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Abstract

A comprehensive characterization of the brain’s white matter is critical for improving our
understanding of healthy and diseased aging. Here we used diffusion-weighted magnetic
resonance imaging (dMRI) to estimate age and sex effects on white matter microstructure in a
cross-sectional sample of 15,628 adults aged 45-80 years old (47.6% male, 52.4% female).
Microstructure was assessed using the following four models: a conventional single-shell model,
diffusion tensor imaging (DTI); a more advanced single-shell model, the tensor distribution
function (TDF); an advanced multi-shell model, neurite orientation dispersion and density imaging
(NODDI); and another advanced multi-shell model, mean apparent propagator MRl (MAPMRI).
Age was modeled using a data-driven statistical approach, and normative centile curves were
created to provide sex-stratified white matter reference charts. Participant age and sex
substantially impacted many aspects of white matter microstructure across the brain, with the
advanced dMRI models TDF and NODDI detecting such effects the most sensitively. These
findings and the normative reference curves provide an important foundation for the study of

healthy and diseased brain aging.
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Introduction

White matter alterations have been linked to age-related cognitive decline and implicated
in neurodegenerative diseases such as Alzheimer’s disease (Bennett & Madden, 2014; Pievani,
Filippini, van den Heuvel, Cappa, & Frisoni, 2014). A range of age-associated neurodegenerative
diseases also exhibit sex differences in their prevalence and presentation and, similar to age, sex
has also been associated with white matter differences (Cox et al., 2016; Jahanshad & Thompson,
2017; Ritchie et al., 2018; Salminen, Tubi, Bright, & Thompson, 2020; Toschi, Gisbert,
Passamonti, Canals, & De Santis, 2020). Understanding the brain’s white matter may
substantially improve our understanding of aging and sex differences therein, including ultimately
the genetic and environmental factors that may influence healthy or diseased aging. Diffusion-
weighted magnetic resonance imaging (dMRI) allows for the characterization of white matter
microstructure by assessing the diffusion of water molecules in brain tissue (Stejskal & Tanner,
1965). The conventional modeling approach applied to dMRI data, known as diffusion tensor
imaging (DTI), fits a single-tensor to single-shell dMRI data and typically reflects hindered
diffusion (Basser, Mattiello, & Lebihan, 1994; Jones, 2008). A more advanced single-shell model
is the tensor distribution function (TDF), which addresses well-established limitations of DTI by
using a continuous mixture of tensors to capture multiple underlying fiber populations (Leow et
al., 2009; Nir et al., 2017; Zhan et al., 2009). Compared to single-shell models, multi-shell dMRI
models may allow for a more nuanced depiction of the underlying microstructural environment by
using multi-shell dMRI data, which allows both hindered and restricted diffusion to be captured.
Multi-shell diffusion models include, among others, the biophysical model neurite orientation
dispersion and density imaging (NODDI) and the signal-based model mean apparent propagator
MRI (MAPMRI). NODDI is a multi-compartment model that separately models restricted, hindered,
and free water diffusion, which are thought to correspond to intra-cellular, extra-cellular, and
isotropic water components, respectively (Zhang, Schneider, Wheeler-Kingshott, & Alexander,

2012); NODDI may thus provide microstructure metrics more closely linked to specific aspects of
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the cellular environment than single-shell models (Zhang et al., 2012), although some recent work
suggests the assumptions underlying NODDI’'s specificity may not always be met (Jelescu &
Budde, 2017; Jelescu, Palombo, Bagnato, & Schilling, 2020). MAPMRI is a diffusion propagator-
based multi-shell model that estimates the diffusion patterns of water molecules without a priori
assumptions about the underlying tissue, which may allow for the detection of more subtle
microstructure alterations (Fick, Wassermann, Caruyer, & Deriche, 2016; Le et al., 2020; Ning et
al., 2015; Ozarslan et al., 2013).

