENCE OF RNA VELOCITY 14

which has only two piecewise smooth parts determined by ¢ ;. We first compute the optimal 27
and tgg by assuming the cell ¢ is in on or off stage, respectively with

tOIl

off
cg t

= argmind(teg; Tey,by), tog = argmind(tey; Teg,0y).
teg<ts,g teg2ts,g

This optimization is feasible since we know the analytical form of x(t4;6,). The optimal esti-
mation of t.4 is then obtained by

P { tggv if d(t(c)gvxcgve ) < d(tgg i Legs 99)
cg —

tOH

cg» Otherwise.

The computational complexity in this setup is O(2n,) in terms of the analytical function evalu-
ations of z(t; 9).

Uniform-t model. In this model, we require that the time ¢., for different genes are consistent,
ie. teg =t. for g = 1:ngy. This setup is more reasonable in reality, however, it brings difficulty
into the optimization.

In the uniform-¢ model, the objective functions (3.9) are no longer separated for different
genes. Instead, we should consider the minimization of

d(te; 2, 0) Z Teg — x(te;0,)]%, (3.10)

which generally has n, + 1 piecewise smooth parts determined by (ts,g)g=1:n,. We can first sort
the switch time ¢ like
té‘,gl S t&yz S < t

S$:9ng
and next compute t¥ by miminizing (3.10) in each subinterval [ts g, , ¢
with t5 4, = 0 and bs\gmy 1
objective functions d(t¥; z., ).

The computational complexity in this setup is O(ng(ny+1)) compared with the independent-¢
model.

s,gesn) for k=0,1,...,ng
= T. Finally we can obtain an optimal ¢, which minimizes the

Update of § For different genes g; and g, the update of §,, and §,, are independent according
0 (3.7). So we fix g and consider 0, = (ay, Bg,7g,ts,g)- There is no difference on the update of
64 with independent-¢t model or uniform-¢ model because of the independence. We will only use
the independent-t model formulation for illustration in the following text.

Define the objective function

2
d(0g; 24,4 Z|mcy (tegi 0g)]" - (3.11)

The minimization of (3.11) can be performed in different ways. One possible approach is to do
the optimization with respect to the rates (ag, 8q,7,) and the switch time ¢, , alternatively, due
to the non-smoothness induced by t, 4. Another approach is to reduce (3.11) into a new function
of rates only

cZ(ag, BgsVg) = rtnind(Hg; Tgytg),
5,9

and then optimize d directly. In any case, the objective function is a sum of n. terms with
non-smoothness induced by ¢s 4. The optimization is not easy and usually stuck in the local
minimum with local convergence methods.
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4 DYNAMICAL ANALYSIS BASED ON RNA VELOCITY 15

Remark 3.1. We remark here that the choice of P(tq4|0,) = 1/T can be altered, e.g. the uniform
distribution along the curve (u(t), s(t))iecjo,r) or other proposals, However, this will increase the
computational complexity. When other choices of the observation noise are taken, the relative
scales of the noise on different genes/cells still remain in the norm || - || in (3.7)-(3.8) even if we
consider the zero noise limit regime.

The above EM algorithm with independent-t model in the zero noise limit regime is utilized
in [3].

3.2.3 EM for the Stochastic Model

It is natural to consider the inference of the stochastic RNA velocity model. In the stochastic
setup, the randomness of the switch state x should be incorporated into the full likelihood.
Similarly assume that the observation noise is Gaussian with mean 0 and variance o2 for all cells
and genes, and the uniform distribution on the sampling time ¢., in a fixed period [0,7]. We

have
P(cg, heglOg) = P(Teglheg; 0g) P(2s,c9|04) P(teglby),
where )
Ptcglby) = T P(35,04100) = P:sicgm(ts,g;eg)v
1 ly — . |2
P(2cglheg; 0g) = Zpy(tcgﬂg)ﬁ €xp (—QUQQ )
y
and
P;‘I(l)(tcg; 9g)7 tcg S ts}gy

Py(teg; 0y) = { (3.12)

H .
;‘xs,cg (tCQ’ 09)7 tcg > ts,g~
In the zero noise limit o — 0, we get
lO (xcgy hcg|9g) X hl P[:L’cg] (th; 99) + hl P;)?,cgm(t&g; 09)

in the leading order, where [z] is the Gaussian nearest integer function. So we have

Lo(X,h|0) = " lo(2eg, heglfy)
c,g

and correspondingly

guTY = arg;nath‘Xﬁ(j)Lo(X, h|0).

The optimization of the above formulation is not trivial. We leave further algorithmic construc-
tions and practical applications to our continued publication [58].

4 Dynamical Analysis Based on RNA Velocity

After estimating the rates 6, = (ag, Bq,74)y for each gene, one can then compute the RNA
velocity v. € R™s for each cell ¢ = 1 : n. via (2.4). One key component of the downstream
analysis is to identify the source (stem cell) and sinks (differentiated cells) in the development
process based on the obtained RNA velocities. We will discuss the related mathematics behind
different proposals and give the rationale for this step. The continuum limit for various velocity
kernels and the route-finding algorithm based on transition path theory will also be discussed.
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4 DYNAMICAL ANALYSIS BASED ON RNA VELOCITY 16

4.1 Dynamical System View of Cell-Fate Development

Given a single cell, let () € R denote its gene expression profile (more generally, its state in
cell-fate development) at time ¢. The evolution of x(¢) can be described by a dynamical system
model using the ordinary differential equation (ODE)

dzx
= f), (1)
where the vector field f : R™s — R"s is determined by the gene regulatory kinetics.

Since the gene expression process is subject to both extrinsic and intrinsic noise [47], it is also
common to model the cell-fate transition dynamics with stochastic ordinary differential equations
(SDE)

dx; = f(xy)dt + o (x;)dwy, (4.2)

where w; € R* denotes the standard Wiener process, representing the noise from k reaction
channels or fluctuating sources, and the matrix o € R"** corresponds to the noise strength.
The model is well-known as the chemical Langevin equation [19] with the appropriate coupling
of f and o.

As noted in [39], the RNA velocity for single cells can be incorporated in such dynamical
system viewpoint to study the underlying cell-fate dynamics. Currently, there are two lines of
approaches to define the dynamical system utilizing RNA velocity in existing literatures:

1. The continuous dynamics approach [39]. In this approach, one fits a vector field }'(s)
defined on the continuous space, such that ff(sl) ~ wv; for each single cell, where v; are
the estimated RNA velocities. Based on the inferred vector field f, one can investigate the
long-term dynamical properties of (4.1) or (4.2) to model the cell-fate development. The
relevant important concepts include:

e Meta-stable states of cell fates development [22], corresponding to the attractors x*
of (4.1) such that f(x*) = 0.

e Energy landscape of cell fates development [65], which is the realization of Wadding-
ton’s metaphor [53]. Given the stochastic dynamics (4.2), among the different propos-
als for constructing energy landscape, one popular choice is the potential landscape
[54] defined as follows. Note that evolution of probability density p(«,t) in (4.2) can
be described by the Fokker-Planck equation 9;p(x,t) = L*p, where L* denotes the
conjugate operator of the infinitesimal generator £ of SDE (4.2) such that

N 1 - 1
Lu:=f -Vgu+ §D :Viu, Lu:=—Vg-(fu)+ §Vi : (Du),

where D(xz) = oo’ and A : B denotes >i;AijBij. The steady-state probability
distribution p**(x) satisfies L*p** = 0, and the potential landscape of the system can
be defined as ¢(x) = —Inp**(x).

2. The discrete dynamics approach [3, 27]. With this popular proposal, one utilizes the
RNA velocity v; to construct a Markov Chain defined on individual cells, with transition
probabilities P(s;,s;) satisfying Z?;l P(s;,sj) = 1. Ideally, the constructed Markov
Chain should approximate the continuous dynamics (4.1) or (4.2) in discrete sense. Typical
applications of such discrete dynamics include calculating the steady-state distribution of
the system, and detecting roots and ending cells during development.
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A fundamental theoretical question regarding the two approaches, which is also of noticeable
mathematical interest, lies in the consistency issue between the two proposals. To be more spe-
cific, could the constructed discrete dynamics (with transition probabilities defined on individual
data points) converge into the correct continuous dynamical systems, under appropriate limit
regimes? In the next subsection, we will conduct a rigorous analysis on the different continuum
limits of Markov chain dynamics, which are constructed with various choices of velocity kernels
in defining transition probabilities.