Previous dMRI studies examining age and sex effects have reported age-related white
matter decline and significant sex differences in white matter microstructure (Beck et al., 2020;
Cox et al., 2016; Damoiseaux, 2017; Jahanshad & Thompson, 2017; Ritchie et al., 2018; L.E.
Salminen et al., 2020; Toschi et al., 2020; Tseng et al., 2020; Zavaliangos-Petropulu et al., 2019).
In one of the largest studies to date that investigated age and sex associations with white matter
microstructure adults, Cox et al. (2016) examined two DTl metrics (fractional anisotropy, FA;
mean diffusivity, MD) and three NODDI metrics (orientation dispersion, OD; intra-cellular volume
fraction, ICVF; isotropic volume fraction, ISOVF) in 3,513 middle-aged and older subjects from
the UK Biobank for a range of white matter tracts across the brain; age was modeled using a
linear or quadratic fit, based on the best fit for each tract and metric. These analyses indicated
widespread effects of age and sex on most tracts for the examined DTl and NODDI metrics;
interactions between age and sex exhibited small effect sizes and attained statistical significance
for a limited subset of the tracts and metrics examined (Cox et al., 2016). A larger follow-up
investigation in 5,216 UK Biobank participants assessed sex differences in one DTI metric (FA)
and one NODDI metric (OD), among other non-dMRI measures, and similarly supported the
existence of significant white matter differences between men and women for a range of tracts
(Ritchie et al., 2018). In another study among 7,167 UK Biobank participants, Tseng et al. (2020)
examined age effects on white matter using a linear age model and four microstructure metrics

analogous to FA or calculated using DTI (generalized fractional anisotropy, GFA; mean diffusivity,
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MD; axial diffusivity, AD; radial diffusivity, RD). Their results further supported the association
between age and white matter decline, in addition to indicating a sex difference in the overall
number of white matter tracts that exhibited age-related declines in anisotropy (Tseng et al., 2020).
Such prior dMRI work robustly demonstrates that multiple aspects of white matter microstructure
are significantly associated with participant age and sex (Beck et al., 2020; Cox et al., 2016;
Damoiseaux, 2017; Jahanshad & Thompson, 2017; Ritchie et al., 2018; Salminen et al., 2020;
Toschi et al., 2020; Tseng et al., 2020; Zavaliangos-Petropulu et al., 2019). However, it remains
an open question how age, sex, and their interaction may be related to additional measures of
white matter microstructure obtained from other advanced dMRI models such as TDF and
MAPMRI, as well as how age effects on microstructure may manifest in middle to late adulthood
when using more complex, data-driven statistical approaches for modeling age.

Our understanding of aging would also benefit from establishing typical ranges of white
matter properties among middle-aged and older adults. Such normative reference data would
allow future investigations to detect individuals with quantifiably abnormal white matter
microstructure for their age and sex, such as individuals who are below the 5" percentile or above
the 95" percentile for a given microstructure metric (Marquand et al., 2019; Wolfers et al., 2018;
Zabihi et al., 2019). As many age-related neurodegenerative diseases are associated with altered
white matter, such normative white matter reference curves may allow future aging work to identify
individuals with the most severe neural pathology (Pievani et al., 2014). This would provide a
novel avenue for future pre-clinical aging studies by allowing them to characterize those factors
associated with the most diseased neural phenotypes. Prior large-scale neuroimaging has
computed normative reference values for a range of structural morphometry measures, such as
hippocampal volume, as well as several microstructure metrics (Dima et al., 2020; Frangou et al.,
2020; Nobis et al., 2019; Pomponio et al., 2020; Tseng et al., 2020). Normative reference curves

for additional white matter microstructural properties would provide complementary information
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and, together with preexisting neural reference values, allow for a more complete characterization
of healthy and diseased aging in future studies.

Here we expanded on prior work by using multiple dMRI models to thoroughly characterize
age and sex effects on white matter microstructure in a large-scale, population-based sample of
middle-aged and older adults. Specifically, we examined age and sex associations with DTI, TDF,
NODDI, and MAPMRI microstructure metrics in 15,628 cross-sectional UK Biobank participants.
Age was modeled non-linearly using a data-driven statistical approach, and normative centile
curves were calculated for all AMRI measures to provide sex-stratified references for white matter.
We found that age and participant sex was significantly related to many white matter properties
across the brain, and advanced dMRI models detected age and sex effects the most sensitively.
The computed reference curves provide a novel avenue for future studies focused on the

characterization of white matter in middle to late adulthood.