4.2 Defining Transition Probabilities Among Cells

Let S = (sij)izlznc;jzlmg € R™*™s be the gene expression matrix of the spliced mRNA. We also
denote

S = (81,82, .. .,SnC)T,

where s; € R"s for ¢ = 1 : n.. For ease of notation, we also use d = ny for short in the following
analysis.

To define the transition probability among different cells, one should take into account the
randomness introduced by the unknown facts and the directed transition associated with the
RNA velocity [3, 27]. The transition between two cells usually involves drift and diffusion. For
the diffusion part, we consider the following two different diffusion kernels:

e Gaussian kernel

de(si,s5) = h <w> 7 (4.3)

€

e kNN (k-Nearest Neighbor) kernel

dn(si,8;) =1 <”S_SJ”2> . (4.4)

enr2(8;)

Here h(-) in (4.3) is a function with exponential decay, say h(x) ~ exp(—x) as * — oo, I() in
(4.4) is an indicator function with I(r) = 1 for |r| < 1 and 0 otherwise, and /€,y (s;) is the
location-dependent distance to the k,th nearest neighbor of s; given n sample points (n = n, in
the above setup).

The kNN kernel can be reformulated as similar form in (4.3). Following [50], we have the
kNN density estimate

(z) = kn/n
T TV e (@)

where Vj is the volume of the d-dimensional unit ball and ¢, (z) will uniformly converge to the
true sampling density ¢(x) under mild conditions on k,, and ¢ [11]. It is natural to choose

2

kn \ ¢

€n = | — — 0, asn — oo,
an

(4.5)

and Theorems A.1 and A.2 in Appendix show that r,(z) “> r(z) + o(\/€,), where 7(z) =
(q(x))~"?. So we can still denote the kNN kernel as

de(si,s;) =1 (”581”2) : (4.6)

er2(s;)

where € = ¢, — 0 and r.(x) = r(x) + o(/€).
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For the drift part, we will call it the velocity kernel. Bearing in mind the intuition that cell 4
is expected to have high probability of transition towards cell j, when the corresponding change
in gene expression §;; = s; — s; matches the predicted change according to the velocity vector
v;, we consider the following three schemes of velocity kernels:

e Cosine scheme

v(s;,8;) = g(cos(d;j,v:)), (4.7)
e Correlation scheme
v(8i, 85) = g (corr(d5,v;)), (4.8)
e Inner-Product scheme
v(si, 85) = g(8,505), (4.9)

where (x,y) and corr(x, y) are the angle and the Pearson coefficient between the vectors « and y
respectively, and g(z) is a bounded, positive, and non-decreasing function. The overall transition
kernel is then defined by
ke(si,85) = de(si,85) - v(84,85).
In what follows, we will analyze the continuum limit of the transition kernel k. for Gaussian

diffusion kernel combined with different velocity kernels in Sections 4.2.1-4.2.3, and the analysis
for kNN kernel in Section 4.2.4.

Remark 4.1. We remark that the diffusion kernel does not necessarily bring the diffusion in the
final continuum limit of the RNA velocity models as we will see. The use of the name “diffusion”
here only respects the convention that it will introduce diffusion type limit in the convergence
analysis of graph Laplacians [50].

4.2.1 Continuum Limit of Cosine Scheme

The transition probability matrix P, = (pij)i j=1.n. among cells through the Gaussian-cosine
scheme is defined by

ke(si,s5)

Pij = e 5 410)
PSS h(snsy) (

which was utilized in [3].
To study the continuum limit of P. when the number of samples goes to infinity, we first
study the operator G, defined by

Gf(@) = — [ k(e y)f(w)dy. (4.11)

€2 JRd
We have the following lemma.

Lemma 4.1. The operator G for Gaussian-cosine scheme has the expansion

G.f(x) = i / k(2. y) f(y)dy
= mof (@) + Ve Af(@) + o(Vo),
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where
1
mo = gel = j/ke(wuy)dy
€2
:Cd/ rdflh(TQ)dr/ | sin 0]~ 2g(cos §)de, (4.12)
0 -7
my = C’d/ Tdh(r2)d7“/ cos ] sin 8] 2g(cos 0)d6, (4.13)
0 -7
and v
Af(x) = [V f ()| cos(v(z), Vf(z)) = 0(x) - Vf(z), o(x):= Toll

Here, d > 1,Cq = Sq/ ffﬂ |sin@|=2d0 and Sy is the surface area of the d-dimensional unit
sphere.

Proof. Let us assume v(x) = ||v[/(1,0,...,0)T without loss of generality. The derived result
can be transformed back to the original variables by substituting (1,0,...,0) with the vector
v(x)/||v].

For simplicity, we first consider the case d = 2. Define the polar coordinates

y1 = x1 + rcosb
Yo = XTo + rsinb,

where 6 is the angle between y —  and v(x). Then we obtain
1 oo pm 7n2
Gef(x) = 7/ / rh | — | g(cos@)f(r,0)dodr
€ Jo Jp €
= 1/ / Verh(r?)g(cos 0) f(v/er, 0)d0d/er
€ Jo -
= / rh(rQ)/ g(cos 0) f(y/er,0)dodr
0

—1T

N=

~—

_ oo + /O ‘ (rh(rQ) [ " g(cosd) f(Ver, a)de) dr

T

= Q1+ Q2 (4.14)

where 0 < v < % We have

Q= /joé rh(r2)/w g(cos 0) f(v/er,0)dfdr

v -

< Cexp(—=e71) = o(Ve),

where C' depends on ||f|lcc and |/g|lcc and we utilized the exponential decay of h(-) and the
inequality [ ze="dzx < %e‘“z for a > 0.
For the integral in )2, by Taylor expansion

S 0) = £0.0) + Vel | ol
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we get

h /7r g(cos 0) f(\/er,0)dodr

s

-

a-[
/ B /W g(cos 6) (f(o 0) +\fr—’ )d@dr—ko(ﬁ)
/

s

/ g(cos0) (f(O, 0) + ﬁraﬂw)> dfdr + o(+/e)

+\[/ / g(cosG)g—ﬂ(Oﬁ)deT‘f‘o(\/E)7

where the extension from the integral domain [0, €7~ 2] to [0, 00) will only introduce an exponen-
tially small term by similar argument in estimating Q1.
For the O(4/€) term, note the relation

of _ of . 9f
o 3:01 os 6 + o 281n9

between polar and Euclidean coordinates, we get

/_7T g(cos 9)5‘(079)d9

= /7r g(cos0) (Eif cosf + 867}6 sinH) dé
. 1l 2l
= [|[Vf(x)| cos{v(x), Vf(x)) /Tr g(cosB) cos 6do. (4.15)

This finishes the proof of the case d = 2.
In high dimensions, the derivation is similar. We may consider the coordinate transformation
from (y1,Yy2,...,v4) to (1,0, 2a,...,24—2) defined by

Y1 = x1+rcosf
Y2 = X9+ rsinf- 2z
(4.16)
Yd—1 = Tg-1+rsing-zqq
Yd = x4+ 7rsind- 1—2?;21,22-2,
d—1 o

where 7 > 0,—7 <0 <7, ", 27 < 1. Denote

Then the Jacobian
Ay1, »Yd) B (—1)4(sin §)4—2pd—1

8(7’,9722,"' 7Zd71) Zd


https://doi.org/10.1101/2020.09.19.304584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304584; this version posted September 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

4 DYNAMICAL ANALYSIS BASED ON RNA VELOCITY 21

Therefore, we obtain

— |Sin9|d_2rd_1
Gef(x) = 6d/z/ / /z”<1 ( 6) g(cost) f(r,0, z) oy dzdfdr

:/0 r4=h(r?)dr [ﬂ|sm0|d 2 (cos(?)de/| L (a6, 2)dz

z||<1 Zd

With Taylor expansion

F(er0,2) = 1(0,0,2) + Var 2| 1 o(v)

(0,0,2z)

and similar techniques in estimating (4.14) by Laplace asymptotics, we get

Gef(x) = mof(x) + Vefi(x) + o(\Ve), (4.17)

filz) = /OOo 7ﬂdh(7’2)d7"/7r |Sin9|d729(6059)d9/ 19f dz.

- =<1 %d rl.0.2)

where

From the relation

d

Z 3f dy; _ Of

0
sinfzg +---+ ——| sinfzy

Yd

os 6 + a—
i Or Oy e 0

Y2 lz

8r (0,0,2)

=1

and noting the integral of odd functions with respect to 6 vanishes, we can simplify the O(/€)

term as
fi(z) = / rdh(r2)dr/ Cya|sin 0972 cos Og(cos )df - ——
0 - 891
= mlAf(w)v
where we used the result fl\z\lﬁl zd_ldz =Cy. O]

Given the sample probability density g(x), then the weighted graph Laplacian has the form

piay) = 5T @) = [ ey (1.18)

Define the operator

and the generator

Theorem 4.1 (Continuum Limit of the Gaussian-Cosine Scheme). For the Gaussian-Cosine
scheme, we have the limit infinitesimal generator

mlA v

lim £.f=Lf = 2o(2)- Vi(a), 8a)i=

e—0+ mo m
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Proof. According to Lemma 4.1, we have

Pef () = / pe(e, y) F(W)a(y)dy
_ Sz y)fay)dy _ Ge(fa) ()

[ke(x.y)a(y)dy  Geg(z
_ mof(@)q(@) + vemio(a) - V(fq)(@) + o(e)
moq(x) + vemid(x) - Vg(x) + o(\/e)

= f(z) + ﬁ%f)(w) V(@) + o(Ve).

~— ~—

Then the theorem follows obviously. O

Remark 4.2. Theorem 4.1 implies that in the continuum limit, if m1 # 0 (it holds for general
g(+)), then the Markov semigroup defined by P, corresponds to the ODE dynamics

de .
Fri (x). (4.19)

In this setup, the source and sink states defined by tracing the integral curves of (4.19) will be
the same as those obtained by solving

dx

— =v(x), 4.20

= (@) (4:20)
since the change of the magnitude of the velocity in (4.20) does not affect the shape of the integral
curves but a reparameterization. However, the transition rule defined by (4.10) is not effective
on analyzing the landscape and transition behavior among the pluripotent and differentiated cells,
which will be addressed in the inner-product scheme.

Remark 4.3. The implementation in [3] actually centers both §;; and v;. So the cosine kernel
considered in their paper is equivalent to the correlation kernel below but not the cosine kernel
considered here.

4.2.2 Continuum Limit of Correlation Scheme

The correlation scheme has been utilized in [27, 39]. We have similar expansion to the operator
G. for Gaussian-Correlation scheme.

Lemma 4.2. The operator G for Gaussian-Correlation scheme has the expansion

G.f(z) = i / k(2. y) f(y)dy
mof (@) + Vem Af(@) + o(ve),
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where
1
mo =Gl = — [ ke(x,y)dy
€2
Cd,l// rd*2h(r2+u2)drdu/ | sin 0]~ 3g(cos §)de, d>2,
_ OO]R 0 -7
L[ ne2+ )10 + (-1 drap, a=2,
R Jo

Cdfl// rdilh(rz—i—,uQ)drdp/ cos 0] sin 0|93 g(cos 0)dl, d > 2,
RJO -7
my

/ /‘X’ rh(r? + ) [g(1) — g(=1)] drdp, d=2,
RJO
and

= /\’U ) - xr v = Plv

Proof. Define projection operator
Prnx:=I—-nen)- =,
where n is the normal vector and n = n/||n||. Then the correlation between vectors x and y is
corr(z, y) := cos{P1z, P1y),

where 1 = (1,...,1)T. Tt is not difficult to find that the correlation between = and y is invariant
with respect to the rotations in the hyperplane which is normal to 1. With this observation, we
utilize a new coordinate system which maps

1 P
—1e1,=(0,---,0,)T, % s (1,0,---,0)7T.

Vi [Proll
The derived result can be transformed back to the original variable like Lemma 4.1 in a straight-
forward way.

In this new coordinate system, the analysis of correlation scheme is similar to the cosine
scheme for its first d — 1 components. Then we may consider the coordinate transformation
below from (y1,y2,...,%4) to (r, 1,0, 22,...,24—2) when d > 2 (the case d = 2 is easier and not
necessary to do the coordinate transformation since the correlation will be £1 in this case):

Y1 = x1+rcosb
Yo = X9+ rsinb- 2z
Ya—2 = Tq_o+rsingd-zg_o
Yio1 = Tq_1+rsind- 1725;2223
Yd = Zqtp,
d—2

where 7 >0, p € R, —m <6 <m, > 5 z? < 1. Denote

1
d—2 2
2
Z:(Z27"',Zd—2), Zd—1 = 1— Z; .
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Then the Jacobian )
a(ylv e ayd) o (71)d71(Sin g)dfdrd72

8(7"7 M, 97 22y, Zd72) Zd—1

Therefore, we obtain

050 = [ | [ oo (5 em0st

|SH19|d 3 d 2

Zd—1

:/ rd—zh(rz—&-lf)d?"dﬂ/ | sin 0]~ g(cos §)d6
0

—Tr

. / L f(fer, Vem 0, 2)dz
=<1 Zd-1

dzdfdrdpy

With Taylor expansion

f(Ver,\ep, 8, z) = £(0,0,6, )+\f7"f \fuaﬂ +0(\/E)

7 1(0,0,0,2) (0,0,0

and similar techniques in estimating (4.14) by Laplace asymptotics, we get
Gef(x) = mof(x) + Vefi(z) + o(Ve), (4.21)

where

fi(x) = 4 h(r? 4 p?)drd sin 8|3 g(cos 0)d6
K H
RJO -7

/ 1 of
) - dz
Iz]|<1 Zd—1 Or1(0,0,6,2)

Here we have ignored the odd function with respect to p, then according to the chain rule

of L af oy,

Or 1(0,0,0,2) - Oy; or’

i=1

and noting the integral of odd functions with respect to 6 vanishes, we can simplify the O(/€)

term as
a1 " d—3 of
h(r? + p?)drdu Cy_1cosf|sinf|* >g(cos 0)dé - e
-7 Y1 lx
:mlAf(w).
The proof is done. O

Then, similar to Theorem 4.1, we get the generator L.

Theorem 4.2 (Continuum Limit of the Gaussian-Correlation Scheme). For the Gaussian-
correlation scheme, we have the limit infinitesimal generator

- —rf = ME ).
51—1>%1+ L f=Lf:= mOPlv(w) Vi(x).
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Remark 4.4. Theorem 4.2 implies that in the continuum limit of correlation scheme, if my # 0,
the Markov semigroup defined by P, corresponds to the ODE dynamics

© _ Froa). (122)

This means the the effective velocity of the correlation scheme is
v(x) =T -1-17) v(x)

which will introduce bias into the final result in the identification of root and ending cells. We
speculate that the correlation scheme has the possibility to give undesired result in the sense that
it is not exactly respect to the inferred velocity.

4.2.3 Continuum Limit of Inner-Product Scheme

The inner-product scheme is constructed similar to diffusion map [8]. Related idea and method-
ology has been utilized to analyze the scRNA-seq data analysis [44, 55, 66].
Given the sample probability density g(x), we define a new kernel

_ke(z,y)
K () = alo) = [ k@) (4.23)
2 (x)qe (y)
Then we apply the weighted graph Laplacian normalization to this kernel by
kE“’ T,y o o
Peal@,y) = % d () :/kﬁ (2, y)a(y)dy. (4.24)
de ()

The application of the above construction to the RNA velocity data is straightforward by replac-
ing the density ¢(x) with the empirical data distribution of the cell states, i.e.

1 &
= — Z oz — sj).
nC .
Jj=1
To study the continuum limit in space and time, we define the operator

Pent(@) = / Pea(@, y) f (4)a(y)dy

and the generator
Pea —1
ﬁe,a = . .
€
First let us define G, as in (4.11). We have the following lemma.