Methods
Study Design, MRI Acquisition and Processing

We analyzed cross-sectional dMRI data from a total of 15,628 community-based UK
Biobank subjects aged 45-80 years (47.6% male) (Miller et al., 2016). All dMRI data included in
the current study was collected on a single scanner. Sample details and dMRI processing are
presented in the Supplementary Material (Supplementary Methods). Briefly, white matter metrics
were derived using four dMRI reconstruction models: DTI, TDF, NODDI, and MAPMRI. Each
reconstruction method is further described in the Supplementary Material (Supplementary
methods). Metrics derived from DTI included fractional anisotropy (FAP™), mean diffusivity (MD),
axial diffusivity (AD), and radial diffusivity (RD). An advanced measure of fractional anisotropy
was calculated using TDF (FA™F). Measures derived from NODDI included orientation dispersion

(OD), intra-cellular volume fraction (ICVF), and isotropic volume fraction (ISOVF). The following
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white matter indices were calculated from MAPMRI: return-to-origin probability (RTOP), return-
to-axis probability (RTAP), and return-to-plane probability (RTPP). Diffusion-weighted MRI
metrics were projected to a standard white matter skeleton using publicly available ENIGMA
protocols based on FSL’s tract-based statistics (TBSS) and described further in the

Supplementary Material (Supplementary Methods) (http://enigma.ini.usc.edu/protocols/dti-

protocols; Jahanshad et al., 2013; Smith et al., 2006). Consistent with prior literature, we focused
on mean microstructure values for the whole white matter skeleton (full WM) and the corpus
callosum (CC) (e.g., Beck et al., 2020; Jahanshad & Thompson, 2017; Pines et al., 2020). For
completeness, supplemental analyses examined mean values in additional white matter regions

across the brain (Supplemental Methods).

Statistical Analyses

Our planned a priori analyses investigated the effects of age, sex, and their interaction on
the full WM and CC by using fractional polynomials to flexibly model age in a non-linear manner
(Dima et al., 2020; Frangou et al., 2020; Royston & Altman, 1994). The fractional polynomial
approach is detailed further in the Supplementary Material (Supplementary Methods), as are the
nuisance covariates we included based on prior literature (Salminen et al., 2019). Effect sizes
were calculated as the variance explained separately by age, sex, and their interaction. For
instance, the effect size for age was computed as the difference in variance (change in R?)
between two models: one which included age in addition to sex and nuisance covariates, and one
which only included sex and nuisance covariates. Sex-stratified centile reference curves were
created for each white matter region and dMRI metric using quantile regression (Supplementary
Methods). For completeness, supplemental analyses examined age and sex effects on additional
white matter regions across the brain, in addition to using a distinct statistical approach to model
age; details on these supplemental analyses are presented in the Supplementary Material

(Supplementary Methods).
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Results

Age was robustly associated with the full WM and CC for all dMRI metrics (Fig. 1A-B, Fig.
2, Fig. 3). Such age effects in our cross-sectional sample were observed in the full WM and CC
as lower anisotropy (FAP™, FATPF), neurite density (ICVF), and restriction (RTOP, RTAP, RTPP),
as well as higher diffusivity (MD, AD, RD) and free water (ISOVF) with increasing age. White
matter dispersion (OD) was higher in the full WM and lower in the CC with increasing age. Effect
sizes for age in the full WM and CC demonstrated that the advanced single-shell model, TDF,
was most sensitive to age, followed by DTl and NODDI (Fig. 1A-B). Supplemental analyses
likewise supported that TDF was the most sensitive dMRI model, followed by DTI (Supplementary
Results). In sum, age has widespread effects on white matter microstructure that are detected
most sensitively by TDF.

Participant sex was significantly associated with full WM and CC microstructure for nearly
all assessed dMRI indices (Fig. 1C-D, Fig. 2, Fig. 3). Patterns of sex differences were typically
region- and metric-specific. In both the full WM and the CC, women exhibited greater RD, OD,
and RTPP than men; men displayed greater FAP™ and AD compared with women. For full WM,
male participants also displayed higher FA™F, ICVF, RTOP, and RTAP. When contrasting CC
microstructure between men and women, women had greater ICVF and RTOP. Men exhibited
higher MD in the CC than women. Effect sizes for full WM and CC revealed that sex differences
were detected most sensitively by the advanced multi-shell model, NODDI, followed by DTI (Fig.
1C-D). Supplemental analyses similarly demonstrated that NODDI and DT| were most sensitive
to sex differences (Supplementary Results). Together, these results indicate that participant sex
is robustly associated with white matter across the brain, and such sex differences are captured
most sensitively by NODDI.