Lemma 4.3. The operator G. for Gaussian-Inner-product scheme has the expansion

— % [ ke rw)y
= mog(0)f(@) + 52 Af (@) + o(e).
where the moments
mo = [Wlylay, ma = [ lulh(lyl?)ay

and

Af(x) = [o(@)lIPg"(0)f(x) + 2¢'(0)v(x) "V f(z) + g(0)Af ().


https://doi.org/10.1101/2020.09.19.304584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304584; this version posted September 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

4 DYNAMICAL ANALYSIS BASED ON RNA VELOCITY 26

Proof. The key idea is to utilize the Laplace asymptotics similar as in estimating (4.14). With
inner-product scheme, we have

o) = (L2220 g - 2ot

Make the decomposition

1 1
gef T4 +T ke ) f d
(@)= /| ot /| ke
= Q1+Q27

where 0 < v < 3. Let y = @ + y/ez. The term

Q1= /l ol h()|2)12)g(Vev(®) T 2) f( + Vez)dz
< Ceb ™ exp(—€71) = (o)

where C' depends on ||f||o and ||g|lc, and we utilized the exponential decay of h(-) and the
inequality [ e~ dz < (2a)"'e= for a > 0.
For the integrand in ()2, we have

g(Vev z)f(x + Vez) = g(0)f(x) + VePr + ePs + ofe)
by Taylor expansion, where
Py =2z"(¢'(0)f(x)v + g(0)V f(2)),
Py = ST (227 (20 (O)V 1 (@)™ + " (0)f(eov™ + 9(0)V ().
Here Ti(-) is the matrix trace operation.

By the rotation symmetry of ||z||?> and the fact that the integral of an odd function is zero,
we obtain

a=[ (h<|z||2>g<o>f<m> eh(l2])12]Af e >)dz+o<e>
|z||<e?™ 2

J (1=1Pp00) @) + qebl=1P)=l2A5(@)) dz -+ o0
= mog(0)f (x) + 5 Af (@) + o(c).

where the extension of the integral domain from | z| < €2 to the whole space will only
introduce an o(e€) term by similar argument in estimating Q1. O

Theorem 4.3 (Continuum Limit of the Gaussian-Inner-product Scheme). For the Gaussian-
inner-product scheme, we have the limit infinitesimal generator

lim Loof =Laf = mo(Af+<( )qu+i,l((g))”>'vf>' (4.25)
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Proof. First note that p. o in (4.24) is invariant under any multiplicative scaling applied to k;ﬁ“)
So we can assume in what follows that the normalization €%/? is implicitly contained in k(z,y),
which will not affect the final result.

According to Lemma 4.3, we have the asymptotics

4.(@) = mog(0)q(®) + e3> Aq(@) + o(¢)

for g defined in (4.23). Correspondingly,

" () = (mog(0)a(@)) " (1 + eBa(@) + o(e)), Balw) = —5— s Ag(@).
Define
6 9(z) = [ K (@ 9)6(w)aly)dy.
Then
Gl () / ke( ~*(y)a(y)dy
1 «@
i [ e g(g);@ (1 + eBa(y) +o(e)) dy
:qe"“(w)cb(w)(mog(o) ()= (1 + eBg(x) + o(c))
+ eq " (@) (mog(0) " A(d(@)g' (@) + ofe). (4.26)
So we obtain
@) ¢ (s
eaf :/peozwy Q(y)dy:?a){((wi
cm2 I—a — f(x I—a(yp o(e
f(z) + m(v‘l(f(w)q () — f(x)Ag'~*(z)) + o(e)
— f(z) + eLof(®) + ofc). (4.27)
Finally we get .
el_if(rjl+ Leof(x)= 51—1>I(I)1+ (Peof(x) — f(x)) = Laf(T).
The proof is done. O

Corollary 4.1. If we choose h(-),g(-) such that my =2, mg =1 and ¢'(0) = 3g(0), then

\Y
Laf(@) = (vl@) + 20 - @) %2 ) (@) + Afo)
which is the generator of the stochastic differential equations (SDFEs)

da(t) = <v(a:) 4201 - a)vq(m)> At + V2dw(t), (4.28)

q

where w(t) is the standard Brownian motion with mean 0 and covariance function E(w(t)w(s)) =
min(t, s). In general case, similar SDE holds with suitable constants mg, ma,g(0) and g'(0).
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Define the data potential
V() = —log ().
Then the SDEs (4.28) becomes

da(t) = (v(z) — 2(1 — a)VV () dt + v2dw(t),

where the drift term is composed of the gradient part —VV (x) from the scRNA-seq sampling
distribution, and the non-gradient part from the RNA wvelocity v(x). Specifically, if we choose
a =1, then the transition probability will not depend on the data potential V (x) in the infinite
samples limit. This structure opens the way of studying the non-equilibrium steady state and
landscape theory for cell developments with scRNA-seq experimental data [65, 63, 17, 44, 55, 66].

Remark 4.5. In [/], the authors proposed a class of local kernels to approzimate the SDE (4.2),

which is consistent with our analysis of the inner-product scheme. Note that one typical choice
—ay— 2 a2

of local kernel is exp(—%) = exp(—%) exp(—(y — ) Tv(x)) exp(—1el|v(x)|[?),

whose difference with k.(x,y) in inner-product scheme is up to O(e) in g(-), incurring no differ-

ence in the limit of infinitesimal generator.

Remark 4.6. In [27], the transition probabilities among cells were constructed through averaging
a RNA wvelocity-based dynamics and a diffusion-based dynamics. For instance, we consider the
transition matriz P¢, = wPﬁ:,a +(1 fw)Pia, where Pei,a is the transition probability matriz from
inner-product kernel, Pga from pure diffusion kernel and 0 < w < 1 is the weight of averaging.
Neat we provide an understanding of P¢,, based on the decomposition of SDE (4.2) into the
equilibrium and non-equilibrium parts [1, 54, 59, 65].

For simplicity, let us assume that the ground-truth dynamics underlying cell-fate development
is d(t) = v(x)dt ++/2dw(t) and the distribution of all data points approxzimates its steady-state
distribution p**(x), which can be guaranteed by the ergodicity of dynamics. With the defined
potential landscape ¢ = —Inp*®, the velocity term can be decomposed [54] as v(x) = —Vo(x) +
Ux), l(x) = T (x)/p**(x), where J*° = vp®® —Vp*® is the steady-state probability flux satisfying
V - J® = 0. In terms of the statistical physics interpretation [17], the gradient term V¢ can be
viewed as the equilibrium part of velocity, and the curl-like term £(x) is the non-equilibrium part.

With the assumptions above, we apply our results in Corollary 4.1 to the infinitesimal gen-
erator of averaging dynamics defined by P¢,, and conclude that its continuum limit has the
form

da(t) = [—(w+ 2(1 — @) Vé(x) + wl(z)] dt + vV2dw(t),
and the relative proportion of non-equilibrium part w/(w + 2(1 — «)) is an increasing function of
w if 0 < a < 1. Therefore the introduction of weight w can be understood as tuning the relative
weight of equilibrium and non-equilibrium parts of the RNA wvelocity.

4.2.4 Implications of kNN Kernels

Sometimes people prefer kNN diffusion kernel with less computational effort due to the sparsity
of transition matrix. For example, [3] used kNN-cosine kernel and [39] used kNN-correlation
kernel. We will show that for kNN diffusion kernel, the conclusions above still hold with slight
difference.

Lemma 4.4. Suppose q(x) > 0 everywhere. Let r(x) = (q(x))~'/¢ be the location-dependent
bandwidth function. The operator G. for kNN-cosine scheme has the expansion

G.f(x) = i / k(. y) f (y)dy
= mo(@) f(@) + Vem (x) Af(z) + o(Ve),


https://doi.org/10.1101/2020.09.19.304584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304584; this version posted September 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

4 DYNAMICAL ANALYSIS BASED ON RNA VELOCITY 29
where
1
mo(x) := Gl = j/ke(%y)dy
€2
r(x) T
=0y / rd=tdr / | sin 09~ g(cos 0)d, (4.29)
0 -7
r(x) ™
m1 (x) C’d/ rddr/ cos 0] sin 02 g(cos )de, (4.30)
0 —m
and v
Af(x) = [|[Vf ()] cos(v(x), Vf(x)) = o(x) - V(z), 0(z):= Toll’

i.e. we just replace constants my, my in Lemma 4.1 with functions mgy(x), my(x).