Age effects on the full WM and CC significantly depended on participant sex for multiple

dMRI metrics (Fig. 1E-F, Fig. 2, Fig. 3). These age by sex interactions in our cross-sectional
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sample were driven by complex combinations of steeper age-related decline among women than
men and vice versa. The most common pattern was generally steeper decline in female than male
participants, as observed in both the full WM (AD, ISOVF, RTPP) and the CC (ICVF, RTOP). A
mixture of faster, slower, and similar age-associated decline in female compared to male subjects
was also observed to a somewhat lesser extent, in both full WM (RTOP) and the CC (FA°™,
RTAP). In full WM only, men displayed steeper age-related decline than women in fiber dispersion
(OD). Effect sizes for the age by sex interaction in the full WM and CC indicated that the multi-
shell model, NODDI, was most sensitive to such sex differences in age effects, followed by
MAPMRI and DTI (Fig. 1E-F). Supplemental analyses similarly indicated that NODDI and DTI
exhibited the greatest effect sizes (Supplementary Results). As a whole, the effect of age
significantly depends on participant sex for many white matter regions and measures, and NODDI
detects such sex differences in age effects the most sensitively.

To provide normative models of white matter microstructure for the full WM and CC, sex-
stratified centile reference curves were calculated for each dMRI metric (Fig. 2, Fig. 3). For
completeness, normative reference charts for additional white matter ROIs across the brain are

included in the Supplementary Material (Supplementary Results).

Discussion

Here we thoroughly characterized age and sex effects on white matter microstructure by
using an array of dMRI models coupled with advanced statistical methods. We also created
normative reference curves for multiple aspects of white matter micro-architecture, which may
allow for the future identification of individuals with the greatest neural pathology. As a whole, age
and participant sex was robustly related to white matter across the brain, with the advanced dMRI
models TDF and NODDI capturing such differences the most sensitively.

Age was associated with white matter alterations in nearly every region and

microstructural property investigated. Specifically, older age in our cross-sectional sample was
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related to mostly lower anisotropy, neurite density, and restriction, as well as mostly higher
diffusivity and free water; age-dependent changes in fiber dispersion were more regionally
specific. These results are in line with postmortem histological findings that aging is associated
with the degradation and deformation of axons and myelination (Bennett & Madden, 2014). Our
age results are also consistent with prior dMRI work that examined one or two dMRI models
among the DTI, TDF, NODDI, and MAPMRI approaches included here (Beck et al., 2020; Bennett
& Madden, 2014; Cox et al., 2016; Damoiseaux, 2017; Tseng et al., 2020; Zavaliangos-Petropulu
et al., 2019). Notably, white matter microstructure in aging has previously been linked to age-
related cognitive decline and neurodegenerative diseases, underscoring the importance of
understanding age effects on white matter among older adults (Bennett & Madden, 2014; Pievani
et al., 2014).

Participant sex was also significantly related to many white matter properties across the
brain. As a whole, women exhibited greater white matter dispersion than men, on average. Men
displayed greater anisotropy, on average, compared to women. Sex differences in other white
matter microstructure characteristics — including measures reflecting diffusivity, neurite density,
free water, and restriction — depended to a greater extent on the exact region and metric examined.
These findings are largely consistent with previous analyses which used DTl or NODDI to assess
white matter sex difference (Cox et al., 2016; Jahanshad & Thompson, 2017; Ritchie et al., 2018;
Salminen et al., 2020; Toschi et al., 2020); such prior analyses likewise found that males exhibit
higher anisotropy and lower fiber dispersion than females, with other microstructure metrics
displaying greater variability in their pattern of sex differences. In the current study, we also
observed significant sex differences in age effects for a number of regions and microstructure
metrics in our cross-sectional sample. The most common pattern for this interaction between age
and sex was steeper age-related decline among women than men. Previous dMRI work has
likewise suggested sex differences in age effects (Cox et al., 2016; Kodiweera, Alexander,

Harezlak, McAllister, & Wu, 2016; Toschi et al., 2020; Tseng et al., 2020). The largest of these
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studies investigated 7,167 UK Biobank participants and found that, overall, a greater number of
tracts exhibited age-related declines in anisotropy among women than men (Tseng et al., 2020).
Another study in 3,513 subjects from the UK Biobank demonstrated that age effects significantly
differed between men and women for a small number of tracts and microstructure metrics, where
the directionality of such differences depended on the specific tract and metric (Cox et al., 2016).
Our findings expand on this prior work indicating sex differences in age effects among middle-
aged to older adults. Importantly, a range of neurodegenerative conditions exhibit sex differences
in their prevalence and presentation, emphasizing the importance of understanding differences in
neural aging between men and women (Salminen et al., 2020).

Advanced dMRI models detected age and sex effects most sensitively in the current study.
We used four separate dMRI models to characterize white matter microstructure — DTI, TDF,
NODDI, and MAPMRI — and found that the advanced models TDF and NODDI exhibited the
greatest sensitivity to white matter differences. Notably, between the two single-shell models DTI
and TDF, TDF may be considered to model the underlying neurobiology more directly than DTI,
among the two multi-shell models, NODDI may similarly be considered to model the underlying
biology more directly than MAPMRI. More specifically, among the single-shell dMRI approaches,
TDF models multiple underlying fibers per voxel, whereas DTI cannot differentiate multiple fiber
populations (Jones, 2008; Leow et al., 2009; Nir et al., 2017; Zhan et al., 2009). Similarly, among
the multi-shell AIMRI models included in the current study, NODDI directly models multiple aspects
of the cellular environment whereas MAPMRI estimates diffusion patterns without specifically
modeling the underlying biology (Fick et al., 2016; Ozarslan et al., 2013; Zhang et al., 2012). This
suggests that dMRI approaches which model the underlying neurobiology may capture
microstructural differences more sensitively in community-based samples of middle-aged and
older adults such as the UK Biobank sample examined here. As TDF was the most sensitive to
age and NODDI to participant sex, our results furthermore indicate that the relative utility of each

dMRI model depends not only on the fidelity of the model to the underlying neurobiology, but also
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on the specific neurobiology underlying the scientific question of interest. Future work should
assess whether the relative utility of different dMRI models may depend on the dMRI analysis
method used (e.g., TBSS vs. tractography-based approaches). As a whole, these findings
indicate that future research examining age and sex may benefit from including advanced dMRI
measures.

The age and sex findings presented here may serve as a reference for future analyses
investigating the genetic and environmental factors that contribute to healthy or diseased aging.
The normative centile charts provided here may also allow for the detection of individuals with
abnormal white matter, contributing to future studies focused on the characterization of diseased
aging. Future work should expand on the current study by examining longitudinal samples,
replicating our findings in diverse healthy and diseased datasets collected on different scanners,
and including additional dMRI analysis methods beyond the TBSS approach used here, such as

tractography-based analyses.

Conclusions

In summary, we characterized white matter microstructure during middle to late adulthood
in 15,628 individuals using multiple dMRI models. Age and participant sex exhibited widespread
associations with white matter across the brain, and advanced dMRI models demonstrated the
greatest sensitivity to such effects. These findings provide an important foundation for the study

of healthy and diseased aging.
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Figure 1. Effect of age (A-B), participant sex (C-D), and their interaction (E-F) on full white matter
and corpus callosum microstructure. Age was modeled as a continuous variable using fractional
polynomials. Filled bars indicate a significant association, whereas hollow bars indicate the
association did not attain statistical significance.
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Figure 2. Normative centile reference curves calculated for the full white matter for single-shell
dMRI metrics in (A) males and (B) females, and multi-shell dMRI metrics in (C) males and (D)
females. Solid colored lines, ordered from lightest to darkest, indicate the following centiles: 5™,
25™ 50™, 75M 95™: blue lines indicate male participants, and red lines indicate female participants.
Gray overlay reflects kernel density (darker=greater degree of data point overlap). Full WM = full
white matter skeleton.
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Figure 3. Normative centile reference curves calculated for the corpus callosum for single-shell
dMRI metrics in (A) males and (B) females, and multi-shell dMRI metrics in (C) males and (D)
females. Solid colored lines, ordered from lightest to darkest, indicate the following centiles: 5™,
25™ 50™, 75M 95™: blue lines indicate male participants, and red lines indicate female participants.
Gray overlay reflects kernel density (darker=greater degree of data point overlap). CC = corpus
callosum.
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