Proof. The proof is similar to Lemma 4.1. We only use the case d = 2 as an example. Now we
have

_ /O AR [ : g(cos 0) f (/er, )dodr
:/” [ (cos 0) ( £(0,0) +\fri\ )dodr+o<\/€>

/ / g(cos 0) (f(0,9)+\@ra‘f‘(0ﬂ)> dfdr + o(+/e)
) f(z) + Vemi(z)Af () + o(Ve),

where we utilized the result r.(x) = r(x) 4 o(y/€) based on the Theorem A.2 in the Appendix.
O

Now we can derive the limit infinitesimal generator.

Theorem 4.4 (Continuum Limit of the kNN-Cosine Scheme). For the kNN-cosine scheme, we
have the limit infinitesimal generator

lim L.f=Lf:= (w)i;(a:) -Vf(x)=c-r(x)o(x) Vf(x),

e—0+ mo(.’B)
where ¢ is a constant only related to g(-) and dimension d.
The results for kNN-correlation scheme is similar.

Remark 4.7. Based upon similar argument in Remark 4.2, the kNN-cosine scheme will give the
same root and ending cells produced by Eq. (4.20) in the large n limit. The case with q(x) = 0
is beyond our analysis framework. The ENN-inner-product scheme needs more delicate order
analysis on the convergence of r.(x) to r(x), which is considered in the Appendiz.

Remark 4.8. In [27], the authors combined Gaussian diffusion kernel with kNN kernel, i.e.

||3i 3j||2 Hsi SJ'H2
de iySi) = I h .
(s S]) ( 67’62(31') €
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The overall analysis is similar. We only need to replace mo(x) in (4.29) with
r(x) T
mo(x) = Cd/ rd_lh(TQ)dr/ | sin 0]9~2g(cos §)d6
0 -

by inserting h(r?) in the integral of r. The change of m(x) is similar. The final limit infinites-
imal generator is still

Lf(w) = o(z) - Vf().

4.3 Finding Root and Ending Cells

The root-and-ending cells finding algorithm has been proposed in [3, 27]. The aim of this section
is to study its rationale through the continuum limit perspective.

From the derived continuum limits in Theorems 4.1 and 4.3, it is natural to identify the ending
cells, i.e. the final differentiated cells, by selecting states with nonzero probability (or higher than
a threshold in practice), from the invariant distribution 7 of the transition probability matrix
Pe = (p;)i,j=1n,:

al =xTP.

In the limit case as studied in Theorem 4.1, these ending cells corresponding to the absorbing
states of the ODE flow map 1

x

i v(x). (4.31)
In this case, the limit ODE flow map is not irreducible, thus the invariant distributions are
not unique in general. We should start from different, or random initial distributions at the
beginning.

The identification of root cells, usually the stem cells, is more subtle. One first defines the

backward transition probability matrix P, = (ﬁgj)i,jzlmn by

P = Pl
KDY ¥

which is the row-normalization of P.T; then identify the root cells by selecting states with prob-
ability above a threshold in the invariant distribution 7 of P..

To motivate the intuition of the above proposal, let us first study the continuous time limit
of P, in the discrete states setup.

(4.32)

Theorem 4.5. If A is the generator of a finite state Markov chain with transition probability
matriz P.. Then, the generator of the backward transition probability matriz P, is

A= AT — diag(AT - 1). (4.33)

Proof. By definition, we have

1
Aij = lim *(psj — 51‘]‘), i.e. p:'j = 6”‘ + €Aij + 0(6).

e—01 €
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So we get

~ 1 E‘i
Aij = lim 7<ﬁ§j _61']’) = lim < pj 6 _61’]’)

e—0t €

1 €A + 5
= N Pl e A 8
0t € (Zk(ﬁAki + Oki) J)
LeAji+ 85 — 0ij 35 (€Ari + Ori)

= lim

=0t € > k(€A + 6i)
= Aji =85 ) A
k
The theorem follows obviously. O

Next, we consider the similar limit in continuous states case.

Theorem 4.6 (Continuum Limit of the Backward Process). For transition kernel p.(x,y) and
operator P f(x) = [pe(x,y)f(y)dy, define the corresponding backward counterparts

. _ Py, ) 5 [
play) = o P = / Pela, ) f (w)dy.

Then if L is the limit infinitesimal generator of P. which satisfies
£f = lim 2(Pf - f)
= m —=(FeJ —J);
e—01 €
we have the infinitesimal generator of P.

£f= lim S(Pf—f)=L£°f — fL71, (4.34)

e—0t €
where L* is the conjugate operator of L, i.e. (Lf,g) = (f,L*g).

Proof. Consider the operator
Pig(x) = /pe(y,w)g(y)dy-
It is straighforward that P is the conjugate of P, i.e. (P.f,g) = (f,PFg), and we have

(f,£°9) = (Lf.) = Tim L(Pf — f.0) = lim (£, Plg—g)

e—0t € e—0t
This implies
1
Lrg= lim —(Plg—g), Plg=g+elg+ole).

e—01 €

Besides, it is obvious that
_Pf(=z)
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So we have
Li@) = tim - (Pf(@) - f(@))

eL1(z) + 1+ o(e)

eL*f(x) —ef (x)L*1 + 0(6))
eLr1(x) + 1+ o(e)

=L f(z) - f(x)L"1().
The proof is done. O

(
(
(eﬁ*f(w) + f@) +ole) f(”“'))
(

Now we apply Theorem 4.6 to two most relevant cases.

e ODE case: Lf(x) =v(z) - Vf(x).

In this case, we have

Lf(m)=L"f(x) ~ f(x)L1 (@) = ~v(@) -V f(z).

This corresponds to the ODE
dz
dt

which is exactly the reversed time dynamics of (4.31).

= 7’0(:8)7

e SDE case: Lf(x) =v-Vf(x)+ Af(x).

In this case, we have
Lf(x)=L"f(2)~ f(@)L"L(z) = —v(z) - Vf(z) + Af (2).
This corresponds to the SDEs

da(t) = —v(x)dt + v2dw(t).

To apply the theorem to the scRNA-seq data with transition rules (4.10) and (4.24), we need
to take into account the data distribution g(x). Define

P(fo)(x) [ pe(z, y)f(y)q(y)dy
> .

pq,sf(m) = eQ(w) fpe(m,y)Q(y)dy

It is not difficult to show that

Correspondingly, for


https://doi.org/10.1101/2020.09.19.304584
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304584; this version posted September 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

4 DYNAMICAL ANALYSIS BASED ON RNA VELOCITY 33

we have
_ L(f9)(=) — f(=)Lq(x)
q(x)
_ L) — flx)Lrg(x)
q(z)

£yf(@) = tim * (Py /(@) - f(a))

e—0t €

, (4.35)

where we utilized the conclusion in Theorem 4.6.

From Theorem 4.1 we know that for the cosine scheme with Gaussian diffusion kernel, Lf =
v - V[ for appropriate h(-) and g(-). Then its conjugate operator L*f = —V - (0 f). Therefore,
we have

Lof=—b-Vf=-Lf.

Similarly, for correlation scheme, from Theorem 4.2 we also have

L,f =—Lf.
For the inner-product scheme, from Lemma 4.3 we know that

ma ma

Lf= 2mog(0) Af = 2mog(0)

(" (O)[[v]|*f + 29" (0)v - Vf + g(0)Af) .

Then its conjugate operator is

Lf= ma A f = ma2

s AT = gy (0" OIS =20/ OV - (0f) +9(0)Af)

Similar to Theorem 4.3, simply replacing A with its conjugate A* in the proof, we can show that

ma Vg ¢'(0)
mo (“ B0

which is similar as the operator £, (4.25) except reversing the direction of velocity v.

Overall, the above derivations show that for all of cosine, correlation and inner-product
schemes, if we replace the transition kernel with its backward form, their continuum limit will
follow the ODE or SDE dynamics, by reversing the direction of the RNA velocity v. Similar re-
sults also hold for kNN-cosine or kNN-correlation (or Guassian-kNN-cosine/correlation) schemes
with similar derivations. This gives the rationale of the identification of root and ending cells
through backward and forward transition rules, respectively.

ma

Lof = —=Af+
0

2m v) Vi

4.4 Finding Development Routes: Transition Path Theory

With the root and ending cells detected by RNA velocity, the next question is to ask how the cell
state evolves along the development trajectories that connect the starting and target cell fates.
Unlike the conventional picture of trajectory inference (such as pseudotimes), the dynamics
revealed by RNA velocity might be more complex, because of local fluctuations, rotations and
oscillations, as well as multiple sources and sinks along the trajectory. Except for calculating the
most probable transition paths in the continuous set-up [39], the majority of existing tools opt
to visualize the trajectories with local velocity arrows or connecting streamlines in the reduced-
dimensional space, where a more quantified and global description of development path is needed.

We reason that the transition path theory [15] might be a good candidate, which has been
established for general Markov process such as diffusion [14], jump [33] and Markov chains
[34], and yielded fruitful applications in molecular dynamics and chemical reactions [5, 32]. Our
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proposed method to find development routes can be understood as a discrete, data-driven version
of the continuous approach described by [39]. Below we only focus on the theoretical aspect of
our proposal, whose algorithmic details will be discussed in the continued work [28]. We will
mainly follow [32] for the illustration of the transition path theory, and ignore most proofs of the
theorems which can be referred to [32] for details.

4.4.1 Coarse-graining of Transition Dynamics

The rapid growth of scRNA-seq data size poses computational challenges to the downstream
analysis. Therefore we propose an optional step here to first coarse-grain the transition dynamics
on the scale of clusters instead of single-cells to reduce the computational complexity.

Definition 4.1 (Coarse-graining of Markov Chain). Given an ergodic, microscopic Markov chain
{z¢} on the state space S with transition probability matriz P = {p(z,y)} and a partition S =
UK Sk, the coarse-graining of {x;} is defined as a Markov chain {X;} on the state space { Sk},
with transition probability matrix

N
Z 1{$t65i7$t+165j}

. t=1
T;; = lim
N—o0

N : (4.36)
> liresy
t=1

where the limit is taken in the almost sure sense, and 1.y is the indicator function with 1{..py = 1
if the logical variable exp =TRUE, and 0 otherwise.

We remark that the naive upscaling of the microscopic Markov chain {z;} by considering the
induced transition X; on the coarse-grained space at each step is not valid since X; defined in
this way is not necessarily Markovian. This is related to the well-known lumpability concept in
Markov chain theory [13, 25]. Here we take alternative viewpoint by defining the coarse-grained
chain through the time average limit instead of the single step transition.

The partition of the state space can be achieved by the clustering of cells, or by the simul-
taneous reduction of multi-scale dynamics [13, 66]. The coarse-grained transition probability
matrix can be indeed calculated analytically instead of through numerical simulations:

Proposition 4.1. The coarse-grained transition probability matriz defined by (4.36) can be ex-

pressed as
> 2 m(@)p(z,y)
T — z€S; yeS;
' > m(x)
€S,

Proof. Consider the stochastic process y; = (z¢,xy1), which is indeed a Markov chain with
stationary distribution 7(z,y) = m(x)p(z,y). Then from the ergodic theorem for y; we have

N N

. 1 . 1

]\llgnoo ﬁ Z 1{31't65i1$t+1 €Sy — ]\;E;noo N Z l{yte(Si,S,-)} = Z Z W(l’)p(l’, y)a
t=1 t=1 z€S; yeS;

N

and for z; we have lim + Y 1g,,es1 = > m(a). O
N—o0 t=1 TES;

It is also straightforward to verify that the coarse-grained Markov chain X, with {T};} has

the stationary distribution g with p; = > w(z).
TES;
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For simplicity of notations to present the transition path, below we take the index of {X;}
as integer set Z, where t = 0 corresponds to the interested time point, and the minus time
points represent the trajectories prior to Xg. With this setup, X is stationary and X; obeys the
invariant distribution always.

4.4.2 Defining Transition Paths and Their Probabilities/Fluxes

From the forward and backward transition approach described in Section 4.3, we are able to
identify the sets of root and ending clusters, and denote them as committor starting set A and
target set B, respectively. Note that both A and B may contain several states, corresponding
to the complex dynamics of multiple root or ending states and various connecting trajectories.
One advantage of transition path theory indeed lies in the quantification of such dynamics.

To begin with the derivation of transition path theory, we first define the core concepts of
in-transition times and transition paths as follows.

Definition 4.2 (In-Transition Times). For a given path {X;}, the in-transition times from set
A to B are defined as the union of sets

7=\ J{tez) <t <tfy,
nez

where t7+ and tB are the nth exit and entrance time of set A and B respectively such that
Xia €A, X5 €B, Xy € (AUB)® for t} <t <t}.

Definition 4.3 (Transition Paths). For a given path {X;}, the nth transition path from A to B
18
P, = {X}|t2 <k <tP}.

The set of all transition paths is defined as & = |J {Pn}.
neL

We are interested in quantifying the probability distribution of transition paths ensemble,
which is defined as:

Definition 4.4 (Probability of Transition Paths). The probability of observing transition path
at state i is defined as

N
1
AB . 1.
mi = N tZN Lixi=iylesy- (4.37)

Intuitively, m{‘B describes the likelihood that the cell is on a transition path from A to B
and bypassing state .S;. To compute mf‘B , we need the notion of committor functions and their

associated first entrance/last exit time.

Definition 4.5 (First Entrance and Last Exit Time). Given the path {X.} of stationary process
X, the first entrance time T:{ into set A, and the last exit time 7, from set A are defined as

i =inf{t >0: X, € A},
Ty i=inf{t > 0: X7 € A}.

where X[ := X _, is the path of time-reversed process of X;, and X[ has the transition probability

. T
matric TH = Bi20t
) Hi
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Definition 4.6 (Committor Function). The forward and backward committor functions are de-
fined as

g =Pty <7h), q =Pi(rp > 1)
Here P; denotes the probability of the forward process X conditioned on Xo = i and PE the
probability of the reversed process X® conditioned on X = 1.

From the definition, we can also interpret qj as the probability that the cell starting from
cluster S; first enters set B rather than set A, and ¢; the probability that the cell arriving at
cluster S; came last from set A instead of B. The committor functions provide a natural soft
clustering of the states by measuring the affinities with starting set A or target set B.

To compute the committor functions, we can derive the linear equations they satisfy.

Proposition 4.2. The committor functions solve the following discrete Dirichlet problems
k

qf =0, i €A,

qf =1, 1€ B.

Y Tia =a, i¢AUB,

k

q; =1, 1€ A,
g; =0, i€ B.

Proof. Define the Markov chain X7 with absorbing set A through the transition probability
Tij7 { ¢ Aa
T =41, i=j€A,
0, ieAi#g

and the hitting time 75 := inf{t > 0 : X/* € B} of X{! into set B. Then we have ¢ = P;(7}; <
1) = Pi(7§ < +00). From the Markov property of X/}, for i € (AU B)¢ we have

Pi(1 < +00) = > P(r§ < +o0| X1 = k)P;(X; = k),
k

which yields the equation for ¢, since P(§ = m|Xy = k) = P(r§ = m + 1|X; = k) for
k € (AU B)°. The equation for ¢; is similar. The validation of remaining boundary conditions
are straightforward from the definition of committor function. O

With committor functions, we have the following representation of transition paths probabil-
ity.
Proposition 4.3. The probability of transition paths defined in (4.37) can be expressed as

miP = pig; g

The intuition of the above expression is clear. To observe the transition paths at state i, we
pick it with the stationary distribution p;, and require that the path last exit from set A and
first enter the set B. This happens with the probability ¢; and ¢, respectively.
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Remark 4.9. The proportion pB of the time that a cell spends on the transition paths from A
to B has the form
N K
AB _ 1 _ -+
P = A}gnoom Z Lieay = Zlh‘qi q; -
t=—N i=1
Similarly, we can define the probability flux of transition paths, which is important to the
detection of development routes discussed below.

Definition 4.7 (Probability Flux of Transition Paths).

N
. 1
57 = lim N Z (1{Xt:i7Xt+1=j} : Z 1{t¢§t<t+1§t5})-

N—oc0
t=1

Roughly it tells the proportion of cells that are on a transition path from A to B and moving
directly from S; to S;. We can also write f;; in terms of committor functions, which also serves
as the numerical strategy for computation.

Proposition 4.4. The probability flux of transition paths can be expressed as

AB -
i = wiTijg; qj+-

4.4.3 Finding Development Routes via Transition Paths Flux

Trajectory inference aims to indicate how the state of cells evolve in a step-wise way. We therefore
define the concept of development routes to illustrate this physical picture.

Definition 4.8 (Development Route). A development route wgr = (ig,41,...,in) from set A to
B is a path connecting A and B without self-interactions (loops) such that

io € Aip, € B,ij € (AUB) andij # i, for0<j#k<n.

To quantify development routes of Markov chain X;, we need to eliminate the effect of detours
along transition paths, and therefore define the notion of effective current (or net flux) based on
the probability flux of transition paths.

Definition 4.9. The effective current of transition paths from state i to j during the transition
from set A to B is defined as
A A
i; = ma’X{ ijB - fjiBaO}‘
With the effective current, we can specify the capacity of each development route.

Definition 4.10 (Capacity and Bottleneck). Given the development route war = (10,91, ... ,%n)
from set A to B, its capacity is defined as

—m +
c(war) = 0<£n<12_1 fikik+17

and the bottleneck is defined as the corresponding edge with minimal effective current.

The underlying intuition of the definition can be indeed understood by an analogy with the
stream in water pipes or traffic on the freeways. The capacity of water pipes or freeways, is
limited by the narrowest point where the minimal amount of water stream or traffic can pass
through. Similarly, the transition of cell state from A to B is constrained by the bottleneck on
the development route.
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For all the possible development routes, we can calculate their capacity and consider routes
with larger capacity, which corresponds to the more dominant trajectories during the transition.
The ranking of all development routes capacity can be done effectively using an iterative edge-
removing strategy [33]. We leave the details of algorithmic implementation of transition path
theory to find development routes based on RNA velocity in our continued work [58].

5 Conclusion

The introduction of RNA velocity allows the prediction of future states in single-cell RNA se-
quence (scRNA-seq) data and yields fruitful results to reveal the dynamics of actual development
process [46], while several theoretical issues regarding the models and analysis of RNA veloc-
ity remain to be elucidated. In this paper, we have proposed a mathematical framework to
investigate the modeling, inference and downstream analysis aspects of RNA velocity.

Here we presented both the deterministic and stochastic models of RNA velocity, and derived
the analytical solutions for both models. Particularly, we provided the expression for the exact
probability distribution at any time in stochastic model. With the introduced models and analyt-
ical solutions, we then revisited the algorithms to infer parameters in RNA velocity model, and
proposed an EM algorithm for the newly-derived complete stochastic model through maximum
likelihood estimation.

Next, we dedicated to the theoretical issues on downstream analysis, particularly focusing on
recovering the dynamical system models from RNA velocity. We derived the continuum limits
of various constructed cell-cell transition dynamics from RNA velocity, which depended on the
choice of velocity kernels (cosine, correlation or inner-product) and diffusion kernels (Gaussian
or kNN). Our analysis revealed that while the cosine scheme in velocity kernel uncovers the
streamlines in the deterministic ODE dynamics of RNA velocity model, the inner-product scheme
corresponds to the stochastic dynamics described by SDE, which can incorporate the transitions
among meta-stable states. Meanwhile the correlation scheme is associated with the deterministic
dynamics with altered velocity that might be potentially unwanted. Through the delicate analysis
on kNN kernel, we also proved that the choice of kNN over Gaussian in the diffusion kernel did
not affect the overall continuum limit except for the pre-factors.

Based on our analysis, we then validated the rationale to find root and ending cells of previ-
ously proposed “forward and backward diffusion” strategy [27], from the continuous dynamical
system aspects. It is shown that the difference between forward and backward transitions in the
continuum limit only lies in the reversal of velocity direction. Finally, we proposed a method
to infer the development routes from RNA velocity-based transition rules, which was specialized
to cope with the complex dynamics of multiple root/ending states and various connecting path.
We demonstrated the derivation of the method from transition path theory for Markov process.

Compared with previous stochastic models of RNA velocity that focused on moment equations
of the chemical master equation [3, 39], the analysis of our proposed stochastic model featured
for the derivation of an exact solution for the probability evolution. Such probability expression
is especially useful to derive most-likelihood estimators of parameters for the stochastic model.

Currently, there exist two major streams of research to infer and analyze the underlying dy-
namics of scRNA-seq data. The first class of data-driven approaches, which are well represented
by pseudo-time inference methods [20, 38, 51] for snapshot data, seek to construct development
trajectories from the intrinsic manifold representation of data. On the other hand, the sec-
ond class of model-based approaches as exemplified by SCUBA [31], Pseudo-dynamics [16] and
Waddington-OT [41], aim to connect the probability distribution of single-cell data with a con-
tinuous dynamical system model, and are widely applied in the analysis of time-series sequencing
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data. Weinreb et al. [55] have shown theoretically that the fundamental limitations of snapshot
data make the data-driven methods incapable of revealing the complex, non-equilibrium dynam-
ics accurately. Meanwhile the model-based proposals may encounter difficulties in solving the
high-dimensional Fokker-Planck equations numerically and infer the large amount of parameters
in the model. Here we provide the mathematical justifications that the discrete cell-cell transi-
tion dynamics constructed from RNA velocity, even for snapshot data, can indeed converge into
the continuous dynamical system model (not necessarily equilibrium) via the large sample limit,
and we also propose the method to dissect the complex trajectories of such dynamics with solid
theoretical guarantee in the well-established transition path theory.

In the future, we anticipate that the RNA velocity model can be further improved by taking
the genetic interactions into account [12], and customizing for the time-series scRNA-seq data.
Overall, our mathematical analysis of RNA velocity in this paper provides the starting point to
develop further models and methods in a more rational and consistent way.
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Appendix. The kNN Radius Estimate

In this Appendix, we will prove a useful kNN radius estimate as n — oo, which is summarized
in Theorems A.1 and A.2. Although some classical results have been obtained in the literature
concerning the consistency of the kNN density estimate [11, 29], the asymptotic expansion of
the kNN radius is seldom discussed. Our analysis is more direct and independent of the result
considered in [50]. It is not sharp, but enough for our continuum limit analysis of RNA velocity
kernels. We leave further delicate order estimate as a future work.

Consider a random vector X with smooth density function g(x). Given n data points, we
can estimate the density function at & through kNN approach

kn/n

qn () = W»

where Vj is the volume of the d-dimensional unit sphere, R, () is the kNN radius defined as the
distance to the k,th nearest neighbor of x. Without loss of generality, we set = 0 and denote
R, = R,(0). By definition, R,, obeys the order statistics with density

P = kn)T!L(!kn P F T A - F)

where p(r) is the density of the radius R = || X||:
p(r) = / q(x)dSz, >0 (A1)
ll=r

and F is its distribution function F(y) = [}/ p(
Below we will first estimate the expectatlon of R to achieve an intuition about its scale. We
assume ¢(0) > 0 all through the analysis.

Lemma A.1l. Under the condition k, — oo, k,/n — 0 and the assumption

EHXH:/ dr—/F u)du < oo,
0

Ry =ER,=c,* (k") 1+0(k )+0<k > '+0(kn1)1, (A.2)
n n n

where cq = Vgq(0).

we have

=

Proof. For any 0 < € < 1, define
/ Flwur =11 —w)"Frdu, I(n)=I(n).
Then we have
I(n) /1 F~ Y (w)ur =1 (1 —u)" " du

1
</ FHu)(1 = e)" *du

<=9 k“EllXII— o),
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where 7. is a generic constant belongs to (0, 1), which can be taken as n. = (1— e)% in the current
step as long as k, < n/2.

Now let us consider I.(n). We need to estimate the order of F~!(u) when w is small. For
small § > 0, we have

FO = [ a(0)+2Vg(0) + 32" V2q(0)z + (o) de
Il <s 2

_ (5dqu(O) + le?ji(g)) 5+ 4 O(5d+3)
= 0%cqg 4 agd? + 0(6%)) = 6%(cqg + O(5?)). (A.3)

Denote G(u) = F~(u), then G(6%(cq+0(6?))) = 6. Let u = §%(cq+0(6?)). We get § = O(u'/?),

and
0=~ (=) = () (- %50)

=

Therefore we obtain

I(n) = /0€ Gu)uP (1 —u)" " du

_ /O ((;) "4 0(u3)> WFn (1 — )R dy
_ / 1 ((“) "4 o<u2>> Wb (L — )" du 4 O

_1 1
—cddB(kn+d,nkn+1)+O(B(kn+z,nkn+1)) +0(nh),

where B(x,y) = fol t*=1(1 — t)¥~1dt is the beta function. Utilizing the asymptotics

\/ﬂx’”—%yy_%

B ) = T
(l‘ y) (IE +y)z+y—§

(1+0@E@™H+0@™"), =zy>1,

we obtain

1 1 K, kn+d .
B(kn+g7n—/€n+1)zﬂ \/E(en> > 0(n¢),

3 ko 1
B(kn + Pk kn+1) ~ <n> B(k, + 7 kn+1)> 0,
where €Q(-) is the asymptotic lower bound function and we have used the condition k,/n — 0.
Therefore, we get

I(n)zcﬁB(kzn+é,n—kn+1) (1+0(’j§>d>. (A.4)
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Then the expected radius

/ TPk,
~ | O O R
=C,

/ rFR=1(5) (1= F(r))" o dF(r)
=C, / G

w)" "k du = C,I(n),
where C, = n!/(n—ky)!(k,—1)!. Using Stirling’s formula and (A.4) we obtain (A.2) immediately.
O

Lemma A.1 suggests that the kNN radius R,(x) has the form R,(x) = h,r,(x) with the
scale
B = (kn/(nVg)Y4 =0

and the location dependent bandwidth
ra®) = g(x) "1 + O(h) + O(h7) + Ok ).
Below we first establish the convergence in leading order in almost sure sense.
Theorem A.1. Ifk,/n — 0 and k,/Inn — oo, then
rn(x) — q(a:)fﬁ almost surely.

Proof. Set © = 0 without loss of generality. According to the Borel-Cantelli lemma, we only
need to prove that for any small € > 0,

ZP rn — q(0)7 4| > €) < +oc. (A.5)

Denote ¢ = ¢(0)~7. We have

P(jrn —c|>e) = / + [ Cuhup(rhy)F* =1 (rhy) (1= F(rhy,))" " dr
0 c+e

= P~ + P*.
From (A.3), we have the asymptotics
kn,
Frn=L(rh,) = ((rhn)d(cd +agr2h? + 0(r3h;°;)))
a k-1
o (14 % 4 o)

Cd
= cs”’_l(rhn)d(k”_l) eXp(TQO(k’n)) (A.6)
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and
n—kny

(1= F(rhy))" " = (1 —7hi (ca + aar®hi, + O(ﬁhi)))

= exp ( n) I 1 —rdpd o(ca+ adrzhi + O(Tdhi))>>
= eX 1 — TdCdkn (1 + %7"2]12 + O(T3h3)))
P v, ca n n
_ ( r Cdk (r+2 —|—7"d)0(/€n)> ) (A7)

Define g(x) = 2¥»~1(1 — x)"~*». Then (k, — 1)/(n — 1) is the unique maxima of g, and g is
increasing when 0 < z < (k, —1)/(n—1) and decreasing when (k, —1)/(n—1) < 2 < 1. Utilize
(A.3), we can easily show that
kn—1
n—1

F((c+€e)hy) > ]j::ll and F((c—e)hy,) <

for small € and big enough n. Then using (A.6) and (A.7) and Stirling’s formula, we obtain

P < Crhnp(rhn)g(F((c+ €)hy,))dr
cte

< C’ng(F((ch e)hn))

degk
= Cpchn (e + )1 pdlhn=1) oxpy (W + o(kn))
d

=0<V%fxp@ﬁf®+d—f@%+dmﬁ>-

where
f(r) =dlnr — q(0)rd.

The function f is increasing when r < ¢ and decreasing when r > c.
With similar estimate for P.~, we obtain

Mm—d>d=O(J;%ﬂ,

which is o(n~2) under the condition k,, /Inn — oo. Then (A.5) follows and the proof is done. [

Theorem A.2. Ifk,/n — 0 and k,/n* — oo for some a > 2/(d + 2), then for d > 1, we have

1

n — O Td a.s, .
# =50, d.e. rp=c+o(h,) almost surely.

Proof. Similar to Theorem A.1, now we consider

c—ehy, 0o
P, = / —|—/ Cphyp(rhy)FF=1(rhy,) (1 — F(Thn))nfk” dr
0 c+ehyp

= n-,knyd(jﬁ_hn + I:;Ln)7
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where C, 1, .a = Cndcg" h‘,ilk" which has the asymptotics

ny

Co ki .a = d(g(0)e)*n % exp (—];2 +o (kQ >> . (A.8)

n
According to the proof of Theorem A.1, for any 6 > 0 and n big enough, we have
Ps <« P5/2 < Pep,,.

Therefore, to estimate P, we only need to estimate P, — P5. In what follows we will mainly
use the Laplace’s method to estimate I;;ln since the estimation of I, is similar. First we have

p(rha) = Sa(rhn)'q(0) + Sa(rh)* 2LO L 0((rn,y42)

2d
1
= dea(rhn)"™" + SVaAq(0)(rha) ™ + O((rha) ™), (A.9)
where Sy is the surface area of the d-dimensional unit sphere. Utilizing (A.6), (A.7) and (A.9),
we get
c+9 2
ricyk,
-1 = [ e e (< T 0k + )
ct+ehy,
2
oty o () Jor
where J 4 J2d,2
ad o rUcq T Cd Cq
= — 1 _ — = .
fl (71) Cd r ( Vd ) Y f2 (T) Vd 2Vd2

We can verify that fi(c) =0 and fa(c) = 1/2. By the arbitrary smallness of §, we have

c+o
I, —If ~exp <o(knhi)+ (;+0(1))k’%> / ' L exp(n f(r))dr

n ct+eh, r

Denote
c+d 1
J = / —exp(ky f(r))dr
ct+ehy, T
For ¢+ eh,, <r < c+ 9, there exists £ > 0 such that

R e Gl (it
We have
i zeXp(k"f(f; hn)) /:: exp <(f”2(c) — &) kal(r — ) - e2h3)> dr
NexP(k”Z(f; €hn)) /:oh exp ((fQ(C) &)kl — ) - 2h2)> dr
_hn eXp(k;fg + chn)) /eoo - ((f';(c) . g) k2 (r2 — 62)) dr
exp(knf(c + ehn))

" 2eknha(c+0)f(e)/2 €
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Similar upper bound can be obtained, so we obtain

B exp(kn f(c+ehn))\ exp (k”(f(c) + f”(c)%h% + o(hi)))
J; - O < knhn ) - O knhn

Therefore,

1 1 1 fn
15, =17 =0 (e (ke (160 + 302570 +002) + (5 +o00) 2)) ).
With similar estimate for 17, — I5, we get

Pep, ~ Pep,, = Ps = C e a (I, —15) + (15, —1I3))
1 1,., kn
=0 <\/Ehn exp (kn ((262f (¢) +0(1))h31 +0(n>)>> )

If d > 1, then h2 = O ((%)%) > O(%’) Therefore

P(lr, —r| > €h,) = O < exp (neknhi)> .

1
Vknhy,
Under the condition that k,/n® — oo for some a > 2/(d + 2), we have k,h2/Inn — oo, so we
get the desired estimate. O
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